IVGCVSW-4447 Add Hal 1_3 Support

* Add new 1.3 files HalPolicy, ArmnnDriver, ArmnnDriverImpl
* Add new .rc file for 1.3 service
* Add ArmnnPreparedModel_1_3 and implement new functions
* Update Android.mk with 1.3 driver and service
* Refactor ifdef to include ARMNN_ANDROID_NN_V1_3
* Create Utils getMainModel for new 1.3 Model Main Subgraph
* Use android Utils to convertToV1_X in ArmnnPrepapredModel_1_3
* Refactor HAL 1.2 convert functions into ConversionUtils_1_2.hpp
* Replace ArmnnBurstExecutorWithCache with call to ExecutionBurstServer

Signed-off-by: Kevin May <kevin.may@arm.com>
Change-Id: I514069e9e1b16bcd1c4abfb5d563d25ac22d02e3
diff --git a/1.0/HalPolicy.hpp b/1.0/HalPolicy.hpp
index 9eb13b4..25bc47c 100644
--- a/1.0/HalPolicy.hpp
+++ b/1.0/HalPolicy.hpp
@@ -26,6 +26,7 @@
     using Operation                 = V1_0::Operation;
     using OperationType             = V1_0::OperationType;
     using getSupportedOperations_cb = V1_0::IDevice::getSupportedOperations_cb;
+    using ErrorStatus               = V1_0::ErrorStatus;
 
     static bool ConvertOperation(const Operation& operation, const Model& model, ConversionData& data);
 
diff --git a/1.1/HalPolicy.hpp b/1.1/HalPolicy.hpp
index 806686b..18bb705 100644
--- a/1.1/HalPolicy.hpp
+++ b/1.1/HalPolicy.hpp
@@ -26,6 +26,7 @@
     using Operation                 = V1_1::Operation;
     using OperationType             = V1_1::OperationType;
     using getSupportedOperations_cb = V1_1::IDevice::getSupportedOperations_1_1_cb;
+    using ErrorStatus               = V1_0::ErrorStatus;
 
     static bool ConvertOperation(const Operation& operation, const Model& model, ConversionData& data);
 
diff --git a/1.2/HalPolicy.cpp b/1.2/HalPolicy.cpp
index ca92318..9e547fa 100644
--- a/1.2/HalPolicy.cpp
+++ b/1.2/HalPolicy.cpp
@@ -4,17 +4,6 @@
 //
 
 #include "HalPolicy.hpp"
-#include "Utils.hpp"
-
-#include <armnn/TypesUtils.hpp>
-
-#include <armnnUtils/DataLayoutIndexed.hpp>
-#include <armnnUtils/TensorUtils.hpp>
-
-#include <Half.hpp>
-
-#include <cmath>
-#include <string>
 
 namespace armnn_driver
 {
@@ -26,58 +15,6 @@
 namespace
 {
 
-bool IsQSymmDequantizeForWeights(const HalPolicy::Operation& operation, const HalPolicy::Model& model)
-{
-    const HalPolicy::Operand* operand = GetInputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!operand)
-    {
-        return false;
-    }
-
-    if(!IsQSymm8(*operand))
-    {
-        // Only QSymm8 weights are dequantized on the fly by the driver
-        return false;
-    }
-
-    if (!IsOperandConstant<hal_1_2::HalPolicy>(*operand))
-    {
-        // Non-const input is not accepted for weights
-        return false;
-    }
-
-    // Iterate through all the operations and find the operation feeding from the Dequantize output
-    const size_t outputIndex = operation.outputs[0];
-    for (uint32_t operationIdx = 0; operationIdx < model.operations.size(); ++operationIdx)
-    {
-        const auto& operationIt = model.operations[operationIdx];
-        switch (operationIt.type)
-        {
-            case HalPolicy::OperationType::FULLY_CONNECTED:
-                if (outputIndex == operationIt.inputs[1]) // Weights are bound to slot 1
-                {
-                    // If the output is going into the FC weights return true
-                    return true;
-                }
-                break;
-            case HalPolicy::OperationType::LSTM:
-                for (size_t k = 0; k < operationIt.inputs.size(); ++k)
-                {
-                    if (outputIndex == operationIt.inputs[k])
-                    {
-                        // If the output is going into the LSTM weights return true
-                        return true;
-                    }
-                }
-                break;
-            default:
-                break;
-        }
-    }
-
-    return false;
-}
-
 } // anonymous namespace
 
 bool HalPolicy::ConvertOperation(const Operation& operation, const Model& model, ConversionData& data)
@@ -237,57 +174,7 @@
                                   ComparisonOperation comparisonOperation)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertComparison()");
-    ALOGV("comparisonOperation = %s", GetComparisonOperationAsCString(comparisonOperation));
-
-    LayerInputHandle input0 = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    LayerInputHandle input1 = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 1, model, data);
-
-    if (!(input0.IsValid() && input1.IsValid()))
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output 0", __func__);
-    }
-
-    const TensorInfo& inputInfo0 = input0.GetTensorInfo();
-    const TensorInfo& inputInfo1 = input1.GetTensorInfo();
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    ComparisonDescriptor descriptor(comparisonOperation);
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsComparisonSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo0,
-                               inputInfo1,
-                               outputInfo,
-                               descriptor);
-
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* layer = data.m_Network->AddComparisonLayer(descriptor);
-    assert(layer != nullptr);
-    bool isReshapeSupported = BroadcastTensor(input0, input1, layer, data);
-    if (!isReshapeSupported)
-    {
-        return false;
-    }
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertComparison_1_2<hal_1_2::HalPolicy>(operation, model, data, comparisonOperation);
 }
 
 bool HalPolicy::ConvertConcatenation(const Operation& operation, const Model& model, ConversionData& data)
@@ -299,153 +186,7 @@
 bool HalPolicy::ConvertConv2d(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertConv2d()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output 0", __func__);
-    }
-
-    const TensorInfo& inputInfo  = input.GetTensorInfo();
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    Convolution2dDescriptor desc;
-    desc.m_DataLayout = DataLayout::NHWC;
-
-    // Determine whether padding is implicit or explicit
-    bool implicitPadding = operation.inputs.size() == 7 ||
-                           (operation.inputs.size() >= 8 &&
-                            GetInputOperand<hal_1_2::HalPolicy>(operation, 7, model)->type == OperandType::BOOL);
-
-    if (implicitPadding)
-    {
-        desc.m_DataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, 7, model, data);
-    }
-    else if (operation.inputs.size() >= 10)
-    {
-        desc.m_DataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, 10, model, data);
-    }
-
-    const PermutationVector OHWIToOIHW = {0, 2, 3, 1};
-
-    // ArmNN does not currently support non-fixed weights or bias
-    // The NNAPI filter is always OHWI [depth_out, filter_height, filter_width, depth_in] but ArmNN expects the
-    // filter's height and width indices to match the input's height and width indices so we permute it to OIHW if
-    // the DataLayout is NCHW
-    const ConstTensorPin weightsPin = (desc.m_DataLayout == DataLayout::NCHW) ?
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 1, model, data, OHWIToOIHW) :
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 1, model, data);
-    const ConstTensorPin biasPin    =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 2, model, data);
-
-    if (!weightsPin.IsValid())
-    {
-        return Fail("%s: Operation has invalid weights", __func__);
-    }
-
-    if (!biasPin.IsValid())
-    {
-        return Fail("%s: Operation has invalid biases", __func__);
-    }
-
-    ConstTensor weights = weightsPin.GetConstTensor();
-    ConstTensor bias = biasPin.GetConstTensor();
-    SanitizeBiasQuantizationScale(bias.GetInfo(), weights.GetInfo(), inputInfo);
-
-    ActivationFn activation;
-
-    if (implicitPadding)
-    {
-        android::nn::PaddingScheme paddingScheme;
-        if (!GetInputPaddingScheme<hal_1_2::HalPolicy>(operation, 3, paddingScheme, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 4, OperandType::INT32, desc.m_StrideX, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 5, OperandType::INT32, desc.m_StrideY, model, data) ||
-            !GetInputActivationFunction<hal_1_2::HalPolicy>(operation, 6, activation, model, data) ||
-            !GetOptionalConvolutionDilationParams<hal_1_2::HalPolicy>(operation, 8, desc, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (implicit padding)", __func__);
-        }
-
-        armnnUtils::DataLayoutIndexed dataLayoutIndexed(desc.m_DataLayout);
-        unsigned int widthIndex = dataLayoutIndexed.GetWidthIndex();
-        unsigned int heightIndex = dataLayoutIndexed.GetHeightIndex();
-        const uint32_t kernelX = weights.GetShape()[widthIndex];
-        const uint32_t kernelY = weights.GetShape()[heightIndex];
-        const uint32_t inputX  = inputInfo.GetShape()[widthIndex];
-        const uint32_t inputY  = inputInfo.GetShape()[heightIndex];
-
-        CalcPadding(inputX, kernelX, desc.m_StrideX, desc.m_DilationX, desc.m_PadLeft, desc.m_PadRight, paddingScheme);
-        CalcPadding(inputY, kernelY, desc.m_StrideY, desc.m_DilationY, desc.m_PadTop, desc.m_PadBottom, paddingScheme);
-
-    }
-    else if (operation.inputs.size() >= 10)
-    {
-        // explicit padding
-        if (!GetInputScalar<hal_1_2::HalPolicy>(operation, 3, OperandType::INT32, desc.m_PadLeft, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 4, OperandType::INT32, desc.m_PadRight, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 5, OperandType::INT32, desc.m_PadTop, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 6, OperandType::INT32, desc.m_PadBottom, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 7, OperandType::INT32, desc.m_StrideX, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 8, OperandType::INT32, desc.m_StrideY, model, data) ||
-            !GetInputActivationFunction<hal_1_2::HalPolicy>(operation, 9, activation, model, data) ||
-            !GetOptionalConvolutionDilationParams<hal_1_2::HalPolicy>(operation, 11, desc, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (explicit padding)", __func__);
-        }
-    }
-    else
-    {
-        return Fail("%s: Unsupported number of operation inputs", __func__);
-    }
-
-    desc.m_BiasEnabled = true;
-    Optional<TensorInfo> biases(bias.GetInfo());
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsConvolution2dSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               outputInfo,
-                               desc,
-                               weights.GetInfo(),
-                               biases);
-
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* startLayer =
-            data.m_Network->AddConvolution2dLayer(desc, weights, Optional<ConstTensor>(bias));
-
-    if (!startLayer)
-    {
-        return Fail("%s: AddConvolution2dLayer failed", __func__);
-    }
-
-    IConnectableLayer* endLayer = ProcessActivation(outputInfo, activation, startLayer, data);
-
-    if (!endLayer)
-    {
-        return Fail("%s: ProcessActivation failed", __func__);
-    }
-
-    input.Connect(startLayer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *endLayer, model, data);
+    return ::ConvertConv2d_1_2<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertDepthToSpace(const Operation& operation, const Model& model, ConversionData& data)
@@ -457,187 +198,13 @@
 bool HalPolicy::ConvertDepthwiseConv2d(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertDepthwiseConv2d()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-
-    if (!input.IsValid())
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-
-    if (!output)
-    {
-        return Fail("%s: Could not read output 0", __func__);
-    }
-
-    const TensorInfo& inputInfo  = input.GetTensorInfo();
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    // ArmNN does not currently support non-fixed weights or bias
-    // Find the shape of the weights tensor. In AndroidNN this will be [ 1, H, W, I * M ]
-    const Operand* weightsOperand = GetInputOperand<hal_1_2::HalPolicy>(operation, 1, model);
-
-    if (weightsOperand == nullptr)
-    {
-        return Fail("%s: Operand is invalid", __func__);
-    }
-    if ( weightsOperand->dimensions[0] != 1)
-    {
-        return Fail("%s: Invalid weights; for depthwise convolution, dimension 0 must be 1 but it is %i",
-                    __func__, weightsOperand->dimensions[0] );
-    }
-
-    DepthwiseConvolution2dDescriptor desc;
-    desc.m_DataLayout = DataLayout::NHWC;
-
-    // Determine whether padding is implicit or explicit
-    bool implicitPadding = operation.inputs.size() == 8 ||
-        (operation.inputs.size() >= 9 &&
-        GetInputOperand<hal_1_2::HalPolicy>(operation, 8, model)->type == OperandType::BOOL);
-
-    // Look ahead to find the optional DataLayout, if present
-    const uint32_t dataLayoutFlagIndex = implicitPadding ? 8 : 11;
-    desc.m_DataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, dataLayoutFlagIndex, model, data);
-
-    armnnUtils::DataLayoutIndexed dataLayoutIndexed(desc.m_DataLayout);
-    unsigned int channelsIndex = dataLayoutIndexed.GetChannelsIndex();
-    unsigned int widthIndex = dataLayoutIndexed.GetWidthIndex();
-    unsigned int heightIndex = dataLayoutIndexed.GetHeightIndex();
-
-    // Reinterpret weight data as [ H, W, I, M ]
-    TensorShape weightsShape({ weightsOperand->dimensions[1],
-                                      weightsOperand->dimensions[2],
-                                      inputInfo.GetShape()[channelsIndex],
-                                      weightsOperand->dimensions[3] / inputInfo.GetShape()[channelsIndex] });
-
-    // Swizzle weight data [ H, W, I, M ] -> [ M, I, H, W ]
-    const PermutationVector HWIMToMIHW = { 2U, 3U, 1U, 0U };
-
-    const ConstTensorPin weightsPin =
-        ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation,
-                                                                  1,
-                                                                  model,
-                                                                  data,
-                                                                  HWIMToMIHW,
-                                                                  &weightsShape);
-
-    // Bias is a 1D tensor
-    const ConstTensorPin biasPin =
-        ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 2, model, data);
-
-    if (!weightsPin.IsValid())
-    {
-        return Fail("%s: Operation has invalid weights", __func__);
-    }
-
-    if (!biasPin.IsValid())
-    {
-        return Fail("%s: Operation has invalid biases", __func__);
-    }
-
-    ConstTensor weights = weightsPin.GetConstTensor();
-    ConstTensor bias = biasPin.GetConstTensor();
-    SanitizeBiasQuantizationScale(bias.GetInfo(), weights.GetInfo(), inputInfo);
-
-    ActivationFn activation;
-
-    if (implicitPadding)
-    {
-        android::nn::PaddingScheme paddingScheme;
-        if (!GetInputPaddingScheme<hal_1_2::HalPolicy>(operation, 3, paddingScheme, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 4, OperandType::INT32, desc.m_StrideX, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 5, OperandType::INT32, desc.m_StrideY, model, data) ||
-            !GetInputActivationFunction<hal_1_2::HalPolicy>(operation, 7, activation, model, data) ||
-            !GetOptionalConvolutionDilationParams<hal_1_2::HalPolicy>(operation, 9, desc, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (implicit padding)", __func__);
-        }
-
-        const uint32_t kernelX = weights.GetShape()[3];
-        const uint32_t kernelY = weights.GetShape()[2];
-        const uint32_t inputX  = inputInfo.GetShape()[widthIndex];
-        const uint32_t inputY  = inputInfo.GetShape()[heightIndex];
-
-        CalcPadding(inputX, kernelX, desc.m_StrideX, desc.m_DilationX, desc.m_PadLeft, desc.m_PadRight, paddingScheme);
-        CalcPadding(inputY, kernelY, desc.m_StrideY, desc.m_DilationY, desc.m_PadTop, desc.m_PadBottom, paddingScheme);
-    }
-    else if (operation.inputs.size() >= 11)
-    {
-        // explicit padding
-        if (!GetInputScalar<hal_1_2::HalPolicy>(operation, 3, OperandType::INT32, desc.m_PadLeft, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 4, OperandType::INT32, desc.m_PadRight, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 5, OperandType::INT32, desc.m_PadTop, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 6, OperandType::INT32, desc.m_PadBottom, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 7, OperandType::INT32, desc.m_StrideX, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 8, OperandType::INT32, desc.m_StrideY, model, data) ||
-            !GetInputActivationFunction<hal_1_2::HalPolicy>(operation,  10, activation, model, data) ||
-            !GetOptionalConvolutionDilationParams<hal_1_2::HalPolicy>(operation, 12, desc, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (explicit padding)", __func__);
-        }
-    }
-    else
-    {
-        return Fail("%s: Unsupported number of operation inputs", __func__);
-    }
-
-    desc.m_BiasEnabled = true;
-    Optional<TensorInfo> biases(bias.GetInfo());
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsDepthwiseConvolutionSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               outputInfo,
-                               desc,
-                               weights.GetInfo(),
-                               biases);
-
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* startLayer =
-        data.m_Network->AddDepthwiseConvolution2dLayer(desc, weights, Optional<ConstTensor>(bias));
-
-    if (!startLayer)
-    {
-        return Fail("%s: AddDepthwiseConvolution2dLayer failed", __func__);
-    }
-
-    IConnectableLayer* endLayer = ProcessActivation(outputInfo, activation, startLayer, data);
-    if (!endLayer)
-    {
-        return Fail("%s: ProcessActivation failed", __func__);
-    }
-
-    input.Connect(startLayer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *endLayer, model, data);
+    return ::ConvertDepthwiseConv2d_1_2<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertDequantize(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertDequantize()");
-
-    if (IsQSymmDequantizeForWeights(operation, model))
-    {
-        // NOTE: QSymm8 weights are dequantized internally by the driver,
-        // therefore this type of Dequantize is implicitly supported
-        return true;
-    }
-
-    return ::ConvertDequantize<hal_1_2::HalPolicy>(operation, model, data);
+    return ::ConvertDequantize_1_2<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertDiv(const Operation& operation, const Model& model, ConversionData& data)
@@ -652,120 +219,13 @@
                                         UnaryOperation unaryOperation)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertElementwiseUnary()");
-    ALOGV("unaryOperation = %s", GetUnaryOperationAsCString(unaryOperation));
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-
-    if (!input.IsValid())
-    {
-        return Fail("%s: Operation has invalid input", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output 0", __func__);
-    }
-
-    const TensorInfo& inputInfo = input.GetTensorInfo();
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    ElementwiseUnaryDescriptor descriptor(unaryOperation);
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsElementwiseUnarySupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               outputInfo,
-                               descriptor);
-
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* layer = data.m_Network->AddElementwiseUnaryLayer(descriptor);
-    assert(layer != nullptr);
-
-    input.Connect(layer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertElementwiseUnary<hal_1_2::HalPolicy>(operation, model, data, unaryOperation);
 }
 
 bool HalPolicy::ConvertExpandDims(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertExpandDims()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
-
-    if (!input.IsValid())
-    {
-        return Fail("%s: Operation has invalid input", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Operation has invalid output", __func__);
-    }
-
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    int32_t axis;
-    if (!GetInputScalar<HalPolicy>(operation, 1, OperandType::INT32, axis, model, data))
-    {
-        return Fail("%s: failed to get axis input value", __func__);
-    }
-
-    TensorShape targetShape;
-
-    try
-    {
-        targetShape = armnnUtils::ExpandDims(input.GetTensorInfo().GetShape(), axis);
-    }
-    catch (const std::exception &e)
-    {
-        return Fail("%s: %s", __func__, e.what());
-    }
-
-    if (targetShape != outputInfo.GetShape())
-    {
-        return Fail("%s: Shape of the output operand does not match the resolved expanded shape", __func__);
-    }
-
-    ReshapeDescriptor reshapeDescriptor;
-    reshapeDescriptor.m_TargetShape = targetShape;
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsReshapeSupported,
-                               data.m_Backends,
-                               isSupported,
-                               input.GetTensorInfo(),
-                               outputInfo,
-                               reshapeDescriptor);
-
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* layer = data.m_Network->AddReshapeLayer(reshapeDescriptor);
-    assert(layer != nullptr);
-    input.Connect(layer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertExpandDims<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertFloor(const Operation& operation, const Model& model, ConversionData& data)
@@ -783,416 +243,13 @@
 bool HalPolicy::ConvertGroupedConv2d(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertGroupedConv2d()");
-
-    //
-    // Parse data
-    //
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-    const TensorInfo& inputInfo  = input.GetTensorInfo();
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output 0", __func__);
-    }
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    // Look ahead to determine data layout
-    DataLayout dataLayout = DataLayout::NHWC;
-    if (operation.inputs.size() == 12)
-    {
-        dataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, 11, model, data);
-    }
-    else
-    {
-        dataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, 8, model, data);
-    }
-
-    // NOTE:
-    // NNAPI weights are always OHWI, i.e. [depth_out, filter_height, filter_width, depth_group],
-    // but Arm NN expects the filter's height and width indices to match the input's height and
-    // width indices so when the DataLayout is NCHW, we need to permute the weights to OIHW
-    const PermutationVector ohwiToOihw = { 0u, 2u, 3u, 1u };
-    const ConstTensorPin weightsPin = (dataLayout == DataLayout::NCHW) ?
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 1, model, data, ohwiToOihw) :
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 1, model, data);
-    const ConstTensorPin biasesPin  =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 2, model, data);
-    if (!weightsPin.IsValid() || !biasesPin.IsValid())
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    ConstTensor weights = weightsPin.GetConstTensor();
-    ConstTensor biases  = biasesPin.GetConstTensor();
-    SanitizeBiasQuantizationScale(biases.GetInfo(), weights.GetInfo(), inputInfo);
-
-    const TensorShape& inputShape   = inputInfo.GetShape();
-    const TensorShape& outputShape  = outputInfo.GetShape();
-    const TensorShape& weightsShape = weights.GetShape();
-    const TensorShape& biasesShape  = biases.GetShape();
-
-    armnnUtils::DataLayoutIndexed dataLayoutIndexed(dataLayout);
-    const unsigned int channelsIndex = dataLayoutIndexed.GetChannelsIndex();
-    const unsigned int heightIndex   = dataLayoutIndexed.GetHeightIndex();
-    const unsigned int widthIndex    = dataLayoutIndexed.GetWidthIndex();
-
-    Convolution2dDescriptor desc;
-    desc.m_DataLayout  = dataLayout;
-    desc.m_BiasEnabled = true;
-
-    int numGroups;
-    ActivationFn activation;
-
-    if (operation.inputs.size() == 12)
-    {
-        if (!GetInputScalar<hal_1_2::HalPolicy>(operation, 3, OperandType::INT32, desc.m_PadLeft, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 4, OperandType::INT32, desc.m_PadRight, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 5, OperandType::INT32, desc.m_PadTop, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 6, OperandType::INT32, desc.m_PadBottom, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 7, OperandType::INT32, desc.m_StrideX, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 8, OperandType::INT32, desc.m_StrideY, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 9, OperandType::INT32, numGroups, model, data) ||
-            !GetInputActivationFunction<hal_1_2::HalPolicy>(operation, 10, activation, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (explicit padding)", __func__);
-        }
-
-    }
-    else if (operation.inputs.size() == 9)
-    {
-        android::nn::PaddingScheme paddingScheme;
-        if (!GetInputPaddingScheme<hal_1_2::HalPolicy>(operation, 3, paddingScheme, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 4, OperandType::INT32, desc.m_StrideX, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 5, OperandType::INT32, desc.m_StrideY, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 6, OperandType::INT32, numGroups, model, data) ||
-            !GetInputActivationFunction<hal_1_2::HalPolicy>(operation, 7, activation, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (implicit padding)", __func__);
-        }
-
-        const uint32_t inputX = inputInfo.GetShape()[widthIndex];
-        const uint32_t inputY = inputInfo.GetShape()[heightIndex];
-
-        const uint32_t kernelX = weightsShape[widthIndex];
-        const uint32_t kernelY = weightsShape[heightIndex];
-
-        CalcPadding(inputX, kernelX, desc.m_StrideX, desc.m_PadLeft, desc.m_PadRight, paddingScheme);
-        CalcPadding(inputY, kernelY, desc.m_StrideY, desc.m_PadTop, desc.m_PadBottom, paddingScheme);
-    }
-    else
-    {
-        return Fail("%s: Unsupported number of operation inputs", __func__);
-    }
-
-    const unsigned int outputChannels = outputShape[channelsIndex];
-
-    const unsigned int channelsPerGroup  = weightsShape[channelsIndex];
-    const unsigned int channelMultiplier = outputChannels / numGroups;
-
-    //
-    // Validate all relevant inputs
-    //
-    if (numGroups <= 0)
-    {
-        return Fail("%s: Number of groups must be greater than 0. Got: %d", __func__, numGroups);
-    }
-
-    if (outputChannels % numGroups != 0u)
-    {
-        return Fail("%s: Output channels must be divisible by the number of groups", __func__);
-    }
-
-    //
-    // Set up Splitter layer
-    //
-    unsigned int splitterDimSizes[4] = { inputShape[0], inputShape[1], inputShape[2], inputShape[3] };
-    splitterDimSizes[channelsIndex] /= numGroups; // split in depth
-
-    TensorInfo splitterOutputInfo(4,
-                                  splitterDimSizes,
-                                  inputInfo.GetDataType(),
-                                  inputInfo.GetQuantizationScale(),
-                                  inputInfo.GetQuantizationOffset());
-
-    std::vector<std::reference_wrapper<TensorInfo>> splitterOutputInfos(numGroups, std::ref(splitterOutputInfo));
-
-    ViewsDescriptor splitterDesc(numGroups);
-    for (unsigned int group = 0u; group < numGroups; ++group)
-    {
-        splitterDesc.SetViewOriginCoord(group, channelsIndex, splitterDimSizes[channelsIndex] * group);
-        for (unsigned int dimIdx = 0u; dimIdx < 4u; dimIdx++)
-        {
-            splitterDesc.SetViewSize(group, dimIdx, splitterDimSizes[dimIdx]);
-        }
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsSplitterSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               splitterOutputInfos,
-                               splitterDesc);
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* splitterLayer = data.m_Network->AddSplitterLayer(splitterDesc);
-    if (!splitterLayer)
-    {
-        return Fail("%s: Failed to add SplitterLayer", __func__);
-    }
-
-    input.Connect(splitterLayer->GetInputSlot(0));
-    for (unsigned int group = 0u; group < splitterLayer->GetNumOutputSlots(); ++group)
-    {
-        splitterLayer->GetOutputSlot(group).SetTensorInfo(splitterOutputInfo);
-    }
-
-    //
-    // Set up Convolution2d layers for each group
-    //
-
-    // Set up group tensor shapes
-    TensorShape groupInputShape(inputShape);
-    groupInputShape[channelsIndex] = channelsPerGroup;
-
-    TensorShape groupOutputShape(outputShape);
-    groupOutputShape[channelsIndex] = 1;
-
-    TensorShape groupWeightsShape(weightsShape);
-    groupWeightsShape[0] /= channelMultiplier * numGroups;
-
-    TensorShape groupBiasesShape({ 1 });
-
-    // Set up group tensor infos
-    TensorInfo groupInputInfo(inputInfo);
-    groupInputInfo.SetShape(groupInputShape);
-
-    const TensorInfo& weightsInfo = weights.GetInfo();
-    TensorInfo groupWeightsInfo(weightsInfo);
-    groupWeightsInfo.SetShape(groupWeightsShape);
-
-    const TensorInfo& biasesInfo = biases.GetInfo();
-    TensorInfo groupBiasesInfo(biasesInfo);
-    groupBiasesInfo.SetShape(groupBiasesShape);
-
-    TensorInfo groupOutputInfo(outputInfo);
-    groupOutputInfo.SetShape(groupOutputShape);
-
-    const unsigned int weightsDataTypeSize = GetDataTypeSize(groupWeightsInfo.GetDataType());
-    const unsigned int biasesDataTypeSize  = GetDataTypeSize(groupBiasesInfo.GetDataType());
-
-    std::vector<IConnectableLayer*> convLayers(numGroups * channelMultiplier, nullptr);
-    for (unsigned int group = 0u; group < numGroups; ++group)
-    {
-        for (unsigned int m = 0u; m < channelMultiplier; ++m)
-        {
-            auto index = group * channelMultiplier + m;
-
-            const unsigned int weightsDataOffset = groupWeightsShape.GetNumElements() * index * weightsDataTypeSize;
-            const unsigned int biasesDataOffset = groupBiasesShape.GetNumElements() * index * biasesDataTypeSize;
-
-            if (weightsInfo.HasPerAxisQuantization())
-            {
-                // Extract per-axis quantization scales for group weights
-                const std::vector<float>& weightsQuantScales = weightsInfo.GetQuantizationScales();
-                groupWeightsInfo.SetQuantizationScales(
-                    std::vector<float>(weightsQuantScales.begin() + index,
-                                       weightsQuantScales.begin() + index + groupWeightsShape[0]));
-
-                // Extract per-axis quantization scales for group biases
-                const std::vector<float>& biasesQuantScales  = biasesInfo.GetQuantizationScales();
-                groupBiasesInfo.SetQuantizationScales(
-                    std::vector<float>(biasesQuantScales.begin() + index,
-                                       biasesQuantScales.begin() + index + groupWeightsShape[0]));
-            }
-
-            // Extract weights and biases data for current group convolution
-            ConstTensor groupWeights(groupWeightsInfo,
-                                     static_cast<const void *>(reinterpret_cast<const char *>(weights.GetMemoryArea()) +
-                                                               weightsDataOffset));
-            ConstTensor groupBiases(groupBiasesInfo,
-                                    static_cast<const void *>(reinterpret_cast<const char *>(biases.GetMemoryArea()) +
-                                                              biasesDataOffset));
-
-            isSupported = false;
-            FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                                       IsConvolution2dSupported,
-                                       data.m_Backends,
-                                       isSupported,
-                                       groupInputInfo,
-                                       groupOutputInfo,
-                                       desc,
-                                       groupWeightsInfo,
-                                       Optional<TensorInfo>(groupBiasesInfo));
-            if (!isSupported)
-            {
-                return false;
-            }
-
-            IConnectableLayer *convLayer =
-                    data.m_Network->AddConvolution2dLayer(desc, groupWeights, Optional<ConstTensor>(groupBiases));
-            if (!convLayer)
-            {
-                return Fail("%s: AddConvolution2dLayer failed", __func__);
-            }
-
-            splitterLayer->GetOutputSlot(group).Connect(convLayer->GetInputSlot(0));
-            convLayer->GetOutputSlot(0).SetTensorInfo(groupOutputInfo);
-
-            convLayers[index] = convLayer;
-        }
-    }
-
-    //
-    // Set up Concat layer
-    //
-    ConcatDescriptor concatDescriptor(outputInfo.GetShape()[channelsIndex]);
-    for (unsigned int group = 0u; group < numGroups; ++group)
-    {
-        for (unsigned int m = 0u; m < channelMultiplier; ++m)
-        {
-            auto index = group * channelMultiplier + m;
-            concatDescriptor.SetViewOriginCoord(index, channelsIndex, index);
-            concatDescriptor.SetConcatAxis(channelsIndex);
-        }
-    }
-
-    isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsConcatSupported,
-                               data.m_Backends,
-                               isSupported,
-                               std::vector<const TensorInfo*>(numGroups * channelMultiplier, &groupOutputInfo),
-                               outputInfo,
-                               concatDescriptor);
-    if (!isSupported)
-    {
-       return false;
-    }
-
-    IConnectableLayer* concatLayer = data.m_Network->AddConcatLayer(concatDescriptor);
-    if (!concatLayer)
-    {
-        return Fail("%s: AddConcatLayer failed", __func__);
-    }
-
-    for (unsigned int group = 0u; group < numGroups; ++group)
-    {
-        for (unsigned int m = 0u; m < channelMultiplier; ++m)
-        {
-            auto index = group * channelMultiplier + m;
-            convLayers[index]->GetOutputSlot(0).Connect(concatLayer->GetInputSlot(index));
-        }
-    }
-    concatLayer->GetOutputSlot(0).SetTensorInfo(outputInfo);
-
-    //
-    // Set up Activation layer (if it is set)
-    //
-    IConnectableLayer* endLayer = ProcessActivation(outputInfo, activation, concatLayer, data);
-    if (!endLayer)
-    {
-        return Fail("%s: ProcessActivation failed", __func__);
-    }
-
-    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *endLayer, model, data);
+    return ::ConvertGroupedConv2d<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertInstanceNormalization(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertInstanceNormalization()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Operation has an invalid input 0", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Operation has an invalid output", __func__);
-    }
-
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    // Determine data type of input tensor
-    OperandType inputType;
-    if (!GetOperandType<hal_1_2::HalPolicy>(operation, 0, model, inputType))
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    InstanceNormalizationDescriptor desc;
-
-    // Read gamma, beta & epsilon
-    if (inputType == OperandType::TENSOR_FLOAT16)
-    {
-        Half fp16Gamma;
-        Half fp16Beta;
-        Half fp16Epsilon;
-
-        if (!GetInputScalar<hal_1_2::HalPolicy>(operation, 1, OperandType::FLOAT16, fp16Gamma, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 2, OperandType::FLOAT16, fp16Beta, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 3, OperandType::FLOAT16, fp16Epsilon, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (FLOAT16)", __func__);
-        }
-
-        desc.m_Gamma = static_cast<float>(fp16Gamma);
-        desc.m_Beta  = static_cast<float>(fp16Beta);
-        desc.m_Eps   = static_cast<float>(fp16Epsilon);
-    }
-    else if (inputType == OperandType::TENSOR_FLOAT32)
-    {
-        if (!GetInputScalar<hal_1_2::HalPolicy>(operation, 1, OperandType::FLOAT32, desc.m_Gamma, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 2, OperandType::FLOAT32, desc.m_Beta, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 3, OperandType::FLOAT32, desc.m_Eps, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (FLOAT32)", __func__);
-        }
-    }
-    else
-    {
-        return Fail("%s: Unsupported input tensor type: %d", __func__, inputType);
-    }
-
-    desc.m_DataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, 4, model, data);
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsInstanceNormalizationSupported,
-                               data.m_Backends,
-                               isSupported,
-                               input.GetTensorInfo(),
-                               outputInfo,
-                               desc);
-    if (!isSupported)
-    {
-       return false;
-    }
-
-    IConnectableLayer* layer = data.m_Network->AddInstanceNormalizationLayer(desc);
-    input.Connect(layer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertInstanceNormalization<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertL2Normalization(const Operation& operation, const Model& model, ConversionData& data)
@@ -1224,85 +281,7 @@
 bool HalPolicy::ConvertLogSoftmax(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertLogSoftmax()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Failed to read input 0", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Failed to read output", __func__);
-    }
-
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    // Determine data type of input tensor
-    OperandType inputType;
-    if (!GetOperandType<hal_1_2::HalPolicy>(operation, 0, model, inputType))
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    LogSoftmaxDescriptor descriptor;
-
-    // Read beta
-    if (inputType == OperandType::TENSOR_FLOAT16)
-    {
-        Half fp16Beta;
-        if (!GetInputScalar<hal_1_2::HalPolicy>(operation, 1, OperandType::FLOAT16, fp16Beta, model, data))
-        {
-            return Fail("%s: Failed to read input 1 (FLOAT16)", __func__);
-        }
-
-        descriptor.m_Beta  = static_cast<float>(fp16Beta);
-    }
-    else if (inputType == OperandType::TENSOR_FLOAT32)
-    {
-        if (!GetInputScalar<hal_1_2::HalPolicy>(operation, 1, OperandType::FLOAT32, descriptor.m_Beta, model, data))
-        {
-            return Fail("%s: Failed to read input 1 (FLOAT32)", __func__);
-        }
-    }
-    else
-    {
-        return Fail("%s: Unsupported input tensor type: %d", __func__, inputType);
-    }
-
-    // Read axis
-    if (!GetInputInt32<hal_1_2::HalPolicy>(operation, 2, descriptor.m_Axis, model, data))
-    {
-        return Fail("%s: Failed to read input 2", __func__);
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsLogSoftmaxSupported,
-                               data.m_Backends,
-                               isSupported,
-                               input.GetTensorInfo(),
-                               outputInfo,
-                               descriptor);
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* layer = data.m_Network->AddLogSoftmaxLayer(descriptor);
-    if (!layer)
-    {
-        return Fail("%s: AddLogSoftmaxLayer() returned nullptr", __func__);
-    }
-
-    input.Connect(layer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertLogSoftmax<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertMaxPool2d(const Operation& operation, const Model& model, ConversionData& data)
@@ -1314,50 +293,7 @@
 bool HalPolicy::ConvertMaximum(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertMaximum()");
-
-    LayerInputHandle input0 = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    LayerInputHandle input1 = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 1, model, data);
-
-    if (!input0.IsValid() || !input1.IsValid())
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    const Operand* outputOperand = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!outputOperand)
-    {
-        return Fail("%s: Could not read output", __func__);
-    }
-
-    const TensorInfo& outInfo = GetTensorInfoForOperand(*outputOperand);
-    if (IsDynamicTensor(outInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsMaximumSupported,
-                               data.m_Backends,
-                               isSupported,
-                               input0.GetTensorInfo(),
-                               input1.GetTensorInfo(),
-                               outInfo);
-
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* layer = data.m_Network->AddMaximumLayer();
-    assert(layer != nullptr);
-    bool isReshapeSupported = BroadcastTensor(input0, input1, layer, data);
-    if (!isReshapeSupported)
-    {
-        return false;
-    }
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertMaximum<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertMean(const Operation& operation, const Model& model, ConversionData& data)
@@ -1369,50 +305,7 @@
 bool HalPolicy::ConvertMinimum(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertMinimum()");
-
-    LayerInputHandle input0 = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    LayerInputHandle input1 = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 1, model, data);
-
-    if (!input0.IsValid() || !input1.IsValid())
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output 0", __func__);
-    }
-
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-    if (IsDynamicTensor(outputInfo))
-    {
-         return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsMinimumSupported,
-                               data.m_Backends,
-                               isSupported,
-                               input0.GetTensorInfo(),
-                               input1.GetTensorInfo(),
-                               outputInfo);
-
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* const layer = data.m_Network->AddMinimumLayer();
-    assert(layer != nullptr);
-    bool isReshapeSupported = BroadcastTensor(input0, input1, layer, data);
-    if (!isReshapeSupported)
-    {
-        return false;
-    }
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertMinimum<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertMul(const Operation& operation, const Model& model, ConversionData& data)
@@ -1430,401 +323,25 @@
 bool HalPolicy::ConvertPadV2(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertPadV2()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Could not read input 0", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output", __func__);
-    }
-
-    const TensorInfo& inputInfo  = input.GetTensorInfo();
-    unsigned int rank = inputInfo.GetNumDimensions();
-
-    PadDescriptor descriptor;
-    if (!ConvertPaddings<hal_1_2::HalPolicy>(operation, model, data, rank, descriptor))
-    {
-        return Fail("%s: Could not convert paddings", __func__);
-    }
-
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    // Determine type of padding value
-    OperandType operandType0;
-    OperandType operandType2;
-
-    if (!GetOperandType<hal_1_2::HalPolicy>(operation, 0, model, operandType0) ||
-        !GetOperandType<hal_1_2::HalPolicy>(operation, 2, model, operandType2))
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    // Read value to use for padding
-    if (operandType0 == OperandType::TENSOR_FLOAT16 && operandType2 == OperandType::FLOAT16)
-    {
-        Half f16PadValue;
-        if (!GetInputScalar<hal_1_2::HalPolicy>(operation, 2, operandType2, f16PadValue, model, data))
-        {
-            return Fail("%s: Could not read input 2 (FLOAT16)", __func__);
-        }
-
-        descriptor.m_PadValue = f16PadValue;
-    }
-    else if (operandType0 == OperandType::TENSOR_FLOAT32 && operandType2 == OperandType::FLOAT32)
-    {
-        if (!GetInputFloat32<hal_1_2::HalPolicy>(operation, 2, descriptor.m_PadValue, model, data))
-        {
-            return Fail("%s: Could not read input 2 (FLOAT32)", __func__);
-        }
-    }
-    else if (operandType0 == OperandType::TENSOR_QUANT8_ASYMM && operandType2 == OperandType::INT32)
-    {
-        int32_t intPadValue = 0;
-        if (!GetInputInt32<hal_1_2::HalPolicy>(operation, 2, intPadValue, model, data))
-        {
-            return Fail("%s: Could not read input 2 (INT32)", __func__);
-        }
-        descriptor.m_PadValue = intPadValue;
-    }
-    else
-    {
-        return Fail("%s: Operation has invalid inputs: type mismatch", __func__);
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsPadSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               outputInfo,
-                               descriptor);
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* const layer = data.m_Network->AddPadLayer(descriptor);
-    assert(layer != nullptr);
-    input.Connect(layer->GetInputSlot(0));
-    layer->GetOutputSlot(0).SetTensorInfo(outputInfo);
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertPadV2<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertPrelu(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertPrelu()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    LayerInputHandle alpha = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 1, model, data);
-
-    if (!input.IsValid() || !alpha.IsValid())
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-
-    if (!output)
-    {
-        return Fail("%s: Could not read output", __func__);
-    }
-
-    const TensorInfo& inputInfo  = input.GetTensorInfo();
-    const TensorInfo& alphaInfo  = alpha.GetTensorInfo();
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsPreluSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               alphaInfo,
-                               outputInfo);
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* const layer = data.m_Network->AddPreluLayer();
-
-    if (!layer)
-    {
-        return Fail("%s: AddPreluLayer failed", __func__);
-    }
-
-    bool isReshapeSupported = BroadcastTensor(input, alpha, layer, data);
-    if (!isReshapeSupported)
-    {
-        return false;
-    }
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertPrelu<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertQuantize(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertQuantize()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Operation has invalid input", __func__);
-    }
-
-    const Operand* const outputOperand = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!outputOperand)
-    {
-        return Fail("%s: Operation has invalid outputs", __func__);
-    }
-
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand);
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsQuantizeSupported,
-                               data.m_Backends,
-                               isSupported,
-                               input.GetTensorInfo(),
-                               outputInfo);
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* const layer = data.m_Network->AddQuantizeLayer();
-    assert(layer != nullptr);
-    input.Connect(layer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertQuantize<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertQuantizedLstm(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertQuantizedLstm()");
-
-    //Inputs:
-    // 0: The input: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape [numBatches, inputSize]
-    //    specifying the input to the LSTM cell. Tensor is quantized with a fixed quantization range of -1, 127/128.
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Could not read input 0: input", __func__);
-    }
-
-    //13: The previous cell state: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT16_SYMM and shape
-    //    [numBatches, outputSize] specifying the cell state from the previous time step of the LSTM cell.
-    //    It is quantized using a quantization range of -2^4, 2^4 * 32767/32768.
-    LayerInputHandle previousCellStateIn = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 13, model, data);
-    if (!previousCellStateIn.IsValid())
-    {
-        return Fail("%s: Could not read input 13: previousCellStateIn", __func__);
-    }
-
-    // 14: The previous output state: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
-    //     [numBathes, outputSize] specifying the output of the LSTM cell from previous time-step. Tensor
-    //     is quantized with a fixed quantization range of -1, 127/128.
-    LayerInputHandle previousOutputIn = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 14, model, data);
-    if (!previousOutputIn.IsValid())
-    {
-        return Fail("%s: Could not read input 14: previousOutputIn", __func__);
-    }
-
-    // Get the input tensors:
-    // 1: The input-to-input weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
-    //    [outputSize, inputSize] specifying input-to-input part of weights for fully-connected layer inside the
-    //    LSTM cell. Quantization zero point and scale must be the same across all the weights.
-    const ConstTensorPin inputToInputWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 1, model, data);
-
-    // 2: The input-to-forget weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
-    //    [outputSize, inputSize] specifying input-to-forget part of weights for fully-connected layer inside the
-    //    LSTM cell. Quantization zero point and scale must be the same across all the weights.
-    const ConstTensorPin inputToForgetWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 2, model, data);
-
-    // 3: The input-to-cell weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
-    //    [outputSize, inputSize] specifying input-to-cell part of weights for fully-connected layer inside the
-    //    LSTM cell. Quantization zero point and scale must be the same across all the weights.
-    const ConstTensorPin inputToCellWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 3, model, data);
-
-    // 4: The input-to-output weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
-    //    [outputSize, inputSize] specifying input-to-output part of weights for fully-connected layer inside the
-    //    LSTM cell. Quantization zero point and scale must be the same across all the weights.
-    const ConstTensorPin inputToOutputWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 4, model, data);
-
-    // 5: The recurrent-to-input weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
-    //    [outputSize, outputSize] specifying recurrent-to-input part of weights for fully-connected layer inside
-    //    the LSTM cell. Quantization zero point and scale must be the same across all the weights.
-    const ConstTensorPin recurrentToInputWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 5, model, data);
-
-    // 6: The recurrent-to-forget weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
-    //    [outputSize, outputSize] specifying recurrent-to-forget part of weights for fully-connected layer inside
-    //    the LSTM cell. Quantization zero point and scale must be the same across all the weights.
-    const ConstTensorPin recurrentToForgetWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 6, model, data);
-
-    // 7: The recurrent-to-cell weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
-    //    [outputSize, outputSize] specifying recurrent-to-cell part of weights for fully-connected layer inside
-    //    the LSTM cell. Quantization zero point and scale must be the same across all the weights.
-    const ConstTensorPin recurrentToCellWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 7, model, data);
-
-    // 8: The recurrent-to-output weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
-    //    [outputSize, outputSize] specifying recurrent-to-output part of weights for fully-connected layer inside
-    //    the LSTM cell. Quantization zero point and scale must be the same across all the weights.
-    const ConstTensorPin recurrentToOutputWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 8, model, data);
-
-    // 9: The input gate bias. A 1-D tensor of type ANEURALNETWORKS_TENSOR_INT32 and shape [outputSize] specifying the
-    //    bias for the fully-connected layer inside the LSTM cell. Bias is quantized with scale being a product
-    //    of input and weights scales and zeroPoint equal to 0.
-    const ConstTensorPin inputGateBiasPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 9, model, data);
-
-    // 10: The forget gate bias. A 1-D tensor of type ANEURALNETWORKS_TENSOR_INT32 and shape [outputSize] specifying
-    //     the bias for the fully-connected layer inside the LSTM cell. Bias is quantized with scale being a product
-    //     of input and weights scales and zeroPoint equal to 0.
-    const ConstTensorPin forgetGateBiasPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 10, model, data);
-
-    // 11:The cell bias. A 1-D tensor of type ANEURALNETWORKS_TENSOR_INT32 and shape [outputSize] specifying the bias
-    //    for the fully-connected layer inside the LSTM cell. Bias is quantized with scale being a product of input
-    //    and weights scales and zeroPoint equal to 0.
-    const ConstTensorPin cellBiasPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 11, model, data);
-
-    // 12:The output gate bias. A 1-D tensor of type ANEURALNETWORKS_TENSOR_INT32 and shape [outputSize] specifying
-    //    the bias for the fully-connected layer inside the LSTM cell. Bias is quantized with scale being a product
-    //    of input and weights scales and zeroPoint equal to 0.
-    const ConstTensorPin outputGateBiasPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 12, model, data);
-
-    if (!inputToInputWeightsPin.IsValid() ||
-        !inputToForgetWeightsPin.IsValid() ||
-        !inputToCellWeightsPin.IsValid() ||
-        !inputToOutputWeightsPin.IsValid() ||
-        !recurrentToInputWeightsPin.IsValid() ||
-        !recurrentToForgetWeightsPin.IsValid() ||
-        !recurrentToCellWeightsPin.IsValid() ||
-        !recurrentToOutputWeightsPin.IsValid() ||
-        !inputGateBiasPin.IsValid() ||
-        !forgetGateBiasPin.IsValid() ||
-        !cellBiasPin.IsValid() ||
-        !outputGateBiasPin.IsValid())
-    {
-        return Fail("%s: Operation has invalid tensor inputs", __func__);
-    }
-
-    // Outputs:
-    // 0: The cell state: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT16_SYMM and shape [numBatches, outputSize]
-    //    which contains a cell state from the current time step. Tensor is quantized using a quantization range
-    //    of -2^4, 2^4 * 32767/32768.
-    const Operand* cellStateOut = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!cellStateOut)
-    {
-        return Fail("%s: Could not read output 0: cellStateOut", __func__);
-    }
-
-    // 1: The output: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape [numBathes, outputSize] which
-    //      contains the output value. Tensor is quantized with a fixed quantization range of -1, 127/128.
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 1, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output 1: output", __func__);
-    }
-
-    // Inputs
-    const TensorInfo& inputInfo               = input.GetTensorInfo();
-    const TensorInfo& previousCellStateInInfo = previousCellStateIn.GetTensorInfo();
-    const TensorInfo& previousOutputInInfo    = previousOutputIn.GetTensorInfo();
-
-    // Outputs
-    const TensorInfo& cellStateOutInfo = GetTensorInfoForOperand(*cellStateOut);
-    const TensorInfo& outputInfo       = GetTensorInfoForOperand(*output);
-
-    // Dynamic tensors currently not supported
-    if (IsDynamicTensor(cellStateOutInfo) || IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    QuantizedLstmInputParams params;
-
-    params.m_InputToInputWeights      = inputToInputWeightsPin.GetConstTensorPtr();
-    params.m_InputToForgetWeights     = inputToForgetWeightsPin.GetConstTensorPtr();
-    params.m_InputToCellWeights       = inputToCellWeightsPin.GetConstTensorPtr();
-    params.m_InputToOutputWeights     = inputToOutputWeightsPin.GetConstTensorPtr();
-    params.m_RecurrentToInputWeights  = recurrentToInputWeightsPin.GetConstTensorPtr();
-    params.m_RecurrentToForgetWeights = recurrentToForgetWeightsPin.GetConstTensorPtr();
-    params.m_RecurrentToCellWeights   = recurrentToCellWeightsPin.GetConstTensorPtr();
-    params.m_RecurrentToOutputWeights = recurrentToOutputWeightsPin.GetConstTensorPtr();
-    params.m_InputGateBias            = inputGateBiasPin.GetConstTensorPtr();
-    params.m_ForgetGateBias           = forgetGateBiasPin.GetConstTensorPtr();
-    params.m_CellBias                 = cellBiasPin.GetConstTensorPtr();
-    params.m_OutputGateBias           = outputGateBiasPin.GetConstTensorPtr();
-
-    QuantizedLstmInputParamsInfo paramsInfo;
-    paramsInfo.m_InputToInputWeights      = &(params.m_InputToInputWeights->GetInfo());
-    paramsInfo.m_InputToForgetWeights     = &(params.m_InputToForgetWeights->GetInfo());
-    paramsInfo.m_InputToCellWeights       = &(params.m_InputToCellWeights->GetInfo());
-    paramsInfo.m_InputToOutputWeights     = &(params.m_InputToOutputWeights->GetInfo());
-    paramsInfo.m_RecurrentToInputWeights  = &(params.m_RecurrentToInputWeights->GetInfo());
-    paramsInfo.m_RecurrentToForgetWeights = &(params.m_RecurrentToForgetWeights->GetInfo());
-    paramsInfo.m_RecurrentToCellWeights   = &(params.m_RecurrentToCellWeights->GetInfo());
-    paramsInfo.m_RecurrentToOutputWeights = &(params.m_RecurrentToOutputWeights->GetInfo());
-    paramsInfo.m_InputGateBias            = &(params.m_InputGateBias->GetInfo());
-    paramsInfo.m_ForgetGateBias           = &(params.m_ForgetGateBias->GetInfo());
-    paramsInfo.m_CellBias                 = &(params.m_CellBias->GetInfo());
-    paramsInfo.m_OutputGateBias           = &(params.m_OutputGateBias->GetInfo());
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsQuantizedLstmSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               previousCellStateInInfo,
-                               previousOutputInInfo,
-                               cellStateOutInfo,
-                               outputInfo,
-                               paramsInfo);
-
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* const layer = data.m_Network->AddQuantizedLstmLayer(params, "QuantizedLstm");
-    input.Connect(layer->GetInputSlot(0));
-    previousCellStateIn.Connect(layer->GetInputSlot(1));
-    previousOutputIn.Connect(layer->GetInputSlot(2));
-
-    return (SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, 0, model, data) &&
-            SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 1, *layer, 1, model, data));
+    return ::ConvertQuantizedLstm<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertReLu(const Operation& operation, const Model& model, ConversionData& data)
@@ -1857,134 +374,7 @@
                               ResizeMethod resizeMethod)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertResize()");
-    ALOGV("resizeMethod = %s", GetResizeMethodAsCString(resizeMethod));
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Could not read input 0", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output 0", __func__);
-    }
-
-    const TensorInfo& inputInfo  = input.GetTensorInfo();
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    ResizeDescriptor descriptor;
-    descriptor.m_Method     = resizeMethod;
-    descriptor.m_DataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, 3, model, data);
-
-    OperandType operandType1;
-    OperandType operandType2;
-
-    if (!GetOperandType<hal_1_2::HalPolicy>(operation, 1, model, operandType1) ||
-        !GetOperandType<hal_1_2::HalPolicy>(operation, 2, model, operandType2))
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    if (operandType1 != operandType2)
-    {
-        return Fail("%s: Operation has invalid inputs. Type of input 1 and 2 should be the same", __func__);
-    }
-
-    if (operandType1 == OperandType::INT32)
-    {
-        // Case 1: resizing by shape
-        int32_t targetWidth  = 0;
-        int32_t targetHeight = 0;
-
-        if (!GetInputInt32<hal_1_2::HalPolicy>(operation, 1, targetWidth, model, data) ||
-            !GetInputInt32<hal_1_2::HalPolicy>(operation, 2, targetHeight, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs for resizing by shape", __func__);
-        }
-
-        if (targetWidth < 0 || targetHeight < 0)
-        {
-            return Fail("%s: Operation has invalid inputs for resizing by shape. "
-                        "Target width/height cannot be < 0", __func__);
-        }
-
-        descriptor.m_TargetWidth = static_cast<uint32_t>(targetWidth);
-        descriptor.m_TargetHeight = static_cast<uint32_t>(targetHeight);
-    }
-    else if (operandType1 == OperandType::FLOAT32)
-    {
-        // Case 2: resizing by scale
-        float widthScale  = 1.0f;
-        float heightScale = 1.0f;
-
-        if (!GetInputFloat32<hal_1_2::HalPolicy>(operation, 1, widthScale, model, data) ||
-            !GetInputFloat32<hal_1_2::HalPolicy>(operation, 2, heightScale, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs for resizing by scale", __func__);
-        }
-
-        const TensorShape& inputShape = inputInfo.GetShape();
-        armnnUtils::DataLayoutIndexed dataLayoutIndexed(descriptor.m_DataLayout);
-
-        float width  = inputShape[dataLayoutIndexed.GetWidthIndex()];
-        float height = inputShape[dataLayoutIndexed.GetHeightIndex()];
-
-        descriptor.m_TargetWidth  = std::floor(width  * widthScale);
-        descriptor.m_TargetHeight = std::floor(height * heightScale);
-    }
-    else if (operandType1 == OperandType::FLOAT16)
-    {
-        Half widthScale;
-        Half heightScale;
-
-        if (!GetInputScalar<HalPolicy>(operation, 1, HalPolicy::OperandType::FLOAT16, widthScale, model, data) ||
-            !GetInputScalar<HalPolicy>(operation, 2, HalPolicy::OperandType::FLOAT16, heightScale, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs for resizing by scale", __func__);
-        }
-
-        const TensorShape& inputShape = inputInfo.GetShape();
-        armnnUtils::DataLayoutIndexed dataLayoutIndexed(descriptor.m_DataLayout);
-
-        Half width  = static_cast<Half>(inputShape[dataLayoutIndexed.GetWidthIndex()]);
-        Half height = static_cast<Half>(inputShape[dataLayoutIndexed.GetHeightIndex()]);
-
-        descriptor.m_TargetWidth  = std::floor(width  * widthScale);
-        descriptor.m_TargetHeight = std::floor(height * heightScale);
-    }
-    else
-    {
-        return Fail("%s: Operand has invalid data type for resizing by scale", __func__);
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsResizeSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               outputInfo,
-                               descriptor);
-
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* layer = data.m_Network->AddResizeLayer(descriptor);
-
-    assert(layer != nullptr);
-
-    input.Connect(layer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertResize<hal_1_2::HalPolicy>(operation, model, data, resizeMethod);
 }
 
