blob: 630490fa94edb864912c0a81beb1431e8ea2478f [file] [log] [blame]
Marat Dukhan8137e4c2020-01-25 12:56:58 -08001// Auto-generated file. Do not edit!
2// Template: src/f32-raddstoreexpminusmax/neon-lut64-p2.c.in
3// Generator: tools/xngen
4//
5// Copyright 2020 Google LLC
6//
7// This source code is licensed under the BSD-style license found in the
8// LICENSE file in the root directory of this source tree.
9
10#include <assert.h>
11
12#include <arm_neon.h>
13
14#include <xnnpack/common.h>
15#include <xnnpack/raddstoreexpminusmax.h>
16
17
18extern XNN_INTERNAL const float xnn_table_exp2_k_over_64[64];
19
20void xnn_f32_raddstoreexpminusmax_ukernel__neon_lut64_p2_x4(
21 size_t elements,
22 const float* input,
23 float* output,
24 float* sum,
25 float max)
26{
27 assert(elements % sizeof(float) == 0);
28
29 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.800000p23f);
30 // The smallest x for which expf(x) is normalized.
31 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
32 const float32x4_t vlog2e_x64 = vmovq_n_f32(0x1.715476p6f);
33 // Last 13 bits are zeroes
34 const float32x4_t vminus_ln2_o64_hi = vmovq_n_f32(-0x1.630000p-7f);
35 const float32x4_t vminus_ln2_o64_lo = vmovq_n_f32(0x1.BD0106p-19f);
36
37 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFF0Ap-2f);
38
39 const int32x4_t vindex_mask = vmovq_n_s32(INT32_C(0x3F));
40
41 const float32x4_t vi_max = vdupq_n_f32(max);
42
43 float32x4_t vacc = vmovq_n_f32(0.0f);
44 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
45 // Load 4 inputs at a time.
46 const float32x4_t vi = vld1q_f32(input); input += 4;
47
48 // Subtract maximum input x := i - i_max. This implies x <= 0.
49 const float32x4_t vx = vsubq_f32(vi, vi_max);
50
51 // Compute reduced argument n := round(x * 64 / log(2)).
52 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
53 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
54 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
55 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
56 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
57 // algorithm.
58 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e_x64);
59
60 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
61 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
62 // e := int(n / 64). We create s in two steps:
63 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
64 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
65 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
66 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
67 // and thus the adjusted exponent is not lower than -126.
68 //
69 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
70 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
71
72 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
73 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
74 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
75 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
76 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
77 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
78 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
79 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
80 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
81 // Adjust exponent of the value l fetched from the table to get the final s value.
82 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
83
84 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
85 vn = vsubq_f32(vn, vmagic_bias);
86
87 // Compute reduced argument t := x - n * log(2) / 64.
88 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
89 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_o64_hi);
90 vt = vmlaq_f32(vt, vn, vminus_ln2_o64_lo);
91
92 // Compute degree-2 polynomial approxiatmion for exp(t) on [-log(2)/128, log(2)/128].
93 float32x4_t vp = vmulq_f32(vt, vc2);
94 vp = vmlaq_f32(vt, vt, vp);
95
96 // Reconstruct the final f value:
97 // f = s * (1 + t * (1 + t * c2))
98 // = s * (1 + t + t * (t * c2))
99 // = s + s * (t + t * (t * c2))
100 // = s + s * p
101 float32x4_t vf = vmlaq_f32(vs, vs, vp);
102
103 // For inputs below denormal cutoff, replace output with +0.0f.
104 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
105 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
106
107 // Store 4 outputs at a time.
108 vst1q_f32(output, vf); output += 4;
109
110 // Accumulate computed exponents.
111 vacc = vaddq_f32(vacc, vf);
112 }
113#if XNN_ARCH_ARM64
114 float vacc_lo = vaddvq_f32(vacc);
115#else
116 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
117#endif
118 if (elements != 0) {
119 assert(elements >= 1 * sizeof(float));
120 assert(elements <= 3 * sizeof(float));
121 // Load 4 inputs at a time.
122 const float32x4_t vi = vld1q_f32(input); input += 4;
123
124 // Subtract maximum input x := i - i_max. This implies x <= 0.
125 const float32x4_t vx = vsubq_f32(vi, vi_max);
126
127 // Compute reduced argument n := round(x * 64 / log(2)).
128 // We do it by adding a large number (magic bias), which cause rounding of the result to an integer, then subtracing
129 // the large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
130 // The trick with adding large number is valid only within certain bounds (|x * 64 / log(2)| <= 2**22, i.e.
131 // |x| <= 0x1.62E43p+15 = 45426.09375), but that is acceptable, because inputs outside of [-87.336540, 0.0]
132 // result in denormalized or underflown expf(x). We fixup the result for such inputs at the very end of the
133 // algorithm.
