blob: 8724007d3d442516be8a31ff3ff72713921f1e26 [file] [log] [blame]
Abseil Teambf7fc992018-02-05 05:38:45 -08001//
2// Copyright 2018 The Abseil Authors.
3//
4// Licensed under the Apache License, Version 2.0 (the "License");
5// you may not use this file except in compliance with the License.
6// You may obtain a copy of the License at
7//
8// http://www.apache.org/licenses/LICENSE-2.0
9//
10// Unless required by applicable law or agreed to in writing, software
11// distributed under the License is distributed on an "AS IS" BASIS,
12// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13// See the License for the specific language governing permissions and
14// limitations under the License.
15
16#include "absl/debugging/internal/stack_consumption.h"
17
18#ifdef ABSL_INTERNAL_HAVE_DEBUGGING_STACK_CONSUMPTION
19
20#include <signal.h>
21#include <sys/mman.h>
22#include <unistd.h>
23
24#include <string.h>
25
26#include "absl/base/attributes.h"
27#include "absl/base/internal/raw_logging.h"
28
29namespace absl {
Abseil Team6c7de162018-06-20 06:25:23 -070030inline namespace lts_2018_06_20 {
Abseil Teambf7fc992018-02-05 05:38:45 -080031namespace debugging_internal {
32namespace {
33
34// This code requires that we know the direction in which the stack
35// grows. It is commonly believed that this can be detected by putting
36// a variable on the stack and then passing its address to a function
37// that compares the address of this variable to the address of a
38// variable on the function's own stack. However, this is unspecified
39// behavior in C++: If two pointers p and q of the same type point to
40// different objects that are not members of the same object or
41// elements of the same array or to different functions, or if only
42// one of them is null, the results of p<q, p>q, p<=q, and p>=q are
43// unspecified. Therefore, instead we hardcode the direction of the
44// stack on platforms we know about.
45#if defined(__i386__) || defined(__x86_64__) || defined(__ppc__)
46constexpr bool kStackGrowsDown = true;
47#else
48#error Need to define kStackGrowsDown
49#endif
50
51// To measure the stack footprint of some code, we create a signal handler
52// (for SIGUSR2 say) that exercises this code on an alternate stack. This
53// alternate stack is initialized to some known pattern (0x55, 0x55, 0x55,
54// ...). We then self-send this signal, and after the signal handler returns,
55// look at the alternate stack buffer to see what portion has been touched.
56//
57// This trick gives us the the stack footprint of the signal handler. But the
58// signal handler, even before the code for it is exercised, consumes some
59// stack already. We however only want the stack usage of the code inside the
60// signal handler. To measure this accurately, we install two signal handlers:
61// one that does nothing and just returns, and the user-provided signal
62// handler. The difference between the stack consumption of these two signals
63// handlers should give us the stack foorprint of interest.
64
65void EmptySignalHandler(int) {}
66
67// This is arbitrary value, and could be increase further, at the cost of
68// memset()ting it all to known sentinel value.
69constexpr int kAlternateStackSize = 64 << 10; // 64KiB
70
71constexpr int kSafetyMargin = 32;
72constexpr char kAlternateStackFillValue = 0x55;
73
74// These helper functions look at the alternate stack buffer, and figure
75// out what portion of this buffer has been touched - this is the stack
76// consumption of the signal handler running on this alternate stack.
77// This function will return -1 if the alternate stack buffer has not been
78// touched. It will abort the program if the buffer has overflowed or is about
79// to overflow.
80int GetStackConsumption(const void* const altstack) {
81 const char* begin;
82 int increment;
83 if (kStackGrowsDown) {
84 begin = reinterpret_cast<const char*>(altstack);
85 increment = 1;
86 } else {
87 begin = reinterpret_cast<const char*>(altstack) + kAlternateStackSize - 1;
88 increment = -1;
89 }
90
91 for (int usage_count = kAlternateStackSize; usage_count > 0; --usage_count) {
92 if (*begin != kAlternateStackFillValue) {
93 ABSL_RAW_CHECK(usage_count <= kAlternateStackSize - kSafetyMargin,
94 "Buffer has overflowed or is about to overflow");
95 return usage_count;
96 }
97 begin += increment;
98 }
99
100 ABSL_RAW_LOG(FATAL, "Unreachable code");
101 return -1;
102}
103
104} // namespace
105
106int GetSignalHandlerStackConsumption(void (*signal_handler)(int)) {
107 // The alt-signal-stack cannot be heap allocated because there is a
108 // bug in glibc-2.2 where some signal handler setup code looks at the
109 // current stack pointer to figure out what thread is currently running.