 bool HalPolicy::ConvertSpaceToBatchNd(const Operation& operation, const Model& model, ConversionData& data)
@@ -1996,126 +386,13 @@
 bool HalPolicy::ConvertSpaceToDepth(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertSpaceToDepth()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid() )
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    const TensorInfo& inputInfo = input.GetTensorInfo();
-    unsigned int rank = inputInfo.GetNumDimensions();
-    if (rank != 4)
-    {
-        return Fail("%s: Only inputs with rank 4 are supported", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output 0", __func__);
-    }
-
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    SpaceToDepthDescriptor desc;
-
-    GetInputScalar<hal_1_2::HalPolicy>(operation, 1, OperandType::INT32, desc.m_BlockSize, model, data);
-
-    if (desc.m_BlockSize <= 1)
-    {
-        return Fail("%s: Block size must be at least 1 in all dimensions");
-    }
-
-    desc.m_DataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, 2, model, data);
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsSpaceToDepthSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               outputInfo,
-                               desc);
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* const layer = data.m_Network->AddSpaceToDepthLayer(desc);
-    assert(layer != nullptr);
-    input.Connect(layer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertSpaceToDepth<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertSoftmax(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertSoftmax()");
-
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    const Operand* outputOperand = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!outputOperand)
-    {
-        return Fail("%s: Operation has no outputs", __func__);
-    }
-
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand);
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    SoftmaxDescriptor desc;
-    if (!GetInputFloat32<hal_1_2::HalPolicy>(operation, 1, desc.m_Beta, model, data))
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    if (operation.inputs.size() > 2 && !GetInputScalar<hal_1_2::HalPolicy>(operation,
-                                                                           2,
-                                                                           HalPolicy::OperandType::INT32,
-                                                                           desc.m_Axis,
-                                                                           model,
-                                                                           data))
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    if (input.GetTensorInfo().GetNumDimensions() > 2 ||
-        !(desc.m_Axis == 1 ||
-          (desc.m_Axis < 0 && static_cast<int>(input.GetTensorInfo().GetNumDimensions()) + desc.m_Axis == 1)))
-    {
-        return Fail("%s: Unsupported input greater than 2D or axis != 1", __func__);
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsSoftmaxSupported,
-                               data.m_Backends,
-                               isSupported,
-                               input.GetTensorInfo(),
-                               outputInfo,
-                               desc);
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* layer = data.m_Network->AddSoftmaxLayer(desc);
-    assert(layer != nullptr);
-    input.Connect(layer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *layer, model, data);
+    return ::ConvertSoftmax<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertSub(const Operation& operation, const Model& model, ConversionData& data)
@@ -2130,450 +407,10 @@
     return ::ConvertTanH<hal_1_2::HalPolicy>(operation, model, data);
 }
 
-template<typename HalPolicy,
-         typename HalOperation = typename HalPolicy::Operation,
-         typename HalModel     = typename HalPolicy::Model>
-bool SetupAndTrackLayerOutputSlotAndOverrideTensorInfo(const HalOperation& operation,
-                                  uint32_t operationOutputIndex,
-                                  armnn::IConnectableLayer& layer,
-                                  uint32_t layerOutputIndex,
-                                  const HalModel& model,
-                                  ConversionData& data,
-                                  const armnn::TensorInfo tensor_info)
-{
-    using HalOperand = typename HalPolicy::Operand;
-
-    const HalOperand* outputOperand = GetOutputOperand<HalPolicy>(operation, operationOutputIndex, model);
-    if ((outputOperand == nullptr) || (operationOutputIndex >= layer.GetNumOutputSlots()))
-    {
-        return false;
-    }
-
-    armnn::IOutputSlot& outputSlot = layer.GetOutputSlot(layerOutputIndex);
-
-    const uint32_t operandIndex = operation.outputs[operationOutputIndex];
-    data.m_OutputSlotForOperand[operandIndex] = &outputSlot;
-
-    outputSlot.SetTensorInfo(tensor_info);
-
-    return true;
-}
-
-
 bool HalPolicy::ConvertLstm(const Operation& operation, const Model& model, ConversionData& data)
 {
     ALOGV("hal_1_2::HalPolicy::ConvertLstm()");
-
-    // Inputs:
-    // 00: The input: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, input_size], where
-    //      “batch_size” corresponds to the batching dimension, and “input_size” is the size of the input.
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-    if (!input.IsValid())
-    {
-        return Fail("%s: Could not read input 0: input", __func__);
-    }
-    // 18: The output state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size].
-    LayerInputHandle outputStateIn = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 18, model, data);
-    if (!outputStateIn.IsValid())
-    {
-        return Fail("%s: Could not read input 18: outputStateIn", __func__);
-    }
-    // 19: The cell state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units].
-    LayerInputHandle cellStateIn = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 19, model, data);
-    if (!cellStateIn.IsValid())
-    {
-        return Fail("%s: Could not read input 19: cellStateIn", __func__);
-    }
-
-    // Get the mandatory input tensors:
-    // 02: The input-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
-    //     [num_units, input_size].
-    const ConstTensorPin inputToForgetWeightsPin =
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 2));
-    // 03: The input-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
-    // [num_units, input_size].
-    const ConstTensorPin inputToCellWeightsPin =
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 3));
-    // 04: The input-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
-    //     [num_units, input_size].
-    const ConstTensorPin inputToOutputWeightsPin =
-           (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 4));
-    // 06: The recurrent-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
-    //     [num_units, output_size].
-    const ConstTensorPin recurrentToForgetWeightsPin =
-           (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 6));
-    // 07: The recurrent-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
-    //     [num_units, output_size].
-    const ConstTensorPin recurrentToCellWeightsPin =
-           (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 7));
-    // 08: The recurrent-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
-    //     [num_units, output_size].
-    const ConstTensorPin recurrentToOutputWeightsPin =
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 8));
-    // 13: The forget gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
-    const ConstTensorPin forgetGateBiasPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 13, model, data);
-    // 14: The cell bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
-    const ConstTensorPin cellBiasPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 14, model, data);
-    // 15: The output gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
-    const ConstTensorPin outputGateBiasPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 15, model, data);
-
-    if (!inputToForgetWeightsPin.IsValid() ||
-        !inputToCellWeightsPin.IsValid() ||
-        !inputToOutputWeightsPin.IsValid() ||
-        !recurrentToForgetWeightsPin.IsValid() ||
-        !recurrentToCellWeightsPin.IsValid() ||
-        !recurrentToOutputWeightsPin.IsValid() ||
-        !forgetGateBiasPin.IsValid() ||
-        !cellBiasPin.IsValid() ||
-        !outputGateBiasPin.IsValid())
-    {
-        return Fail("%s: Operation has invalid tensor inputs", __func__);
-    }
-
-    // Get the optional input tensors:
-    // 01: The input-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
-    //     [num_units, input_size], where “num_units” corresponds to the number of cell units.
-    const ConstTensorPin inputToInputWeightsPin =
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 1, true));
-    // 05: The recurrent-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
-    //     [num_units, output_size], where “output_size” corresponds to either the number of cell units (i.e.,
-    //     “num_units”), or the second dimension of the “projection_weights”, if defined.
-    const ConstTensorPin recurrentToInputWeightsPin =
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 5, true));
-    // 09: The cell-to-input weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
-    const ConstTensorPin cellToInputWeightsPin =
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 9, true));
-    // 10: The cell-to-forget weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
-    const ConstTensorPin cellToForgetWeightsPin =
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 10, true));
-    // 11: The cell-to-output weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
-    const ConstTensorPin cellToOutputWeightsPin =
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 11, true));
-    // 12: The input gate bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
-    const ConstTensorPin inputGateBiasPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation,
-                                                                      12,
-                                                                      model,
-                                                                      data,
-                                                                      g_DontPermute,
-                                                                      nullptr,
-                                                                      true);
-
-    // 16: The projection weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
-    //     [output_size, num_units].
-    const ConstTensorPin projectionWeightsPin =
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 16, true));
-    // 17: The projection bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [output_size].
-    const ConstTensorPin projectionBiasPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation,
-                                                                      17,
-                                                                      model,
-                                                                      data,
-                                                                      g_DontPermute,
-                                                                      nullptr,
-                                                                      true);
-
-    if ((!inputToInputWeightsPin.IsValid() && !inputToInputWeightsPin.IsOptional()) ||
-        (!recurrentToInputWeightsPin.IsValid() && !recurrentToInputWeightsPin.IsOptional()) ||
-        (!cellToInputWeightsPin.IsValid() && !cellToInputWeightsPin.IsOptional()) ||
-        (!cellToForgetWeightsPin.IsValid() && !cellToForgetWeightsPin.IsOptional()) ||
-        (!cellToOutputWeightsPin.IsValid() && !cellToOutputWeightsPin.IsOptional()) ||
-        (!inputGateBiasPin.IsValid() && !inputGateBiasPin.IsOptional()) ||
-        (!projectionWeightsPin.IsValid() && !projectionWeightsPin.IsOptional()) ||
-        (!projectionBiasPin.IsValid() && !projectionBiasPin.IsOptional()))
-    {
-        return Fail("%s: Operation has invalid tensor inputs", __func__);
-    }
-
-    // Get the mandatory input scalars (actually 1-D tensors of size 1):
-    // 20: The activation function: A value indicating the activation function:
-    //     0: None; 1: Relu; 3: Relu6; 4: Tanh; 6: Sigmoid.
-    // 21: The clipping threshold: for the cell state, such that values are bound within [-cell_clip, cell_clip].
-    //     If set to 0.0 then clipping is disabled.
-    // 22: The clipping threshold: for the output from the projection layer, such that values are bound within
-    //     [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
-    ActivationFn activation;
-    float cellClip;
-    float projClip;
-    if (!GetInputActivationFunctionFromTensor<hal_1_2::HalPolicy>(operation, 20, activation, model, data) ||
-        !GetInputScalar<hal_1_2::HalPolicy>(operation, 21, OperandType::FLOAT32, cellClip, model, data) ||
-        !GetInputScalar<hal_1_2::HalPolicy>(operation, 22, OperandType::FLOAT32, projClip, model, data))
-    {
-        return Fail("%s: Operation has invalid scalar inputs", __func__);
-    }
-
-    // Get the normalization tensors
-    // 23: The input layer normalization weights. A 1-D tensor of shape [num_units].
-    //     Used to rescale normalized inputs to activation at input gate.
-    const ConstTensorPin inputLayerNormWeightsPin
-            (DequantizeAndMakeConstTensorPin<hal_1_2::HalPolicy>(operation, model, data, 23, true));
-
-    // 24: The forget layer normalization weights. A 1-D tensor of shape [num_units].
-    //     Used to rescale normalized inputs to activation at forget gate.
-    const ConstTensorPin forgetLayerNormWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation,
-                                                                      24,
-                                                                      model,
-                                                                      data,
-                                                                      g_DontPermute,
-                                                                      nullptr,
-                                                                      true);
-
-    // 25: The cell layer normalization weights. A 1-D tensor of shape [num_units].
-    //     Used to rescale normalized inputs to activation at cell gate.
-    const ConstTensorPin cellLayerNormWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation,
-                                                                      25,
-                                                                      model,
-                                                                      data,
-                                                                      g_DontPermute,
-                                                                      nullptr,
-                                                                      true);
-
-    // 26: The output layer normalization weights. A 1-D tensor of shape [num_units].
-    //     Used to rescale normalized inputs to activation at output gate.
-    const ConstTensorPin outputLayerNormWeightsPin =
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation,
-                                                                      26,
-                                                                      model,
-                                                                      data,
-                                                                      g_DontPermute,
-                                                                      nullptr,
-                                                                      true);
-
-    // Outputs:
-    // 00: The scratch buffer: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units * 4]
-    // with CIFG, or [batch_size, num_units * 3] without CIFG.
-    const Operand* scratchBuffer = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-    if (!scratchBuffer)
-    {
-        return Fail("%s: Could not read output 0: scratchBuffer", __func__);
-    }
-    // 01: The output state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size].
-    const Operand* outputStateOut = GetOutputOperand<hal_1_2::HalPolicy>(operation, 1, model);
-    if (!outputStateOut)
-    {
-        return Fail("%s: Could not read output 1: outputStateOut", __func__);
-    }
-    // 02: The cell state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units].
-    const Operand* cellStateOut = GetOutputOperand<hal_1_2::HalPolicy>(operation, 2, model);
-    if (!cellStateOut)
-    {
-        return Fail("%s: Could not read output 2: cellStateOut", __func__);
-    }
-    // 03: The output: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size]. This is
-    //     effectively the same as the current “output state (out)” value.
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 3, model);
-    if (!output)
-    {
-        return Fail("%s: Could not read output 3: output", __func__);
-    }
-
-    // set the params structure for the AddLstmLayer call
-    LstmInputParams params;
-    params.m_InputToInputWeights = inputToInputWeightsPin.GetConstTensorPtr();
-    params.m_InputToForgetWeights = inputToForgetWeightsPin.GetConstTensorPtr();
-    params.m_InputToCellWeights = inputToCellWeightsPin.GetConstTensorPtr();
-    params.m_InputToOutputWeights = inputToOutputWeightsPin.GetConstTensorPtr();
-    params.m_RecurrentToInputWeights = recurrentToInputWeightsPin.GetConstTensorPtr();
-    params.m_RecurrentToForgetWeights = recurrentToForgetWeightsPin.GetConstTensorPtr();
-    params.m_RecurrentToCellWeights = recurrentToCellWeightsPin.GetConstTensorPtr();
-    params.m_RecurrentToOutputWeights = recurrentToOutputWeightsPin.GetConstTensorPtr();
-    params.m_CellToInputWeights = cellToInputWeightsPin.GetConstTensorPtr();
-    params.m_CellToForgetWeights = cellToForgetWeightsPin.GetConstTensorPtr();
-    params.m_CellToOutputWeights = cellToOutputWeightsPin.GetConstTensorPtr();
-    params.m_InputGateBias = inputGateBiasPin.GetConstTensorPtr();
-    params.m_ForgetGateBias = forgetGateBiasPin.GetConstTensorPtr();
-    params.m_CellBias = cellBiasPin.GetConstTensorPtr();
-    params.m_OutputGateBias = outputGateBiasPin.GetConstTensorPtr();
-    params.m_ProjectionWeights = projectionWeightsPin.GetConstTensorPtr();
-    params.m_ProjectionBias = projectionBiasPin.GetConstTensorPtr();
-    params.m_InputLayerNormWeights = inputLayerNormWeightsPin.GetConstTensorPtr();
-    params.m_ForgetLayerNormWeights = forgetLayerNormWeightsPin.GetConstTensorPtr();
-    params.m_CellLayerNormWeights = cellLayerNormWeightsPin.GetConstTensorPtr();
-    params.m_OutputLayerNormWeights = outputLayerNormWeightsPin.GetConstTensorPtr();
-
-    // set the layer descriptor
-    LstmDescriptor desc;
-    desc.m_ActivationFunc = activation;
-    desc.m_ClippingThresCell = cellClip;
-    desc.m_ClippingThresProj = projClip;
-    desc.m_CifgEnabled = (params.m_InputToInputWeights == nullptr ||
-                          params.m_RecurrentToInputWeights == nullptr ||
-                          params.m_InputGateBias == nullptr);
-    desc.m_PeepholeEnabled = (params.m_CellToForgetWeights != nullptr ||
-                              params.m_CellToOutputWeights != nullptr);
-    desc.m_ProjectionEnabled = (params.m_ProjectionWeights != nullptr);
-    desc.m_LayerNormEnabled = (params.m_InputLayerNormWeights != nullptr ||
-                               params.m_ForgetLayerNormWeights != nullptr ||
-                               params.m_CellLayerNormWeights != nullptr ||
-                               params.m_OutputLayerNormWeights != nullptr);
-
-    // validate the optional input groups
-    if (desc.m_CifgEnabled &&
-        (params.m_InputToInputWeights != nullptr ||
-         params.m_RecurrentToInputWeights != nullptr ||
-         params.m_InputGateBias != nullptr))
-    {
-        return Fail("%s: All, or none, of input-to-input weights, recurrent-to-input weights,"
-                    " and input gate bias must be provided", __func__);
-    }
-
-    if (!desc.m_ProjectionEnabled && params.m_ProjectionBias != nullptr)
-    {
-        return Fail("%s: projection bias should not be provided without projection weights", __func__);
-    }
-
-    if (desc.m_PeepholeEnabled &&
-        (params.m_CellToForgetWeights == nullptr ||
-         params.m_CellToOutputWeights == nullptr ||
-         (!desc.m_CifgEnabled && params.m_CellToInputWeights == nullptr)))
-    {
-        return Fail("%s: All, or none, of cell-to-forget weights and cell-to-output weights must be provided"
-                    " and, if CIFG is not enabled, cell-to-input weights must also be provided", __func__);
-    }
-
-    if (desc.m_LayerNormEnabled &&
-        (params.m_ForgetLayerNormWeights == nullptr ||
-         params.m_CellLayerNormWeights == nullptr ||
-         params.m_OutputLayerNormWeights == nullptr ||
-         (!desc.m_CifgEnabled && params.m_InputLayerNormWeights == nullptr)))
-    {
-        return Fail("%s: All, or none, of forget-norm weights, cell-norm weights and output-norm weights must be"
-                    " provided and, if CIFG is not enabled, input-norm weights must also be provided", __func__);
-    }
-
-    // Check if the layer is supported
-    // Inputs
-    const TensorInfo& inputInfo         = input.GetTensorInfo();
-    const TensorInfo& outputStateInInfo = outputStateIn.GetTensorInfo();
-    const TensorInfo& cellStateInInfo   = cellStateIn.GetTensorInfo();
-
-    // Outputs
-    const TensorInfo& scratchBufferInfo  = GetTensorInfoForOperand(*scratchBuffer);
-    const TensorInfo& outputStateOutInfo = GetTensorInfoForOperand(*outputStateOut);
-    const TensorInfo& cellStateOutInfo   = GetTensorInfoForOperand(*cellStateOut);
-    const TensorInfo& outputInfo         = GetTensorInfoForOperand(*output);
-
-    // Check if the scratch buffer shape was initialized,
-    // In some cases the shape could be (0,0) which requires the driver
-    // to infer the shape and set it up accordingly.
-    // The code below does that.
-    TensorInfo fixSbInfo = scratchBufferInfo;
-    if (IsDynamicTensor(scratchBufferInfo))
-    {
-        auto & s = fixSbInfo.GetShape();
-        s[0] = outputStateInInfo.GetShape()[0];
-        if (desc.m_CifgEnabled)
-        {
-           // 2D tensor with dimensions [num_units * 3, batch_size] with CIFG
-           s[1] = cellStateOutInfo.GetShape()[1]*3;
-        }
-        else
-        {
-          // scratch_buffer [num_units * 4, batch_size] without CIFG
-          s[1] = cellStateOutInfo.GetShape()[1]*4;
-        }
-    }
-
-    if (IsDynamicTensor(outputStateOutInfo) ||
-        IsDynamicTensor(cellStateOutInfo)   ||
-        IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported %d %d %d %d", __func__,
-                    IsDynamicTensor(scratchBufferInfo), IsDynamicTensor(outputStateOutInfo),
-                    IsDynamicTensor(cellStateOutInfo), IsDynamicTensor(outputInfo));
-    }
-
-    // Basic parameters
-    LstmInputParamsInfo paramsInfo;
-    paramsInfo.m_InputToForgetWeights     = &(params.m_InputToForgetWeights->GetInfo());
-    paramsInfo.m_InputToCellWeights       = &(params.m_InputToCellWeights->GetInfo());
-    paramsInfo.m_InputToOutputWeights     = &(params.m_InputToOutputWeights->GetInfo());
-    paramsInfo.m_RecurrentToForgetWeights = &(params.m_RecurrentToForgetWeights->GetInfo());
-    paramsInfo.m_RecurrentToCellWeights   = &(params.m_RecurrentToCellWeights->GetInfo());
-    paramsInfo.m_RecurrentToOutputWeights = &(params.m_RecurrentToOutputWeights->GetInfo());
-    paramsInfo.m_ForgetGateBias           = &(params.m_ForgetGateBias->GetInfo());
-    paramsInfo.m_CellBias                 = &(params.m_CellBias->GetInfo());
-    paramsInfo.m_OutputGateBias           = &(params.m_OutputGateBias->GetInfo());
-
-    // Optional parameters
-    if(!desc.m_CifgEnabled)
-    {
-        paramsInfo.m_InputToInputWeights = &(params.m_InputToInputWeights->GetInfo());
-        paramsInfo.m_RecurrentToInputWeights = &(params.m_RecurrentToInputWeights->GetInfo());
-        if (params.m_CellToInputWeights != nullptr)
-        {
-            paramsInfo.m_CellToInputWeights = &(params.m_CellToInputWeights->GetInfo());
-        }
-        paramsInfo.m_InputGateBias = &(params.m_InputGateBias->GetInfo());
-    }
-
-    if(desc.m_ProjectionEnabled)
-    {
-        paramsInfo.m_ProjectionWeights = &(params.m_ProjectionWeights->GetInfo());
-        if (params.m_ProjectionBias != nullptr)
-        {
-            paramsInfo.m_ProjectionBias = &(params.m_ProjectionBias->GetInfo());
-        }
-    }
-
-    if(desc.m_PeepholeEnabled)
-    {
-        paramsInfo.m_CellToForgetWeights = &(params.m_CellToForgetWeights->GetInfo());
-        paramsInfo.m_CellToOutputWeights = &(params.m_CellToOutputWeights->GetInfo());
-    }
-
-    if (desc.m_LayerNormEnabled)
-    {
-        if(!desc.m_CifgEnabled)
-        {
-            paramsInfo.m_InputLayerNormWeights = &(params.m_InputLayerNormWeights->GetInfo());
-        }
-        paramsInfo.m_ForgetLayerNormWeights = &(params.m_ForgetLayerNormWeights->GetInfo());
-        paramsInfo.m_CellLayerNormWeights = &(params.m_CellLayerNormWeights->GetInfo());
-        paramsInfo.m_OutputLayerNormWeights = &(params.m_OutputLayerNormWeights->GetInfo());
-    }
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsLstmSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               outputStateInInfo,
-                               cellStateInInfo,
-                               fixSbInfo,
-                               outputStateOutInfo,
-                               cellStateOutInfo,
-                               outputInfo,
-                               desc,
-                               paramsInfo);
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    // Add the layer
-    IConnectableLayer* layer = data.m_Network->AddLstmLayer(desc, params, "Lstm");
-
-    input.Connect(layer->GetInputSlot(0));
-    outputStateIn.Connect(layer->GetInputSlot(1));
-    cellStateIn.Connect(layer->GetInputSlot(2));
-
-
-    return (
-            (IsDynamicTensor(scratchBufferInfo)?
-                SetupAndTrackLayerOutputSlotAndOverrideTensorInfo<hal_1_2::HalPolicy>(
-                    operation, 0, *layer, 0, model, data,fixSbInfo):
-                SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(
-                    operation, 0, *layer, 0, model, data)) &&
-            SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 1, *layer, 1, model, data) &&
-            SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 2, *layer, 2, model, data) &&
-            SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 3, *layer, 3, model, data));
+    return ::ConvertLstm<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 bool HalPolicy::ConvertSqrt(const Operation& operation, const Model& model, ConversionData& data)
@@ -2605,175 +442,8 @@
 