134 float32x4_t vn = vmlaq_f32(vmagic_bias, vx, vlog2e_x64);
135
136 // Create a floating-point number s (scale) such that s := 2**(n / 64) for such inputs that expf(x) is normalized,
137 // i.e. -87.33642 <= x <= 0.0. As n has 6 fractional bits, we split s == 2**(n / 64) = 2**e * 2**(n / 64 - e), where
138 // e := int(n / 64). We create s in two steps:
139 // 1. Fetch 2**(n / 64 - e) = 2**(n % 64) from the table using the 6 low bits of n, as integer. Note that the
140 // fetched values are in the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
141 // 2. Adjust fecthed value by addition of e to its floating-point exponent. The result is always a normalized
142 // number, because for -87.33642 <= x <= 0.0 (inputs for which expf(x) is normalized) we have -126 <= e <= 0,
143 // and thus the adjusted exponent is not lower than -126.
144 //
145 // Extract e from bits 6:14 of n and shift it into bits 23:31 (position of floating-point exponent).
146 const int32x4_t ve = vshlq_n_s32(vbicq_s32(vreinterpretq_s32_f32(vn), vmovq_n_s32(INT32_C(0x3F))), 17);
147
148 // Use bits 0:6 bits of n, as integer, as an index for table lookup of l := 2**(n % 64).
149 const uint64x2_t vidx = vreinterpretq_u64_s32(vandq_s32(vreinterpretq_s32_f32(vn), vindex_mask));
150 const uint64_t vidx_lo = vgetq_lane_u64(vidx, 0);
151 const uint64_t vidx_hi = vgetq_lane_u64(vidx, 1);
152 float32x2_t vl_lo = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_lo]);
153 float32x2_t vl_hi = vld1_dup_f32(&xnn_table_exp2_k_over_64[(uint32_t) vidx_hi]);
154 vl_lo = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_lo >> 32)], vl_lo, 1);
155 vl_hi = vld1_lane_f32(&xnn_table_exp2_k_over_64[(uint32_t) (vidx_hi >> 32)], vl_hi, 1);
156 const float32x4_t vl = vcombine_f32(vl_lo, vl_hi);
157 // Adjust exponent of the value l fetched from the table to get the final s value.
158 const float32x4_t vs = vreinterpretq_f32_s32(vaddq_s32(vreinterpretq_s32_f32(vl), ve));
159
160 // Subtract the large number back to get final n := round(x * 64 / log(2)) as a floating-point number.
161 vn = vsubq_f32(vn, vmagic_bias);
162
163 // Compute reduced argument t := x - n * log(2) / 64.
164 // Use Cody-Waite range reduction method (note the two constants representing log(2) / 64) to improve accuracy.
165 float32x4_t vt = vmlaq_f32(vx, vn, vminus_ln2_o64_hi);
166 vt = vmlaq_f32(vt, vn, vminus_ln2_o64_lo);
167
168 // Compute degree-2 polynomial approxiatmion for exp(t) on [-log(2)/128, log(2)/128].
169 float32x4_t vp = vmulq_f32(vt, vc2);
170 vp = vmlaq_f32(vt, vt, vp);
171
172 // Reconstruct the final f value:
173 // f = s * (1 + t * (1 + t * c2))
174 // = s * (1 + t + t * (t * c2))
175 // = s + s * (t + t * (t * c2))
176 // = s + s * p
177 float32x4_t vf = vmlaq_f32(vs, vs, vp);
178
179 // For inputs below denormal cutoff, replace output with +0.0f.
180 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
181 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
182
183 float32x2_t vf_lo = vget_low_f32(vf);
184 if (elements & (2 * sizeof(float))) {
185 // Store 2 outputs at a time.
186 vst1_f32(output, vf_lo); output += 2;
187
188 // Accumulate 2 computed exponents.
189 #if XNN_ARCH_ARM64
190 vacc_lo += vaddv_f32(vf_lo);
191 #else
192 vacc_lo = vadd_f32(vacc_lo, vf_lo);
193 #endif
194
195 vf_lo = vget_high_f32(vf);
196 }
197 if (elements & (1 * sizeof(float))) {
198 // Store 1 output at a time.
199 vst1_lane_f32(output, vf_lo, 0);
200
201 // Accumulate 1 computed exponent.
202 #if XNN_ARCH_ARM64
203 vacc_lo += vget_lane_f32(vf_lo, 0);
204 #else
205 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
206 #endif
207 }
208 }
209 // Reduce 4 elements in the SIMD register
210#if XNN_ARCH_ARM64
211 *sum = vacc_lo;
212#else
213 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
214#endif
215}