110 // Therefore, the alternate stack must be allocated from the main stack
111 // itself.
112 void* altstack = mmap(nullptr, kAlternateStackSize, PROT_READ | PROT_WRITE,
113 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
114 ABSL_RAW_CHECK(altstack != MAP_FAILED, "mmap() failed");
115
116 // Set up the alt-signal-stack (and save the older one).
117 stack_t sigstk;
118 memset(&sigstk, 0, sizeof(sigstk));
119 stack_t old_sigstk;
120 sigstk.ss_sp = altstack;
121 sigstk.ss_size = kAlternateStackSize;
122 sigstk.ss_flags = 0;
123 ABSL_RAW_CHECK(sigaltstack(&sigstk, &old_sigstk) == 0,
124 "sigaltstack() failed");
125
126 // Set up SIGUSR1 and SIGUSR2 signal handlers (and save the older ones).
127 struct sigaction sa;
128 memset(&sa, 0, sizeof(sa));
129 struct sigaction old_sa1, old_sa2;
130 sigemptyset(&sa.sa_mask);
131 sa.sa_flags = SA_ONSTACK;
132
133 // SIGUSR1 maps to EmptySignalHandler.
134 sa.sa_handler = EmptySignalHandler;
135 ABSL_RAW_CHECK(sigaction(SIGUSR1, &sa, &old_sa1) == 0, "sigaction() failed");
136
137 // SIGUSR2 maps to signal_handler.
138 sa.sa_handler = signal_handler;
139 ABSL_RAW_CHECK(sigaction(SIGUSR2, &sa, &old_sa2) == 0, "sigaction() failed");
140
141 // Send SIGUSR1 signal and measure the stack consumption of the empty
142 // signal handler.
143 // The first signal might use more stack space. Run once and ignore the
144 // results to get that out of the way.
145 ABSL_RAW_CHECK(kill(getpid(), SIGUSR1) == 0, "kill() failed");
146
147 memset(altstack, kAlternateStackFillValue, kAlternateStackSize);
148 ABSL_RAW_CHECK(kill(getpid(), SIGUSR1) == 0, "kill() failed");
149 int base_stack_consumption = GetStackConsumption(altstack);
150
151 // Send SIGUSR2 signal and measure the stack consumption of signal_handler.
152 ABSL_RAW_CHECK(kill(getpid(), SIGUSR2) == 0, "kill() failed");
153 int signal_handler_stack_consumption = GetStackConsumption(altstack);
154
155 // Now restore the old alt-signal-stack and signal handlers.
156 ABSL_RAW_CHECK(sigaltstack(&old_sigstk, nullptr) == 0,
157 "sigaltstack() failed");
158 ABSL_RAW_CHECK(sigaction(SIGUSR1, &old_sa1, nullptr) == 0,
159 "sigaction() failed");
160 ABSL_RAW_CHECK(sigaction(SIGUSR2, &old_sa2, nullptr) == 0,
161 "sigaction() failed");
162
163 ABSL_RAW_CHECK(munmap(altstack, kAlternateStackSize) == 0, "munmap() failed");
164 if (signal_handler_stack_consumption != -1 && base_stack_consumption != -1) {
165 return signal_handler_stack_consumption - base_stack_consumption;
166 }
167 return -1;
168}
169
170} // namespace debugging_internal
Abseil Team6c7de162018-06-20 06:25:23 -0700171} // inline namespace lts_2018_06_20
Abseil Teambf7fc992018-02-05 05:38:45 -0800172} // namespace absl
173
174#endif // ABSL_INTERNAL_HAVE_DEBUGGING_STACK_CONSUMPTION