 bool HalPolicy::ConvertTransposeConv2d(const Operation& operation, const Model& model, ConversionData& data)
 {
-    LayerInputHandle input = ConvertToLayerInputHandle<hal_1_2::HalPolicy>(operation, 0, model, data);
-
-    if (!input.IsValid())
-    {
-        return Fail("%s: Operation has invalid inputs", __func__);
-    }
-
-    const Operand* output = GetOutputOperand<hal_1_2::HalPolicy>(operation, 0, model);
-
-    if (!output)
-    {
-        return Fail("%s: Could not read output 0", __func__);
-    }
-
-    const TensorInfo& inputInfo  = input.GetTensorInfo();
-    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
-    if (IsDynamicTensor(outputInfo))
-    {
-        return Fail("%s: Dynamic output tensors are not supported", __func__);
-    }
-
-    // ArmNN does not currently support non-fixed weights or bias
-    // Find the shape of the weights tensor. In AndroidNN this will be [ 1, H, W, I * M ]
-    const Operand* weightsOperand = GetInputOperand<hal_1_2::HalPolicy>(operation, 1, model);
-
-    if (weightsOperand == nullptr)
-    {
-        return Fail("%s: Operand is invalid", __func__);
-    }
-    TransposeConvolution2dDescriptor desc;
-    desc.m_DataLayout = DataLayout::NHWC;
-
-    // Determine whether padding is implicit or explicit
-    bool implicitPadding = operation.inputs.size() == 9;
-
-    if (implicitPadding )
-    {
-        desc.m_DataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, 8, model, data);
-    }
-    else
-    {
-        desc.m_DataLayout = OptionalDataLayout<hal_1_2::HalPolicy>(operation, 10, model, data);
-    }
-
-    armnnUtils::DataLayoutIndexed dataLayoutIndexed(desc.m_DataLayout);
-    unsigned int widthIndex = dataLayoutIndexed.GetWidthIndex();
-    unsigned int heightIndex = dataLayoutIndexed.GetHeightIndex();
-
-    const PermutationVector OHWIToOIHW = {0, 2, 3, 1};
-
-    // The shape of the weight is [depth_out, filter_height, filter_width, depth_in].
-    // We have to permute it to OIHW if the data layout is NCHW.
-    const ConstTensorPin weightsPin = (desc.m_DataLayout == DataLayout::NCHW) ?
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 1, model, data, OHWIToOIHW) :
-            ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 1, model, data);
-
-    // Bias is a 1D tensor
-    const ConstTensorPin biasPin =
-        ConvertOperationInputToConstTensorPin<hal_1_2::HalPolicy>(operation, 2, model, data);
-
-    if (!weightsPin.IsValid())
-    {
-        return Fail("%s: Operation has invalid weights", __func__);
-    }
-
-    if (!biasPin.IsValid())
-    {
-        return Fail("%s: Operation has invalid biases", __func__);
-    }
-
-    ConstTensor weights = weightsPin.GetConstTensor();
-    ConstTensor bias = biasPin.GetConstTensor();
-    SanitizeBiasQuantizationScale(bias.GetInfo(), weights.GetInfo(), inputInfo);
-
-    ActivationFn activation;
-
-    if (implicitPadding)
-    {
-        int32_t strideX{0};
-        int32_t strideY{0};
-        int32_t padLeft{0};
-        int32_t padRight{0};
-        int32_t padTop{0};
-        int32_t padBottom{0};
-
-        android::nn::PaddingScheme paddingScheme;
-        if (!GetInputPaddingScheme<hal_1_2::HalPolicy>(operation, 4, paddingScheme, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 5, OperandType::INT32, strideX, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 6, OperandType::INT32, strideY, model, data) ||
-            !GetInputActivationFunction<hal_1_2::HalPolicy>(operation, 7, activation, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (implicit padding)", __func__);
-        }
-
-        const uint32_t kernelX = weights.GetShape()[widthIndex];
-        const uint32_t kernelY = weights.GetShape()[heightIndex];
-        const uint32_t outputX = outputInfo.GetShape()[widthIndex];
-        const uint32_t outputY = outputInfo.GetShape()[heightIndex];
-
-        CalcPaddingTransposeConv(outputX, kernelX, strideX, padLeft, padRight, paddingScheme);
-        CalcPaddingTransposeConv(outputY, kernelY, strideY, padTop, padBottom, paddingScheme);
-
-        // NOTE: The Android NN API allows for negative padding values in TransposeConv2d,
-        // but Arm NN only supports values >= 0
-        if (padLeft < 0 || padRight < 0 || padTop < 0 || padBottom < 0)
-        {
-            return Fail("%s: Negative padding values are not supported", __func__);
-        }
-
-        desc.m_StrideX   = boost::numeric_cast<uint32_t>(strideX);
-        desc.m_StrideY   = boost::numeric_cast<uint32_t>(strideY);
-        desc.m_PadLeft   = boost::numeric_cast<uint32_t>(padLeft);
-        desc.m_PadRight  = boost::numeric_cast<uint32_t>(padRight);
-        desc.m_PadTop    = boost::numeric_cast<uint32_t>(padTop);
-        desc.m_PadBottom = boost::numeric_cast<uint32_t>(padBottom);
-    }
-    else if (operation.inputs.size() == 11)
-    {
-        // explicit padding
-        if (!GetInputScalar<hal_1_2::HalPolicy>(operation, 3, OperandType::INT32, desc.m_PadLeft, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 4, OperandType::INT32, desc.m_PadRight, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 5, OperandType::INT32, desc.m_PadTop, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 6, OperandType::INT32, desc.m_PadBottom, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 7, OperandType::INT32, desc.m_StrideX, model, data) ||
-            !GetInputScalar<hal_1_2::HalPolicy>(operation, 8, OperandType::INT32, desc.m_StrideY, model, data) ||
-            !GetInputActivationFunction<hal_1_2::HalPolicy>(operation,  9, activation, model, data))
-        {
-            return Fail("%s: Operation has invalid inputs (explicit padding)", __func__);
-        }
-    }
-    else
-    {
-        return Fail("%s: Unsupported number of operation inputs", __func__);
-    }
-
-    desc.m_BiasEnabled = true;
-    Optional<TensorInfo> biases(bias.GetInfo());
-
-    bool isSupported = false;
-    FORWARD_LAYER_SUPPORT_FUNC(__func__,
-                               IsTransposeConvolution2dSupported,
-                               data.m_Backends,
-                               isSupported,
-                               inputInfo,
-                               outputInfo,
-                               desc,
-                               weights.GetInfo(),
-                               biases);
-    if (!isSupported)
-    {
-        return false;
-    }
-
-    IConnectableLayer* startLayer =
-        data.m_Network->AddTransposeConvolution2dLayer(desc, weights, Optional<ConstTensor>(bias));
-    if (!startLayer)
-    {
-        return Fail("%s: AddTransposeConvolution2dLayer failed", __func__);
-    }
-
-    IConnectableLayer* endLayer = ProcessActivation(outputInfo, activation, startLayer, data);
-    if (!endLayer)
-    {
-        return Fail("%s: ProcessActivation failed", __func__);
-    }
-
-    input.Connect(startLayer->GetInputSlot(0));
-
-    return SetupAndTrackLayerOutputSlot<hal_1_2::HalPolicy>(operation, 0, *endLayer, model, data);
+    ALOGV("hal_1_2::HalPolicy::ConvertTransposeConv2d()");
+    return ::ConvertTransposeConv2d<hal_1_2::HalPolicy>(operation, model, data);
 }
 
 } // namespace hal_1_2
diff --git a/1.2/HalPolicy.hpp b/1.2/HalPolicy.hpp
index cd4f2da..b127a63 100644
--- a/1.2/HalPolicy.hpp
+++ b/1.2/HalPolicy.hpp
@@ -6,6 +6,7 @@
 #pragma once
 
 #include "../ConversionUtils.hpp"
+#include "../ConversionUtils_1_2.hpp"
 
 #include <HalInterfaces.h>
 
@@ -29,6 +30,7 @@
     using OperationType             = V1_2::OperationType;
     using ExecutionCallback         = V1_2::IExecutionCallback;
     using getSupportedOperations_cb = V1_2::IDevice::getSupportedOperations_1_2_cb;
+    using ErrorStatus               = V1_0::ErrorStatus;
 
     static bool ConvertOperation(const Operation& operation, const Model& model, ConversionData& data);
 
diff --git a/1.3/ArmnnDriver.hpp b/1.3/ArmnnDriver.hpp
new file mode 100644
index 0000000..be35593
--- /dev/null
+++ b/1.3/ArmnnDriver.hpp
@@ -0,0 +1,294 @@
+//
+// Copyright © 2020 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#pragma once
+
+#include <HalInterfaces.h>
+
+#include "../ArmnnDevice.hpp"
+#include "ArmnnDriverImpl.hpp"
+#include "HalPolicy.hpp"
+
+#include "../ArmnnDriverImpl.hpp"
+#include "../1.3/ArmnnDriverImpl.hpp"
+#include "../1.3/HalPolicy.hpp"
+#include "../1.2/ArmnnDriverImpl.hpp"
+#include "../1.2/HalPolicy.hpp"
+#include "../1.1/ArmnnDriverImpl.hpp"
+#include "../1.1/HalPolicy.hpp"
+#include "../1.0/ArmnnDriverImpl.hpp"
+#include "../1.0/HalPolicy.hpp"
+
+#include <log/log.h>
+
+namespace armnn_driver
+{
+namespace hal_1_3
+{
+
+class ArmnnDriver : public ArmnnDevice, public V1_3::IDevice
+{
+public:
+
+    ArmnnDriver(DriverOptions options)
+        : ArmnnDevice(std::move(options))
+    {
+        ALOGV("hal_1_3::ArmnnDriver::ArmnnDriver()");
+    }
+    ~ArmnnDriver() {}
+
+    using HidlToken = android::hardware::hidl_array<uint8_t, ANEURALNETWORKS_BYTE_SIZE_OF_CACHE_TOKEN>;
+
+public:
+    Return<void> getCapabilities(V1_0::IDevice::getCapabilities_cb cb) override
+    {
+        ALOGV("hal_1_3::ArmnnDriver::getCapabilities()");
+
+        return hal_1_0::ArmnnDriverImpl::getCapabilities(m_Runtime, cb);
+    }
+
+    Return<void> getSupportedOperations(const V1_0::Model& model,
+                                        V1_0::IDevice::getSupportedOperations_cb cb) override
+    {
+        ALOGV("hal_1_3::ArmnnDriver::getSupportedOperations()");
+
+        return armnn_driver::ArmnnDriverImpl<hal_1_0::HalPolicy>::getSupportedOperations(m_Runtime,
+                                                                                         m_Options,
+                                                                                         model,
+                                                                                         cb);
+    }
+
+    Return<V1_0::ErrorStatus> prepareModel(const V1_0::Model& model,
+                                           const android::sp<V1_0::IPreparedModelCallback>& cb) override
+    {
+        ALOGV("hal_1_3::ArmnnDriver::prepareModel()");
+
+        return armnn_driver::ArmnnDriverImpl<hal_1_0::HalPolicy>::prepareModel(m_Runtime,
+                                                                               m_ClTunedParameters,
+                                                                               m_Options,
+                                                                               model,
+                                                                               cb);
+    }
+
+    Return<void> getCapabilities_1_1(V1_1::IDevice::getCapabilities_1_1_cb cb) override
+    {
+        ALOGV("hal_1_3::ArmnnDriver::getCapabilities_1_1()");
+
+        return hal_1_1::ArmnnDriverImpl::getCapabilities_1_1(m_Runtime, cb);
+    }
+
+    Return<void> getSupportedOperations_1_1(const V1_1::Model& model,
+                                            V1_1::IDevice::getSupportedOperations_1_1_cb cb) override
+    {
+        ALOGV("hal_1_3::ArmnnDriver::getSupportedOperations_1_1()");
+        return armnn_driver::ArmnnDriverImpl<hal_1_1::HalPolicy>::getSupportedOperations(m_Runtime,
+                                                                                         m_Options,
+                                                                                         model,
+                                                                                         cb);
+    }
+
+    Return<V1_0::ErrorStatus> prepareModel_1_1(const V1_1::Model& model,
+                                               V1_1::ExecutionPreference preference,
+                                               const android::sp<V1_0::IPreparedModelCallback>& cb) override
+    {
+        ALOGV("hal_1_3::ArmnnDriver::prepareModel_1_1()");
+
+        if (!(preference == ExecutionPreference::LOW_POWER ||
+              preference == ExecutionPreference::FAST_SINGLE_ANSWER ||
+              preference == ExecutionPreference::SUSTAINED_SPEED))
+        {
+            ALOGV("hal_1_3::ArmnnDriver::prepareModel_1_1: Invalid execution preference");
+            cb->notify(V1_0::ErrorStatus::INVALID_ARGUMENT, nullptr);
+            return V1_0::ErrorStatus::INVALID_ARGUMENT;
+        }
+
+        return armnn_driver::ArmnnDriverImpl<hal_1_1::HalPolicy>::prepareModel(m_Runtime,
+                                                                               m_ClTunedParameters,
+                                                                               m_Options,
+                                                                               model,
+                                                                               cb,
+                                                                               model.relaxComputationFloat32toFloat16
+                                                                               && m_Options.GetFp16Enabled());
+    }
+
+    Return<void> getCapabilities_1_2(getCapabilities_1_2_cb cb)
+    {
+        ALOGV("hal_1_3::ArmnnDriver::getCapabilities()");
+
+        return hal_1_2::ArmnnDriverImpl::getCapabilities_1_2(m_Runtime, cb);
+    }
+
+    Return<void> getSupportedOperations_1_2(const V1_2::Model& model,
+                                            getSupportedOperations_1_2_cb cb)
+    {
+        ALOGV("hal_1_3::ArmnnDriver::getSupportedOperations()");
+
+        return armnn_driver::ArmnnDriverImpl<hal_1_2::HalPolicy>::getSupportedOperations(m_Runtime,
+                                                                                         m_Options,
+                                                                                         model,
+                                                                                         cb);
+    }
+
+    Return<V1_0::ErrorStatus> prepareModel_1_2(const V1_2::Model& model, V1_1::ExecutionPreference preference,
+            const android::hardware::hidl_vec<android::hardware::hidl_handle>&,
+            const android::hardware::hidl_vec<android::hardware::hidl_handle>&, const HidlToken&,
+            const android::sp<V1_2::IPreparedModelCallback>& cb)
+    {
+        ALOGV("hal_1_3::ArmnnDriver::prepareModel_1_2()");
+
+        if (!(preference == ExecutionPreference::LOW_POWER ||
+              preference == ExecutionPreference::FAST_SINGLE_ANSWER ||
+              preference == ExecutionPreference::SUSTAINED_SPEED))
+        {
+            ALOGV("hal_1_3::ArmnnDriver::prepareModel_1_2: Invalid execution preference");
+            cb->notify(V1_0::ErrorStatus::INVALID_ARGUMENT, nullptr);
+            return V1_0::ErrorStatus::INVALID_ARGUMENT;
+        }
+
+        return hal_1_2::ArmnnDriverImpl::prepareArmnnModel_1_2(m_Runtime,
+                                                               m_ClTunedParameters,
+                                                               m_Options,
+                                                               model,
+                                                               cb,
+                                                               model.relaxComputationFloat32toFloat16
+                                                               && m_Options.GetFp16Enabled());
+    }
+
+    Return<void> getCapabilities_1_3(getCapabilities_1_3_cb cb)
+    {
+        ALOGV("hal_1_3::ArmnnDriver::getCapabilities()");
+
+        return hal_1_3::ArmnnDriverImpl::getCapabilities_1_3(m_Runtime, cb);
+    }
+
+    Return<void> getSupportedOperations_1_3(const V1_3::Model& model,
+                                            getSupportedOperations_1_3_cb cb)
+    {
+        ALOGV("hal_1_3::ArmnnDriver::getSupportedOperations()");
+
+        return armnn_driver::ArmnnDriverImpl<hal_1_3::HalPolicy>::getSupportedOperations(m_Runtime,
+                                                                                         m_Options,
+                                                                                         model,
+                                                                                         cb);
+    }
+
+    Return<V1_3::ErrorStatus> prepareModel_1_3(const V1_3::Model& model,
+                                               V1_1::ExecutionPreference preference,
+                                               V1_3::Priority priority,
+                                               const V1_3::OptionalTimePoint&,
+                                               const android::hardware::hidl_vec<android::hardware::hidl_handle>&,
+                                               const android::hardware::hidl_vec<android::hardware::hidl_handle>&,
+                                               const HidlToken&,
+                                               const android::sp<V1_3::IPreparedModelCallback>& cb)
+    {
+        ALOGV("hal_1_3::ArmnnDriver::prepareModel_1_3()");
+
+        if (!(preference == ExecutionPreference::LOW_POWER ||
+              preference == ExecutionPreference::FAST_SINGLE_ANSWER ||
+              preference == ExecutionPreference::SUSTAINED_SPEED))
+        {
+            ALOGV("hal_1_3::ArmnnDriver::prepareModel_1_3: Invalid execution preference");
+            cb->notify_1_3(V1_3::ErrorStatus::INVALID_ARGUMENT, nullptr);
+            return V1_3::ErrorStatus::INVALID_ARGUMENT;
+        }
+
+        if (!android::nn::validatePriority(priority)) {
+            cb->notify_1_3(V1_3::ErrorStatus::INVALID_ARGUMENT, nullptr);
+            return V1_3::ErrorStatus::INVALID_ARGUMENT;
+        }
+
+
+        return ArmnnDriverImpl::prepareArmnnModel_1_3(m_Runtime,
+                                                      m_ClTunedParameters,
+                                                      m_Options,
+                                                      model,
+                                                      cb,
+                                                      model.relaxComputationFloat32toFloat16
+                                                      && m_Options.GetFp16Enabled());
+    }
+
+    Return<void> getSupportedExtensions(getSupportedExtensions_cb cb)
+    {
+        ALOGV("hal_1_3::ArmnnDriver::getSupportedExtensions()");
+        cb(V1_0::ErrorStatus::NONE, {/* No extensions. */});
+        return Void();
+    }
+
+    Return<void> getNumberOfCacheFilesNeeded(getNumberOfCacheFilesNeeded_cb cb)
+    {
+        ALOGV("hal_1_3::ArmnnDriver::getSupportedExtensions()");
+
+        // Set both numbers to be 0 for cache not supported.
+        cb(V1_0::ErrorStatus::NONE, 0, 0);
+        return Void();
+    }
+
+    Return<DeviceStatus> getStatus() override
+    {
+        ALOGV("hal_1_3::ArmnnDriver::getStatus()");
+
+        return armnn_driver::ArmnnDriverImpl<hal_1_3::HalPolicy>::getStatus();
+    }
+
+    Return<void> getVersionString(getVersionString_cb cb)
+    {
+        ALOGV("hal_1_3::ArmnnDriver::getVersionString()");
+
+        cb(V1_0::ErrorStatus::NONE, "ArmNN");
+        return Void();
+    }
+
+    Return<void> getType(getType_cb cb)
+    {
+        ALOGV("hal_1_3::ArmnnDriver::getType()");
+
+        cb(V1_0::ErrorStatus::NONE, V1_2::DeviceType::CPU);
+        return Void();
+    }
+
+    Return<V1_0::ErrorStatus> prepareModelFromCache(
+        const android::hardware::hidl_vec<android::hardware::hidl_handle>&,
+        const android::hardware::hidl_vec<android::hardware::hidl_handle>&,
+        const HidlToken&,
+        const sp<V1_2::IPreparedModelCallback>& callback)
+    {
+        ALOGV("hal_1_3::ArmnnDriver::prepareModelFromCache()");
+        callback->notify_1_2(V1_0::ErrorStatus::GENERAL_FAILURE, nullptr);
+        return V1_0::ErrorStatus::GENERAL_FAILURE;
+    }
+
+    Return<ErrorStatus> prepareModelFromCache_1_3(
+        V1_3::Priority,
+        const V1_3::OptionalTimePoint&,
+        const android::hardware::hidl_vec<android::hardware::hidl_handle>&,
+        const android::hardware::hidl_vec<android::hardware::hidl_handle>&,
+        const HidlToken&,
+        const sp<V1_3::IPreparedModelCallback>& callback)
+    {
+        ALOGV("hal_1_3::ArmnnDriver::prepareModelFromCache()");
+        callback->notify_1_3(ErrorStatus::GENERAL_FAILURE, nullptr);
+        return ErrorStatus::GENERAL_FAILURE;
+    }
+
+    Return<void> supportsDeadlines(supportsDeadlines_cb cb) {
+        // Set both numbers to be false for deadlines not supported.
+        cb(/*prepareModelDeadline=*/false, /*executionDeadline=*/false);
+        return Void();
+    }
+
+    Return<void> allocate(const V1_3::BufferDesc& /*desc*/,
+                          const hidl_vec<sp<V1_3::IPreparedModel>>& /*preparedModels*/,
+                          const hidl_vec<V1_3::BufferRole>& /*inputRoles*/,
+                          const hidl_vec<V1_3::BufferRole>& /*outputRoles*/,
+                          allocate_cb cb) {
+        ALOGV("hal_1_3::ArmnnDriver::allocate()");
+        cb(ErrorStatus::GENERAL_FAILURE, nullptr, 0);
+        return Void();
+    }
+
+};
+
+} // namespace hal_1_3
+} // namespace armnn_driver
diff --git a/1.3/ArmnnDriverImpl.cpp b/1.3/ArmnnDriverImpl.cpp
new file mode 100644
index 0000000..98d038c
--- /dev/null
+++ b/1.3/ArmnnDriverImpl.cpp
@@ -0,0 +1,338 @@
+//
+// Copyright © 2020 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include "ArmnnDriverImpl.hpp"
+#include "../ArmnnPreparedModel_1_3.hpp"
+#include "../ModelToINetworkConverter.hpp"
+#include "../SystemPropertiesUtils.hpp"
+
+#include <log/log.h>
+
+namespace
+{
+
+const char *g_RelaxedFloat32toFloat16PerformanceExecTime    = "ArmNN.relaxedFloat32toFloat16Performance.execTime";
+const char *g_RelaxedFloat32toFloat16PerformancePowerUsage  = "ArmNN.relaxedFloat32toFloat16Performance.powerUsage";
+
+const char *g_OperandTypeTensorFloat32PerformanceExecTime   = "Armnn.operandTypeTensorFloat32Performance.execTime";
+const char *g_OperandTypeTensorFloat32PerformancePowerUsage = "Armnn.operandTypeTensorFloat32Performance.powerUsage";
+
+const char *g_OperandTypeFloat32PerformanceExecTime         = "Armnn.operandTypeFloat32Performance.execTime";
+const char *g_OperandTypeFloat32PerformancePowerUsage       = "Armnn.operandTypeFloat32Performance.powerUsage";
+
+const char *g_OperandTypeTensorFloat16PerformanceExecTime   = "Armnn.operandTypeTensorFloat16Performance.execTime";
+const char *g_OperandTypeTensorFloat16PerformancePowerUsage = "Armnn.operandTypeTensorFloat16Performance.powerUsage";
+
+const char *g_OperandTypeFloat16PerformanceExecTime         = "Armnn.operandTypeFloat16Performance.execTime";
+const char *g_OperandTypeFloat16PerformancePowerUsage       = "Armnn.operandTypeFloat16Performance.powerUsage";
+
+const char *g_OperandTypeTensorQuant8AsymmPerformanceExecTime =
+        "Armnn.operandTypeTensorQuant8AsymmPerformance.execTime";
+const char *g_OperandTypeTensorQuant8AsymmPerformancePowerUsage =
+        "Armnn.operandTypeTensorQuant8AsymmPerformance.powerUsage";
+
+const char *g_OperandTypeTensorQuant8AsymmSignedPerformanceExecTime =
+    "Armnn.operandTypeTensorQuant8AsymmSignedPerformance.execTime";
+const char *g_OperandTypeTensorQuant8AsymmSignedPerformancePowerUsage =
+    "Armnn.operandTypeTensorQuant8AsymmSignedPerformance.powerUsage";
+
+const char *g_OperandTypeTensorQuant16SymmPerformanceExecTime =
+        "Armnn.operandTypeTensorQuant16SymmPerformance.execTime";
+const char *g_OperandTypeTensorQuant16SymmPerformancePowerUsage =
+        "Armnn.operandTypeTensorQuant16SymmPerformance.powerUsage";
+
+const char *g_OperandTypeTensorQuant8SymmPerformanceExecTime =
+        "Armnn.operandTypeTensorQuant8SymmPerformance.execTime";
+const char *g_OperandTypeTensorQuant8SymmPerformancePowerUsage =
+        "Armnn.operandTypeTensorQuant8SymmPerformance.powerUsage";
+
+const char *g_OperandTypeTensorQuant8SymmPerChannelPerformanceExecTime =
+    "Armnn.operandTypeTensorQuant8SymmPerChannelPerformance.execTime";
+const char *g_OperandTypeTensorQuant8SymmPerChannelPerformancePowerUsage =
+    "Armnn.operandTypeTensorQuant8SymmPerChannelPerformance.powerUsage";
+
+
+const char *g_OperandTypeTensorInt32PerformanceExecTime     = "Armnn.operandTypeTensorInt32Performance.execTime";
+const char *g_OperandTypeTensorInt32PerformancePowerUsage   = "Armnn.operandTypeTensorInt32Performance.powerUsage";
+
+const char *g_OperandTypeInt32PerformanceExecTime           = "Armnn.operandTypeInt32Performance.execTime";
+const char *g_OperandTypeInt32PerformancePowerUsage         = "Armnn.operandTypeInt32Performance.powerUsage";
+
+
+void NotifyCallbackAndCheck(const sp<V1_3::IPreparedModelCallback>& callback,
+                            V1_3::ErrorStatus errorStatus,
+                            const sp<V1_3::IPreparedModel>& preparedModelPtr)
+{
+    Return<void> returned = callback->notify_1_3(errorStatus, preparedModelPtr);
+    // This check is required, if the callback fails and it isn't checked it will bring down the service
+    if (!returned.isOk())
+    {
+        ALOGE("ArmnnDriverImpl::prepareModel: hidl callback failed to return properly: %s ",
+              returned.description().c_str());
+    }
+}
+
+Return<V1_3::ErrorStatus> FailPrepareModel(V1_3::ErrorStatus error,
+                                           const std::string& message,
+                                           const sp<V1_3::IPreparedModelCallback>& callback)
+{
+    ALOGW("ArmnnDriverImpl::prepareModel: %s", message.c_str());
+    NotifyCallbackAndCheck(callback, error, nullptr);
+    return error;
+}
+
+} // anonymous namespace
+
+namespace armnn_driver
+{
+namespace hal_1_3
+{
+
+Return<V1_3::ErrorStatus> ArmnnDriverImpl::prepareArmnnModel_1_3(
+       const armnn::IRuntimePtr& runtime,
+       const armnn::IGpuAccTunedParametersPtr& clTunedParameters,
+       const DriverOptions& options,
+       const V1_3::Model& model,
+       const sp<V1_3::IPreparedModelCallback>& cb,
+       bool float32ToFloat16)
+{
+    ALOGV("ArmnnDriverImpl::prepareArmnnModel_1_3()");
+
+    if (cb.get() == nullptr)
+    {
+        ALOGW("ArmnnDriverImpl::prepareModel: Invalid callback passed to prepareModel");
+        return V1_3::ErrorStatus::INVALID_ARGUMENT;
+    }
+
+    if (!runtime)
+    {
+        return FailPrepareModel(V1_3::ErrorStatus::DEVICE_UNAVAILABLE, "Device unavailable", cb);
+    }
+
+    if (!android::nn::validateModel(model))
+    {
+        return FailPrepareModel(V1_3::ErrorStatus::INVALID_ARGUMENT, "Invalid model passed as input", cb);
+    }
+
+    // Deliberately ignore any unsupported operations requested by the options -
+    // at this point we're being asked to prepare a model that we've already declared support for
+    // and the operation indices may be different to those in getSupportedOperations anyway.
+    std::set<unsigned int> unsupportedOperations;
+    ModelToINetworkConverter<HalPolicy> modelConverter(options.GetBackends(),
+                                                       model,
+                                                       unsupportedOperations);
+
+    if (modelConverter.GetConversionResult() != ConversionResult::Success)
+    {
+        FailPrepareModel(V1_3::ErrorStatus::GENERAL_FAILURE, "ModelToINetworkConverter failed", cb);
+        return V1_3::ErrorStatus::NONE;
+    }
+
+    // Optimize the network
+    armnn::IOptimizedNetworkPtr optNet(nullptr, nullptr);
+    armnn::OptimizerOptions OptOptions;
+    OptOptions.m_ReduceFp32ToFp16 = float32ToFloat16;
+
+    std::vector<std::string> errMessages;
+    try
+    {
+        optNet = armnn::Optimize(*modelConverter.GetINetwork(),
+                                 options.GetBackends(),
+                                 runtime->GetDeviceSpec(),
+                                 OptOptions,
+                                 errMessages);
+    }
+    catch (std::exception& e)
+    {
+        std::stringstream message;
+        message << "Exception (" << e.what() << ") caught from optimize.";
+        FailPrepareModel(V1_3::ErrorStatus::GENERAL_FAILURE, message.str(), cb);
+        return V1_3::ErrorStatus::NONE;
+    }
+
+    // Check that the optimized network is valid.
+    if (!optNet)
+    {
+        std::stringstream message;
+        message << "Invalid optimized network";
+        for (const std::string& msg : errMessages)
+        {
+            message << "\n" << msg;
+        }
+        FailPrepareModel(V1_3::ErrorStatus::GENERAL_FAILURE, message.str(), cb);
+        return V1_3::ErrorStatus::NONE;
+    }
+
+    // Export the optimized network graph to a dot file if an output dump directory
+    // has been specified in the drivers' arguments.
+    std::string dotGraphFileName = ExportNetworkGraphToDotFile(*optNet,
+                                                               options.GetRequestInputsAndOutputsDumpDir());
+
+    // Load it into the runtime.
+    armnn::NetworkId netId = 0;
+    try
+    {
+        if (runtime->LoadNetwork(netId, move(optNet)) != armnn::Status::Success)
+        {
+            return FailPrepareModel(V1_3::ErrorStatus::GENERAL_FAILURE, "Network could not be loaded", cb);
+        }
+    }
+    catch (std::exception& e)
+    {
+        std::stringstream message;
+        message << "Exception (" << e.what()<< ") caught from LoadNetwork.";
+        FailPrepareModel(V1_3::ErrorStatus::GENERAL_FAILURE, message.str(), cb);
+        return V1_3::ErrorStatus::NONE;
+    }
+
+    // Now that we have a networkId for the graph rename the dump file to use it
+    // so that we can associate the graph file and the input/output tensor dump files
+    RenameGraphDotFile(dotGraphFileName,
+                       options.GetRequestInputsAndOutputsDumpDir(),
+                       netId);
+
+    std::unique_ptr<ArmnnPreparedModel_1_3<hal_1_3::HalPolicy>> preparedModel(
+            new ArmnnPreparedModel_1_3<hal_1_3::HalPolicy>(
+                    netId,
+                    runtime.get(),
+                    model,
+                    options.GetRequestInputsAndOutputsDumpDir(),
+                    options.IsGpuProfilingEnabled()));
+
+    // Run a single 'dummy' inference of the model. This means that CL kernels will get compiled (and tuned if
+    // this is enabled) before the first 'real' inference which removes the overhead of the first inference.
+    if (!preparedModel->ExecuteWithDummyInputs())
+    {
+        return FailPrepareModel(V1_3::ErrorStatus::GENERAL_FAILURE, "Network could not be executed", cb);
+    }
+
+    if (clTunedParameters &&
+        options.GetClTunedParametersMode() == armnn::IGpuAccTunedParameters::Mode::UpdateTunedParameters)
+    {
+        // Now that we've done one inference the CL kernel parameters will have been tuned, so save the updated file.
+        try
+        {
+            clTunedParameters->Save(options.GetClTunedParametersFile().c_str());
+        }
+        catch (std::exception& error)
+        {
+            ALOGE("ArmnnDriverImpl::prepareModel: Failed to save CL tuned parameters file '%s': %s",
+                  options.GetClTunedParametersFile().c_str(), error.what());
+        }
+    }
+
+    NotifyCallbackAndCheck(cb, V1_3::ErrorStatus::NONE, preparedModel.release());
+
+    return V1_3::ErrorStatus::NONE;
+}
+
+Return<void> ArmnnDriverImpl::getCapabilities_1_3(const armnn::IRuntimePtr& runtime,
+                                                  V1_3::IDevice::getCapabilities_1_3_cb cb)
+{
+    ALOGV("hal_1_3::ArmnnDriverImpl::getCapabilities()");
+
+    V1_3::Capabilities capabilities;
+
+    float defaultValue = .1f;
+
+    if (runtime)
+    {
+        capabilities.relaxedFloat32toFloat16PerformanceScalar.execTime =
+                ParseSystemProperty(g_RelaxedFloat32toFloat16PerformanceExecTime, defaultValue);
+
+        capabilities.relaxedFloat32toFloat16PerformanceTensor.powerUsage =
+                ParseSystemProperty(g_RelaxedFloat32toFloat16PerformancePowerUsage, defaultValue);
+
+        // Set the base value for all operand types
+        capabilities.operandPerformance = nonExtensionOperandPerformance<HalVersion::V1_3>({FLT_MAX, FLT_MAX});
+
+        // Load supported operand types
+        update(&capabilities.operandPerformance, V1_3::OperandType::TENSOR_FLOAT32,
+                {
+                    .execTime = ParseSystemProperty(g_OperandTypeTensorFloat32PerformanceExecTime, defaultValue),
+                    .powerUsage = ParseSystemProperty(g_OperandTypeTensorFloat32PerformancePowerUsage, defaultValue)
+                });
+
+        update(&capabilities.operandPerformance, V1_3::OperandType::FLOAT32,
+                {
+                    .execTime = ParseSystemProperty(g_OperandTypeFloat32PerformanceExecTime, defaultValue),
+                    .powerUsage = ParseSystemProperty(g_OperandTypeFloat32PerformancePowerUsage, defaultValue)
+                });
+
+        update(&capabilities.operandPerformance, V1_3::OperandType::TENSOR_FLOAT16,
+                {
+                    .execTime = ParseSystemProperty(g_OperandTypeTensorFloat16PerformanceExecTime, defaultValue),
+                    .powerUsage = ParseSystemProperty(g_OperandTypeTensorFloat16PerformancePowerUsage, defaultValue)
+                });
+
+        update(&capabilities.operandPerformance, V1_3::OperandType::FLOAT16,
+                {
+                    .execTime = ParseSystemProperty(g_OperandTypeFloat16PerformanceExecTime, defaultValue),
+                    .powerUsage = ParseSystemProperty(g_OperandTypeFloat16PerformancePowerUsage, defaultValue)
+                });
+
+        update(&capabilities.operandPerformance, V1_3::OperandType::TENSOR_QUANT8_ASYMM,
+                {
+                    .execTime = ParseSystemProperty(g_OperandTypeTensorQuant8AsymmPerformanceExecTime, defaultValue),
+                    .powerUsage = ParseSystemProperty(g_OperandTypeTensorQuant8AsymmPerformancePowerUsage, defaultValue)
+                });
+
+        update(&capabilities.operandPerformance, V1_3::OperandType::TENSOR_QUANT8_SYMM,
+                {
+                    .execTime = ParseSystemProperty(g_OperandTypeTensorQuant8SymmPerformanceExecTime, defaultValue),
+                    .powerUsage = ParseSystemProperty(g_OperandTypeTensorQuant8SymmPerformancePowerUsage, defaultValue)
+                });
+        update(&capabilities.operandPerformance, V1_3::OperandType::TENSOR_QUANT8_ASYMM_SIGNED,
+               {
+                   .execTime = ParseSystemProperty(g_OperandTypeTensorQuant8AsymmSignedPerformanceExecTime,
+                   defaultValue),
+                   .powerUsage = ParseSystemProperty(g_OperandTypeTensorQuant8AsymmSignedPerformancePowerUsage,
+                   defaultValue)
+               });
+
+        update(&capabilities.operandPerformance, V1_3::OperandType::TENSOR_QUANT16_SYMM,
+                {
+                    .execTime = ParseSystemProperty(g_OperandTypeTensorQuant16SymmPerformanceExecTime, defaultValue),
+                    .powerUsage = ParseSystemProperty(g_OperandTypeTensorQuant16SymmPerformancePowerUsage, defaultValue)
+                });
+
+        update(&capabilities.operandPerformance, V1_3::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL,
+               {
+                   .execTime =
+                   ParseSystemProperty(g_OperandTypeTensorQuant8SymmPerChannelPerformanceExecTime, defaultValue),
+                   .powerUsage =
+                   ParseSystemProperty(g_OperandTypeTensorQuant8SymmPerChannelPerformancePowerUsage, defaultValue)
+               });
+
+        update(&capabilities.operandPerformance, V1_3::OperandType::TENSOR_INT32,
+                {
+                    .execTime = ParseSystemProperty(g_OperandTypeTensorInt32PerformanceExecTime, defaultValue),
+                    .powerUsage = ParseSystemProperty(g_OperandTypeTensorInt32PerformancePowerUsage, defaultValue)
+                });
+
+        update(&capabilities.operandPerformance, V1_3::OperandType::INT32,
+                {
+                    .execTime = ParseSystemProperty(g_OperandTypeInt32PerformanceExecTime, defaultValue),
+                    .powerUsage = ParseSystemProperty(g_OperandTypeInt32PerformancePowerUsage, defaultValue)
+                });
+
+        cb(V1_3::ErrorStatus::NONE, capabilities);
+    }
+    else
+    {
+        capabilities.relaxedFloat32toFloat16PerformanceScalar.execTime = 0;
+        capabilities.relaxedFloat32toFloat16PerformanceTensor.execTime = 0;
+
+        // Set the base value for all operand types
+        capabilities.operandPerformance = nonExtensionOperandPerformance<HalVersion::V1_3>({0.f, 0.0f});
+
+        cb(V1_3::ErrorStatus::DEVICE_UNAVAILABLE, capabilities);
+    }
+
+    return Void();
+}
+
+} // namespace hal_1_3
+} // namespace armnn_driver
\ No newline at end of file
diff --git a/1.3/ArmnnDriverImpl.hpp b/1.3/ArmnnDriverImpl.hpp
new file mode 100644
index 0000000..8a665ea
--- /dev/null
+++ b/1.3/ArmnnDriverImpl.hpp
@@ -0,0 +1,40 @@
+//
+// Copyright © 2020 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#pragma once
+
+#include <HalInterfaces.h>
+
+#include "../DriverOptions.hpp"
+
+#include <armnn/ArmNN.hpp>
+
+using namespace android::nn::hal;
+
+namespace V1_0 = ::android::hardware::neuralnetworks::V1_0;
+namespace V1_2 = ::android::hardware::neuralnetworks::V1_2;
+namespace V1_3 = ::android::hardware::neuralnetworks::V1_3;
+
+namespace armnn_driver
+{
+namespace hal_1_3
+{
+
+class ArmnnDriverImpl
+{
+public:
+    static Return<V1_3::ErrorStatus> prepareArmnnModel_1_3(const armnn::IRuntimePtr& runtime,
+                                                           const armnn::IGpuAccTunedParametersPtr& clTunedParameters,
+                                                           const DriverOptions& options,
+                                                           const V1_3::Model& model,
+                                                           const android::sp<V1_3::IPreparedModelCallback>& cb,
+                                                           bool float32ToFloat16 = false);
+
+    static Return<void> getCapabilities_1_3(const armnn::IRuntimePtr& runtime,
+                                            V1_3::IDevice::getCapabilities_1_3_cb cb);
+};
+
+} // namespace hal_1_3
+} // namespace armnn_driver
\ No newline at end of file
diff --git a/1.3/HalPolicy.cpp b/1.3/HalPolicy.cpp
new file mode 100644
index 0000000..0de7573
--- /dev/null
+++ b/1.3/HalPolicy.cpp
@@ -0,0 +1,451 @@
+//
+// Copyright © 2020 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#include "HalPolicy.hpp"
+
+namespace armnn_driver
+{
+namespace hal_1_3
+{
+
+using namespace armnn;
+
+namespace
+{
+
+} // anonymouse namespace
+
+bool HalPolicy::ConvertOperation(const Operation& operation, const Model& model, ConversionData& data)
+{
+    switch (operation.type)
+    {
+        case V1_3::OperationType::ABS:
+            return ConvertElementwiseUnary(operation, model, data, UnaryOperation::Abs);
+        case V1_3::OperationType::ADD:
+            return ConvertAdd(operation, model, data);
+        case V1_3::OperationType::ARGMAX:
+            return ConvertArgMinMax(operation, model, data, ArgMinMaxFunction::Max);
+        case V1_3::OperationType::ARGMIN:
+            return ConvertArgMinMax(operation, model, data, ArgMinMaxFunction::Min);
+        case V1_3::OperationType::AVERAGE_POOL_2D:
+            return ConvertAveragePool2d(operation, model, data);
+        case V1_3::OperationType::BATCH_TO_SPACE_ND:
+            return ConvertBatchToSpaceNd(operation, model, data);
+        case V1_3::OperationType::CONCATENATION:
+            return ConvertConcatenation(operation, model, data);
+        case V1_3::OperationType::CONV_2D:
+            return ConvertConv2d(operation, model, data);
+        case V1_3::OperationType::DEPTH_TO_SPACE:
+            return ConvertDepthToSpace(operation, model, data);
+        case V1_3::OperationType::DEPTHWISE_CONV_2D:
+            return ConvertDepthwiseConv2d(operation, model, data);
+        case V1_3::OperationType::DEQUANTIZE:
+            return ConvertDequantize(operation, model, data);
+        case V1_3::OperationType::DIV:
+            return ConvertDiv(operation, model, data);
+        case V1_3::OperationType::EQUAL:
+            return ConvertComparison(operation, model, data, ComparisonOperation::Equal);
+        case V1_3::OperationType::EXPAND_DIMS:
+            return ConvertExpandDims(operation, model, data);
+        case V1_3::OperationType::FLOOR:
+            return ConvertFloor(operation, model, data);
+        case V1_3::OperationType::FULLY_CONNECTED:
+            return ConvertFullyConnected(operation, model, data);
+        case V1_3::OperationType::GREATER:
+            return ConvertComparison(operation, model, data, ComparisonOperation::Greater);
+        case V1_3::OperationType::GREATER_EQUAL:
+            return ConvertComparison(operation, model, data, ComparisonOperation::GreaterOrEqual);
+        case V1_3::OperationType::GROUPED_CONV_2D:
+            return ConvertGroupedConv2d(operation, model, data);
+        case V1_3::OperationType::INSTANCE_NORMALIZATION:
+            return ConvertInstanceNormalization(operation, model, data);
+        case V1_3::OperationType::L2_NORMALIZATION:
+            return ConvertL2Normalization(operation, model, data);
+        case V1_3::OperationType::L2_POOL_2D:
+            return ConvertL2Pool2d(operation, model, data);
+        case V1_3::OperationType::LESS:
+            return ConvertComparison(operation, model, data, ComparisonOperation::Less);
+        case V1_3::OperationType::LESS_EQUAL:
+            return ConvertComparison(operation, model, data, ComparisonOperation::LessOrEqual);
+        case V1_3::OperationType::LOCAL_RESPONSE_NORMALIZATION:
+            return ConvertLocalResponseNormalization(operation, model, data);
+        case V1_3::OperationType::LOGISTIC:
+            return ConvertLogistic(operation, model, data);
+        case V1_3::OperationType::LOG_SOFTMAX:
+            return ConvertLogSoftmax(operation, model, data);
+        case V1_3::OperationType::LSTM:
+            return ConvertLstm(operation, model, data);
+        case V1_3::OperationType::MAX_POOL_2D:
+            return ConvertMaxPool2d(operation, model, data);
+        case V1_3::OperationType::MAXIMUM:
+            return ConvertMaximum(operation, model, data);
+        case V1_3::OperationType::MEAN:
+            return ConvertMean(operation, model, data);
+        case V1_3::OperationType::MINIMUM:
+            return ConvertMinimum(operation, model, data);
+        case V1_3::OperationType::MUL:
+            return ConvertMul(operation, model, data);
+        case V1_3::OperationType::NEG:
+            return ConvertElementwiseUnary(operation, model, data, UnaryOperation::Neg);
+        case V1_3::OperationType::NOT_EQUAL:
+            return ConvertComparison(operation, model, data, ComparisonOperation::NotEqual);
+        case V1_3::OperationType::PAD:
+            return ConvertPad(operation, model, data);
+        case V1_3::OperationType::PAD_V2:
+            return ConvertPadV2(operation, model, data);
+        case V1_3::OperationType::PRELU:
+            return ConvertPrelu(operation, model, data);
+        case V1_3::OperationType::QUANTIZE:
+            return ConvertQuantize(operation, model, data);
+        case V1_3::OperationType::QUANTIZED_16BIT_LSTM:
+            return ConvertQuantizedLstm(operation, model, data);
+        case V1_3::OperationType::RELU:
+            return ConvertReLu(operation, model, data);
+        case V1_3::OperationType::RELU1:
+            return ConvertReLu1(operation, model, data);
+        case V1_3::OperationType::RELU6:
+            return ConvertReLu6(operation, model, data);
+        case V1_3::OperationType::RESHAPE:
+            return ConvertReshape(operation, model, data);
+        case V1_3::OperationType::RESIZE_BILINEAR:
+            return ConvertResize(operation, model, data, ResizeMethod::Bilinear);
+        case V1_3::OperationType::RESIZE_NEAREST_NEIGHBOR:
+            return ConvertResize(operation, model, data, ResizeMethod::NearestNeighbor);
+        case V1_3::OperationType::RSQRT:
+            return ConvertElementwiseUnary(operation, model, data, UnaryOperation::Rsqrt);
+        case V1_3::OperationType::SQRT:
+            return ConvertSqrt(operation, model, data);
+        case V1_3::OperationType::SQUEEZE:
+            return ConvertSqueeze(operation, model, data);
+        case V1_3::OperationType::STRIDED_SLICE:
+            return ConvertStridedSlice(operation, model, data);
+        case V1_3::OperationType::TRANSPOSE:
+            return ConvertTranspose(operation, model, data);
+        case V1_3::OperationType::TRANSPOSE_CONV_2D:
+            return ConvertTransposeConv2d(operation, model, data);
+        case V1_3::OperationType::SOFTMAX:
+            return ConvertSoftmax(operation, model, data);
+        case V1_3::OperationType::SPACE_TO_BATCH_ND  :
+            return ConvertSpaceToBatchNd(operation, model, data);
+        case V1_3::OperationType::SPACE_TO_DEPTH:
+            return ConvertSpaceToDepth(operation, model, data);
+        case V1_3::OperationType::SUB:
+            return ConvertSub(operation, model, data);
+        case V1_3::OperationType::TANH:
+            return ConvertTanH(operation, model, data);
+        default:
+            return Fail("%s: Operation type %s not supported in ArmnnDriver",
+                        __func__, toString(operation.type).c_str());
+    }
+}
+
+bool HalPolicy::ConvertAdd(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertAdd()");
+    return ::ConvertAdd<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertArgMinMax(const V1_3::Operation& operation,
+                                 const V1_3::Model& model,
+                                 ConversionData& data,
+                                 armnn::ArgMinMaxFunction argMinMaxFunction)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertArgMinMax()");
+    return ::ConvertArgMinMax<hal_1_3::HalPolicy>(operation, model, data, argMinMaxFunction);
+}
+
+bool HalPolicy::ConvertAveragePool2d(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertAveragePool2d()");
+    return ConvertPooling2d<hal_1_3::HalPolicy>(operation, __func__, PoolingAlgorithm::Average, model, data);
+}
+
+bool HalPolicy::ConvertBatchToSpaceNd(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertBatchToSpaceNd()");
+    return ::ConvertBatchToSpaceNd<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertComparison(const Operation& operation,
+                                  const Model& model,
+                                  ConversionData& data,
+                                  ComparisonOperation comparisonOperation)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertComparison()");
+    return ::ConvertComparison_1_2<hal_1_3::HalPolicy>(operation, model, data, comparisonOperation);
+}
+
+
+bool HalPolicy::ConvertConcatenation(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertConcatenation()");
+    return ::ConvertConcatenation<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertConv2d(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertConv2d()");
+    return ::ConvertConv2d_1_2<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertDepthToSpace(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertDepthToSpace()");
+    return ::ConvertDepthToSpace<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertDepthwiseConv2d(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertDepthwiseConv2d()");
+    return ::ConvertDepthwiseConv2d_1_2<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertDequantize(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertDequantize()");
+    return ::ConvertDequantize_1_2<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertDiv(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertDiv()");
+    return ::ConvertDiv<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertElementwiseUnary(const Operation& operation,
+                                        const Model& model,
+                                        ConversionData& data,
+                                        UnaryOperation unaryOperation)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertElementwiseUnary()");
+    return ::ConvertElementwiseUnary<hal_1_3::HalPolicy>(operation, model, data, unaryOperation);
+}
+
+bool HalPolicy::ConvertExpandDims(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertExpandDims()");
+    return ::ConvertExpandDims<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertFloor(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertFloor()");
+    return ::ConvertFloor<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertFullyConnected(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertFullyConnected()");
+    return ::ConvertFullyConnected<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertGroupedConv2d(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertGroupedConv2d()");
+    return ::ConvertGroupedConv2d<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertInstanceNormalization(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertInstanceNormalization()");
+    return ::ConvertInstanceNormalization<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertL2Normalization(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertL2Normalization()");
+    return ::ConvertL2Normalization<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertL2Pool2d(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertL2Pool2d()");
+    return ConvertPooling2d<hal_1_3::HalPolicy>(operation, __func__, PoolingAlgorithm::L2, model, data);
+}
+
+bool HalPolicy::ConvertLocalResponseNormalization(const Operation& operation,
+                                                  const Model& model,
+                                                  ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertLocalResponseNormalization()");
+    return ::ConvertLocalResponseNormalization<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertLogistic(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertLogistic()");
+    return ::ConvertLogistic<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertLogSoftmax(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertLogSoftmax()");
+    return ::ConvertLogSoftmax<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertLstm(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertLstm()");
+    return ::ConvertLstm<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertMaxPool2d(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertMaxPool2d()");
+    return ConvertPooling2d<hal_1_3::HalPolicy>(operation, __func__, PoolingAlgorithm::Max, model, data);
+}
+
+bool HalPolicy::ConvertMaximum(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertConvertMaximumMaximum()");
+    return ::ConvertMaximum<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertMean(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertMean()");
+    return ::ConvertMean<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertMinimum(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertMinimum()");
+    return ::ConvertMinimum<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertMul(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertMul()");
+    return ::ConvertMul<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertPad(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertPad()");
+    return ::ConvertPad<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertPadV2(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertPadV2()");
+    return ::ConvertPadV2<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertPrelu(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertPrelu()");
+    return ::ConvertPrelu<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertQuantize(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertQuantize()");
+    return ::ConvertQuantize<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertQuantizedLstm(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertQuantizedLstm()");
+    return ::ConvertQuantizedLstm<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertReLu(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertReLu()");
+    return ::ConvertReLu<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertReLu1(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertReLu1()");
+    return ::ConvertReLu1<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertReLu6(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertReLu6()");
+    return ::ConvertReLu6<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertReshape(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertReshape()");
+    return ::ConvertReshape<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertResize(const Operation& operation,
+                              const Model& model,
+                              ConversionData& data,
+                              ResizeMethod resizeMethod)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertResize()");
+    return ::ConvertResize<hal_1_3::HalPolicy>(operation, model, data, resizeMethod);
+}
+
+bool HalPolicy::ConvertSpaceToBatchNd(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertSpaceToBatchNd()");
+    return ::ConvertSpaceToBatchNd<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertSpaceToDepth(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertSpaceToDepth()");
+    return ::ConvertSpaceToDepth<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertSoftmax(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertSoftmax()");
+    return ::ConvertSoftmax<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertSub(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertSub()");
+    return ::ConvertSub<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertTanH(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertTanH()");
+    return ::ConvertTanH<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertTransposeConv2d(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertTransposeConv2d()");
+    return ::ConvertTransposeConv2d<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertSqrt(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertSqrt()");
+    ActivationDescriptor desc;
+    desc.m_Function = ActivationFunction::Sqrt;
+
+    return ::ConvertToActivation<hal_1_3::HalPolicy>(operation, __func__, desc, model, data);
+}
+
+bool HalPolicy::ConvertSqueeze(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertSqueeze()");
+    return ::ConvertSqueeze<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertStridedSlice(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertStridedSlice()");
+    return ::ConvertStridedSlice<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+bool HalPolicy::ConvertTranspose(const Operation& operation, const Model& model, ConversionData& data)
+{
+    ALOGV("hal_1_3::HalPolicy::ConvertTranspose()");
+    return ::ConvertTranspose<hal_1_3::HalPolicy>(operation, model, data);
+}
+
+} // namespace hal_1_3
+} // namespace armnn_driver
diff --git a/1.3/HalPolicy.hpp b/1.3/HalPolicy.hpp
new file mode 100644
index 0000000..f7771a6
--- /dev/null
+++ b/1.3/HalPolicy.hpp
@@ -0,0 +1,150 @@
+//
+// Copyright © 2020 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#pragma once
+
+#include "../ConversionUtils.hpp"
+#include "../ConversionUtils_1_2.hpp"
+
+#include <HalInterfaces.h>
+
+#include <armnn/Types.hpp>
+
+namespace V1_3 = ::android::hardware::neuralnetworks::V1_3;
+
+namespace armnn_driver
+{
+namespace hal_1_3
+{
+
+class HalPolicy
+{
+public:
+    using Model                     = V1_3::Model;
+    using Operand                   = V1_3::Operand;
+    using OperandLifeTime           = V1_3::OperandLifeTime;
+    using OperandType               = V1_3::OperandType;
+    using Operation                 = V1_3::Operation;
+    using OperationType             = V1_3::OperationType;
+    using ExecutionCallback         = V1_3::IExecutionCallback;
+    using getSupportedOperations_cb = V1_3::IDevice::getSupportedOperations_1_3_cb;
+    using ErrorStatus               = V1_3::ErrorStatus;
+
+    static bool ConvertOperation(const Operation& operation, const Model& model, ConversionData& data);
+
+private:
+    static bool ConvertAdd(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertArgMinMax(const Operation& operation,
+                                 const Model& model,
+                                 ConversionData& data,
+                                 armnn::ArgMinMaxFunction argMinMaxFunction);
+
+    static bool ConvertAveragePool2d(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertBatchToSpaceNd(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertComparison(const Operation& operation,
+                                  const Model& model,
+                                  ConversionData& data,
+                                  armnn::ComparisonOperation comparisonOperation);
+
+    static bool ConvertConcatenation(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertConv2d(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertDepthToSpace(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertDepthwiseConv2d(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertDequantize(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertDiv(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertElementwiseUnary(const Operation& operation,
+                                        const Model& model,
+                                        ConversionData& data,
+                                        armnn::UnaryOperation unaryOperation);
+
+    static bool ConvertExpandDims(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertFloor(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertFullyConnected(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertGroupedConv2d(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertInstanceNormalization(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertL2Normalization(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertL2Pool2d(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertLocalResponseNormalization(const Operation& operation,
+                                                  const Model& model,
+                                                  ConversionData& data);
+
+    static bool ConvertLogistic(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertLogSoftmax(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertLstm(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertMaxPool2d(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertMaximum(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertMean(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertMinimum(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertMul(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertPad(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertPadV2(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertPrelu(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertQuantize(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertQuantizedLstm(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertReLu(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertReLu1(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertReLu6(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertReshape(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertResize(const Operation& operation,
+                              const Model& model,
+                              ConversionData& data,
+                              armnn::ResizeMethod resizeMethod);
+
+    static bool ConvertSoftmax(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertSpaceToBatchNd(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertSpaceToDepth(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertSqrt(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertSqueeze(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertStridedSlice(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertSub(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertTanH(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertTranspose(const Operation& operation, const Model& model, ConversionData& data);
+
+    static bool ConvertTransposeConv2d(const Operation& operation, const Model& model, ConversionData& data);
+};
+
+} // namespace hal_1_3
+} // namespace armnn_driver
diff --git a/Android.mk b/Android.mk
index 6cc85ee..bac6db1 100644
--- a/Android.mk
+++ b/Android.mk
@@ -427,6 +427,114 @@
 
 endif # PLATFORM_VERSION == Q
 
+ifeq ($(R_OR_LATER),1)
+# The following target is available starting from Android R
+
+#######################
+# libarmnn-driver@1.3 #
+#######################
+include $(CLEAR_VARS)
+
+LOCAL_MODULE := libarmnn-driver@1.3
+LOCAL_MODULE_TAGS := optional
+LOCAL_ARM_MODE := arm
+LOCAL_PROPRIETARY_MODULE := true
+# Mark source files as dependent on Android.mk
+LOCAL_ADDITIONAL_DEPENDENCIES := $(LOCAL_PATH)/Android.mk
+
+LOCAL_C_INCLUDES := \
+        $(ARMNN_HEADER_PATH) \
+        $(ARMNN_UTILS_HEADER_PATH) \
+        $(OPENCL_HEADER_PATH) \
+        $(NN_HEADER_PATH)
+
+LOCAL_CFLAGS := \
+        -std=$(CPP_VERSION) \
+        -fexceptions \
+        -Werror \
+        -Wno-format-security \
+        -DBOOST_NO_AUTO_PTR \
+        -DARMNN_ANDROID_NN_V1_3 \
+        -DARMNN_ANDROID_R
+
+ifeq ($(ARMNN_DRIVER_DEBUG),1)
+LOCAL_CFLAGS+= \
+        -UNDEBUG
+endif # ARMNN_DRIVER_DEBUG == 1
+
+ifeq ($(ARMNN_COMPUTE_CL_ENABLED),1)
+LOCAL_CFLAGS += \
+        -DARMCOMPUTECL_ENABLED
+endif # ARMNN_COMPUTE_CL_ENABLED == 1
+
+ifeq ($(ARMNN_COMPUTE_NEON_ENABLED),1)
+LOCAL_CFLAGS += \
+        -DARMCOMPUTENEON_ENABLED
+endif # ARMNN_COMPUTE_NEON_ENABLED == 1
+
+ifeq ($(ARMNN_REF_ENABLED),1)
+LOCAL_CFLAGS += \
+        -DARMNNREF_ENABLED
+endif # ARMNN_REF_ENABLED == 1
+
+LOCAL_SRC_FILES := \
+        1.0/ArmnnDriverImpl.cpp \
+        1.0/HalPolicy.cpp \
+        1.1/ArmnnDriverImpl.cpp \
+        1.1/HalPolicy.cpp \
+        1.2/ArmnnDriverImpl.cpp \
+        1.2/HalPolicy.cpp \
+        1.3/ArmnnDriverImpl.cpp \
+        1.3/HalPolicy.cpp \
+        ArmnnDevice.cpp \
+        ArmnnDriverImpl.cpp \
+        ArmnnPreparedModel.cpp \
+        ArmnnPreparedModel_1_2.cpp \
+        ArmnnPreparedModel_1_3.cpp \
+        ConversionUtils.cpp \
+        DriverOptions.cpp \
+        ModelToINetworkConverter.cpp \
+        RequestThread.cpp \
+        Utils.cpp
+
+LOCAL_STATIC_LIBRARIES := \
+        libneuralnetworks_common \
+        libboost_log \
+        libboost_program_options \
+        libboost_system \
+        libboost_thread \
+        libboost_filesystem \
+        arm_compute_library
+
+LOCAL_WHOLE_STATIC_LIBRARIES := libarmnn
+
+LOCAL_SHARED_LIBRARIES := \
+        libbase \
+        libhidlbase \
+        libhidltransport \
+        libhidlmemory \
+        liblog \
+        libutils \
+        libnativewindow \
+        libui \
+        libfmq \
+        libcutils \
+        android.hidl.allocator@1.0 \
+        android.hidl.memory@1.0 \
+        android.hardware.neuralnetworks@1.0 \
+        android.hardware.neuralnetworks@1.1 \
+        android.hardware.neuralnetworks@1.2 \
+        android.hardware.neuralnetworks@1.3
+
+ifeq ($(ARMNN_COMPUTE_CL_ENABLED),1)
+LOCAL_SHARED_LIBRARIES+= \
+        libOpenCL
+endif
+
+include $(BUILD_STATIC_LIBRARY)
+
+endif # PLATFORM_VERSION == R
+
 #####################################################
 # android.hardware.neuralnetworks@1.0-service-armnn #
 #####################################################
@@ -714,6 +822,84 @@
 
 endif # PLATFORM_VERSION == Q
 
+ifeq ($(R_OR_LATER),1)
+# The following target is available starting from Android R
+
+#####################################################
+# android.hardware.neuralnetworks@1.3-service-armnn #
+#####################################################
+include $(CLEAR_VARS)
+
+LOCAL_MODULE := android.hardware.neuralnetworks@1.3-service-armnn
+LOCAL_INIT_RC := android.hardware.neuralnetworks@1.3-service-armnn.rc
+LOCAL_MODULE_TAGS := optional
+LOCAL_ARM_MODE := arm
+LOCAL_MODULE_RELATIVE_PATH := hw
+LOCAL_PROPRIETARY_MODULE := true
+# Mark source files as dependent on Android.mk
+LOCAL_ADDITIONAL_DEPENDENCIES := $(LOCAL_PATH)/Android.mk
+
+LOCAL_C_INCLUDES := \
+        $(ARMNN_HEADER_PATH) \
+        $(NN_HEADER_PATH)
+
+LOCAL_CFLAGS := \
+        -std=$(CPP_VERSION) \
+        -fexceptions \
+        -DARMNN_ANDROID_NN_V1_3 \
+        -DBOOST_NO_AUTO_PTR \
+        -DARMNN_ANDROID_R
+
+ifeq ($(ARMNN_DRIVER_DEBUG),1)
+LOCAL_CFLAGS += \
+        -UNDEBUG
+endif # ARMNN_DRIVER_DEBUG == 1
+
+LOCAL_SRC_FILES := \
+        service.cpp
+
+LOCAL_STATIC_LIBRARIES := \
+        libneuralnetworks_common \
+        libboost_log \
+        libboost_program_options \
+        libboost_system \
+        libboost_thread \
+        libboost_filesystem \
+        arm_compute_library
+
+LOCAL_WHOLE_STATIC_LIBRARIES := \
+        libarmnn-driver@1.3
+
+LOCAL_SHARED_LIBRARIES := \
+        libbase \
+        libhidlbase \
+        libhidltransport \
+        libhidlmemory \
+        libdl \
+        libhardware \
+        liblog \
+        libtextclassifier_hash \
+        libutils \
+        libnativewindow \
+        libui \
+        libfmq \
+        libcutils \
+        android.hidl.allocator@1.0 \
+        android.hidl.memory@1.0 \
+        android.hardware.neuralnetworks@1.0 \
+        android.hardware.neuralnetworks@1.1 \
+        android.hardware.neuralnetworks@1.2 \
+        android.hardware.neuralnetworks@1.3
+
+ifeq ($(ARMNN_COMPUTE_CL_ENABLED),1)
+LOCAL_SHARED_LIBRARIES+= \
+        libOpenCL
+endif
+
+include $(BUILD_EXECUTABLE)
+
+endif # PLATFORM_VERSION == R
+
 ##########################
 # armnn module and tests #
 ##########################
diff --git a/ArmnnDriver.hpp b/ArmnnDriver.hpp
index d961f86..a6fd9b2 100644
--- a/ArmnnDriver.hpp
+++ b/ArmnnDriver.hpp
@@ -9,7 +9,28 @@
 
 #include <log/log.h>
 
-#ifdef ARMNN_ANDROID_NN_V1_2 // Using ::android::hardware::neuralnetworks::V1_2
+#ifdef ARMNN_ANDROID_NN_V1_3 // Using ::android::hardware::neuralnetworks::V1_3
+
+#include "1.1/ArmnnDriver.hpp"
+#include "1.2/ArmnnDriver.hpp"
+#include "1.3/ArmnnDriver.hpp"
+
+namespace armnn_driver
+{
+
+class ArmnnDriver : public hal_1_3::ArmnnDriver
+{
+public:
+    ArmnnDriver(DriverOptions options)
+        : hal_1_3::ArmnnDriver(std::move(options))
+    {
+        ALOGV("ArmnnDriver::ArmnnDriver()");
+    }
+    ~ArmnnDriver() {}
+};
+
+} // namespace armnn_driver
+#elif ARMNN_ANDROID_NN_V1_2 // Using ::android::hardware::neuralnetworks::V1_2
 
 #include "1.1/ArmnnDriver.hpp"
 #include "1.2/ArmnnDriver.hpp"
diff --git a/ArmnnDriverImpl.cpp b/ArmnnDriverImpl.cpp
index eab9598..9c6d51f 100644
--- a/ArmnnDriverImpl.cpp
+++ b/ArmnnDriverImpl.cpp
@@ -8,10 +8,16 @@
 #include "ArmnnDriverImpl.hpp"
 #include "ArmnnPreparedModel.hpp"
 
-#ifdef ARMNN_ANDROID_NN_V1_2 // Using ::android::hardware::neuralnetworks::V1_2
+#if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3) // Using ::android::hardware::neuralnetworks::V1_2
 #include "ArmnnPreparedModel_1_2.hpp"
 #endif
 
+#ifdef ARMNN_ANDROID_NN_V1_3 // Using ::android::hardware::neuralnetworks::V1_2
+#include "ArmnnPreparedModel_1_3.hpp"
+#endif
+
+#include "Utils.hpp"
+
 #include "ModelToINetworkConverter.hpp"
 #include "SystemPropertiesUtils.hpp"
 #include <ValidateHal.h>
@@ -227,14 +233,14 @@
 
     if (!runtime)
     {
-        cb(V1_0::ErrorStatus::DEVICE_UNAVAILABLE, result);
+        cb(HalErrorStatus::DEVICE_UNAVAILABLE, result);
         return Void();
     }
 
     // Run general model validation, if this doesn't pass we shouldn't analyse the model anyway.
     if (!android::nn::validateModel(model))
     {
-        cb(V1_0::ErrorStatus::INVALID_ARGUMENT, result);
+        cb(HalErrorStatus::INVALID_ARGUMENT, result);
         return Void();
     }
 
@@ -246,20 +252,22 @@
     if (modelConverter.GetConversionResult() != ConversionResult::Success
             && modelConverter.GetConversionResult() != ConversionResult::UnsupportedFeature)
     {
-        cb(V1_0::ErrorStatus::GENERAL_FAILURE, result);
+        cb(HalErrorStatus::GENERAL_FAILURE, result);
         return Void();
     }
 
     // Check each operation if it was converted successfully and copy the flags
     // into the result (vector<bool>) that we need to return to Android.
-    result.reserve(model.operations.size());
-    for (uint32_t operationIdx = 0; operationIdx < model.operations.size(); operationIdx++)
+    result.reserve(getMainModel(model).operations.size());
+    for (uint32_t operationIdx = 0;
+         operationIdx < getMainModel(model).operations.size();
+         ++operationIdx)
     {
         bool operationSupported = modelConverter.IsOperationSupported(operationIdx);
         result.push_back(operationSupported);
     }
 
-    cb(V1_0::ErrorStatus::NONE, result);
+    cb(HalErrorStatus::NONE, result);
     return Void();
 }
 
@@ -286,4 +294,10 @@
 template class ArmnnDriverImpl<hal_1_2::HalPolicy>;
 #endif
 
+#ifdef ARMNN_ANDROID_NN_V1_3
+template class ArmnnDriverImpl<hal_1_1::HalPolicy>;
+template class ArmnnDriverImpl<hal_1_2::HalPolicy>;
+template class ArmnnDriverImpl<hal_1_3::HalPolicy>;
+#endif
+
 } // namespace armnn_driver
diff --git a/ArmnnDriverImpl.hpp b/ArmnnDriverImpl.hpp
index dfaafb3..cdff905 100644
--- a/ArmnnDriverImpl.hpp
+++ b/ArmnnDriverImpl.hpp
@@ -20,6 +20,11 @@
 namespace V1_2 = ::android::hardware::neuralnetworks::V1_2;
 #endif
 
+#ifdef ARMNN_ANDROID_NN_V1_3 // Using ::android::hardware::neuralnetworks::V1_3
+namespace V1_2 = ::android::hardware::neuralnetworks::V1_2;
+namespace V1_3 = ::android::hardware::neuralnetworks::V1_3;
+#endif
+
 namespace armnn_driver
 {
 
@@ -36,6 +41,7 @@
 public:
     using HalModel                     = typename HalPolicy::Model;
     using HalGetSupportedOperations_cb = typename HalPolicy::getSupportedOperations_cb;
+    using HalErrorStatus               = typename HalPolicy::ErrorStatus;
 
     static Return<void> getSupportedOperations(
             const armnn::IRuntimePtr& runtime,
diff --git a/ArmnnPreparedModel.cpp b/ArmnnPreparedModel.cpp
index d095e41..f990d3b 100644
--- a/ArmnnPreparedModel.cpp
+++ b/ArmnnPreparedModel.cpp
@@ -294,7 +294,7 @@
 {
     std::vector<std::vector<char>> storage;
     armnn::InputTensors inputTensors;
-    for (unsigned int i = 0; i < m_Model.inputIndexes.size(); i++)
+    for (unsigned int i = 0; i < getMainModel(m_Model).inputIndexes.size(); i++)
     {
         const armnn::TensorInfo inputTensorInfo = m_Runtime->GetInputTensorInfo(m_NetworkId, i);
         storage.emplace_back(inputTensorInfo.GetNumBytes());
@@ -304,7 +304,7 @@
     }
 
     armnn::OutputTensors outputTensors;
-    for (unsigned int i = 0; i < m_Model.outputIndexes.size(); i++)
+    for (unsigned int i = 0; i < getMainModel(m_Model).outputIndexes.size(); i++)
     {
         const armnn::TensorInfo outputTensorInfo = m_Runtime->GetOutputTensorInfo(m_NetworkId, i);
         storage.emplace_back(outputTensorInfo.GetNumBytes());
@@ -349,4 +349,10 @@
 template class ArmnnPreparedModel<hal_1_1::HalPolicy>;
 template class ArmnnPreparedModel<hal_1_2::HalPolicy>;
 #endif
+
+#ifdef ARMNN_ANDROID_NN_V1_3
+template class ArmnnPreparedModel<hal_1_1::HalPolicy>;
+template class ArmnnPreparedModel<hal_1_2::HalPolicy>;
+template class ArmnnPreparedModel<hal_1_3::HalPolicy>;
+#endif
 } // namespace armnn_driver
diff --git a/ArmnnPreparedModel_1_2.cpp b/ArmnnPreparedModel_1_2.cpp
index 5031c5f..76ef426 100644
--- a/ArmnnPreparedModel_1_2.cpp
+++ b/ArmnnPreparedModel_1_2.cpp
@@ -2,9 +2,6 @@
 // Copyright © 2017 Arm Ltd. All rights reserved.
 // SPDX-License-Identifier: MIT
 //
-// Note: the ArmnnBurstExecutorWithCache in this file is based on Android code
-//       under the Apache 2.0 license. See comment below for details.
-//
 
 #define LOG_TAG "ArmnnDriver"
 
@@ -215,27 +212,6 @@
     return Execute(request, measureTiming, cb);
 }
 
-OutputShape ComputeShape(const armnn::TensorInfo& info)
-{
-    OutputShape shape;
-
-    hidl_vec<uint32_t> dimensions;
-
-    armnn::TensorShape tensorShape = info.GetShape();
-    const unsigned int numDims = tensorShape.GetNumDimensions();
-    dimensions.resize(numDims);
-
-    for (unsigned int outputIdx = 0u; outputIdx < numDims; ++outputIdx)
-    {
-        dimensions[outputIdx] = tensorShape[outputIdx];
-    }
-
-    shape.dimensions = dimensions;
-    shape.isSufficient = true;
-
-    return shape;
-}
-
 template<typename HalVersion>
 Return<V1_0::ErrorStatus> ArmnnPreparedModel_1_2<HalVersion>::PrepareMemoryForInputs(
     armnn::InputTensors& inputs,
@@ -348,27 +324,6 @@
     return V1_0::ErrorStatus::NONE;
 }
 
-void CommitPools(std::vector<::android::nn::RunTimePoolInfo>& memPools)
-{
-    if (memPools.empty())
-    {
-        return;
-    }
-    // Commit output buffers.
-    // Note that we update *all* pools, even if they aren't actually used as outputs -
-    // this is simpler and is what the CpuExecutor does.
-    for (auto& pool : memPools)
-    {
-        // Type android::nn::RunTimePoolInfo has changed between Android P & Q and Android R, where
-        // update() has been removed and flush() added.
-#if defined(ARMNN_ANDROID_R) // Use the new Android implementation.
-        pool.flush();
-#else
-        pool.update();
-#endif
-    }
-}
-
 template<typename HalVersion>
 Return<void> ArmnnPreparedModel_1_2<HalVersion>::executeSynchronously(const V1_0::Request& request,
                                                                       MeasureTiming measureTiming,
@@ -514,7 +469,7 @@
 {
     std::vector<std::vector<char>> storage;
     armnn::InputTensors inputTensors;
-    for (unsigned int i = 0; i < m_Model.inputIndexes.size(); i++)
+    for (unsigned int i = 0; i < getMainModel(m_Model).inputIndexes.size(); i++)
     {
         const armnn::TensorInfo inputTensorInfo = m_Runtime->GetInputTensorInfo(m_NetworkId, i);
         storage.emplace_back(inputTensorInfo.GetNumBytes());
@@ -524,7 +479,7 @@
     }
 
     armnn::OutputTensors outputTensors;
-    for (unsigned int i = 0; i < m_Model.outputIndexes.size(); i++)
+    for (unsigned int i = 0; i < getMainModel(m_Model).outputIndexes.size(); i++)
     {
         const armnn::TensorInfo outputTensorInfo = m_Runtime->GetOutputTensorInfo(m_NetworkId, i);
         storage.emplace_back(outputTensorInfo.GetNumBytes());
@@ -600,77 +555,6 @@
     return V1_0::ErrorStatus::NONE;
 }
 
-
-/// This class is strongly inspired by the default implementation in Android named DefaultBurstExecutorWithCache.
-/// The original code is licensed under Apache-2.0 and can be found at the following link:
-/// https://android.googlesource.com/platform/frameworks/
-///         ml/+/refs/tags/android-10.0.0_r20/nn/common/ExecutionBurstServer.cpp
-class ArmnnBurstExecutorWithCache : public ExecutionBurstServer::IBurstExecutorWithCache {
-public:
-    ArmnnBurstExecutorWithCache(V1_2::IPreparedModel* preparedModel)
-        : m_PreparedModel(preparedModel)
-    {}
-
-    bool isCacheEntryPresent(int32_t slot) const override
-    {
-        const auto it = m_MemoryCache.find(slot);
-        return (it != m_MemoryCache.end()) && it->second.valid();
-    }
-
-    void addCacheEntry(const hidl_memory& memory, int32_t slot) override
-    {
-        m_MemoryCache[slot] = memory;
-    }
-
-    void removeCacheEntry(int32_t slot) override
-    {
-        m_MemoryCache.erase(slot);
-    }
-
-    std::tuple<V1_0::ErrorStatus, hidl_vec<OutputShape>, Timing> execute(
-        const V1_0::Request& request, const std::vector<int32_t>& slots,
-        MeasureTiming measure) override
-    {
-        ALOGV("ArmnnPreparedModel_1_2::BurstExecutorWithCache::execute");
-        hidl_vec<hidl_memory> pools(slots.size());
-
-        std::transform(slots.begin(), slots.end(), pools.begin(), [this](int32_t slot)
-            {
-                return m_MemoryCache[slot];
-            });
-
-        V1_0::Request fullRequest = request;
-        fullRequest.pools = std::move(pools);
-
-        // Setup Callback
-        V1_0::ErrorStatus returnedStatus = V1_0::ErrorStatus::GENERAL_FAILURE;
-        hidl_vec<OutputShape> returnedOutputShapes;
-        Timing returnedTiming;
-        auto cb = [&returnedStatus, &returnedOutputShapes, &returnedTiming](V1_0::ErrorStatus status,
-                                                                            const hidl_vec<OutputShape>& outputShapes,
-                                                                            const Timing& timing)
-            {
-                returnedStatus = status;
-                returnedOutputShapes = outputShapes;
-                returnedTiming = timing;
-            };
-
-        // Execute
-        ALOGV("ArmnnPreparedModel_1_2::BurstExecutorWithCache executing");
-        const Return<void> ret = m_PreparedModel->executeSynchronously(fullRequest, measure, cb);
-
-        if (!ret.isOk() || returnedStatus != V1_0::ErrorStatus::NONE)
-        {
-            ALOGE("ArmnnPreparedModel_1_2::BurstExecutorWithCache::error executing");
-        }
-        return std::make_tuple(returnedStatus, std::move(returnedOutputShapes), returnedTiming);
-    }
-
-private:
-    V1_2::IPreparedModel* const m_PreparedModel;
-    std::map<int, hidl_memory> m_MemoryCache;
-};
-
 template<typename HalVersion>
 Return<void> ArmnnPreparedModel_1_2<HalVersion>::configureExecutionBurst(
     const sp<V1_2::IBurstCallback>& callback,
@@ -679,12 +563,10 @@
     V1_2::IPreparedModel::configureExecutionBurst_cb cb)
 {
     ALOGV("ArmnnPreparedModel_1_2::configureExecutionBurst");
-    const std::shared_ptr<ArmnnBurstExecutorWithCache> executorWithCache =
-        std::make_shared<ArmnnBurstExecutorWithCache>(this);
     const sp<V1_2::IBurstContext> burst = ExecutionBurstServer::create(callback,
                                                                        requestChannel,
                                                                        resultChannel,
-                                                                       executorWithCache);
+                                                                       this);
 
     if (burst == nullptr)
     {
@@ -697,9 +579,7 @@
     return Void();
 }
 
-
-
-#ifdef ARMNN_ANDROID_NN_V1_2
+#if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3)
 template class ArmnnPreparedModel_1_2<hal_1_2::HalPolicy>;
 template bool ArmnnPreparedModel_1_2<hal_1_2::HalPolicy>::ExecuteGraph<CallbackContext_1_2>(
         std::shared_ptr<std::vector<::android::nn::RunTimePoolInfo>>& pMemPools,
diff --git a/ArmnnPreparedModel_1_3.cpp b/ArmnnPreparedModel_1_3.cpp
new file mode 100644
index 0000000..155f8b2
--- /dev/null
+++ b/ArmnnPreparedModel_1_3.cpp
@@ -0,0 +1,698 @@
+//
+// Copyright © 2020 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#define LOG_TAG "ArmnnDriver"
+
+#include "ArmnnPreparedModel_1_3.hpp"
+#include "Utils.hpp"
+
+#include <Utils.h>
+#include <boost/format.hpp>
+#include <log/log.h>
+#include <OperationsUtils.h>
+#include <ExecutionBurstServer.h>
+#include <ValidateHal.h>
+
+#include <cassert>
+#include <cinttypes>
+
+using namespace android;
+using namespace android::hardware;
+
+namespace {
+
+static const Timing g_NoTiming = {.timeOnDevice = UINT64_MAX, .timeInDriver = UINT64_MAX};
+using namespace armnn_driver;
+using TimePoint = std::chrono::steady_clock::time_point;
+
+TimePoint Now()
+{
+    return std::chrono::steady_clock::now();
+}
+
+unsigned long MicrosecondsDuration(TimePoint endPoint, TimePoint startPoint)
+{
+    return static_cast<unsigned long>(std::chrono::duration_cast<std::chrono::microseconds>(
+                                      endPoint - startPoint).count());
+}
+
+void NotifyCallbackAndCheck(const ::android::sp<V1_0::IExecutionCallback>& callback,
+                            V1_3::ErrorStatus errorStatus,
+                            std::vector<OutputShape>,
+                            const Timing,
+                            std::string callingFunction)
+{
+    Return<void> returned = callback->notify(convertToV1_0(errorStatus));
+    // This check is required, if the callback fails and it isn't checked it will bring down the service
+    if (!returned.isOk())
+    {
+        ALOGE("ArmnnDriver::%s: hidl callback failed to return properly: %s",
+              callingFunction.c_str(), returned.description().c_str());
+    }
+}
+
+void NotifyCallbackAndCheck(const ::android::sp<V1_2::IExecutionCallback>& callback,
+                            V1_3::ErrorStatus errorStatus,
+                            std::vector<OutputShape> outputShapes,
+                            const Timing timing,
+                            std::string callingFunction)
+{
+    Return<void> returned = callback->notify_1_2(convertToV1_0(errorStatus), outputShapes, timing);
+    // This check is required, if the callback fails and it isn't checked it will bring down the service
+    if (!returned.isOk())
+    {
+        ALOGE("ArmnnDriver::%s: hidl callback failed to return properly: %s",
+              callingFunction.c_str(), returned.description().c_str());
+    }
+}
+
+void NotifyCallbackAndCheck(const ::android::sp<V1_3::IExecutionCallback>& callback,
+                            V1_3::ErrorStatus errorStatus,
+                            std::vector<OutputShape> outputShapes,
+                            const Timing timing,
+                            std::string callingFunction)
+{
+    Return<void> returned = callback->notify_1_3(errorStatus, outputShapes, timing);
+    // This check is required, if the callback fails and it isn't checked it will bring down the service
+    if (!returned.isOk())
+    {
+        ALOGE("ArmnnDriver::%s: hidl callback failed to return properly: %s",
+              callingFunction.c_str(), returned.description().c_str());
+    }
+}
+
+bool ValidateRequestArgument(const RequestArgument& requestArg, const armnn::TensorInfo& tensorInfo)
+{
+    if (requestArg.dimensions.size() != 0)
+    {
+        if (requestArg.dimensions.size() != tensorInfo.GetNumDimensions())
+        {
+            ALOGE("Mismatched dimensions (request argument: %zu, expected: %u)",
+                  requestArg.dimensions.size(), tensorInfo.GetNumDimensions());
+            return false;
+        }
+
+        for (unsigned int d = 0; d < tensorInfo.GetNumDimensions(); ++d)
+        {
+            if (requestArg.dimensions[d] != tensorInfo.GetShape()[d])
+            {
+                ALOGE("Mismatched size for dimension %d (request argument: %u, expected %u)",
+                      d, requestArg.dimensions[d], tensorInfo.GetShape()[d]);
+                return false;
+            }
+        }
+    }
+
+    return true;
+}
+
+armnn::Tensor GetTensorForRequestArgument(const RequestArgument& requestArg,
+                                          const armnn::TensorInfo& tensorInfo,
+                                          const std::vector<::android::nn::RunTimePoolInfo>& requestPools)
+{
+    if (!ValidateRequestArgument(requestArg, tensorInfo))
+    {
+        return armnn::Tensor();
+    }
+
+    return armnn::Tensor(tensorInfo, GetMemoryFromPool(requestArg.location, requestPools));
+}
+
+inline std::string BuildTensorName(const char* tensorNamePrefix, std::size_t index)
+{
+    return tensorNamePrefix + std::to_string(index);
+}
+
+} // anonymous namespace
+
+using namespace android::hardware;
+
+namespace armnn_driver
+{
+
+template<typename HalVersion>
+RequestThread<ArmnnPreparedModel_1_3, HalVersion, CallbackContext_1_3>
+        ArmnnPreparedModel_1_3<HalVersion>::m_RequestThread;
+
+template<typename HalVersion>
+template<typename TensorBindingCollection>
+void ArmnnPreparedModel_1_3<HalVersion>::DumpTensorsIfRequired(char const* tensorNamePrefix,
+                                                               const TensorBindingCollection& tensorBindings)
+{
+    if (!m_RequestInputsAndOutputsDumpDir.empty())
+    {
+        const std::string requestName = boost::str(boost::format("%1%_%2%.dump") % m_NetworkId % m_RequestCount);
+        for (std::size_t i = 0u; i < tensorBindings.size(); ++i)
+        {
+            DumpTensor(m_RequestInputsAndOutputsDumpDir,
+                       requestName,
+                       BuildTensorName(tensorNamePrefix, i),
+                       tensorBindings[i].second);
+        }
+    }
+}
+
+template<typename HalVersion>
+ArmnnPreparedModel_1_3<HalVersion>::ArmnnPreparedModel_1_3(armnn::NetworkId networkId,
+                                                           armnn::IRuntime* runtime,
+                                                           const V1_3::Model& model,
+                                                           const std::string& requestInputsAndOutputsDumpDir,
+                                                           const bool gpuProfilingEnabled)
+    : m_NetworkId(networkId)
+    , m_Runtime(runtime)
+    , m_Model(model)
+    , m_RequestCount(0)
+    , m_RequestInputsAndOutputsDumpDir(requestInputsAndOutputsDumpDir)
+    , m_GpuProfilingEnabled(gpuProfilingEnabled)
+{
+    // Enable profiling if required.
+    m_Runtime->GetProfiler(m_NetworkId)->EnableProfiling(m_GpuProfilingEnabled);
+}
+
+template<typename HalVersion>
+ArmnnPreparedModel_1_3<HalVersion>::~ArmnnPreparedModel_1_3()
+{
+    // Get a hold of the profiler used by this model.
+    std::shared_ptr<armnn::IProfiler> profiler = m_Runtime->GetProfiler(m_NetworkId);
+
+    // Unload the network associated with this model.
+    m_Runtime->UnloadNetwork(m_NetworkId);
+
+    // Dump the profiling info to a file if required.
+    DumpJsonProfilingIfRequired(m_GpuProfilingEnabled, m_RequestInputsAndOutputsDumpDir, m_NetworkId, profiler.get());
+}
+
+template<typename HalVersion>
+Return <V1_0::ErrorStatus> ArmnnPreparedModel_1_3<HalVersion>::execute(const V1_0::Request& request,
+        const ::android::sp<V1_0::IExecutionCallback>& callback)
+{
+    if (callback.get() == nullptr)
+    {
+        ALOGE("ArmnnPreparedModel_1_3::execute invalid callback passed");
+        return V1_0::ErrorStatus::INVALID_ARGUMENT;
+    }
+
+    auto cb = [callback](V1_3::ErrorStatus errorStatus,
+                         std::vector<OutputShape> outputShapes,
+                         const Timing& timing,
+                         std::string callingFunction)
+    {
+        NotifyCallbackAndCheck(callback, errorStatus, outputShapes, timing, callingFunction);
+    };
+
+
+    return convertToV1_0(Execute(convertToV1_3(request), MeasureTiming::NO, cb));
+}
+
+template<typename HalVersion>
+Return <V1_0::ErrorStatus> ArmnnPreparedModel_1_3<HalVersion>::execute_1_2(
+    const V1_0::Request& request,
+    MeasureTiming measureTiming,
+    const sp<V1_2::IExecutionCallback>& callback)
+{
+    if (callback.get() == nullptr)
+    {
+        ALOGE("ArmnnPreparedModel_1_3::execute_1_2 invalid callback passed");
+        return V1_0::ErrorStatus::INVALID_ARGUMENT;
+    }
+
+    auto cb = [callback](V1_3::ErrorStatus errorStatus,
+                         std::vector<OutputShape> outputShapes,
+                         const Timing& timing,
+                         std::string callingFunction)
+    {
+        NotifyCallbackAndCheck(callback, errorStatus, outputShapes, timing, callingFunction);
+    };
+
+    return convertToV1_0(Execute(convertToV1_3(request), measureTiming, cb));
+}
+
+template<typename HalVersion>
+Return <V1_3::ErrorStatus> ArmnnPreparedModel_1_3<HalVersion>::execute_1_3(
+        const V1_3::Request& request,
+        MeasureTiming measureTiming,
+        const V1_3::OptionalTimePoint&,
+        const sp<V1_3::IExecutionCallback>& callback)
+{
+    if (callback.get() == nullptr)
+    {
+        ALOGE("ArmnnPreparedModel_1_3::execute_1_3 invalid callback passed");
+        return V1_3::ErrorStatus::INVALID_ARGUMENT;
+    }
+
+    auto cb = [callback](V1_3::ErrorStatus errorStatus,
+                         std::vector<OutputShape> outputShapes,
+                         const Timing& timing,
+                         std::string callingFunction)
+    {
+        NotifyCallbackAndCheck(callback, errorStatus, outputShapes, timing, callingFunction);
+    };
+
+    return Execute(request, measureTiming, cb);
+}
+
+template<typename HalVersion>
+Return<void> ArmnnPreparedModel_1_3<HalVersion>::executeFenced(const V1_3::Request&,
+                                                               const hidl_vec<hidl_handle>&,
+                                                               MeasureTiming,
+                                                               const OptionalTimePoint&,
+                                                               const OptionalTimeoutDuration&,
+                                                               executeFenced_cb cb)
+{
+    cb(ErrorStatus::DEVICE_UNAVAILABLE, hidl_handle(nullptr), nullptr);
+    return Void();
+}
+
+template<typename HalVersion>
+Return<V1_3::ErrorStatus> ArmnnPreparedModel_1_3<HalVersion>::PrepareMemoryForInputs(
+    armnn::InputTensors& inputs,
+    const V1_3::Request& request,
+    const std::vector<android::nn::RunTimePoolInfo>& memPools)
+{
+    inputs.reserve(request.inputs.size());
+    for (unsigned int i = 0; i < request.inputs.size(); i++)
+    {
+        const auto& inputArg = request.inputs[i];
+
+        const armnn::TensorInfo inputTensorInfo = m_Runtime->GetInputTensorInfo(m_NetworkId, i);
+        const armnn::Tensor inputTensor = GetTensorForRequestArgument(inputArg, inputTensorInfo, memPools);
+
+        if (inputTensor.GetMemoryArea() == nullptr)
+        {
+            ALOGE("Cannot execute request. Error converting request input %u to tensor", i);
+            return V1_3::ErrorStatus::GENERAL_FAILURE;
+        }
+
+        inputs.emplace_back(i, inputTensor);
+    }
+
+    return V1_3::ErrorStatus::NONE;
+}
+
+template<typename HalVersion>
+Return<V1_3::ErrorStatus> ArmnnPreparedModel_1_3<HalVersion>::PrepareMemoryForOutputs(
+    armnn::OutputTensors& outputs,
+    std::vector<OutputShape> &outputShapes,
+    const V1_3::Request& request,
+    const std::vector<android::nn::RunTimePoolInfo>& memPools)
+{
+    outputs.reserve(request.outputs.size());
+    for (unsigned int i = 0; i < request.outputs.size(); i++)
+    {
+        const auto& outputArg = request.outputs[i];
+
+        const armnn::TensorInfo outputTensorInfo = m_Runtime->GetOutputTensorInfo(m_NetworkId, i);
+        const armnn::Tensor outputTensor = GetTensorForRequestArgument(outputArg, outputTensorInfo, memPools);
+        if (outputTensor.GetMemoryArea() == nullptr)
+        {
+            ALOGE("Cannot execute request. Error converting request output %u to tensor", i);
+            return V1_3::ErrorStatus::GENERAL_FAILURE;
+        }
+
+        const size_t outputSize = outputTensorInfo.GetNumBytes();
+        const size_t bufferSize = memPools.at(outputArg.location.poolIndex).getHidlMemory().size();
+        if (bufferSize < outputSize)
+        {
+            ALOGW("ArmnnPreparedModel_1_3::Execute failed");
+            return V1_3::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE;
+        }
+
+        outputs.emplace_back(i, outputTensor);
+        outputShapes[i] = ComputeShape(outputTensorInfo);
+    }
+
+    return V1_3::ErrorStatus::NONE;
+}
+
+template<typename HalVersion>
+std::tuple<V1_3::ErrorStatus, hidl_vec<OutputShape>, Timing, std::string>
+    ArmnnPreparedModel_1_3<HalVersion>::PrepareMemoryForIO(armnn::InputTensors& inputs,
+                                                           armnn::OutputTensors& outputs,
+                                                           std::vector<android::nn::RunTimePoolInfo>& memPools,
+                                                           const V1_3::Request& request)
+{
+    if (!setRunTimePoolInfosFromMemoryPools(&memPools, request.pools))
+    {
+        return {ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_3::execute"};
+    }
+
+    // add the inputs and outputs with their data
+    try
+    {
+        if (PrepareMemoryForInputs(inputs, request, memPools) != V1_3::ErrorStatus::NONE)
+        {
+            return {ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_3::execute"};
+        }
+
+        std::vector<OutputShape> outputShapes(request.outputs.size());
+
+        auto errorStatus = PrepareMemoryForOutputs(outputs, outputShapes, request, memPools);
+        if (errorStatus != V1_3::ErrorStatus::NONE)
+        {
+            return {errorStatus, outputShapes, g_NoTiming, "ArmnnPreparedModel_1_3::execute"};
+        }
+    }
+    catch (armnn::Exception& e)
+    {
+        ALOGW("armnn::Exception caught while preparing for EnqueueWorkload: %s", e.what());
+        return {ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_3::execute"};
+    }
+    catch (std::exception& e)
+    {
+        ALOGE("std::exception caught while preparing for EnqueueWorkload: %s", e.what());
+        return {ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_3::execute"};
+    }
+
+    return {V1_3::ErrorStatus::NONE, {}, g_NoTiming, "ArmnnPreparedModel_1_3::execute"};
+}
+
+template<typename HalVersion>
+template<typename CallbackContext>
+Return<void> ArmnnPreparedModel_1_3<HalVersion>::ExecuteSynchronously(const V1_3::Request& request,
+                                                                      CallbackContext cbCtx)
+{
+    if (cbCtx.ctx.measureTimings == MeasureTiming::YES)
+    {
+        cbCtx.ctx.driverStart = Now();
+    }
+
+    if (!android::nn::validateRequest(convertToV1_3(request), m_Model))
+    {
+        ALOGE("ArmnnPreparedModel_1_3::ExecuteSynchronously invalid request model");
+        cbCtx.callback(V1_3::ErrorStatus::INVALID_ARGUMENT,
+                       {},
+                       g_NoTiming,
+                       "ArmnnPreparedModel_1_3::ExecuteSynchronously invalid request model");
+        return Void();
+    }
+
+    if (!android::nn::validateRequest(request, m_Model))
+    {
+        ALOGE("ArmnnPreparedModel_1_3::ExecuteSynchronously invalid request model");
+        cbCtx.callback(V1_3::ErrorStatus::INVALID_ARGUMENT,
+                       {},
+                       g_NoTiming,
+                       "ArmnnPreparedModel_1_3::ExecuteSynchronously invalid request model");
+    }
+
+
+    // map the memory pool into shared pointers
+    // use a shared memory pools vector on the heap, as it is passed to the request thread
+    auto memPools = std::make_shared<std::vector<android::nn::RunTimePoolInfo>>();
+
+    // allocate the tensors on the heap, as they are passed to the request thread
+    auto inputs = std::make_shared<armnn::InputTensors>();
+    auto outputs = std::make_shared<armnn::OutputTensors>();
+
+    auto [status, outputShapes, timing, message] = PrepareMemoryForIO(*inputs, *outputs, *memPools, request);
+    if (status != V1_3::ErrorStatus::NONE)
+    {
+        cbCtx.callback(status, outputShapes, timing, message);
+    }
+
+    ALOGV("ArmnnPreparedModel_1_3::ExecuteSynchronously() before Execution");
+
+    ExecuteGraph(memPools, *inputs, *outputs, cbCtx);
+    return Void();
+}
+
+template<typename HalVersion>
+Return<void> ArmnnPreparedModel_1_3<HalVersion>::executeSynchronously(const V1_0::Request& request,
+                                                                      MeasureTiming measureTiming,
+                                                                      executeSynchronously_cb cb)
+{
+    ALOGV("ArmnnPreparedModel_1_3::executeSynchronously(): %s", GetModelSummary(m_Model).c_str());
+    m_RequestCount++;
+
+    if (cb == nullptr)
+    {
+        ALOGE("ArmnnPreparedModel_1_3::executeSynchronously invalid callback passed");
+        return Void();
+    }
+
+    auto cbWrapper = [cb](V1_3::ErrorStatus errorStatus,
+                          std::vector<OutputShape> outputShapes,
+                          const Timing& timing,
+                          std::string)
+    {
+        cb(convertToV1_0(errorStatus), outputShapes, timing);
+    };
+
+    CallbackContext_1_3 cbCtx;
+    cbCtx.callback = cbWrapper;
+    cbCtx.ctx.measureTimings = measureTiming;
+
+    ExecuteSynchronously(convertToV1_3(request), cbCtx);
+    return Void();
+}
+
+template<typename HalVersion>
+Return<void>  ArmnnPreparedModel_1_3<HalVersion>::executeSynchronously_1_3(const V1_3::Request& request,
+                                                                           MeasureTiming measureTiming,
+                                                                           const V1_3::OptionalTimePoint& deadline,
+                                                                           executeSynchronously_1_3_cb cb)
+{
+    ALOGV("ArmnnPreparedModel_1_3::executeSynchronously_1_3(): %s", GetModelSummary(m_Model).c_str());
+    m_RequestCount++;
+
+    if (cb == nullptr)
+    {
+        ALOGE("ArmnnPreparedModel_1_3::executeSynchronously_1_3 invalid callback passed");
+        return Void();
+    }
+
+    if (deadline.getDiscriminator() != OptionalTimePoint::hidl_discriminator::none)
+    {
+        ALOGE("ArmnnPreparedModel_1_3::executeSynchronously_1_3 invalid request model");
+        cb(V1_3::ErrorStatus::INVALID_ARGUMENT, {}, g_NoTiming);
+        return Void();
+    }
+
+    auto cbWrapper = [cb](V1_3::ErrorStatus errorStatus,
+                          std::vector<OutputShape> outputShapes,
+                          const Timing& timing,
+                          std::string)
+    {
+        cb(errorStatus, outputShapes, timing);
+    };
+
+    CallbackContext_1_3 cbCtx;
+    cbCtx.callback = cbWrapper;
+    cbCtx.ctx.measureTimings = measureTiming;
+
+    ExecuteSynchronously(request, cbCtx);
+    return Void();
+}
+
+template<typename HalVersion>
+Return<void> ArmnnPreparedModel_1_3<HalVersion>::configureExecutionBurst(
+        const sp<V1_2::IBurstCallback>& callback,
+        const MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel,
+        const MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel,
+        V1_3::IPreparedModel::configureExecutionBurst_cb cb)
+{
+    ALOGV("ArmnnPreparedModel_1_3::configureExecutionBurst");
+    const sp<V1_2::IBurstContext> burst = ExecutionBurstServer::create(callback,
+                                                                       requestChannel,
+                                                                       resultChannel,
+                                                                       this);
+
+    if (burst == nullptr)
+    {
+        cb(V1_0::ErrorStatus::GENERAL_FAILURE, {});
+    }
+    else
+    {
+        cb(V1_0::ErrorStatus::NONE, burst);
+    }
+    return Void();
+}
+
+template<typename HalVersion>
+template<typename CallbackContext>
+bool ArmnnPreparedModel_1_3<HalVersion>::ExecuteGraph(
+    std::shared_ptr<std::vector<::android::nn::RunTimePoolInfo>>& pMemPools,
+    armnn::InputTensors& inputTensors,
+    armnn::OutputTensors& outputTensors,
+    CallbackContext cb)
+{
+    ALOGV("ArmnnPreparedModel_1_3::ExecuteGraph(...)");
+
+    TimePoint driverEnd, deviceStart, deviceEnd;
+
+    DumpTensorsIfRequired("Input", inputTensors);
+
+    std::vector<OutputShape> outputShapes(outputTensors.size());
+    for (unsigned int i = 0; i < outputTensors.size(); i++)
+    {
+        std::pair<int, armnn::Tensor> outputTensorPair = outputTensors[i];
+        const armnn::Tensor outputTensor = outputTensorPair.second;
+        const armnn::TensorInfo outputTensorInfo = outputTensor.GetInfo();
+
+        outputShapes[i] = ComputeShape(outputTensorInfo);
+    }
+
+    // run it
+    try
+    {
+        if (cb.ctx.measureTimings == MeasureTiming::YES)
+        {
+            deviceStart = Now();
+        }
+
+        armnn::Status status = m_Runtime->EnqueueWorkload(m_NetworkId, inputTensors, outputTensors);
+
+        if (cb.ctx.measureTimings == MeasureTiming::YES)
+        {
+            deviceEnd = Now();
+        }
+        if (status != armnn::Status::Success)
+        {
+            ALOGW("EnqueueWorkload failed");
+            cb.callback(V1_3::ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming,
+                        "ArmnnPreparedModel_1_3::ExecuteGraph");
+            return false;
+        }
+    }
+    catch (armnn::Exception& e)
+    {
+        ALOGW("armnn:Exception caught from EnqueueWorkload: %s", e.what());
+        cb.callback(V1_3::ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_3::ExecuteGraph");
+        return false;
+    }
+    catch (std::exception& e)
+    {
+        ALOGE("std::exception caught from EnqueueWorkload: %s", e.what());
+        cb.callback(V1_3::ErrorStatus::GENERAL_FAILURE, {}, g_NoTiming, "ArmnnPreparedModel_1_3::ExecuteGraph");
+        return false;
+    }
+
+    CommitPools(*pMemPools);
+
+    DumpTensorsIfRequired("Output", outputTensors);
+
+    if (cb.ctx.measureTimings == MeasureTiming::YES)
+    {
+        driverEnd = Now();
+        Timing timing;
+        timing.timeOnDevice = MicrosecondsDuration(deviceEnd, deviceStart);
+        timing.timeInDriver = MicrosecondsDuration(driverEnd, cb.ctx.driverStart);
+        ALOGV("ArmnnPreparedModel_1_2::execute timing - Device = %lu Driver = %lu", timing.timeOnDevice,
+              timing.timeInDriver);
+        cb.callback(V1_3::ErrorStatus::NONE, outputShapes, timing, "ArmnnPreparedModel_1_3::ExecuteGraph");
+    } else {
+        cb.callback(V1_3::ErrorStatus::NONE, outputShapes, g_NoTiming, "ArmnnPreparedModel_1_3::ExecuteGraph");
+    }
+
+    return true;
+}
+
+template<typename HalVersion>
+bool ArmnnPreparedModel_1_3<HalVersion>::ExecuteWithDummyInputs()
+{
+    std::vector<std::vector<char>> storage;
+    armnn::InputTensors inputTensors;
+    for (unsigned int i = 0; i < getMainModel(m_Model).inputIndexes.size(); i++)
+    {
+        const armnn::TensorInfo inputTensorInfo = m_Runtime->GetInputTensorInfo(m_NetworkId, i);
+        storage.emplace_back(inputTensorInfo.GetNumBytes());
+        const armnn::ConstTensor inputTensor(inputTensorInfo, storage.back().data());
+
+        inputTensors.emplace_back(i, inputTensor);
+    }
+
+    armnn::OutputTensors outputTensors;
+    for (unsigned int i = 0; i < getMainModel(m_Model).outputIndexes.size(); i++)
+    {
+        const armnn::TensorInfo outputTensorInfo = m_Runtime->GetOutputTensorInfo(m_NetworkId, i);
+        storage.emplace_back(outputTensorInfo.GetNumBytes());
+        const armnn::Tensor outputTensor(outputTensorInfo, storage.back().data());
+
+        outputTensors.emplace_back(i, outputTensor);
+    }
+
+    auto nullCallback = [](V1_3::ErrorStatus, std::vector<OutputShape>, const Timing&, std::string) {};
+    CallbackContext_1_3 callbackContext;
+    callbackContext.callback = nullCallback;
+    callbackContext.ctx.measureTimings = MeasureTiming::NO;
+    auto memPools = std::make_shared<std::vector<::android::nn::RunTimePoolInfo>>();
+    return ExecuteGraph(memPools,
+                        inputTensors,
+                        outputTensors,
+                        callbackContext);
+}
+
+template<typename HalVersion>
+Return <V1_3::ErrorStatus> ArmnnPreparedModel_1_3<HalVersion>::Execute(const V1_3::Request& request,
+                                                                       MeasureTiming measureTiming,
+                                                                       CallbackAsync_1_3 callback)
+{
+    ExecutionContext_1_3 ctx;
+    if (measureTiming == MeasureTiming::YES)
+    {
+        ctx.measureTimings = measureTiming;
+        ctx.driverStart = Now();
+    }
+
+    ALOGV("ArmnnPreparedModel_1_3::execute(): %s", GetModelSummary(m_Model).c_str());
+    m_RequestCount++;
+
+    if (!android::nn::validateRequest(request, m_Model))
+    {
+        callback(V1_3::ErrorStatus::INVALID_ARGUMENT, {}, g_NoTiming, "ArmnnPreparedModel_1_3::execute");
+        return V1_3::ErrorStatus::INVALID_ARGUMENT;
+    }
+
+    if (!m_RequestInputsAndOutputsDumpDir.empty())
+    {
+        ALOGD("Dumping inputs and outputs for request %" PRIuPTR, reinterpret_cast<std::uintptr_t>(&callback));
+    }
+
+    // map the memory pool into shared pointers
+    // use a shared memory pools vector on the heap, as it is passed to the request thread
+    auto memPools = std::make_shared<std::vector<android::nn::RunTimePoolInfo>>();
+
+    // allocate the tensors on the heap, as they are passed to the request thread
+    auto inputTensors = std::make_shared<armnn::InputTensors>();
+    auto outputTensors = std::make_shared<armnn::OutputTensors>();
+
+    auto [status, outShapes, timing, message] = PrepareMemoryForIO(*inputTensors, *outputTensors,
+                                                                   *memPools, request);
+    if (status != V1_3::ErrorStatus::NONE)
+    {
+        callback(status, outShapes, timing, message);
+    }
+
+    switch(status)
+    {
+        case V1_3::ErrorStatus::OUTPUT_INSUFFICIENT_SIZE:
+            return V1_3::ErrorStatus::NONE;
+        case V1_3::ErrorStatus::GENERAL_FAILURE:
+            return V1_3::ErrorStatus::GENERAL_FAILURE;
+        default:
+        {}
+    }
+
+    ALOGV("ArmnnPreparedModel_1_3::execute(...) before PostMsg");
+
+    // post the request for asynchronous execution
+    CallbackContext_1_3 cb;
+    cb.callback = callback;
+    cb.ctx = ctx;
+    m_RequestThread.PostMsg(this, memPools, inputTensors, outputTensors, cb);
+    ALOGV("ArmnnPreparedModel_1_3::execute(...) after PostMsg");
+    return V1_3::ErrorStatus::NONE;
+}
+
+#ifdef ARMNN_ANDROID_NN_V1_3
+template class ArmnnPreparedModel_1_3<hal_1_3::HalPolicy>;
+template bool ArmnnPreparedModel_1_3<hal_1_3::HalPolicy>::ExecuteGraph<CallbackContext_1_3>(
+        std::shared_ptr<std::vector<::android::nn::RunTimePoolInfo>>& pMemPools,
+        armnn::InputTensors& pInputTensors,
+        armnn::OutputTensors& pOutputTensors,
+        CallbackContext_1_3 cb);
+#endif
+
+} // namespace armnn_driver
diff --git a/ArmnnPreparedModel_1_3.hpp b/ArmnnPreparedModel_1_3.hpp
new file mode 100644
index 0000000..247149c
--- /dev/null
+++ b/ArmnnPreparedModel_1_3.hpp
@@ -0,0 +1,137 @@
+//
+// Copyright © 2020 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#pragma once
+
+#include "ArmnnDriver.hpp"
+#include "ArmnnDriverImpl.hpp"
+#include "RequestThread.hpp"
+#include "ModelToINetworkConverter.hpp"
+
+#include <NeuralNetworks.h>
+#include <armnn/ArmNN.hpp>
+
+#include <string>
+#include <vector>
+
+namespace armnn_driver
+{
+using CallbackAsync_1_3 = std::function<
+                                void(V1_3::ErrorStatus errorStatus,
+                                std::vector<::android::hardware::neuralnetworks::V1_2::OutputShape> outputShapes,
+                                const ::android::hardware::neuralnetworks::V1_2::Timing& timing,
+                                std::string callingFunction)>;
+
+struct ExecutionContext_1_3
+{
+    ::android::hardware::neuralnetworks::V1_2::MeasureTiming    measureTimings =
+        ::android::hardware::neuralnetworks::V1_2::MeasureTiming::NO;
+    TimePoint driverStart;
+};
+
+using CallbackContext_1_3 = CallbackContext<CallbackAsync_1_3, ExecutionContext_1_3>;
+
+using executeFenced_cb = std::function<void(::android::hardware::neuralnetworks::V1_3::ErrorStatus status,
+    const ::android::hardware::hidl_handle& syncFence,
+    const ::android::sp<::android::hardware::neuralnetworks::V1_3::IFencedExecutionCallback>& callback)>;
+
+template <typename HalVersion>
+class ArmnnPreparedModel_1_3 : public V1_3::IPreparedModel
+{
+public:
+    using HalModel = typename V1_3::Model;
+
+    ArmnnPreparedModel_1_3(armnn::NetworkId networkId,
+                           armnn::IRuntime* runtime,
+                           const HalModel& model,
+                           const std::string& requestInputsAndOutputsDumpDir,
+                           const bool gpuProfilingEnabled);
+
+    virtual ~ArmnnPreparedModel_1_3();
+
+    Return<V1_0::ErrorStatus> execute(const V1_0::Request& request,
+                                      const sp<V1_0::IExecutionCallback>& callback) override;
+
+    Return<V1_0::ErrorStatus> execute_1_2(const V1_0::Request& request, MeasureTiming measure,
+                                          const sp<V1_2::IExecutionCallback>& callback) override;
+
+    Return<V1_3::ErrorStatus> execute_1_3(const V1_3::Request& request,
+                                          V1_2::MeasureTiming measure,
+                                          const V1_3::OptionalTimePoint&,
+                                          const sp<V1_3::IExecutionCallback>& callback) override;
+
+    Return<void> executeSynchronously(const V1_0::Request &request,
+                                      MeasureTiming measure,
+                                      V1_3::IPreparedModel::executeSynchronously_cb cb) override;
+
+    Return<void> executeSynchronously_1_3(const V1_3::Request &request,
+                                          MeasureTiming measure,
+                                          const V1_3::OptionalTimePoint& deadline,
+                                          V1_3::IPreparedModel::executeSynchronously_1_3_cb cb) override;
+
+    Return<void> executeFenced(const V1_3::Request& request,
+                               const android::hardware::hidl_vec<android::hardware::hidl_handle>& wait_for,
+                               MeasureTiming measure,
+                               const V1_3::OptionalTimePoint& deadline,
+                               const V1_3::OptionalTimeoutDuration& duration,
+                               executeFenced_cb callback) override;
+
+    Return<void> configureExecutionBurst(
+            const sp<V1_2::IBurstCallback>& callback,
+            const android::hardware::MQDescriptorSync<V1_2::FmqRequestDatum>& requestChannel,
+            const android::hardware::MQDescriptorSync<V1_2::FmqResultDatum>& resultChannel,
+            configureExecutionBurst_cb cb) override;
+
+    template<typename CallbackContext>
+    Return<void> ExecuteSynchronously(const V1_3::Request& request, CallbackContext cbCtx);
+
+    /// execute the graph prepared from the request
+    template<typename CallbackContext>
+    bool ExecuteGraph(std::shared_ptr<std::vector<::android::nn::RunTimePoolInfo>>& pMemPools,
+                      armnn::InputTensors& inputTensors,
+                      armnn::OutputTensors& outputTensors,
+                      CallbackContext callback);
+
+    /// Executes this model with dummy inputs (e.g. all zeroes).
+    /// \return false on failure, otherwise true
+    bool ExecuteWithDummyInputs();
+
+private:
+    Return <V1_3::ErrorStatus> Execute(const V1_3::Request& request,
+                                       MeasureTiming measureTiming,
+                                       CallbackAsync_1_3 callback);
+
+    Return<V1_3::ErrorStatus> PrepareMemoryForInputs(
+        armnn::InputTensors& inputs,
+        const V1_3::Request& request,
+        const std::vector<android::nn::RunTimePoolInfo>& memPools);
+
+    Return<V1_3::ErrorStatus> PrepareMemoryForOutputs(
+        armnn::OutputTensors& outputs,
+        std::vector<OutputShape> &outputShapes,
+        const V1_3::Request& request,
+        const std::vector<android::nn::RunTimePoolInfo>& memPools);
+
+    std::tuple<V1_3::ErrorStatus, hidl_vec<OutputShape>, Timing, std::string> PrepareMemoryForIO(
+        armnn::InputTensors& inputs,
+        armnn::OutputTensors& outputs,
+        std::vector<android::nn::RunTimePoolInfo>& memPools,
+        const V1_3::Request& request);
+
+    template <typename TensorBindingCollection>
+    void DumpTensorsIfRequired(char const* tensorNamePrefix, const TensorBindingCollection& tensorBindings);
+
+    armnn::NetworkId                                                            m_NetworkId;
+    armnn::IRuntime*                                                            m_Runtime;
+    V1_3::Model                                                                 m_Model;
+    // There must be a single RequestThread for all ArmnnPreparedModel objects to ensure serial execution of workloads
+    // It is specific to this class, so it is declared as static here
+    static RequestThread<ArmnnPreparedModel_1_3, HalVersion, CallbackContext_1_3> m_RequestThread;
+    uint32_t                                                                    m_RequestCount;
+    const std::string&                                                          m_RequestInputsAndOutputsDumpDir;
+    const bool                                                                  m_GpuProfilingEnabled;
+};
+
+}
diff --git a/ConversionUtils.hpp b/ConversionUtils.hpp
index 90b1c7d..315089c 100644
--- a/ConversionUtils.hpp
+++ b/ConversionUtils.hpp
@@ -183,7 +183,7 @@
            type == V1_0::OperandType::TENSOR_INT32;
 }
 
-#ifdef ARMNN_ANDROID_NN_V1_2
+#if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3)
 
 // Support within the 1.2 driver for specific tensor data types
 inline bool IsOperandTypeSupportedForTensors(V1_2::OperandType type)
@@ -201,17 +201,34 @@
 
 #endif
 
+#ifdef ARMNN_ANDROID_NN_V1_3
+
+// Support within the 1.3 driver for specific tensor data types
+inline bool IsOperandTypeSupportedForTensors(V1_3::OperandType type)
+{
+    return type == V1_3::OperandType::BOOL                           ||
+           type == V1_3::OperandType::TENSOR_FLOAT16                 ||
+           type == V1_3::OperandType::TENSOR_FLOAT32                 ||
+           type == V1_3::OperandType::TENSOR_QUANT8_ASYMM            ||
+           type == V1_3::OperandType::TENSOR_QUANT8_SYMM             ||
+           type == V1_3::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL ||
+           type == V1_3::OperandType::TENSOR_QUANT16_SYMM            ||
+           type == V1_3::OperandType::TENSOR_INT32;
+}
+
+#endif
+
 inline bool IsBool(V1_0::Operand)
 {
     return false;
 }
 
-inline bool Is12Operand(V1_0::Operand)
+inline bool Is12OrLaterOperand(V1_0::Operand)
 {
     return false;
 }
 
-#ifdef ARMNN_ANDROID_NN_V1_2
+#if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3)
 
 inline bool IsBool(V1_2::Operand operand)
 {
@@ -219,7 +236,22 @@
 }
 
 /// Checks if a operand is 1_2 Operand
-inline bool Is12Operand(V1_2::Operand)
+inline bool Is12OrLaterOperand(V1_2::Operand)
+{
+    return true;
+}
+
+#endif
+
+#ifdef ARMNN_ANDROID_NN_V1_3
+
+inline bool IsBool(V1_3::Operand operand)
+{
+    return operand.type == V1_3::OperandType::BOOL;
+}
+
+/// Checks if a operand is 1_2 Operand
+inline bool Is12OrLaterOperand(V1_3::Operand)
 {
     return true;
 }
@@ -351,7 +383,7 @@
     outPadTail = boost::numeric_cast<uint32_t>(padTail);
 }
 
-#ifdef ARMNN_ANDROID_NN_V1_2
+#if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3)
 
 void CalcPadding(uint32_t input, uint32_t kernel, uint32_t stride, uint32_t dilation, uint32_t& outPadHead,
                  uint32_t& outPadTail, android::nn::PaddingScheme scheme)
@@ -381,7 +413,7 @@
     return shape;
 }
 
-#ifdef ARMNN_ANDROID_NN_V1_2
+#if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3)
 
 Shape GetOperandShape(const V1_2::Operand& operand)
 {
@@ -395,6 +427,20 @@
 
 #endif
 
+#ifdef ARMNN_ANDROID_NN_V1_3
+
+Shape GetOperandShape(const V1_3::Operand& operand)
+{
+    Shape shape;
+    shape.type = OperandType(operand.type);
+    shape.dimensions = operand.dimensions;
+    shape.scale = operand.scale;
+    shape.offset = operand.zeroPoint;
+    return shape;
+}
+
+#endif
+
 // ArmNN requires the bias scale to be equal to the product of the weight and input scales, which is also
 // what AndroidNN requires. However for some of the AndroidNN tests the values don't exactly match so
 // we accept some tolerance. We don't want ArmNN itself to accept these inconsistencies as it is up to the
@@ -636,8 +682,9 @@
         return nullptr;
     }
 
-    BOOST_ASSERT(operation.inputs[inputIndex] < model.operands.size()); // Model should have been validated beforehand
-    return &model.operands[operation.inputs[inputIndex]];
+    // Model should have been validated beforehand
+    BOOST_ASSERT(operation.inputs[inputIndex] < getMainModel(model).operands.size());
+    return &getMainModel(model).operands[operation.inputs[inputIndex]];
 }
 
 template<typename HalPolicy,
@@ -655,9 +702,9 @@
     }
 
     // Model should have been validated beforehand
-    BOOST_ASSERT(operation.outputs[outputIndex] < model.operands.size());
+    BOOST_ASSERT(operation.outputs[outputIndex] < getMainModel(model).operands.size());
 
-    return &model.operands[operation.outputs[outputIndex]];
+    return &getMainModel(model).operands[operation.outputs[outputIndex]];
 }
 
 template<typename HalPolicy,
@@ -1165,6 +1212,120 @@
     }
 }
 
+
+#ifdef ARMNN_ANDROID_NN_V1_3
+template<typename HalPolicy>
+LayerInputHandle ConvertToLayerInputHandle(const ::android::hardware::neuralnetworks::V1_3::Operation& operation,
+                                           uint32_t inputIndex,
+                                           const::android::hardware::neuralnetworks::V1_3::Model& model,
+                                           ConversionData& data)
+{
+    using HalOperand         = typename HalPolicy::Operand;
+    using HalOperandType     = typename HalPolicy::OperandType;
+    using HalOperandLifeTime = typename HalPolicy::OperandLifeTime;
+
+    const HalOperand* operand = GetInputOperand<HalPolicy>(operation, inputIndex, model);
+    if (!operand)
+    {
+        Fail("%s: failed to get input operand %i", __func__, inputIndex);
+        return LayerInputHandle();
+    }
+
+    if (!IsOperandTypeSupportedForTensors(operand->type))
+    {
+        Fail("%s: unsupported operand type for tensor %s", __func__, toString(operand->type).c_str());
+        return LayerInputHandle();
+    }
+
+    try
+    {
+        armnn::TensorInfo operandTensorInfo = GetTensorInfoForOperand(*operand);
+        if (IsDynamicTensor(operandTensorInfo))
+        {
+            Fail("%s: dynamic input tensors are not supported", __func__);
+            return LayerInputHandle();
+        }
+
+        switch (operand->lifetime)
+        {
+            case HalOperandLifeTime::SUBGRAPH_INPUT:
+            {
+                // NOTE: We must check whether we can support the input tensor on at least one
+                // of the provided backends; otherwise we cannot convert the operation
+                bool isInputSupported = false;
+                FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                                           IsInputSupported,
+                                           data.m_Backends,
+                                           isInputSupported,
+                                           operandTensorInfo);
+
+                if (!isInputSupported)
+                {
+                    Fail("%s: unsupported input tensor", __func__);
+                    return LayerInputHandle();
+                }
+
+                BOOST_FALLTHROUGH; // intentional fallthrough
+            }
+            case HalOperandLifeTime::TEMPORARY_VARIABLE: // intentional fallthrough
+            case HalOperandLifeTime::SUBGRAPH_OUTPUT:
+            {
+                // The tensor is either an operand internal to the model, or a model input.
+                // It can be associated with an ArmNN output slot for an existing layer.
+
+                // m_OutputSlotForOperand[...] can be nullptr if the previous layer could not be converted
+                const uint32_t operandIndex = operation.inputs[inputIndex];
+                return LayerInputHandle(true, data.m_OutputSlotForOperand[operandIndex], operandTensorInfo);
+            }
+            case HalOperandLifeTime::CONSTANT_COPY: // intentional fallthrough
+            case HalOperandLifeTime::CONSTANT_REFERENCE:
+            {
+                // The tensor has an already known constant value, and can be converted into an ArmNN Constant layer.
+                ConstTensorPin tensorPin = ConvertOperandToConstTensorPin<HalPolicy>(*operand, model, data);
+                if (tensorPin.IsValid())
+                {
+                    bool isSupported = false;
+                    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                                               IsConstantSupported,
+                                               data.m_Backends,
+                                               isSupported,
+                                               tensorPin.GetConstTensor().GetInfo());
+                    if (!isSupported)
+                    {
+                        return LayerInputHandle();
+                    }
+
+                    armnn::IConnectableLayer* constantLayer =
+                        data.m_Network->AddConstantLayer(tensorPin.GetConstTensor());
+                    armnn::IOutputSlot& outputSlot = constantLayer->GetOutputSlot(0);
+                    outputSlot.SetTensorInfo(tensorPin.GetConstTensor().GetInfo());
+
+                    return LayerInputHandle(true, &outputSlot, operandTensorInfo);
+                }
+                else
+                {
+                    Fail("%s: invalid operand tensor", __func__);
+                    return LayerInputHandle();
+                }
+                break;
+            }
+            default:
+            {
+                // Unsupported lifetime for an input tensor
+                Fail("%s: unsupported lifetime for input tensor: %s",
+                     __func__, toString(operand->lifetime).c_str());
+                return LayerInputHandle();
+            }
+        }
+    }
+    catch (UnsupportedOperand<HalOperandType>& e)
+    {
+        Fail("%s: Operand type %s not supported in ArmnnDriver", __func__, toString(e.m_type).c_str());
+        return LayerInputHandle();
+    }
+}
+#endif
+
 template<typename HalPolicy,
          typename HalOperation = typename HalPolicy::Operation,
          typename HalModel     = typename HalPolicy::Model>
@@ -1448,7 +1609,7 @@
             return Fail("%s: Operation has invalid inputs", operationName);
         }
 
-        if (Is12Operand(*output))
+        if (Is12OrLaterOperand(*output))
         {
             desc.m_DataLayout = OptionalDataLayout<HalPolicy>(operation, 10, model, data);
         }
@@ -1467,7 +1628,7 @@
             return Fail("%s: Operation has invalid inputs", operationName);
         }
 
-        if (Is12Operand(*output))
+        if (Is12OrLaterOperand(*output))
         {
             desc.m_DataLayout = OptionalDataLayout<HalPolicy>(operation, 7, model, data);
         }
@@ -2106,7 +2267,7 @@
     }
 
     descriptor.m_DataLayout = armnn::DataLayout::NHWC;
-    if (Is12Operand(*output))
+    if (Is12OrLaterOperand(*output))
     {
         descriptor.m_DataLayout = OptionalDataLayout<HalPolicy>(operation, 2, model, data);
     }
@@ -2440,7 +2601,7 @@
     return false;
 }
 
-#ifdef ARMNN_ANDROID_NN_V1_2
+#if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3)
 
 inline bool IsQSymm8(const V1_2::Operand& operand)
 {
@@ -2449,6 +2610,15 @@
 
 #endif
 
+#ifdef ARMNN_ANDROID_NN_V1_3
+
+inline bool IsQSymm8(const V1_3::Operand& operand)
+{
+    return operand.type == V1_3::OperandType::TENSOR_QUANT8_SYMM;
+}
+
+#endif
+
 enum class DequantizeStatus
 {
     SUCCESS,
@@ -2484,10 +2654,10 @@
 
     // The weights are a non const tensor, this indicates they might be the output of a dequantize op.
     // Iterate over the nodes and find the previous operation which should be DEQUANTIZE
-    for (uint32_t operationIdx = 0; operationIdx < model.operations.size(); ++operationIdx)
+    for (uint32_t operationIdx = 0; operationIdx < getMainModel(model).operations.size(); ++operationIdx)
     {
         // Search for the DEQUANTIZE op which has the operand with index equal to operandIndex
-        const auto& operationIt = model.operations[operationIdx];
+        const auto& operationIt = getMainModel(model).operations[operationIdx];
         if (operationIt.type != HalPolicy::OperationType::DEQUANTIZE)
         {
             continue;
@@ -3525,7 +3695,7 @@
     batchToSpaceNdDesc.m_BlockShape.assign(block.cbegin(), block.cend());
     batchToSpaceNdDesc.m_DataLayout = armnn::DataLayout::NHWC;
 
-    if (Is12Operand(*output))
+    if (Is12OrLaterOperand(*output))
     {
         batchToSpaceNdDesc.m_DataLayout = OptionalDataLayout<HalPolicy>(operation, 2, model, data);
     }
@@ -3633,7 +3803,7 @@
     descriptor.m_BlockShape.assign(blockShape.cbegin(), blockShape.cend());
     descriptor.m_PadList.assign(paddingList.cbegin(), paddingList.cend());
 
-    if (Is12Operand(*output))
+    if (Is12OrLaterOperand(*output))
     {
         descriptor.m_DataLayout = OptionalDataLayout<HalPolicy>(operation, 3, model, data);
     }
diff --git a/ConversionUtils_1_2.hpp b/ConversionUtils_1_2.hpp
new file mode 100644
index 0000000..460c88b
--- /dev/null
+++ b/ConversionUtils_1_2.hpp
@@ -0,0 +1,2590 @@
+//
+// Copyright © 2020 Arm Ltd. All rights reserved.
+// SPDX-License-Identifier: MIT
+//
+
+#pragma once
+
+#include "Utils.hpp"
+
+#include "ConversionUtils.hpp"
+#include <armnnUtils/TensorUtils.hpp>
+
+#include <half/half.hpp>
+
+using Half = half_float::half;
+
+namespace armnn_driver
+{
+
+using namespace armnn;
+using namespace android::nn;
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool IsQSymmDequantizeForWeights(const HalOperation& operation, const HalModel& model)
+{
+    using HalOperand       = typename HalPolicy::Operand;
+    using HalOperationType = typename HalPolicy::OperationType;
+
+    const HalOperand* operand = GetInputOperand<HalPolicy>(operation, 0, model);
+    if (!operand)
+    {
+        return false;
+    }
+
+    if(!IsQSymm8(*operand))
+    {
+        // Only QSymm8 weights are dequantized on the fly by the driver
+        return false;
+    }
+
+    if (!IsOperandConstant<HalPolicy>(*operand))
+    {
+        // Non-const input is not accepted for weights
+        return false;
+    }
+
+    // Iterate through all the operations and find the operation feeding from the Dequantize output
+    const size_t outputIndex = operation.outputs[0];
+    for (uint32_t operationIdx = 0; operationIdx < getMainModel(model).operations.size(); ++operationIdx)
+    {
+        const auto& operationIt = getMainModel(model).operations[operationIdx];
+        switch (operationIt.type)
+        {
+            case HalOperationType::FULLY_CONNECTED:
+                if (outputIndex == operationIt.inputs[1]) // Weights are bound to slot 1
+                {
+                    // If the output is going into the FC weights return true
+                    return true;
+                }
+                break;
+            case HalOperationType::LSTM:
+                for (size_t k = 0; k < operationIt.inputs.size(); ++k)
+                {
+                    if (outputIndex == operationIt.inputs[k])
+                    {
+                        // If the output is going into the LSTM weights return true
+                        return true;
+                    }
+                }
+                break;
+            default:
+                break;
+        }
+    }
+
+    return false;
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool SetupAndTrackLayerOutputSlotAndOverrideTensorInfo(const HalOperation& operation,
+                                                       uint32_t operationOutputIndex,
+                                                       armnn::IConnectableLayer& layer,
+                                                       uint32_t layerOutputIndex,
+                                                       const HalModel& model,
+                                                       ConversionData& data,
+                                                       const armnn::TensorInfo tensor_info)
+{
+    using HalOperand = typename HalPolicy::Operand;
+
+    const HalOperand* outputOperand = GetOutputOperand<HalPolicy>(operation, operationOutputIndex, model);
+    if ((outputOperand == nullptr) || (operationOutputIndex >= layer.GetNumOutputSlots()))
+    {
+        return false;
+    }
+
+    armnn::IOutputSlot& outputSlot = layer.GetOutputSlot(layerOutputIndex);
+
+    const uint32_t operandIndex = operation.outputs[operationOutputIndex];
+    data.m_OutputSlotForOperand[operandIndex] = &outputSlot;
+
+    outputSlot.SetTensorInfo(tensor_info);
+
+    return true;
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertComparison_1_2(const HalOperation& operation,
+                           const HalModel& model,
+                           ConversionData& data,
+                           ComparisonOperation comparisonOperation)
+{
+    using HalOperand = typename HalPolicy::Operand;
+
+    ALOGV("HalPolicy::ConvertComparison()");
+    ALOGV("comparisonOperation = %s", GetComparisonOperationAsCString(comparisonOperation));
+
+    LayerInputHandle input0 = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+    LayerInputHandle input1 = ConvertToLayerInputHandle<HalPolicy>(operation, 1, model, data);
+
+    if (!(input0.IsValid() && input1.IsValid()))
+    {
+        return Fail("%s: Operation has invalid inputs", __func__);
+    }
+
+    const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
+    if (!output)
+    {
+        return Fail("%s: Could not read output 0", __func__);
+    }
+
+    const TensorInfo& inputInfo0 = input0.GetTensorInfo();
+    const TensorInfo& inputInfo1 = input1.GetTensorInfo();
+    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+
+    if (IsDynamicTensor(outputInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported", __func__);
+    }
+
+    ComparisonDescriptor descriptor(comparisonOperation);
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsComparisonSupported,
+                               data.m_Backends,
+                               isSupported,
+                               inputInfo0,
+                               inputInfo1,
+                               outputInfo,
+                               descriptor);
+
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* layer = data.m_Network->AddComparisonLayer(descriptor);
+    assert(layer != nullptr);
+
+    bool isReshapeSupported = BroadcastTensor(input0, input1, layer, data);
+    if (!isReshapeSupported)
+    {
+        return false;
+    }
+
+    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data);
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertConv2d_1_2(const HalOperation& operation, const HalModel& model, ConversionData& data)
+{
+
+    using HalOperand     = typename HalPolicy::Operand;
+    using HalOperandType = typename HalPolicy::OperandType;
+
+    ALOGV("HalPolicy::ConvertConv2d_1_2()");
+
+    LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+    if (!input.IsValid())
+    {
+        return Fail("%s: Operation has invalid inputs", __func__);
+    }
+
+    const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
+    if (!output)
+    {
+        return Fail("%s: Could not read output 0", __func__);
+    }
+
+    const TensorInfo& inputInfo  = input.GetTensorInfo();
+    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+
+    if (IsDynamicTensor(outputInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported", __func__);
+    }
+
+    Convolution2dDescriptor desc;
+    desc.m_DataLayout = DataLayout::NHWC;
+
+    // Determine whether padding is implicit or explicit
+    bool implicitPadding = operation.inputs.size() == 7 ||
+                           (operation.inputs.size() >= 8 &&
+                            GetInputOperand<HalPolicy>(operation, 7, model)->type == HalOperandType::BOOL);
+
+    if (implicitPadding)
+    {
+        desc.m_DataLayout = OptionalDataLayout<HalPolicy>(operation, 7, model, data);
+    }
+    else if (operation.inputs.size() >= 10)
+    {
+        desc.m_DataLayout = OptionalDataLayout<HalPolicy>(operation, 10, model, data);
+    }
+
+    const PermutationVector OHWIToOIHW = {0, 2, 3, 1};
+
+    // ArmNN does not currently support non-fixed weights or bias
+    // The NNAPI filter is always OHWI [depth_out, filter_height, filter_width, depth_in] but ArmNN expects the
+    // filter's height and width indices to match the input's height and width indices so we permute it to OIHW if
+    // the DataLayout is NCHW
+    const ConstTensorPin weightsPin = (desc.m_DataLayout == DataLayout::NCHW) ?
+                                      ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 1,
+                                                                                       model, data, OHWIToOIHW) :
+                                      ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 1, model, data);
+    const ConstTensorPin biasPin    =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 2, model, data);
+
+    if (!weightsPin.IsValid())
+    {
+        return Fail("%s: Operation has invalid weights", __func__);
+    }
+
+    if (!biasPin.IsValid())
+    {
+        return Fail("%s: Operation has invalid biases", __func__);
+    }
+
+    ConstTensor weights = weightsPin.GetConstTensor();
+    ConstTensor bias = biasPin.GetConstTensor();
+    SanitizeBiasQuantizationScale(bias.GetInfo(), weights.GetInfo(), inputInfo);
+
+    ActivationFn activation;
+
+    if (implicitPadding)
+    {
+        android::nn::PaddingScheme paddingScheme;
+        if (!GetInputPaddingScheme<HalPolicy>(operation, 3, paddingScheme, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 4, HalOperandType::INT32, desc.m_StrideX, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 5, HalOperandType::INT32, desc.m_StrideY, model, data) ||
+            !GetInputActivationFunction<HalPolicy>(operation, 6, activation, model, data) ||
+            !GetOptionalConvolutionDilationParams<HalPolicy>(operation, 8, desc, model, data))
+        {
+            return Fail("%s: Operation has invalid inputs (implicit padding)", __func__);
+        }
+
+        armnnUtils::DataLayoutIndexed dataLayoutIndexed(desc.m_DataLayout);
+        unsigned int widthIndex = dataLayoutIndexed.GetWidthIndex();
+        unsigned int heightIndex = dataLayoutIndexed.GetHeightIndex();
+        const uint32_t kernelX = weights.GetShape()[widthIndex];
+        const uint32_t kernelY = weights.GetShape()[heightIndex];
+        const uint32_t inputX  = inputInfo.GetShape()[widthIndex];
+        const uint32_t inputY  = inputInfo.GetShape()[heightIndex];
+
+        CalcPadding(inputX, kernelX, desc.m_StrideX, desc.m_DilationX, desc.m_PadLeft, desc.m_PadRight, paddingScheme);
+        CalcPadding(inputY, kernelY, desc.m_StrideY, desc.m_DilationY, desc.m_PadTop, desc.m_PadBottom, paddingScheme);
+
+    }
+    else if (operation.inputs.size() >= 10)
+    {
+        // explicit padding
+        if (!GetInputScalar<HalPolicy>(operation, 3, HalOperandType::INT32, desc.m_PadLeft, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 4, HalOperandType::INT32, desc.m_PadRight, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 5, HalOperandType::INT32, desc.m_PadTop, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 6, HalOperandType::INT32, desc.m_PadBottom, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 7, HalOperandType::INT32, desc.m_StrideX, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 8, HalOperandType::INT32, desc.m_StrideY, model, data) ||
+            !GetInputActivationFunction<HalPolicy>(operation, 9, activation, model, data) ||
+            !GetOptionalConvolutionDilationParams<HalPolicy>(operation, 11, desc, model, data))
+        {
+            return Fail("%s: Operation has invalid inputs (explicit padding)", __func__);
+        }
+    }
+    else
+    {
+        return Fail("%s: Unsupported number of operation inputs", __func__);
+    }
+
+    desc.m_BiasEnabled = true;
+    Optional<TensorInfo> biases(bias.GetInfo());
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsConvolution2dSupported,
+                               data.m_Backends,
+                               isSupported,
+                               inputInfo,
+                               outputInfo,
+                               desc,
+                               weights.GetInfo(),
+                               biases);
+
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* startLayer =
+        data.m_Network->AddConvolution2dLayer(desc, weights, Optional<ConstTensor>(bias));
+
+    if (!startLayer)
+    {
+        return Fail("%s: AddConvolution2dLayer failed", __func__);
+    }
+
+    IConnectableLayer* endLayer = ProcessActivation(outputInfo, activation, startLayer, data);
+
+    if (!endLayer)
+    {
+        return Fail("%s: ProcessActivation failed", __func__);
+    }
+
+    input.Connect(startLayer->GetInputSlot(0));
+
+    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *endLayer, model, data);
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertDepthwiseConv2d_1_2(const HalOperation& operation, const HalModel& model, ConversionData& data)
+{
+    using HalOperand     = typename HalPolicy::Operand;
+    using HalOperandType = typename HalPolicy::OperandType;
+
+    ALOGV("HalPolicy::ConvertDepthwiseConv2d_1_2()");
+
+    LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+
+    if (!input.IsValid())
+    {
+        return Fail("%s: Operation has invalid inputs", __func__);
+    }
+
+    const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
+
+    if (!output)
+    {
+        return Fail("%s: Could not read output 0", __func__);
+    }
+
+    const TensorInfo& inputInfo  = input.GetTensorInfo();
+    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+
+    if (IsDynamicTensor(outputInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported", __func__);
+    }
+
+    // ArmNN does not currently support non-fixed weights or bias
+    // Find the shape of the weights tensor. In AndroidNN this will be [ 1, H, W, I * M ]
+    const HalOperand* weightsOperand = GetInputOperand<HalPolicy>(operation, 1, model);
+
+    if (weightsOperand == nullptr)
+    {
+        return Fail("%s: Operand is invalid", __func__);
+    }
+    if ( weightsOperand->dimensions[0] != 1)
+    {
+        return Fail("%s: Invalid weights; for depthwise convolution, dimension 0 must be 1 but it is %i",
+                    __func__, weightsOperand->dimensions[0] );
+    }
+
+    DepthwiseConvolution2dDescriptor desc;
+    desc.m_DataLayout = DataLayout::NHWC;
+
+    // Determine whether padding is implicit or explicit
+    bool implicitPadding = operation.inputs.size() == 8 ||
+                           (operation.inputs.size() >= 9 &&
+                            GetInputOperand<HalPolicy>(operation, 8, model)->type == HalOperandType::BOOL);
+
+    // Look ahead to find the optional DataLayout, if present
+    const uint32_t dataLayoutFlagIndex = implicitPadding ? 8 : 11;
+    desc.m_DataLayout = OptionalDataLayout<HalPolicy>(operation, dataLayoutFlagIndex, model, data);
+
+    armnnUtils::DataLayoutIndexed dataLayoutIndexed(desc.m_DataLayout);
+    unsigned int channelsIndex = dataLayoutIndexed.GetChannelsIndex();
+    unsigned int widthIndex = dataLayoutIndexed.GetWidthIndex();
+    unsigned int heightIndex = dataLayoutIndexed.GetHeightIndex();
+
+    // Reinterpret weight data as [ H, W, I, M ]
+    TensorShape weightsShape({ weightsOperand->dimensions[1],
+                               weightsOperand->dimensions[2],
+                               inputInfo.GetShape()[channelsIndex],
+                               weightsOperand->dimensions[3] / inputInfo.GetShape()[channelsIndex] });
+
+    // Swizzle weight data [ H, W, I, M ] -> [ M, I, H, W ]
+    const PermutationVector HWIMToMIHW = { 2U, 3U, 1U, 0U };
+
+    const ConstTensorPin weightsPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation,
+                                                         1,
+                                                         model,
+                                                         data,
+                                                         HWIMToMIHW,
+                                                         &weightsShape);
+
+    // Bias is a 1D tensor
+    const ConstTensorPin biasPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 2, model, data);
+
+    if (!weightsPin.IsValid())
+    {
+        return Fail("%s: Operation has invalid weights", __func__);
+    }
+
+    if (!biasPin.IsValid())
+    {
+        return Fail("%s: Operation has invalid biases", __func__);
+    }
+
+    ConstTensor weights = weightsPin.GetConstTensor();
+    ConstTensor bias = biasPin.GetConstTensor();
+    SanitizeBiasQuantizationScale(bias.GetInfo(), weights.GetInfo(), inputInfo);
+
+    ActivationFn activation;
+
+    if (implicitPadding)
+    {
+        android::nn::PaddingScheme paddingScheme;
+        if (!GetInputPaddingScheme<HalPolicy>(operation, 3, paddingScheme, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 4, HalOperandType::INT32, desc.m_StrideX, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 5, HalOperandType::INT32, desc.m_StrideY, model, data) ||
+            !GetInputActivationFunction<HalPolicy>(operation, 7, activation, model, data) ||
+            !GetOptionalConvolutionDilationParams<HalPolicy>(operation, 9, desc, model, data))
+        {
+            return Fail("%s: Operation has invalid inputs (implicit padding)", __func__);
+        }
+
+        const uint32_t kernelX = weights.GetShape()[3];
+        const uint32_t kernelY = weights.GetShape()[2];
+        const uint32_t inputX  = inputInfo.GetShape()[widthIndex];
+        const uint32_t inputY  = inputInfo.GetShape()[heightIndex];
+
+        CalcPadding(inputX, kernelX, desc.m_StrideX, desc.m_DilationX, desc.m_PadLeft, desc.m_PadRight, paddingScheme);
+        CalcPadding(inputY, kernelY, desc.m_StrideY, desc.m_DilationY, desc.m_PadTop, desc.m_PadBottom, paddingScheme);
+    }
+    else if (operation.inputs.size() >= 11)
+    {
+        // explicit padding
+        if (!GetInputScalar<HalPolicy>(operation, 3, HalOperandType::INT32, desc.m_PadLeft, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 4, HalOperandType::INT32, desc.m_PadRight, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 5, HalOperandType::INT32, desc.m_PadTop, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 6, HalOperandType::INT32, desc.m_PadBottom, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 7, HalOperandType::INT32, desc.m_StrideX, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 8, HalOperandType::INT32, desc.m_StrideY, model, data) ||
+            !GetInputActivationFunction<HalPolicy>(operation,  10, activation, model, data) ||
+            !GetOptionalConvolutionDilationParams<HalPolicy>(operation, 12, desc, model, data))
+        {
+            return Fail("%s: Operation has invalid inputs (explicit padding)", __func__);
+        }
+    }
+    else
+    {
+        return Fail("%s: Unsupported number of operation inputs", __func__);
+    }
+
+    desc.m_BiasEnabled = true;
+    Optional<TensorInfo> biases(bias.GetInfo());
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsDepthwiseConvolutionSupported,
+                               data.m_Backends,
+                               isSupported,
+                               inputInfo,
+                               outputInfo,
+                               desc,
+                               weights.GetInfo(),
+                               biases);
+
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* startLayer =
+        data.m_Network->AddDepthwiseConvolution2dLayer(desc, weights, Optional<ConstTensor>(bias));
+
+    if (!startLayer)
+    {
+        return Fail("%s: AddDepthwiseConvolution2dLayer failed", __func__);
+    }
+
+    IConnectableLayer* endLayer = ProcessActivation(outputInfo, activation, startLayer, data);
+    if (!endLayer)
+    {
+        return Fail("%s: ProcessActivation failed", __func__);
+    }
+
+    input.Connect(startLayer->GetInputSlot(0));
+
+    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *endLayer, model, data);
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertDequantize_1_2(const HalOperation& operation, const HalModel& model, ConversionData& data)
+{
+    ALOGV("HalPolicy::ConvertDequantize()");
+
+    if (IsQSymmDequantizeForWeights<HalPolicy>(operation, model))
+    {
+        // NOTE: QSymm8 weights are dequantized internally by the driver,
+        // therefore this type of Dequantize is implicitly supported
+        return true;
+    }
+
+    return ::ConvertDequantize<HalPolicy>(operation, model, data);
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertElementwiseUnary(const HalOperation& operation,
+                             const HalModel& model,
+                             ConversionData& data,
+                             UnaryOperation unaryOperation)
+{
+    using HalOperand = typename HalPolicy::Operand;
+
+    ALOGV("HalPolicy::ConvertElementwiseUnary()");
+    ALOGV("unaryOperation = %s", GetUnaryOperationAsCString(unaryOperation));
+
+    LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+
+    if (!input.IsValid())
+    {
+        return Fail("%s: Operation has invalid input", __func__);
+    }
+
+    const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
+    if (!output)
+    {
+        return Fail("%s: Could not read output 0", __func__);
+    }
+
+    const TensorInfo& inputInfo = input.GetTensorInfo();
+    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+
+    if (IsDynamicTensor(outputInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported", __func__);
+    }
+
+    ElementwiseUnaryDescriptor descriptor(unaryOperation);
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsElementwiseUnarySupported,
+                               data.m_Backends,
+                               isSupported,
+                               inputInfo,
+                               outputInfo,
+                               descriptor);
+
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* layer = data.m_Network->AddElementwiseUnaryLayer(descriptor);
+    assert(layer != nullptr);
+
+    input.Connect(layer->GetInputSlot(0));
+
+    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data);
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertExpandDims(const HalOperation& operation, const HalModel& model, ConversionData& data)
+{
+    using HalOperand     = typename HalPolicy::Operand;
+    using HalOperandType = typename HalPolicy::OperandType;
+
+    ALOGV("HalPolicy::ConvertExpandDims()");
+
+    LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+
+    if (!input.IsValid())
+    {
+        return Fail("%s: Operation has invalid input", __func__);
+    }
+
+    const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
+    if (!output)
+    {
+        return Fail("%s: Operation has invalid output", __func__);
+    }
+
+    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+    if (IsDynamicTensor(outputInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported", __func__);
+    }
+
+    int32_t axis;
+    if (!GetInputScalar<HalPolicy>(operation, 1, HalOperandType::INT32, axis, model, data))
+    {
+        return Fail("%s: failed to get axis input value", __func__);
+    }
+
+    TensorShape targetShape;
+
+    try
+    {
+        targetShape = armnnUtils::ExpandDims(input.GetTensorInfo().GetShape(), axis);
+    }
+    catch (const std::exception& e)
+    {
+        return Fail("%s: %s", __func__, e.what());
+    }
+
+    if (targetShape != outputInfo.GetShape())
+    {
+        return Fail("%s: Shape of the output operand does not match the resolved expanded shape", __func__);
+    }
+
+    ReshapeDescriptor reshapeDescriptor;
+    reshapeDescriptor.m_TargetShape = targetShape;
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsReshapeSupported,
+                               data.m_Backends,
+                               isSupported,
+                               input.GetTensorInfo(),
+                               outputInfo,
+                               reshapeDescriptor);
+
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* layer = data.m_Network->AddReshapeLayer(reshapeDescriptor);
+    assert(layer != nullptr);
+    input.Connect(layer->GetInputSlot(0));
+
+    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data);
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertGroupedConv2d(const HalOperation& operation, const HalModel& model, ConversionData& data)
+{
+    using HalOperand     = typename HalPolicy::Operand;
+    using HalOperandType = typename HalPolicy::OperandType;
+
+    ALOGV("HalPolicy::ConvertGroupedConv2d()");
+
+    //
+    // Parse data
+    //
+    LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+    if (!input.IsValid())
+    {
+        return Fail("%s: Operation has invalid inputs", __func__);
+    }
+    const TensorInfo& inputInfo  = input.GetTensorInfo();
+
+    const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
+    if (!output)
+    {
+        return Fail("%s: Could not read output 0", __func__);
+    }
+    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+    if (IsDynamicTensor(outputInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported", __func__);
+    }
+
+    // Look ahead to determine data layout
+    DataLayout dataLayout = DataLayout::NHWC;
+    if (operation.inputs.size() == 12)
+    {
+        dataLayout = OptionalDataLayout<HalPolicy>(operation, 11, model, data);
+    }
+    else
+    {
+        dataLayout = OptionalDataLayout<HalPolicy>(operation, 8, model, data);
+    }
+
+    // NOTE:
+    // NNAPI weights are always OHWI, i.e. [depth_out, filter_height, filter_width, depth_group],
+    // but Arm NN expects the filter's height and width indices to match the input's height and
+    // width indices so when the DataLayout is NCHW, we need to permute the weights to OIHW
+    const PermutationVector ohwiToOihw = { 0u, 2u, 3u, 1u };
+    const ConstTensorPin weightsPin = (dataLayout == DataLayout::NCHW) ?
+                                      ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 1,
+                                                                                       model, data, ohwiToOihw) :
+                                      ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 1, model, data);
+    const ConstTensorPin biasesPin  =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 2, model, data);
+    if (!weightsPin.IsValid() || !biasesPin.IsValid())
+    {
+        return Fail("%s: Operation has invalid inputs", __func__);
+    }
+
+    ConstTensor weights = weightsPin.GetConstTensor();
+    ConstTensor biases  = biasesPin.GetConstTensor();
+    SanitizeBiasQuantizationScale(biases.GetInfo(), weights.GetInfo(), inputInfo);
+
+    const TensorShape& inputShape   = inputInfo.GetShape();
+    const TensorShape& outputShape  = outputInfo.GetShape();
+    const TensorShape& weightsShape = weights.GetShape();
+    const TensorShape& biasesShape  = biases.GetShape();
+
+    armnnUtils::DataLayoutIndexed dataLayoutIndexed(dataLayout);
+    const unsigned int channelsIndex = dataLayoutIndexed.GetChannelsIndex();
+    const unsigned int heightIndex   = dataLayoutIndexed.GetHeightIndex();
+    const unsigned int widthIndex    = dataLayoutIndexed.GetWidthIndex();
+
+    Convolution2dDescriptor desc;
+    desc.m_DataLayout  = dataLayout;
+    desc.m_BiasEnabled = true;
+
+    int numGroups;
+    ActivationFn activation;
+
+    if (operation.inputs.size() == 12)
+    {
+        if (!GetInputScalar<HalPolicy>(operation, 3, HalOperandType::INT32, desc.m_PadLeft, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 4, HalOperandType::INT32, desc.m_PadRight, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 5, HalOperandType::INT32, desc.m_PadTop, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 6, HalOperandType::INT32, desc.m_PadBottom, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 7, HalOperandType::INT32, desc.m_StrideX, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 8, HalOperandType::INT32, desc.m_StrideY, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 9, HalOperandType::INT32, numGroups, model, data) ||
+            !GetInputActivationFunction<HalPolicy>(operation, 10, activation, model, data))
+        {
+            return Fail("%s: Operation has invalid inputs (explicit padding)", __func__);
+        }
+
+    }
+    else if (operation.inputs.size() == 9)
+    {
+        android::nn::PaddingScheme paddingScheme;
+        if (!GetInputPaddingScheme<HalPolicy>(operation, 3, paddingScheme, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 4, HalOperandType::INT32, desc.m_StrideX, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 5, HalOperandType::INT32, desc.m_StrideY, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 6, HalOperandType::INT32, numGroups, model, data) ||
+            !GetInputActivationFunction<HalPolicy>(operation, 7, activation, model, data))
+        {
+            return Fail("%s: Operation has invalid inputs (implicit padding)", __func__);
+        }
+
+        const uint32_t inputX = inputInfo.GetShape()[widthIndex];
+        const uint32_t inputY = inputInfo.GetShape()[heightIndex];
+
+        const uint32_t kernelX = weightsShape[widthIndex];
+        const uint32_t kernelY = weightsShape[heightIndex];
+
+        CalcPadding(inputX, kernelX, desc.m_StrideX, desc.m_PadLeft, desc.m_PadRight, paddingScheme);
+        CalcPadding(inputY, kernelY, desc.m_StrideY, desc.m_PadTop, desc.m_PadBottom, paddingScheme);
+    }
+    else
+    {
+        return Fail("%s: Unsupported number of operation inputs", __func__);
+    }
+
+    const unsigned int outputChannels = outputShape[channelsIndex];
+
+    const unsigned int channelsPerGroup  = weightsShape[channelsIndex];
+    const unsigned int channelMultiplier = outputChannels / numGroups;
+
+    //
+    // Validate all relevant inputs
+    //
+    if (numGroups <= 0)
+    {
+        return Fail("%s: Number of groups must be greater than 0. Got: %d", __func__, numGroups);
+    }
+
+    if (outputChannels % numGroups != 0u)
+    {
+        return Fail("%s: Output channels must be divisible by the number of groups", __func__);
+    }
+
+    //
+    // Set up Splitter layer
+    //
+    unsigned int splitterDimSizes[4] = { inputShape[0], inputShape[1], inputShape[2], inputShape[3] };
+    splitterDimSizes[channelsIndex] /= numGroups; // split in depth
+
+    TensorInfo splitterOutputInfo(4,
+                                  splitterDimSizes,
+                                  inputInfo.GetDataType(),
+                                  inputInfo.GetQuantizationScale(),
+                                  inputInfo.GetQuantizationOffset());
+
+    std::vector<std::reference_wrapper<TensorInfo>> splitterOutputInfos(numGroups, std::ref(splitterOutputInfo));
+
+    ViewsDescriptor splitterDesc(numGroups);
+    for (unsigned int group = 0u; group < numGroups; ++group)
+    {
+        splitterDesc.SetViewOriginCoord(group, channelsIndex, splitterDimSizes[channelsIndex] * group);
+        for (unsigned int dimIdx = 0u; dimIdx < 4u; dimIdx++)
+        {
+            splitterDesc.SetViewSize(group, dimIdx, splitterDimSizes[dimIdx]);
+        }
+    }
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsSplitterSupported,
+                               data.m_Backends,
+                               isSupported,
+                               inputInfo,
+                               splitterOutputInfos,
+                               splitterDesc);
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* splitterLayer = data.m_Network->AddSplitterLayer(splitterDesc);
+    if (!splitterLayer)
+    {
+        return Fail("%s: Failed to add SplitterLayer", __func__);
+    }
+
+    input.Connect(splitterLayer->GetInputSlot(0));
+    for (unsigned int group = 0u; group < splitterLayer->GetNumOutputSlots(); ++group)
+    {
+        splitterLayer->GetOutputSlot(group).SetTensorInfo(splitterOutputInfo);
+    }
+
+    //
+    // Set up Convolution2d layers for each group
+    //
+
+    // Set up group tensor shapes
+    TensorShape groupInputShape(inputShape);
+    groupInputShape[channelsIndex] = channelsPerGroup;
+
+    TensorShape groupOutputShape(outputShape);
+    groupOutputShape[channelsIndex] = 1;
+
+    TensorShape groupWeightsShape(weightsShape);
+    groupWeightsShape[0] /= channelMultiplier * numGroups;
+
+    TensorShape groupBiasesShape({ 1 });
+
+    // Set up group tensor infos
+    TensorInfo groupInputInfo(inputInfo);
+    groupInputInfo.SetShape(groupInputShape);
+
+    const TensorInfo& weightsInfo = weights.GetInfo();
+    TensorInfo groupWeightsInfo(weightsInfo);
+    groupWeightsInfo.SetShape(groupWeightsShape);
+
+    const TensorInfo& biasesInfo = biases.GetInfo();
+    TensorInfo groupBiasesInfo(biasesInfo);
+    groupBiasesInfo.SetShape(groupBiasesShape);
+
+    TensorInfo groupOutputInfo(outputInfo);
+    groupOutputInfo.SetShape(groupOutputShape);
+
+    const unsigned int weightsDataTypeSize = GetDataTypeSize(groupWeightsInfo.GetDataType());
+    const unsigned int biasesDataTypeSize  = GetDataTypeSize(groupBiasesInfo.GetDataType());
+
+    std::vector<IConnectableLayer*> convLayers(numGroups * channelMultiplier, nullptr);
+    for (unsigned int group = 0u; group < numGroups; ++group)
+    {
+        for (unsigned int m = 0u; m < channelMultiplier; ++m)
+        {
+            auto index = group * channelMultiplier + m;
+
+            const unsigned int weightsDataOffset = groupWeightsShape.GetNumElements() * index * weightsDataTypeSize;
+            const unsigned int biasesDataOffset = groupBiasesShape.GetNumElements() * index * biasesDataTypeSize;
+
+            if (weightsInfo.HasPerAxisQuantization())
+            {
+                // Extract per-axis quantization scales for group weights
+                const std::vector<float>& weightsQuantScales = weightsInfo.GetQuantizationScales();
+                groupWeightsInfo.SetQuantizationScales(
+                    std::vector<float>(weightsQuantScales.begin() + index,
+                                       weightsQuantScales.begin() + index + groupWeightsShape[0]));
+
+                // Extract per-axis quantization scales for group biases
+                const std::vector<float>& biasesQuantScales  = biasesInfo.GetQuantizationScales();
+                groupBiasesInfo.SetQuantizationScales(
+                    std::vector<float>(biasesQuantScales.begin() + index,
+                                       biasesQuantScales.begin() + index + groupWeightsShape[0]));
+            }
+
+            // Extract weights and biases data for current group convolution
+            ConstTensor groupWeights(groupWeightsInfo,
+                                     static_cast<const void *>(reinterpret_cast<const char *>(weights.GetMemoryArea()) +
+                                                               weightsDataOffset));
+            ConstTensor groupBiases(groupBiasesInfo,
+                                    static_cast<const void *>(reinterpret_cast<const char *>(biases.GetMemoryArea()) +
+                                                              biasesDataOffset));
+
+            isSupported = false;
+            FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                                       IsConvolution2dSupported,
+                                       data.m_Backends,
+                                       isSupported,
+                                       groupInputInfo,
+                                       groupOutputInfo,
+                                       desc,
+                                       groupWeightsInfo,
+                                       Optional<TensorInfo>(groupBiasesInfo));
+            if (!isSupported)
+            {
+                return false;
+            }
+
+            IConnectableLayer* convLayer =
+                data.m_Network->AddConvolution2dLayer(desc, groupWeights, Optional<ConstTensor>(groupBiases));
+            if (!convLayer)
+            {
+                return Fail("%s: AddConvolution2dLayer failed", __func__);
+            }
+
+            splitterLayer->GetOutputSlot(group).Connect(convLayer->GetInputSlot(0));
+            convLayer->GetOutputSlot(0).SetTensorInfo(groupOutputInfo);
+
+            convLayers[index] = convLayer;
+        }
+    }
+
+    //
+    // Set up Concat layer
+    //
+    ConcatDescriptor concatDescriptor(outputInfo.GetShape()[channelsIndex]);
+    for (unsigned int group = 0u; group < numGroups; ++group)
+    {
+        for (unsigned int m = 0u; m < channelMultiplier; ++m)
+        {
+            auto index = group * channelMultiplier + m;
+            concatDescriptor.SetViewOriginCoord(index, channelsIndex, index);
+            concatDescriptor.SetConcatAxis(channelsIndex);
+        }
+    }
+
+    isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsConcatSupported,
+                               data.m_Backends,
+                               isSupported,
+                               std::vector<const TensorInfo*>(numGroups * channelMultiplier, &groupOutputInfo),
+                               outputInfo,
+                               concatDescriptor);
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* concatLayer = data.m_Network->AddConcatLayer(concatDescriptor);
+    if (!concatLayer)
+    {
+        return Fail("%s: AddConcatLayer failed", __func__);
+    }
+
+    for (unsigned int group = 0u; group < numGroups; ++group)
+    {
+        for (unsigned int m = 0u; m < channelMultiplier; ++m)
+        {
+            auto index = group * channelMultiplier + m;
+            convLayers[index]->GetOutputSlot(0).Connect(concatLayer->GetInputSlot(index));
+        }
+    }
+    concatLayer->GetOutputSlot(0).SetTensorInfo(outputInfo);
+
+    //
+    // Set up Activation layer (if it is set)
+    //
+    IConnectableLayer* endLayer = ProcessActivation(outputInfo, activation, concatLayer, data);
+    if (!endLayer)
+    {
+        return Fail("%s: ProcessActivation failed", __func__);
+    }
+
+    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *endLayer, model, data);
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertInstanceNormalization(const HalOperation& operation, const HalModel& model, ConversionData& data)
+{
+    using HalOperand     = typename HalPolicy::Operand;
+    using HalOperandType = typename HalPolicy::OperandType;
+
+    ALOGV("HalPolicy::ConvertInstanceNormalization()");
+
+    LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+    if (!input.IsValid())
+    {
+        return Fail("%s: Operation has an invalid input 0", __func__);
+    }
+
+    const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
+    if (!output)
+    {
+        return Fail("%s: Operation has an invalid output", __func__);
+    }
+
+    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+    if (IsDynamicTensor(outputInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported", __func__);
+    }
+
+    // Determine data type of input tensor
+    HalOperandType inputType;
+    if (!GetOperandType<HalPolicy>(operation, 0, model, inputType))
+    {
+        return Fail("%s: Operation has invalid inputs", __func__);
+    }
+
+    InstanceNormalizationDescriptor desc;
+
+    // Read gamma, beta & epsilon
+    if (inputType == HalOperandType::TENSOR_FLOAT16)
+    {
+        Half fp16Gamma;
+        Half fp16Beta;
+        Half fp16Epsilon;
+
+        if (!GetInputScalar<HalPolicy>(operation, 1, HalOperandType::FLOAT16, fp16Gamma, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 2, HalOperandType::FLOAT16, fp16Beta, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 3, HalOperandType::FLOAT16, fp16Epsilon, model, data))
+        {
+            return Fail("%s: Operation has invalid inputs (FLOAT16)", __func__);
+        }
+
+        desc.m_Gamma = static_cast<float>(fp16Gamma);
+        desc.m_Beta  = static_cast<float>(fp16Beta);
+        desc.m_Eps   = static_cast<float>(fp16Epsilon);
+    }
+    else if (inputType == HalOperandType::TENSOR_FLOAT32)
+    {
+        if (!GetInputScalar<HalPolicy>(operation, 1, HalOperandType::FLOAT32, desc.m_Gamma, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 2, HalOperandType::FLOAT32, desc.m_Beta, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 3, HalOperandType::FLOAT32, desc.m_Eps, model, data))
+        {
+            return Fail("%s: Operation has invalid inputs (FLOAT32)", __func__);
+        }
+    }
+    else
+    {
+        return Fail("%s: Unsupported input tensor type: %d", __func__, inputType);
+    }
+
+    desc.m_DataLayout = OptionalDataLayout<HalPolicy>(operation, 4, model, data);
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsInstanceNormalizationSupported,
+                               data.m_Backends,
+                               isSupported,
+                               input.GetTensorInfo(),
+                               outputInfo,
+                               desc);
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* layer = data.m_Network->AddInstanceNormalizationLayer(desc);
+    input.Connect(layer->GetInputSlot(0));
+
+    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data);
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertLogSoftmax(const HalOperation& operation, const HalModel& model, ConversionData& data)
+{
+    using HalOperand     = typename HalPolicy::Operand;
+    using HalOperandType = typename HalPolicy::OperandType;
+
+    ALOGV("HalPolicy::ConvertLogSoftmax()");
+
+    LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+    if (!input.IsValid())
+    {
+        return Fail("%s: Failed to read input 0", __func__);
+    }
+
+    const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
+    if (!output)
+    {
+        return Fail("%s: Failed to read output", __func__);
+    }
+
+    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+    if (IsDynamicTensor(outputInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported", __func__);
+    }
+
+    // Determine data type of input tensor
+    HalOperandType inputType;
+    if (!GetOperandType<HalPolicy>(operation, 0, model, inputType))
+    {
+        return Fail("%s: Operation has invalid inputs", __func__);
+    }
+
+    LogSoftmaxDescriptor descriptor;
+
+    // Read beta
+    if (inputType == HalOperandType::TENSOR_FLOAT16)
+    {
+        Half fp16Beta;
+        if (!GetInputScalar<HalPolicy>(operation, 1, HalOperandType::FLOAT16, fp16Beta, model, data))
+        {
+            return Fail("%s: Failed to read input 1 (FLOAT16)", __func__);
+        }
+
+        descriptor.m_Beta  = static_cast<float>(fp16Beta);
+    }
+    else if (inputType == HalOperandType::TENSOR_FLOAT32)
+    {
+        if (!GetInputScalar<HalPolicy>(operation, 1, HalOperandType::FLOAT32, descriptor.m_Beta, model, data))
+        {
+            return Fail("%s: Failed to read input 1 (FLOAT32)", __func__);
+        }
+    }
+    else
+    {
+        return Fail("%s: Unsupported input tensor type: %d", __func__, inputType);
+    }
+
+    // Read axis
+    if (!GetInputInt32<HalPolicy>(operation, 2, descriptor.m_Axis, model, data))
+    {
+        return Fail("%s: Failed to read input 2", __func__);
+    }
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsLogSoftmaxSupported,
+                               data.m_Backends,
+                               isSupported,
+                               input.GetTensorInfo(),
+                               outputInfo,
+                               descriptor);
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* layer = data.m_Network->AddLogSoftmaxLayer(descriptor);
+    if (!layer)
+    {
+        return Fail("%s: AddLogSoftmaxLayer() returned nullptr", __func__);
+    }
+
+    input.Connect(layer->GetInputSlot(0));
+
+    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data);
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertMaximum(const HalOperation& operation, const HalModel& model, ConversionData& data)
+{
+    using HalOperand = typename HalPolicy::Operand;
+
+    ALOGV("HalPolicy::ConvertMaximum()");
+
+    LayerInputHandle input0 = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+    LayerInputHandle input1 = ConvertToLayerInputHandle<HalPolicy>(operation, 1, model, data);
+
+    if (!input0.IsValid() || !input1.IsValid())
+    {
+        return Fail("%s: Operation has invalid inputs", __func__);
+    }
+
+    const HalOperand* outputOperand = GetOutputOperand<HalPolicy>(operation, 0, model);
+    if (!outputOperand)
+    {
+        return Fail("%s: Could not read output", __func__);
+    }
+
+    const TensorInfo& outInfo = GetTensorInfoForOperand(*outputOperand);
+    if (IsDynamicTensor(outInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported", __func__);
+    }
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsMaximumSupported,
+                               data.m_Backends,
+                               isSupported,
+                               input0.GetTensorInfo(),
+                               input1.GetTensorInfo(),
+                               outInfo);
+
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* layer = data.m_Network->AddMaximumLayer();
+    assert(layer != nullptr);
+    bool isReshapeSupported = BroadcastTensor(input0, input1, layer, data);
+    if (!isReshapeSupported)
+    {
+        return false;
+    }
+
+    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data);
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertMinimum(const HalOperation& operation, const HalModel& model, ConversionData& data)
+{
+    using HalOperand = typename HalPolicy::Operand;
+
+    ALOGV("HalPolicy::ConvertMinimum()");
+
+    LayerInputHandle input0 = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+    LayerInputHandle input1 = ConvertToLayerInputHandle<HalPolicy>(operation, 1, model, data);
+
+    if (!input0.IsValid() || !input1.IsValid())
+    {
+        return Fail("%s: Operation has invalid inputs", __func__);
+    }
+
+    const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
+    if (!output)
+    {
+        return Fail("%s: Could not read output 0", __func__);
+    }
+
+    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+    if (IsDynamicTensor(outputInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported", __func__);
+    }
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsMinimumSupported,
+                               data.m_Backends,
+                               isSupported,
+                               input0.GetTensorInfo(),
+                               input1.GetTensorInfo(),
+                               outputInfo);
+
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* const layer = data.m_Network->AddMinimumLayer();
+    assert(layer != nullptr);
+    bool isReshapeSupported = BroadcastTensor(input0, input1, layer, data);
+    if (!isReshapeSupported)
+    {
+        return false;
+    }
+
+    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data);
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertPadV2(const HalOperation& operation, const HalModel& model, ConversionData& data)
+{
+    using HalOperand     = typename HalPolicy::Operand;
+    using HalOperandType = typename HalPolicy::OperandType;
+
+    ALOGV("HalPolicy::ConvertPadV2()");
+
+    LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+    if (!input.IsValid())
+    {
+        return Fail("%s: Could not read input 0", __func__);
+    }
+
+    const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
+    if (!output)
+    {
+        return Fail("%s: Could not read output", __func__);
+    }
+
+    const TensorInfo& inputInfo  = input.GetTensorInfo();
+    unsigned int rank = inputInfo.GetNumDimensions();
+
+    PadDescriptor descriptor;
+    if (!ConvertPaddings<HalPolicy>(operation, model, data, rank, descriptor))
+    {
+        return Fail("%s: Could not convert paddings", __func__);
+    }
+
+    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+    if (IsDynamicTensor(outputInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported", __func__);
+    }
+
+    // Determine type of padding value
+    HalOperandType operandType0;
+    HalOperandType operandType2;
+
+    if (!GetOperandType<HalPolicy>(operation, 0, model, operandType0) ||
+        !GetOperandType<HalPolicy>(operation, 2, model, operandType2))
+    {
+        return Fail("%s: Operation has invalid inputs", __func__);
+    }
+
+    // Read value to use for padding
+    if (operandType0 == HalOperandType::TENSOR_FLOAT16 && operandType2 == HalOperandType::FLOAT16)
+    {
+        Half f16PadValue;
+        if (!GetInputScalar<HalPolicy>(operation, 2, operandType2, f16PadValue, model, data))
+        {
+            return Fail("%s: Could not read input 2 (FLOAT16)", __func__);
+        }
+
+        descriptor.m_PadValue = f16PadValue;
+    }
+    else if (operandType0 == HalOperandType::TENSOR_FLOAT32 && operandType2 == HalOperandType::FLOAT32)
+    {
+        if (!GetInputFloat32<HalPolicy>(operation, 2, descriptor.m_PadValue, model, data))
+        {
+            return Fail("%s: Could not read input 2 (FLOAT32)", __func__);
+        }
+    }
+    else if (operandType0 == HalOperandType::TENSOR_QUANT8_ASYMM && operandType2 == HalOperandType::INT32)
+    {
+        int32_t intPadValue = 0;
+        if (!GetInputInt32<HalPolicy>(operation, 2, intPadValue, model, data))
+        {
+            return Fail("%s: Could not read input 2 (INT32)", __func__);
+        }
+        descriptor.m_PadValue = intPadValue;
+    }
+    else
+    {
+        return Fail("%s: Operation has invalid inputs: type mismatch", __func__);
+    }
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsPadSupported,
+                               data.m_Backends,
+                               isSupported,
+                               inputInfo,
+                               outputInfo,
+                               descriptor);
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* const layer = data.m_Network->AddPadLayer(descriptor);
+    assert(layer != nullptr);
+    input.Connect(layer->GetInputSlot(0));
+    layer->GetOutputSlot(0).SetTensorInfo(outputInfo);
+
+    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data);
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertPrelu(const HalOperation& operation, const HalModel& model, ConversionData& data)
+{
+    using HalOperand = typename HalPolicy::Operand;
+
+    ALOGV("HalPolicy::ConvertPrelu()");
+
+    LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+    LayerInputHandle alpha = ConvertToLayerInputHandle<HalPolicy>(operation, 1, model, data);
+
+    if (!input.IsValid() || !alpha.IsValid())
+    {
+        return Fail("%s: Operation has invalid inputs", __func__);
+    }
+
+    const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
+
+    if (!output)
+    {
+        return Fail("%s: Could not read output", __func__);
+    }
+
+    const TensorInfo& inputInfo  = input.GetTensorInfo();
+    const TensorInfo& alphaInfo  = alpha.GetTensorInfo();
+    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+
+    if (IsDynamicTensor(outputInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported", __func__);
+    }
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsPreluSupported,
+                               data.m_Backends,
+                               isSupported,
+                               inputInfo,
+                               alphaInfo,
+                               outputInfo);
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* const layer = data.m_Network->AddPreluLayer();
+
+    if (!layer)
+    {
+        return Fail("%s: AddPreluLayer failed", __func__);
+    }
+
+    bool isReshapeSupported = BroadcastTensor(input, alpha, layer, data);
+    if (!isReshapeSupported)
+    {
+        return false;
+    }
+
+    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data);
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertQuantize(const HalOperation& operation, const HalModel& model, ConversionData& data)
+{
+    using HalOperand = typename HalPolicy::Operand;
+
+    ALOGV("HalPolicy::ConvertQuantize()");
+
+    LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+    if (!input.IsValid())
+    {
+        return Fail("%s: Operation has invalid input", __func__);
+    }
+
+    const HalOperand* const outputOperand = GetOutputOperand<HalPolicy>(operation, 0, model);
+    if (!outputOperand)
+    {
+        return Fail("%s: Operation has invalid outputs", __func__);
+    }
+
+    const TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand);
+    if (IsDynamicTensor(outputInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported", __func__);
+    }
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsQuantizeSupported,
+                               data.m_Backends,
+                               isSupported,
+                               input.GetTensorInfo(),
+                               outputInfo);
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* const layer = data.m_Network->AddQuantizeLayer();
+    assert(layer != nullptr);
+    input.Connect(layer->GetInputSlot(0));
+
+    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data);
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertQuantizedLstm(const HalOperation& operation, const HalModel& model, ConversionData& data)
+{
+    using HalOperand = typename HalPolicy::Operand;
+
+    ALOGV("HalPolicy::ConvertQuantizedLstm()");
+
+    //Inputs:
+    // 0: The input: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape [numBatches, inputSize]
+    //    specifying the input to the LSTM cell. Tensor is quantized with a fixed quantization range of -1, 127/128.
+    LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+    if (!input.IsValid())
+    {
+        return Fail("%s: Could not read input 0: input", __func__);
+    }
+
+    //13: The previous cell state: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT16_SYMM and shape
+    //    [numBatches, outputSize] specifying the cell state from the previous time step of the LSTM cell.
+    //    It is quantized using a quantization range of -2^4, 2^4 * 32767/32768.
+    LayerInputHandle previousCellStateIn = ConvertToLayerInputHandle<HalPolicy>(operation, 13, model, data);
+    if (!previousCellStateIn.IsValid())
+    {
+        return Fail("%s: Could not read input 13: previousCellStateIn", __func__);
+    }
+
+    // 14: The previous output state: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
+    //     [numBathes, outputSize] specifying the output of the LSTM cell from previous time-step. Tensor
+    //     is quantized with a fixed quantization range of -1, 127/128.
+    LayerInputHandle previousOutputIn = ConvertToLayerInputHandle<HalPolicy>(operation, 14, model, data);
+    if (!previousOutputIn.IsValid())
+    {
+        return Fail("%s: Could not read input 14: previousOutputIn", __func__);
+    }
+
+    // Get the input tensors:
+    // 1: The input-to-input weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
+    //    [outputSize, inputSize] specifying input-to-input part of weights for fully-connected layer inside the
+    //    LSTM cell. Quantization zero point and scale must be the same across all the weights.
+    const ConstTensorPin inputToInputWeightsPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 1, model, data);
+
+    // 2: The input-to-forget weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
+    //    [outputSize, inputSize] specifying input-to-forget part of weights for fully-connected layer inside the
+    //    LSTM cell. Quantization zero point and scale must be the same across all the weights.
+    const ConstTensorPin inputToForgetWeightsPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 2, model, data);
+
+    // 3: The input-to-cell weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
+    //    [outputSize, inputSize] specifying input-to-cell part of weights for fully-connected layer inside the
+    //    LSTM cell. Quantization zero point and scale must be the same across all the weights.
+    const ConstTensorPin inputToCellWeightsPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 3, model, data);
+
+    // 4: The input-to-output weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
+    //    [outputSize, inputSize] specifying input-to-output part of weights for fully-connected layer inside the
+    //    LSTM cell. Quantization zero point and scale must be the same across all the weights.
+    const ConstTensorPin inputToOutputWeightsPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 4, model, data);
+
+    // 5: The recurrent-to-input weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
+    //    [outputSize, outputSize] specifying recurrent-to-input part of weights for fully-connected layer inside
+    //    the LSTM cell. Quantization zero point and scale must be the same across all the weights.
+    const ConstTensorPin recurrentToInputWeightsPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 5, model, data);
+
+    // 6: The recurrent-to-forget weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
+    //    [outputSize, outputSize] specifying recurrent-to-forget part of weights for fully-connected layer inside
+    //    the LSTM cell. Quantization zero point and scale must be the same across all the weights.
+    const ConstTensorPin recurrentToForgetWeightsPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 6, model, data);
+
+    // 7: The recurrent-to-cell weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
+    //    [outputSize, outputSize] specifying recurrent-to-cell part of weights for fully-connected layer inside
+    //    the LSTM cell. Quantization zero point and scale must be the same across all the weights.
+    const ConstTensorPin recurrentToCellWeightsPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 7, model, data);
+
+    // 8: The recurrent-to-output weights. A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape
+    //    [outputSize, outputSize] specifying recurrent-to-output part of weights for fully-connected layer inside
+    //    the LSTM cell. Quantization zero point and scale must be the same across all the weights.
+    const ConstTensorPin recurrentToOutputWeightsPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 8, model, data);
+
+    // 9: The input gate bias. A 1-D tensor of type ANEURALNETWORKS_TENSOR_INT32 and shape [outputSize] specifying the
+    //    bias for the fully-connected layer inside the LSTM cell. Bias is quantized with scale being a product
+    //    of input and weights scales and zeroPoint equal to 0.
+    const ConstTensorPin inputGateBiasPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 9, model, data);
+
+    // 10: The forget gate bias. A 1-D tensor of type ANEURALNETWORKS_TENSOR_INT32 and shape [outputSize] specifying
+    //     the bias for the fully-connected layer inside the LSTM cell. Bias is quantized with scale being a product
+    //     of input and weights scales and zeroPoint equal to 0.
+    const ConstTensorPin forgetGateBiasPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 10, model, data);
+
+    // 11:The cell bias. A 1-D tensor of type ANEURALNETWORKS_TENSOR_INT32 and shape [outputSize] specifying the bias
+    //    for the fully-connected layer inside the LSTM cell. Bias is quantized with scale being a product of input
+    //    and weights scales and zeroPoint equal to 0.
+    const ConstTensorPin cellBiasPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 11, model, data);
+
+    // 12:The output gate bias. A 1-D tensor of type ANEURALNETWORKS_TENSOR_INT32 and shape [outputSize] specifying
+    //    the bias for the fully-connected layer inside the LSTM cell. Bias is quantized with scale being a product
+    //    of input and weights scales and zeroPoint equal to 0.
+    const ConstTensorPin outputGateBiasPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 12, model, data);
+
+    if (!inputToInputWeightsPin.IsValid() ||
+        !inputToForgetWeightsPin.IsValid() ||
+        !inputToCellWeightsPin.IsValid() ||
+        !inputToOutputWeightsPin.IsValid() ||
+        !recurrentToInputWeightsPin.IsValid() ||
+        !recurrentToForgetWeightsPin.IsValid() ||
+        !recurrentToCellWeightsPin.IsValid() ||
+        !recurrentToOutputWeightsPin.IsValid() ||
+        !inputGateBiasPin.IsValid() ||
+        !forgetGateBiasPin.IsValid() ||
+        !cellBiasPin.IsValid() ||
+        !outputGateBiasPin.IsValid())
+    {
+        return Fail("%s: Operation has invalid tensor inputs", __func__);
+    }
+
+    // Outputs:
+    // 0: The cell state: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT16_SYMM and shape [numBatches, outputSize]
+    //    which contains a cell state from the current time step. Tensor is quantized using a quantization range
+    //    of -2^4, 2^4 * 32767/32768.
+    const HalOperand* cellStateOut = GetOutputOperand<HalPolicy>(operation, 0, model);
+    if (!cellStateOut)
+    {
+        return Fail("%s: Could not read output 0: cellStateOut", __func__);
+    }
+
+    // 1: The output: A 2-D tensor of type ANEURALNETWORKS_TENSOR_QUANT8_ASYMM and shape [numBathes, outputSize] which
+    //      contains the output value. Tensor is quantized with a fixed quantization range of -1, 127/128.
+    const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 1, model);
+    if (!output)
+    {
+        return Fail("%s: Could not read output 1: output", __func__);
+    }
+
+    // Inputs
+    const TensorInfo& inputInfo               = input.GetTensorInfo();
+    const TensorInfo& previousCellStateInInfo = previousCellStateIn.GetTensorInfo();
+    const TensorInfo& previousOutputInInfo    = previousOutputIn.GetTensorInfo();
+
+    // Outputs
+    const TensorInfo& cellStateOutInfo = GetTensorInfoForOperand(*cellStateOut);
+    const TensorInfo& outputInfo       = GetTensorInfoForOperand(*output);
+
+    // Dynamic tensors currently not supported
+    if (IsDynamicTensor(cellStateOutInfo) || IsDynamicTensor(outputInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported", __func__);
+    }
+
+    QuantizedLstmInputParams params;
+
+    params.m_InputToInputWeights      = inputToInputWeightsPin.GetConstTensorPtr();
+    params.m_InputToForgetWeights     = inputToForgetWeightsPin.GetConstTensorPtr();
+    params.m_InputToCellWeights       = inputToCellWeightsPin.GetConstTensorPtr();
+    params.m_InputToOutputWeights     = inputToOutputWeightsPin.GetConstTensorPtr();
+    params.m_RecurrentToInputWeights  = recurrentToInputWeightsPin.GetConstTensorPtr();
+    params.m_RecurrentToForgetWeights = recurrentToForgetWeightsPin.GetConstTensorPtr();
+    params.m_RecurrentToCellWeights   = recurrentToCellWeightsPin.GetConstTensorPtr();
+    params.m_RecurrentToOutputWeights = recurrentToOutputWeightsPin.GetConstTensorPtr();
+    params.m_InputGateBias            = inputGateBiasPin.GetConstTensorPtr();
+    params.m_ForgetGateBias           = forgetGateBiasPin.GetConstTensorPtr();
+    params.m_CellBias                 = cellBiasPin.GetConstTensorPtr();
+    params.m_OutputGateBias           = outputGateBiasPin.GetConstTensorPtr();
+
+    QuantizedLstmInputParamsInfo paramsInfo;
+    paramsInfo.m_InputToInputWeights      = &(params.m_InputToInputWeights->GetInfo());
+    paramsInfo.m_InputToForgetWeights     = &(params.m_InputToForgetWeights->GetInfo());
+    paramsInfo.m_InputToCellWeights       = &(params.m_InputToCellWeights->GetInfo());
+    paramsInfo.m_InputToOutputWeights     = &(params.m_InputToOutputWeights->GetInfo());
+    paramsInfo.m_RecurrentToInputWeights  = &(params.m_RecurrentToInputWeights->GetInfo());
+    paramsInfo.m_RecurrentToForgetWeights = &(params.m_RecurrentToForgetWeights->GetInfo());
+    paramsInfo.m_RecurrentToCellWeights   = &(params.m_RecurrentToCellWeights->GetInfo());
+    paramsInfo.m_RecurrentToOutputWeights = &(params.m_RecurrentToOutputWeights->GetInfo());
+    paramsInfo.m_InputGateBias            = &(params.m_InputGateBias->GetInfo());
+    paramsInfo.m_ForgetGateBias           = &(params.m_ForgetGateBias->GetInfo());
+    paramsInfo.m_CellBias                 = &(params.m_CellBias->GetInfo());
+    paramsInfo.m_OutputGateBias           = &(params.m_OutputGateBias->GetInfo());
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsQuantizedLstmSupported,
+                               data.m_Backends,
+                               isSupported,
+                               inputInfo,
+                               previousCellStateInInfo,
+                               previousOutputInInfo,
+                               cellStateOutInfo,
+                               outputInfo,
+                               paramsInfo);
+
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* const layer = data.m_Network->AddQuantizedLstmLayer(params, "QuantizedLstm");
+    input.Connect(layer->GetInputSlot(0));
+    previousCellStateIn.Connect(layer->GetInputSlot(1));
+    previousOutputIn.Connect(layer->GetInputSlot(2));
+
+    return (SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, 0, model, data) &&
+            SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 1, *layer, 1, model, data));
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertResize(const HalOperation& operation,
+                   const HalModel& model,
+                   ConversionData& data,
+                   ResizeMethod resizeMethod)
+{
+    using HalOperand     = typename HalPolicy::Operand;
+    using HalOperandType = typename HalPolicy::OperandType;
+    ALOGV("HalPolicy::ConvertResize()");
+    ALOGV("resizeMethod = %s", GetResizeMethodAsCString(resizeMethod));
+
+    LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+    if (!input.IsValid())
+    {
+        return Fail("%s: Could not read input 0", __func__);
+    }
+
+    const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
+    if (!output)
+    {
+        return Fail("%s: Could not read output 0", __func__);
+    }
+
+    const TensorInfo& inputInfo  = input.GetTensorInfo();
+    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+
+    if (IsDynamicTensor(outputInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported", __func__);
+    }
+
+    ResizeDescriptor descriptor;
+    descriptor.m_Method     = resizeMethod;
+    descriptor.m_DataLayout = OptionalDataLayout<HalPolicy>(operation, 3, model, data);
+
+    HalOperandType operandType1;
+    HalOperandType operandType2;
+
+    if (!GetOperandType<HalPolicy>(operation, 1, model, operandType1) ||
+        !GetOperandType<HalPolicy>(operation, 2, model, operandType2))
+    {
+        return Fail("%s: Operation has invalid inputs", __func__);
+    }
+
+    if (operandType1 != operandType2)
+    {
+        return Fail("%s: Operation has invalid inputs. Type of input 1 and 2 should be the same", __func__);
+    }
+
+    if (operandType1 == HalOperandType::INT32)
+    {
+        // Case 1: resizing by shape
+        int32_t targetWidth  = 0;
+        int32_t targetHeight = 0;
+
+        if (!GetInputInt32<HalPolicy>(operation, 1, targetWidth, model, data) ||
+            !GetInputInt32<HalPolicy>(operation, 2, targetHeight, model, data))
+        {
+            return Fail("%s: Operation has invalid inputs for resizing by shape", __func__);
+        }
+
+        if (targetWidth < 0 || targetHeight < 0)
+        {
+            return Fail("%s: Operation has invalid inputs for resizing by shape. "
+                        "Target width/height cannot be < 0", __func__);
+        }
+
+        descriptor.m_TargetWidth = static_cast<uint32_t>(targetWidth);
+        descriptor.m_TargetHeight = static_cast<uint32_t>(targetHeight);
+    }
+    else if (operandType1 == HalOperandType::FLOAT32)
+    {
+        // Case 2: resizing by scale
+        float widthScale  = 1.0f;
+        float heightScale = 1.0f;
+
+        if (!GetInputFloat32<HalPolicy>(operation, 1, widthScale, model, data) ||
+            !GetInputFloat32<HalPolicy>(operation, 2, heightScale, model, data))
+        {
+            return Fail("%s: Operation has invalid inputs for resizing by scale", __func__);
+        }
+
+        const TensorShape& inputShape = inputInfo.GetShape();
+        armnnUtils::DataLayoutIndexed dataLayoutIndexed(descriptor.m_DataLayout);
+
+        float width  = inputShape[dataLayoutIndexed.GetWidthIndex()];
+        float height = inputShape[dataLayoutIndexed.GetHeightIndex()];
+
+        descriptor.m_TargetWidth  = std::floor(width  * widthScale);
+        descriptor.m_TargetHeight = std::floor(height * heightScale);
+    }
+    else if (operandType1 == HalOperandType::FLOAT16)
+    {
+        Half widthScale;
+        Half heightScale;
+
+        if (!GetInputScalar<HalPolicy>(operation, 1, HalOperandType::FLOAT16, widthScale, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 2, HalOperandType::FLOAT16, heightScale, model, data))
+        {
+            return Fail("%s: Operation has invalid inputs for resizing by scale", __func__);
+        }
+
+        const TensorShape& inputShape = inputInfo.GetShape();
+        armnnUtils::DataLayoutIndexed dataLayoutIndexed(descriptor.m_DataLayout);
+
+        Half width  = static_cast<Half>(inputShape[dataLayoutIndexed.GetWidthIndex()]);
+        Half height = static_cast<Half>(inputShape[dataLayoutIndexed.GetHeightIndex()]);
+
+        descriptor.m_TargetWidth  = std::floor(width  * widthScale);
+        descriptor.m_TargetHeight = std::floor(height * heightScale);
+    }
+    else
+    {
+        return Fail("%s: Operand has invalid data type for resizing by scale", __func__);
+    }
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsResizeSupported,
+                               data.m_Backends,
+                               isSupported,
+                               inputInfo,
+                               outputInfo,
+                               descriptor);
+
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* layer = data.m_Network->AddResizeLayer(descriptor);
+
+    assert(layer != nullptr);
+
+    input.Connect(layer->GetInputSlot(0));
+
+    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data);
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertSpaceToDepth(const HalOperation& operation, const HalModel& model, ConversionData& data)
+{
+    using HalOperand     = typename HalPolicy::Operand;
+    using HalOperandType = typename HalPolicy::OperandType;
+
+    ALOGV("HalPolicy::ConvertSpaceToDepth()");
+
+    LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+    if (!input.IsValid() )
+    {
+        return Fail("%s: Operation has invalid inputs", __func__);
+    }
+
+    const TensorInfo& inputInfo = input.GetTensorInfo();
+    unsigned int rank = inputInfo.GetNumDimensions();
+    if (rank != 4)
+    {
+        return Fail("%s: Only inputs with rank 4 are supported", __func__);
+    }
+
+    const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
+    if (!output)
+    {
+        return Fail("%s: Could not read output 0", __func__);
+    }
+
+    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+    if (IsDynamicTensor(outputInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported", __func__);
+    }
+
+    SpaceToDepthDescriptor desc;
+
+    GetInputScalar<HalPolicy>(operation, 1, HalOperandType::INT32, desc.m_BlockSize, model, data);
+
+    if (desc.m_BlockSize <= 1)
+    {
+        return Fail("%s: Block size must be at least 1 in all dimensions");
+    }
+
+    desc.m_DataLayout = OptionalDataLayout<HalPolicy>(operation, 2, model, data);
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsSpaceToDepthSupported,
+                               data.m_Backends,
+                               isSupported,
+                               inputInfo,
+                               outputInfo,
+                               desc);
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* const layer = data.m_Network->AddSpaceToDepthLayer(desc);
+    assert(layer != nullptr);
+    input.Connect(layer->GetInputSlot(0));
+
+    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data);
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertSoftmax(const HalOperation& operation, const HalModel& model, ConversionData& data)
+{
+    using HalOperand     = typename HalPolicy::Operand;
+    using HalOperandType = typename HalPolicy::OperandType;
+
+    ALOGV("HalPolicy::ConvertSoftmax()");
+
+    LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+    if (!input.IsValid())
+    {
+        return Fail("%s: Operation has invalid inputs", __func__);
+    }
+
+    const HalOperand* outputOperand = GetOutputOperand<HalPolicy>(operation, 0, model);
+    if (!outputOperand)
+    {
+        return Fail("%s: Operation has no outputs", __func__);
+    }
+
+    const TensorInfo& outputInfo = GetTensorInfoForOperand(*outputOperand);
+    if (IsDynamicTensor(outputInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported", __func__);
+    }
+
+    SoftmaxDescriptor desc;
+    if (!GetInputFloat32<HalPolicy>(operation, 1, desc.m_Beta, model, data))
+    {
+        return Fail("%s: Operation has invalid inputs", __func__);
+    }
+
+    if (operation.inputs.size() > 2 && !GetInputScalar<HalPolicy>(operation,
+                                                                           2,
+                                                                           HalOperandType::INT32,
+                                                                           desc.m_Axis,
+                                                                           model,
+                                                                           data))
+    {
+        return Fail("%s: Operation has invalid inputs", __func__);
+    }
+
+    if (input.GetTensorInfo().GetNumDimensions() > 2 ||
+        !(desc.m_Axis == 1 ||
+          (desc.m_Axis < 0 && static_cast<int>(input.GetTensorInfo().GetNumDimensions()) + desc.m_Axis == 1)))
+    {
+        return Fail("%s: Unsupported input greater than 2D or axis != 1", __func__);
+    }
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsSoftmaxSupported,
+                               data.m_Backends,
+                               isSupported,
+                               input.GetTensorInfo(),
+                               outputInfo,
+                               desc);
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* layer = data.m_Network->AddSoftmaxLayer(desc);
+    assert(layer != nullptr);
+    input.Connect(layer->GetInputSlot(0));
+
+    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *layer, model, data);
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertLstm(const HalOperation& operation, const HalModel& model, ConversionData& data)
+{
+    using HalOperand     = typename HalPolicy::Operand;
+    using HalOperandType = typename HalPolicy::OperandType;
+
+    ALOGV("HalPolicy::ConvertLstm()");
+
+    // Inputs:
+    // 00: The input: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, input_size], where
+    //      “batch_size” corresponds to the batching dimension, and “input_size” is the size of the input.
+    LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+    if (!input.IsValid())
+    {
+        return Fail("%s: Could not read input 0: input", __func__);
+    }
+    // 18: The output state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size].
+    LayerInputHandle outputStateIn = ConvertToLayerInputHandle<HalPolicy>(operation, 18, model, data);
+    if (!outputStateIn.IsValid())
+    {
+        return Fail("%s: Could not read input 18: outputStateIn", __func__);
+    }
+    // 19: The cell state: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units].
+    LayerInputHandle cellStateIn = ConvertToLayerInputHandle<HalPolicy>(operation, 19, model, data);
+    if (!cellStateIn.IsValid())
+    {
+        return Fail("%s: Could not read input 19: cellStateIn", __func__);
+    }
+
+    // Get the mandatory input tensors:
+    // 02: The input-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
+    //     [num_units, input_size].
+    const ConstTensorPin inputToForgetWeightsPin =
+        (DequantizeAndMakeConstTensorPin<HalPolicy>(operation, model, data, 2));
+    // 03: The input-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
+    // [num_units, input_size].
+    const ConstTensorPin inputToCellWeightsPin =
+        (DequantizeAndMakeConstTensorPin<HalPolicy>(operation, model, data, 3));
+    // 04: The input-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
+    //     [num_units, input_size].
+    const ConstTensorPin inputToOutputWeightsPin =
+        (DequantizeAndMakeConstTensorPin<HalPolicy>(operation, model, data, 4));
+    // 06: The recurrent-to-forget weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
+    //     [num_units, output_size].
+    const ConstTensorPin recurrentToForgetWeightsPin =
+        (DequantizeAndMakeConstTensorPin<HalPolicy>(operation, model, data, 6));
+    // 07: The recurrent-to-cell weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
+    //     [num_units, output_size].
+    const ConstTensorPin recurrentToCellWeightsPin =
+        (DequantizeAndMakeConstTensorPin<HalPolicy>(operation, model, data, 7));
+    // 08: The recurrent-to-output weights: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
+    //     [num_units, output_size].
+    const ConstTensorPin recurrentToOutputWeightsPin =
+        (DequantizeAndMakeConstTensorPin<HalPolicy>(operation, model, data, 8));
+    // 13: The forget gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
+    const ConstTensorPin forgetGateBiasPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 13, model, data);
+    // 14: The cell bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
+    const ConstTensorPin cellBiasPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 14, model, data);
+    // 15: The output gate bias: A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
+    const ConstTensorPin outputGateBiasPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 15, model, data);
+
+    if (!inputToForgetWeightsPin.IsValid() ||
+        !inputToCellWeightsPin.IsValid() ||
+        !inputToOutputWeightsPin.IsValid() ||
+        !recurrentToForgetWeightsPin.IsValid() ||
+        !recurrentToCellWeightsPin.IsValid() ||
+        !recurrentToOutputWeightsPin.IsValid() ||
+        !forgetGateBiasPin.IsValid() ||
+        !cellBiasPin.IsValid() ||
+        !outputGateBiasPin.IsValid())
+    {
+        return Fail("%s: Operation has invalid tensor inputs", __func__);
+    }
+
+    // Get the optional input tensors:
+    // 01: The input-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
+    //     [num_units, input_size], where “num_units” corresponds to the number of cell units.
+    const ConstTensorPin inputToInputWeightsPin =
+        (DequantizeAndMakeConstTensorPin<HalPolicy>(operation, model, data, 1, true));
+    // 05: The recurrent-to-input weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
+    //     [num_units, output_size], where “output_size” corresponds to either the number of cell units (i.e.,
+    //     “num_units”), or the second dimension of the “projection_weights”, if defined.
+    const ConstTensorPin recurrentToInputWeightsPin =
+        (DequantizeAndMakeConstTensorPin<HalPolicy>(operation, model, data, 5, true));
+    // 09: The cell-to-input weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
+    const ConstTensorPin cellToInputWeightsPin =
+        (DequantizeAndMakeConstTensorPin<HalPolicy>(operation, model, data, 9, true));
+    // 10: The cell-to-forget weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
+    const ConstTensorPin cellToForgetWeightsPin =
+        (DequantizeAndMakeConstTensorPin<HalPolicy>(operation, model, data, 10, true));
+    // 11: The cell-to-output weights: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
+    const ConstTensorPin cellToOutputWeightsPin =
+        (DequantizeAndMakeConstTensorPin<HalPolicy>(operation, model, data, 11, true));
+    // 12: The input gate bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [num_units].
+    const ConstTensorPin inputGateBiasPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation,
+                                                         12,
+                                                         model,
+                                                         data,
+                                                         g_DontPermute,
+                                                         nullptr,
+                                                         true);
+
+    // 16: The projection weights: Optional. A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape
+    //     [output_size, num_units].
+    const ConstTensorPin projectionWeightsPin =
+        (DequantizeAndMakeConstTensorPin<HalPolicy>(operation, model, data, 16, true));
+    // 17: The projection bias: Optional. A 1-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [output_size].
+    const ConstTensorPin projectionBiasPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation,
+                                                         17,
+                                                         model,
+                                                         data,
+                                                         g_DontPermute,
+                                                         nullptr,
+                                                         true);
+
+    if ((!inputToInputWeightsPin.IsValid() && !inputToInputWeightsPin.IsOptional()) ||
+        (!recurrentToInputWeightsPin.IsValid() && !recurrentToInputWeightsPin.IsOptional()) ||
+        (!cellToInputWeightsPin.IsValid() && !cellToInputWeightsPin.IsOptional()) ||
+        (!cellToForgetWeightsPin.IsValid() && !cellToForgetWeightsPin.IsOptional()) ||
+        (!cellToOutputWeightsPin.IsValid() && !cellToOutputWeightsPin.IsOptional()) ||
+        (!inputGateBiasPin.IsValid() && !inputGateBiasPin.IsOptional()) ||
+        (!projectionWeightsPin.IsValid() && !projectionWeightsPin.IsOptional()) ||
+        (!projectionBiasPin.IsValid() && !projectionBiasPin.IsOptional()))
+    {
+        return Fail("%s: Operation has invalid tensor inputs", __func__);
+    }
+
+    // Get the mandatory input scalars (actually 1-D tensors of size 1):
+    // 20: The activation function: A value indicating the activation function:
+    //     0: None; 1: Relu; 3: Relu6; 4: Tanh; 6: Sigmoid.
+    // 21: The clipping threshold: for the cell state, such that values are bound within [-cell_clip, cell_clip].
+    //     If set to 0.0 then clipping is disabled.
+    // 22: The clipping threshold: for the output from the projection layer, such that values are bound within
+    //     [-proj_clip, proj_clip]. If set to 0.0 then clipping is disabled.
+    ActivationFn activation;
+    float cellClip;
+    float projClip;
+    if (!GetInputActivationFunctionFromTensor<HalPolicy>(operation, 20, activation, model, data) ||
+        !GetInputScalar<HalPolicy>(operation, 21, HalOperandType::FLOAT32, cellClip, model, data) ||
+        !GetInputScalar<HalPolicy>(operation, 22, HalOperandType::FLOAT32, projClip, model, data))
+    {
+        return Fail("%s: Operation has invalid scalar inputs", __func__);
+    }
+
+    // Get the normalization tensors
+    // 23: The input layer normalization weights. A 1-D tensor of shape [num_units].
+    //     Used to rescale normalized inputs to activation at input gate.
+    const ConstTensorPin inputLayerNormWeightsPin
+        (DequantizeAndMakeConstTensorPin<HalPolicy>(operation, model, data, 23, true));
+
+    // 24: The forget layer normalization weights. A 1-D tensor of shape [num_units].
+    //     Used to rescale normalized inputs to activation at forget gate.
+    const ConstTensorPin forgetLayerNormWeightsPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation,
+                                                        24,
+                                                        model,
+                                                        data,
+                                                        g_DontPermute,
+                                                        nullptr,
+                                                        true);
+
+    // 25: The cell layer normalization weights. A 1-D tensor of shape [num_units].
+    //     Used to rescale normalized inputs to activation at cell gate.
+    const ConstTensorPin cellLayerNormWeightsPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation,
+                                                         25,
+                                                         model,
+                                                         data,
+                                                         g_DontPermute,
+                                                         nullptr,
+                                                         true);
+
+    // 26: The output layer normalization weights. A 1-D tensor of shape [num_units].
+    //     Used to rescale normalized inputs to activation at output gate.
+    const ConstTensorPin outputLayerNormWeightsPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation,
+                                                         26,
+                                                         model,
+                                                         data,
+                                                         g_DontPermute,
+                                                         nullptr,
+                                                         true);
+
+    // Outputs:
+    // 00: The scratch buffer: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units * 4]
+    // with CIFG, or [batch_size, num_units * 3] without CIFG.
+    const HalOperand* scratchBuffer = GetOutputOperand<HalPolicy>(operation, 0, model);
+    if (!scratchBuffer)
+    {
+        return Fail("%s: Could not read output 0: scratchBuffer", __func__);
+    }
+    // 01: The output state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size].
+    const HalOperand* outputStateOut = GetOutputOperand<HalPolicy>(operation, 1, model);
+    if (!outputStateOut)
+    {
+        return Fail("%s: Could not read output 1: outputStateOut", __func__);
+    }
+    // 02: The cell state (out): A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, num_units].
+    const HalOperand* cellStateOut = GetOutputOperand<HalPolicy>(operation, 2, model);
+    if (!cellStateOut)
+    {
+        return Fail("%s: Could not read output 2: cellStateOut", __func__);
+    }
+    // 03: The output: A 2-D tensor of ANEURALNETWORKS_TENSOR_FLOAT32, of shape [batch_size, output_size]. This is
+    //     effectively the same as the current “output state (out)” value.
+    const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 3, model);
+    if (!output)
+    {
+        return Fail("%s: Could not read output 3: output", __func__);
+    }
+
+    // set the params structure for the AddLstmLayer call
+    LstmInputParams params;
+    params.m_InputToInputWeights = inputToInputWeightsPin.GetConstTensorPtr();
+    params.m_InputToForgetWeights = inputToForgetWeightsPin.GetConstTensorPtr();
+    params.m_InputToCellWeights = inputToCellWeightsPin.GetConstTensorPtr();
+    params.m_InputToOutputWeights = inputToOutputWeightsPin.GetConstTensorPtr();
+    params.m_RecurrentToInputWeights = recurrentToInputWeightsPin.GetConstTensorPtr();
+    params.m_RecurrentToForgetWeights = recurrentToForgetWeightsPin.GetConstTensorPtr();
+    params.m_RecurrentToCellWeights = recurrentToCellWeightsPin.GetConstTensorPtr();
+    params.m_RecurrentToOutputWeights = recurrentToOutputWeightsPin.GetConstTensorPtr();
+    params.m_CellToInputWeights = cellToInputWeightsPin.GetConstTensorPtr();
+    params.m_CellToForgetWeights = cellToForgetWeightsPin.GetConstTensorPtr();
+    params.m_CellToOutputWeights = cellToOutputWeightsPin.GetConstTensorPtr();
+    params.m_InputGateBias = inputGateBiasPin.GetConstTensorPtr();
+    params.m_ForgetGateBias = forgetGateBiasPin.GetConstTensorPtr();
+    params.m_CellBias = cellBiasPin.GetConstTensorPtr();
+    params.m_OutputGateBias = outputGateBiasPin.GetConstTensorPtr();
+    params.m_ProjectionWeights = projectionWeightsPin.GetConstTensorPtr();
+    params.m_ProjectionBias = projectionBiasPin.GetConstTensorPtr();
+    params.m_InputLayerNormWeights = inputLayerNormWeightsPin.GetConstTensorPtr();
+    params.m_ForgetLayerNormWeights = forgetLayerNormWeightsPin.GetConstTensorPtr();
+    params.m_CellLayerNormWeights = cellLayerNormWeightsPin.GetConstTensorPtr();
+    params.m_OutputLayerNormWeights = outputLayerNormWeightsPin.GetConstTensorPtr();
+
+    // set the layer descriptor
+    LstmDescriptor desc;
+    desc.m_ActivationFunc = activation;
+    desc.m_ClippingThresCell = cellClip;
+    desc.m_ClippingThresProj = projClip;
+    desc.m_CifgEnabled = (params.m_InputToInputWeights == nullptr ||
+                          params.m_RecurrentToInputWeights == nullptr ||
+                          params.m_InputGateBias == nullptr);
+    desc.m_PeepholeEnabled = (params.m_CellToForgetWeights != nullptr ||
+                              params.m_CellToOutputWeights != nullptr);
+    desc.m_ProjectionEnabled = (params.m_ProjectionWeights != nullptr);
+    desc.m_LayerNormEnabled = (params.m_InputLayerNormWeights != nullptr ||
+                               params.m_ForgetLayerNormWeights != nullptr ||
+                               params.m_CellLayerNormWeights != nullptr ||
+                               params.m_OutputLayerNormWeights != nullptr);
+
+    // validate the optional input groups
+    if (desc.m_CifgEnabled &&
+        (params.m_InputToInputWeights != nullptr ||
+         params.m_RecurrentToInputWeights != nullptr ||
+         params.m_InputGateBias != nullptr))
+    {
+        return Fail("%s: All, or none, of input-to-input weights, recurrent-to-input weights,"
+                    " and input gate bias must be provided", __func__);
+    }
+
+    if (!desc.m_ProjectionEnabled && params.m_ProjectionBias != nullptr)
+    {
+        return Fail("%s: projection bias should not be provided without projection weights", __func__);
+    }
+
+    if (desc.m_PeepholeEnabled &&
+        (params.m_CellToForgetWeights == nullptr ||
+         params.m_CellToOutputWeights == nullptr ||
+         (!desc.m_CifgEnabled && params.m_CellToInputWeights == nullptr)))
+    {
+        return Fail("%s: All, or none, of cell-to-forget weights and cell-to-output weights must be provided"
+                    " and, if CIFG is not enabled, cell-to-input weights must also be provided", __func__);
+    }
+
+    if (desc.m_LayerNormEnabled &&
+        (params.m_ForgetLayerNormWeights == nullptr ||
+         params.m_CellLayerNormWeights == nullptr ||
+         params.m_OutputLayerNormWeights == nullptr ||
+         (!desc.m_CifgEnabled && params.m_InputLayerNormWeights == nullptr)))
+    {
+        return Fail("%s: All, or none, of forget-norm weights, cell-norm weights and output-norm weights must be"
+                    " provided and, if CIFG is not enabled, input-norm weights must also be provided", __func__);
+    }
+
+    // Check if the layer is supported
+    // Inputs
+    const TensorInfo& inputInfo         = input.GetTensorInfo();
+    const TensorInfo& outputStateInInfo = outputStateIn.GetTensorInfo();
+    const TensorInfo& cellStateInInfo   = cellStateIn.GetTensorInfo();
+
+    // Outputs
+    const TensorInfo& scratchBufferInfo  = GetTensorInfoForOperand(*scratchBuffer);
+    const TensorInfo& outputStateOutInfo = GetTensorInfoForOperand(*outputStateOut);
+    const TensorInfo& cellStateOutInfo   = GetTensorInfoForOperand(*cellStateOut);
+    const TensorInfo& outputInfo         = GetTensorInfoForOperand(*output);
+
+    // Check if the scratch buffer shape was initialized,
+    // In some cases the shape could be (0,0) which requires the driver
+    // to infer the shape and set it up accordingly.
+    // The code below does that.
+    TensorInfo fixSbInfo = scratchBufferInfo;
+    if (IsDynamicTensor(scratchBufferInfo))
+    {
+        auto & s = fixSbInfo.GetShape();
+        s[0] = outputStateInInfo.GetShape()[0];
+        if (desc.m_CifgEnabled)
+        {
+            // 2D tensor with dimensions [num_units * 3, batch_size] with CIFG
+            s[1] = cellStateOutInfo.GetShape()[1]*3;
+        }
+        else
+        {
+            // scratch_buffer [num_units * 4, batch_size] without CIFG
+            s[1] = cellStateOutInfo.GetShape()[1]*4;
+        }
+    }
+
+    if (IsDynamicTensor(outputStateOutInfo) ||
+        IsDynamicTensor(cellStateOutInfo)   ||
+        IsDynamicTensor(outputInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported %d %d %d %d", __func__,
+                    IsDynamicTensor(scratchBufferInfo), IsDynamicTensor(outputStateOutInfo),
+                    IsDynamicTensor(cellStateOutInfo), IsDynamicTensor(outputInfo));
+    }
+
+    // Basic parameters
+    LstmInputParamsInfo paramsInfo;
+    paramsInfo.m_InputToForgetWeights     = &(params.m_InputToForgetWeights->GetInfo());
+    paramsInfo.m_InputToCellWeights       = &(params.m_InputToCellWeights->GetInfo());
+    paramsInfo.m_InputToOutputWeights     = &(params.m_InputToOutputWeights->GetInfo());
+    paramsInfo.m_RecurrentToForgetWeights = &(params.m_RecurrentToForgetWeights->GetInfo());
+    paramsInfo.m_RecurrentToCellWeights   = &(params.m_RecurrentToCellWeights->GetInfo());
+    paramsInfo.m_RecurrentToOutputWeights = &(params.m_RecurrentToOutputWeights->GetInfo());
+    paramsInfo.m_ForgetGateBias           = &(params.m_ForgetGateBias->GetInfo());
+    paramsInfo.m_CellBias                 = &(params.m_CellBias->GetInfo());
+    paramsInfo.m_OutputGateBias           = &(params.m_OutputGateBias->GetInfo());
+
+    // Optional parameters
+    if (!desc.m_CifgEnabled)
+    {
+        paramsInfo.m_InputToInputWeights = &(params.m_InputToInputWeights->GetInfo());
+        paramsInfo.m_RecurrentToInputWeights = &(params.m_RecurrentToInputWeights->GetInfo());
+        if (params.m_CellToInputWeights != nullptr)
+        {
+            paramsInfo.m_CellToInputWeights = &(params.m_CellToInputWeights->GetInfo());
+        }
+        paramsInfo.m_InputGateBias = &(params.m_InputGateBias->GetInfo());
+    }
+
+    if (desc.m_ProjectionEnabled)
+    {
+        paramsInfo.m_ProjectionWeights = &(params.m_ProjectionWeights->GetInfo());
+        if (params.m_ProjectionBias != nullptr)
+        {
+            paramsInfo.m_ProjectionBias = &(params.m_ProjectionBias->GetInfo());
+        }
+    }
+
+    if (desc.m_PeepholeEnabled)
+    {
+        paramsInfo.m_CellToForgetWeights = &(params.m_CellToForgetWeights->GetInfo());
+        paramsInfo.m_CellToOutputWeights = &(params.m_CellToOutputWeights->GetInfo());
+    }
+
+    if (desc.m_LayerNormEnabled)
+    {
+        if(!desc.m_CifgEnabled)
+        {
+            paramsInfo.m_InputLayerNormWeights = &(params.m_InputLayerNormWeights->GetInfo());
+        }
+        paramsInfo.m_ForgetLayerNormWeights = &(params.m_ForgetLayerNormWeights->GetInfo());
+        paramsInfo.m_CellLayerNormWeights = &(params.m_CellLayerNormWeights->GetInfo());
+        paramsInfo.m_OutputLayerNormWeights = &(params.m_OutputLayerNormWeights->GetInfo());
+    }
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsLstmSupported,
+                               data.m_Backends,
+                               isSupported,
+                               inputInfo,
+                               outputStateInInfo,
+                               cellStateInInfo,
+                               fixSbInfo,
+                               outputStateOutInfo,
+                               cellStateOutInfo,
+                               outputInfo,
+                               desc,
+                               paramsInfo);
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    // Add the layer
+    IConnectableLayer* layer = data.m_Network->AddLstmLayer(desc, params, "Lstm");
+
+    input.Connect(layer->GetInputSlot(0));
+    outputStateIn.Connect(layer->GetInputSlot(1));
+    cellStateIn.Connect(layer->GetInputSlot(2));
+
+
+    return (
+        (IsDynamicTensor(scratchBufferInfo)?
+         SetupAndTrackLayerOutputSlotAndOverrideTensorInfo<HalPolicy>(
+             operation, 0, *layer, 0, model, data,fixSbInfo):
+         SetupAndTrackLayerOutputSlot<HalPolicy>(
+             operation, 0, *layer, 0, model, data)) &&
+        SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 1, *layer, 1, model, data) &&
+        SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 2, *layer, 2, model, data) &&
+        SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 3, *layer, 3, model, data));
+}
+
+template<typename HalPolicy,
+         typename HalOperation = typename HalPolicy::Operation,
+         typename HalModel     = typename HalPolicy::Model>
+bool ConvertTransposeConv2d(const HalOperation& operation, const HalModel& model, ConversionData& data)
+{
+    using HalOperand     = typename HalPolicy::Operand;
+    using HalOperandType = typename HalPolicy::OperandType;
+
+    LayerInputHandle input = ConvertToLayerInputHandle<HalPolicy>(operation, 0, model, data);
+
+    if (!input.IsValid())
+    {
+        return Fail("%s: Operation has invalid inputs", __func__);
+    }
+
+    const HalOperand* output = GetOutputOperand<HalPolicy>(operation, 0, model);
+
+    if (!output)
+    {
+        return Fail("%s: Could not read output 0", __func__);
+    }
+
+    const TensorInfo& inputInfo  = input.GetTensorInfo();
+    const TensorInfo& outputInfo = GetTensorInfoForOperand(*output);
+    if (IsDynamicTensor(outputInfo))
+    {
+        return Fail("%s: Dynamic output tensors are not supported", __func__);
+    }
+
+    // ArmNN does not currently support non-fixed weights or bias
+    // Find the shape of the weights tensor. In AndroidNN this will be [ 1, H, W, I * M ]
+    const HalOperand* weightsOperand = GetInputOperand<HalPolicy>(operation, 1, model);
+
+    if (weightsOperand == nullptr)
+    {
+        return Fail("%s: Operand is invalid", __func__);
+    }
+    TransposeConvolution2dDescriptor desc;
+    desc.m_DataLayout = DataLayout::NHWC;
+
+    // Determine whether padding is implicit or explicit
+    bool implicitPadding = operation.inputs.size() == 9;
+
+    if (implicitPadding )
+    {
+        desc.m_DataLayout = OptionalDataLayout<HalPolicy>(operation, 8, model, data);
+    }
+    else
+    {
+        desc.m_DataLayout = OptionalDataLayout<HalPolicy>(operation, 10, model, data);
+    }
+
+    armnnUtils::DataLayoutIndexed dataLayoutIndexed(desc.m_DataLayout);
+    unsigned int widthIndex = dataLayoutIndexed.GetWidthIndex();
+    unsigned int heightIndex = dataLayoutIndexed.GetHeightIndex();
+
+    const PermutationVector OHWIToOIHW = {0, 2, 3, 1};
+
+    // The shape of the weight is [depth_out, filter_height, filter_width, depth_in].
+    // We have to permute it to OIHW if the data layout is NCHW.
+    const ConstTensorPin weightsPin = (desc.m_DataLayout == DataLayout::NCHW) ?
+                                      ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 1,
+                                                                                       model, data, OHWIToOIHW) :
+                                      ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 1, model, data);
+
+    // Bias is a 1D tensor
+    const ConstTensorPin biasPin =
+        ConvertOperationInputToConstTensorPin<HalPolicy>(operation, 2, model, data);
+
+    if (!weightsPin.IsValid())
+    {
+        return Fail("%s: Operation has invalid weights", __func__);
+    }
+
+    if (!biasPin.IsValid())
+    {
+        return Fail("%s: Operation has invalid biases", __func__);
+    }
+
+    ConstTensor weights = weightsPin.GetConstTensor();
+    ConstTensor bias = biasPin.GetConstTensor();
+    SanitizeBiasQuantizationScale(bias.GetInfo(), weights.GetInfo(), inputInfo);
+
+    ActivationFn activation;
+
+    if (implicitPadding)
+    {
+        int32_t strideX{0};
+        int32_t strideY{0};
+        int32_t padLeft{0};
+        int32_t padRight{0};
+        int32_t padTop{0};
+        int32_t padBottom{0};
+
+        android::nn::PaddingScheme paddingScheme;
+        if (!GetInputPaddingScheme<HalPolicy>(operation, 4, paddingScheme, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 5, HalOperandType::INT32, strideX, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 6, HalOperandType::INT32, strideY, model, data) ||
+            !GetInputActivationFunction<HalPolicy>(operation, 7, activation, model, data))
+        {
+            return Fail("%s: Operation has invalid inputs (implicit padding)", __func__);
+        }
+
+        const uint32_t kernelX = weights.GetShape()[widthIndex];
+        const uint32_t kernelY = weights.GetShape()[heightIndex];
+        const uint32_t outputX = outputInfo.GetShape()[widthIndex];
+        const uint32_t outputY = outputInfo.GetShape()[heightIndex];
+
+        CalcPaddingTransposeConv(outputX, kernelX, strideX, padLeft, padRight, paddingScheme);
+        CalcPaddingTransposeConv(outputY, kernelY, strideY, padTop, padBottom, paddingScheme);
+
+        // NOTE: The Android NN API allows for negative padding values in TransposeConv2d,
+        // but Arm NN only supports values >= 0
+        if (padLeft < 0 || padRight < 0 || padTop < 0 || padBottom < 0)
+        {
+            return Fail("%s: Negative padding values are not supported", __func__);
+        }
+
+        desc.m_StrideX   = boost::numeric_cast<uint32_t>(strideX);
+        desc.m_StrideY   = boost::numeric_cast<uint32_t>(strideY);
+        desc.m_PadLeft   = boost::numeric_cast<uint32_t>(padLeft);
+        desc.m_PadRight  = boost::numeric_cast<uint32_t>(padRight);
+        desc.m_PadTop    = boost::numeric_cast<uint32_t>(padTop);
+        desc.m_PadBottom = boost::numeric_cast<uint32_t>(padBottom);
+    }
+    else if (operation.inputs.size() == 11)
+    {
+        // explicit padding
+        if (!GetInputScalar<HalPolicy>(operation, 3, HalOperandType::INT32, desc.m_PadLeft, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 4, HalOperandType::INT32, desc.m_PadRight, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 5, HalOperandType::INT32, desc.m_PadTop, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 6, HalOperandType::INT32, desc.m_PadBottom, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 7, HalOperandType::INT32, desc.m_StrideX, model, data) ||
+            !GetInputScalar<HalPolicy>(operation, 8, HalOperandType::INT32, desc.m_StrideY, model, data) ||
+            !GetInputActivationFunction<HalPolicy>(operation,  9, activation, model, data))
+        {
+            return Fail("%s: Operation has invalid inputs (explicit padding)", __func__);
+        }
+    }
+    else
+    {
+        return Fail("%s: Unsupported number of operation inputs", __func__);
+    }
+
+    desc.m_BiasEnabled = true;
+    Optional<TensorInfo> biases(bias.GetInfo());
+
+    bool isSupported = false;
+    FORWARD_LAYER_SUPPORT_FUNC(__func__,
+                               IsTransposeConvolution2dSupported,
+                               data.m_Backends,
+                               isSupported,
+                               inputInfo,
+                               outputInfo,
+                               desc,
+                               weights.GetInfo(),
+                               biases);
+    if (!isSupported)
+    {
+        return false;
+    }
+
+    IConnectableLayer* startLayer =
+        data.m_Network->AddTransposeConvolution2dLayer(desc, weights, Optional<ConstTensor>(bias));
+    if (!startLayer)
+    {
+        return Fail("%s: AddTransposeConvolution2dLayer failed", __func__);
+    }
+
+    IConnectableLayer* endLayer = ProcessActivation(outputInfo, activation, startLayer, data);
+    if (!endLayer)
+    {
+        return Fail("%s: ProcessActivation failed", __func__);
+    }
+
+    input.Connect(startLayer->GetInputSlot(0));
+
+    return SetupAndTrackLayerOutputSlot<HalPolicy>(operation, 0, *endLayer, model, data);
+}
+
+} // armnn_driver namespace
\ No newline at end of file
diff --git a/ModelToINetworkConverter.cpp b/ModelToINetworkConverter.cpp
index 05e6046..24fb490 100644
--- a/ModelToINetworkConverter.cpp
+++ b/ModelToINetworkConverter.cpp
@@ -6,8 +6,10 @@
 #define LOG_TAG "ArmnnDriver"
 
 #include "ModelToINetworkConverter.hpp"
+#include "Utils.hpp"
 
 #include <log/log.h>
+#include <type_traits>
 
 namespace armnn_driver
 {
@@ -62,21 +64,29 @@
 
     // add operations to it
     // track which layer outputs each operand
-    m_Data.m_OutputSlotForOperand = std::vector<armnn::IOutputSlot*>(m_Model.operands.size(), nullptr);
-
+    ALOGV("ModelToINetworkConverter::Convert(): m_OutputSlotForOperand");
+    m_Data.m_OutputSlotForOperand = std::vector<armnn::IOutputSlot*>(getMainModel(m_Model).operands.size(), nullptr);
     try
     {
-        for (uint32_t i = 0; i < m_Model.inputIndexes.size(); i++)
+        ALOGV("ModelToINetworkConverter::Convert(): for getMainModel(m_Model).inputIndexes.size()");
+        for (uint32_t i = 0; i < getMainModel(m_Model).inputIndexes.size(); i++)
         {
+            ALOGV("ModelToINetworkConverter::Convert(): getMainModel(m_Model).inputIndexes[i]");
             // inputs in android nn are represented by operands
-            uint32_t inputIndex = m_Model.inputIndexes[i];
-            const HalOperand& operand = m_Model.operands[inputIndex];
+            uint32_t inputIndex = getMainModel(m_Model).inputIndexes[i];
+            ALOGV("ModelToINetworkConverter::Convert(): getMainModel(m_Model).operands[inputIndex];");
+            const HalOperand& operand = getMainModel(m_Model).operands[inputIndex];
+            ALOGV("ModelToINetworkConverter::Convert(): GetTensorInfoForOperand(operand)");
             const armnn::TensorInfo& tensor = GetTensorInfoForOperand(operand);
+            ALOGV("ModelToINetworkConverter::Convert(): m_Data.m_Network->AddInputLayer(i)");
             armnn::IConnectableLayer* layer = m_Data.m_Network->AddInputLayer(i);
 
+            ALOGV("ModelToINetworkConverter::Convert(): layer->GetOutputSlot(0)");
             armnn::IOutputSlot& outputSlot = layer->GetOutputSlot(0);
+            ALOGV("ModelToINetworkConverter::Convert(): outputSlot.SetTensorInfo(GetTensorInfoForOperand(operand))");
             outputSlot.SetTensorInfo(GetTensorInfoForOperand(operand));
 
+            ALOGV("ModelToINetworkConverter::Convert(): m_Data.m_OutputSlotForOperand[inputIndex] = &outputSlot");
             // store for later layers
             m_Data.m_OutputSlotForOperand[inputIndex] = &outputSlot;
         }
@@ -92,9 +102,9 @@
         m_ConversionResult = ConversionResult::UnsupportedFeature;
     }
 
-    for (uint32_t operationIdx = 0; operationIdx < m_Model.operations.size(); operationIdx++)
+    for (uint32_t operationIdx = 0; operationIdx < getMainModel(m_Model).operations.size(); operationIdx++)
     {
-        const auto& operation = m_Model.operations[operationIdx];
+        const auto& operation = getMainModel(m_Model).operations[operationIdx];
 
         bool ok = true;
         if (m_ForcedUnsupportedOperations.find(operationIdx) != m_ForcedUnsupportedOperations.end())
@@ -135,11 +145,11 @@
     {
         if (m_ConversionResult == ConversionResult::Success)
         {
-            for (uint32_t i = 0; i < m_Model.outputIndexes.size(); i++)
+            for (uint32_t i = 0; i < getMainModel(m_Model).outputIndexes.size(); i++)
             {
                 // outputs in android nn are represented by operands
-                uint32_t outputIndex = m_Model.outputIndexes[i];
-                const HalOperand& operand = m_Model.operands[outputIndex];
+                uint32_t outputIndex = getMainModel(m_Model).outputIndexes[i];
+                const HalOperand& operand = getMainModel(m_Model).operands[outputIndex];
                 const armnn::TensorInfo& tensor = GetTensorInfoForOperand(operand);
                 armnn::IConnectableLayer* layer = m_Data.m_Network->AddOutputLayer(i);
 
@@ -178,4 +188,10 @@
 template class ModelToINetworkConverter<hal_1_2::HalPolicy>;
 #endif
 
+#ifdef ARMNN_ANDROID_NN_V1_3
+template class ModelToINetworkConverter<hal_1_1::HalPolicy>;
+template class ModelToINetworkConverter<hal_1_2::HalPolicy>;
+template class ModelToINetworkConverter<hal_1_3::HalPolicy>;
+#endif
+
 } // armnn_driver
diff --git a/RequestThread.cpp b/RequestThread.cpp
index 22a3ac3..50c5161 100644
--- a/RequestThread.cpp
+++ b/RequestThread.cpp
@@ -12,6 +12,11 @@
 #include "ArmnnPreparedModel_1_2.hpp"
 #endif
 
+#ifdef ARMNN_ANDROID_NN_V1_3
+#include "ArmnnPreparedModel_1_2.hpp"
+#include "ArmnnPreparedModel_1_3.hpp"
+#endif
+
 #include <boost/assert.hpp>
 
 #include <log/log.h>
@@ -151,4 +156,12 @@
 template class RequestThread<ArmnnPreparedModel_1_2, hal_1_2::HalPolicy, CallbackContext_1_2>;
 #endif
 
+#ifdef ARMNN_ANDROID_NN_V1_3
+template class RequestThread<ArmnnPreparedModel, hal_1_1::HalPolicy, CallbackContext_1_0>;
+template class RequestThread<ArmnnPreparedModel, hal_1_2::HalPolicy, CallbackContext_1_0>;
+template class RequestThread<ArmnnPreparedModel, hal_1_3::HalPolicy, CallbackContext_1_0>;
+template class RequestThread<ArmnnPreparedModel_1_2, hal_1_2::HalPolicy, CallbackContext_1_2>;
+template class RequestThread<ArmnnPreparedModel_1_3, hal_1_3::HalPolicy, CallbackContext_1_3>;
+#endif
+
 } // namespace armnn_driver
diff --git a/Utils.cpp b/Utils.cpp
index c548f84..8a17b53 100644
--- a/Utils.cpp
+++ b/Utils.cpp
@@ -103,7 +103,7 @@
     return ret;
 }
 
-#ifdef ARMNN_ANDROID_NN_V1_2 // Using ::android::hardware::neuralnetworks::V1_2
+#if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3)// Using ::android::hardware::neuralnetworks::V1_2
 
 armnn::TensorInfo GetTensorInfoForOperand(const V1_2::Operand& operand)
 {
@@ -164,13 +164,74 @@
 
 #endif
 
+#ifdef ARMNN_ANDROID_NN_V1_3 // Using ::android::hardware::neuralnetworks::V1_3
+
+armnn::TensorInfo GetTensorInfoForOperand(const V1_3::Operand& operand)
+{
+    using namespace armnn;
+    bool perChannel = false;
+
+    DataType type;
+    switch (operand.type)
+    {
+        case V1_3::OperandType::TENSOR_FLOAT32:
+            type = armnn::DataType::Float32;
+            break;
+        case V1_3::OperandType::TENSOR_FLOAT16:
+            type = armnn::DataType::Float16;
+            break;
+        case V1_3::OperandType::TENSOR_QUANT8_ASYMM:
+            type = armnn::DataType::QAsymmU8;
+            break;
+        case V1_3::OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
+            perChannel=true;
+            ARMNN_FALLTHROUGH;
+        case V1_3::OperandType::TENSOR_QUANT8_SYMM:
+            type = armnn::DataType::QSymmS8;
+            break;
+        case V1_3::OperandType::TENSOR_QUANT16_SYMM:
+            type = armnn::DataType::QSymmS16;
+            break;
+        case V1_3::OperandType::TENSOR_INT32:
+            type = armnn::DataType::Signed32;
+            break;
+        case V1_3::OperandType::TENSOR_QUANT8_ASYMM_SIGNED:
+            type = armnn::DataType::QAsymmS8;
+            break;
+        default:
+            throw UnsupportedOperand<V1_3::OperandType>(operand.type);
+    }
+
+    TensorInfo ret(operand.dimensions.size(), operand.dimensions.data(), type);
+    if (perChannel)
+    {
+        // ExtraParams is expected to be of type channelQuant
+        BOOST_ASSERT(operand.extraParams.getDiscriminator() ==
+                     V1_3::Operand::ExtraParams::hidl_discriminator::channelQuant);
+
+        auto perAxisQuantParams = operand.extraParams.channelQuant();
+
+        ret.SetQuantizationScales(perAxisQuantParams.scales);
+        ret.SetQuantizationDim(MakeOptional<unsigned int>(perAxisQuantParams.channelDim));
+    }
+    else
+    {
+        ret.SetQuantizationScale(operand.scale);
+        ret.SetQuantizationOffset(operand.zeroPoint);
+    }
+
+    return ret;
+}
+
+#endif
+
 std::string GetOperandSummary(const V1_0::Operand& operand)
 {
     return android::hardware::details::arrayToString(operand.dimensions, operand.dimensions.size()) + " " +
         toString(operand.type);
 }
 
-#ifdef ARMNN_ANDROID_NN_V1_2 // Using ::android::hardware::neuralnetworks::V1_2
+#if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3) // Using ::android::hardware::neuralnetworks::V1_2
 
 std::string GetOperandSummary(const V1_2::Operand& operand)
 {
@@ -180,6 +241,16 @@
 
 #endif
 
+#ifdef ARMNN_ANDROID_NN_V1_3 // Using ::android::hardware::neuralnetworks::V1_3
+
+std::string GetOperandSummary(const V1_3::Operand& operand)
+{
+    return android::hardware::details::arrayToString(operand.dimensions, operand.dimensions.size()) + " " +
+           toString(operand.type);
+}
+
+#endif
+
 using DumpElementFunction = void (*)(const armnn::ConstTensor& tensor,
     unsigned int elementIndex,
     std::ofstream& fileStream);
@@ -449,6 +520,27 @@
     }
 }
 
+void CommitPools(std::vector<::android::nn::RunTimePoolInfo>& memPools)
+{
+    if (memPools.empty())
+    {
+        return;
+    }
+    // Commit output buffers.
+    // Note that we update *all* pools, even if they aren't actually used as outputs -
+    // this is simpler and is what the CpuExecutor does.
+    for (auto& pool : memPools)
+    {
+        // Type android::nn::RunTimePoolInfo has changed between Android P & Q and Android R, where
+        // update() has been removed and flush() added.
+#if defined(ARMNN_ANDROID_R) // Use the new Android implementation.
+        pool.flush();
+#else
+        pool.update();
+#endif
+    }
+}
+
 
 
 } // namespace armnn_driver
diff --git a/Utils.hpp b/Utils.hpp
index 6256655..b61ddb2 100644
--- a/Utils.hpp
+++ b/Utils.hpp
@@ -19,11 +19,16 @@
 #include <iomanip>
 
 namespace V1_0 = ::android::hardware::neuralnetworks::V1_0;
+namespace V1_1 = ::android::hardware::neuralnetworks::V1_1;
 
-#ifdef ARMNN_ANDROID_NN_V1_2 // Using ::android::hardware::neuralnetworks::V1_2
+#if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3)
 namespace V1_2 = ::android::hardware::neuralnetworks::V1_2;
 #endif
 
+#ifdef ARMNN_ANDROID_NN_V1_3
+namespace V1_3 = ::android::hardware::neuralnetworks::V1_3;
+#endif
+
 namespace armnn_driver
 {
 
@@ -31,6 +36,17 @@
 using DataLocation = ::android::nn::hal::DataLocation;
 #endif
 
+inline const V1_0::Model&    getMainModel(const V1_0::Model& model) { return model; }
+inline const V1_1::Model&    getMainModel(const V1_1::Model& model) { return model; }
+
+#if defined (ARMNN_ANDROID_NN_V1_2) || defined (ARMNN_ANDROID_NN_V1_3)
+inline const V1_2::Model&    getMainModel(const V1_2::Model& model) { return model; }
+#endif
+
+#ifdef ARMNN_ANDROID_NN_V1_3
+inline const V1_3::Subgraph& getMainModel(const V1_3::Model& model) { return model.main; }
+#endif
+
 extern const armnn::PermutationVector g_DontPermute;
 
 template <typename OperandType>
@@ -56,42 +72,53 @@
 /// Can throw UnsupportedOperand
 armnn::TensorInfo GetTensorInfoForOperand(const V1_0::Operand& operand);
 
-#ifdef ARMNN_ANDROID_NN_V1_2 // Using ::android::hardware::neuralnetworks::V1_2
+#if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3) // Using ::android::hardware::neuralnetworks::V1_2
 armnn::TensorInfo GetTensorInfoForOperand(const V1_2::Operand& operand);
 #endif
 
+#ifdef ARMNN_ANDROID_NN_V1_3 // Using ::android::hardware::neuralnetworks::V1_3
+armnn::TensorInfo GetTensorInfoForOperand(const V1_3::Operand& operand);
+#endif
+
 std::string GetOperandSummary(const V1_0::Operand& operand);
 
-#ifdef ARMNN_ANDROID_NN_V1_2 // Using ::android::hardware::neuralnetworks::V1_2
+#if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3) // Using ::android::hardware::neuralnetworks::V1_2
 std::string GetOperandSummary(const V1_2::Operand& operand);
 #endif
 
+#ifdef ARMNN_ANDROID_NN_V1_3 // Using ::android::hardware::neuralnetworks::V1_3
+std::string GetOperandSummary(const V1_3::Operand& operand);
+#endif
+
 template <typename HalModel>
 std::string GetModelSummary(const HalModel& model)
 {
     std::stringstream result;
 
-    result << model.inputIndexes.size() << " input(s), " << model.operations.size() << " operation(s), " <<
-        model.outputIndexes.size() << " output(s), " << model.operands.size() << " operand(s)" << std::endl;
+    result << getMainModel(model).inputIndexes.size() << " input(s), "
+           << getMainModel(model).operations.size() << " operation(s), "
+           << getMainModel(model).outputIndexes.size() << " output(s), "
+           << getMainModel(model).operands.size() << " operand(s) "
+           << std::endl;
 
     result << "Inputs: ";
-    for (uint32_t i = 0; i < model.inputIndexes.size(); i++)
+    for (uint32_t i = 0; i < getMainModel(model).inputIndexes.size(); i++)
     {
-        result << GetOperandSummary(model.operands[model.inputIndexes[i]]) << ", ";
+        result << GetOperandSummary(getMainModel(model).operands[getMainModel(model).inputIndexes[i]]) << ", ";
     }
     result << std::endl;
 
     result << "Operations: ";
-    for (uint32_t i = 0; i < model.operations.size(); i++)
+    for (uint32_t i = 0; i < getMainModel(model).operations.size(); i++)
     {
-        result << toString(model.operations[i].type).c_str() << ", ";
+        result << toString(getMainModel(model).operations[i].type).c_str() << ", ";
     }
     result << std::endl;
 
     result << "Outputs: ";
-    for (uint32_t i = 0; i < model.outputIndexes.size(); i++)
+    for (uint32_t i = 0; i < getMainModel(model).outputIndexes.size(); i++)
     {
-        result << GetOperandSummary(model.operands[model.outputIndexes[i]]) << ", ";
+        result << GetOperandSummary(getMainModel(model).operands[getMainModel(model).outputIndexes[i]]) << ", ";
     }
     result << std::endl;
 
@@ -118,4 +145,29 @@
 
 std::string GetFileTimestamp();
 
+#if defined(ARMNN_ANDROID_NN_V1_2) || defined(ARMNN_ANDROID_NN_V1_3)
+inline V1_2::OutputShape ComputeShape(const armnn::TensorInfo& info)
+{
+    V1_2::OutputShape shape;
+
+    android::hardware::hidl_vec<uint32_t> dimensions;
+
+    armnn::TensorShape tensorShape = info.GetShape();
+    const unsigned int numDims = tensorShape.GetNumDimensions();
+    dimensions.resize(numDims);
+
+    for (unsigned int outputIdx = 0u; outputIdx < numDims; ++outputIdx)
+    {
+        dimensions[outputIdx] = tensorShape[outputIdx];
+    }
+
+    shape.dimensions = dimensions;
+    shape.isSufficient = true;
+
+    return shape;
+}
+#endif
+
+void CommitPools(std::vector<::android::nn::RunTimePoolInfo>& memPools);
+
 } // namespace armnn_driver
diff --git a/android.hardware.neuralnetworks@1.3-service-armnn.rc b/android.hardware.neuralnetworks@1.3-service-armnn.rc
new file mode 100644
index 0000000..3f84d9c
--- /dev/null
+++ b/android.hardware.neuralnetworks@1.3-service-armnn.rc
@@ -0,0 +1,4 @@
+service neuralnetworks_hal_service_armnn /vendor/bin/hw/android.hardware.neuralnetworks@1.3-service-armnn
+    class hal
+    user system
+    group system
diff --git a/test/Convolution2D.hpp b/test/Convolution2D.hpp
index 002677f..38216f1 100644
--- a/test/Convolution2D.hpp
+++ b/test/Convolution2D.hpp
@@ -32,9 +32,7 @@
 
 void SetModelFp16Flag(V1_0::Model& model, bool fp16Enabled);
 
-#if defined(ARMNN_ANDROID_NN_V1_1) || defined(ARMNN_ANDROID_NN_V1_2)
 void SetModelFp16Flag(V1_1::Model& model, bool fp16Enabled);
-#endif
 
 template<typename HalPolicy>
 void PaddingTestImpl(android::nn::PaddingScheme paddingScheme, bool fp16Enabled = false)