Moved the compiler source files into directories based on their project and added a compiler.gypi to generate the compiler projects.
diff --git a/src/compiler/translator/ParseHelper.cpp b/src/compiler/translator/ParseHelper.cpp
new file mode 100644
index 0000000..7e92ed7
--- /dev/null
+++ b/src/compiler/translator/ParseHelper.cpp
@@ -0,0 +1,2627 @@
+//
+// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/ParseHelper.h"
+
+#include <stdarg.h>
+#include <stdio.h>
+
+#include "compiler/translator/glslang.h"
+#include "compiler/preprocessor/SourceLocation.h"
+
+///////////////////////////////////////////////////////////////////////
+//
+// Sub- vector and matrix fields
+//
+////////////////////////////////////////////////////////////////////////
+
+//
+// Look at a '.' field selector string and change it into offsets
+// for a vector.
+//
+bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, const TSourceLoc& line)
+{
+ fields.num = (int) compString.size();
+ if (fields.num > 4) {
+ error(line, "illegal vector field selection", compString.c_str());
+ return false;
+ }
+
+ enum {
+ exyzw,
+ ergba,
+ estpq
+ } fieldSet[4];
+
+ for (int i = 0; i < fields.num; ++i) {
+ switch (compString[i]) {
+ case 'x':
+ fields.offsets[i] = 0;
+ fieldSet[i] = exyzw;
+ break;
+ case 'r':
+ fields.offsets[i] = 0;
+ fieldSet[i] = ergba;
+ break;
+ case 's':
+ fields.offsets[i] = 0;
+ fieldSet[i] = estpq;
+ break;
+ case 'y':
+ fields.offsets[i] = 1;
+ fieldSet[i] = exyzw;
+ break;
+ case 'g':
+ fields.offsets[i] = 1;
+ fieldSet[i] = ergba;
+ break;
+ case 't':
+ fields.offsets[i] = 1;
+ fieldSet[i] = estpq;
+ break;
+ case 'z':
+ fields.offsets[i] = 2;
+ fieldSet[i] = exyzw;
+ break;
+ case 'b':
+ fields.offsets[i] = 2;
+ fieldSet[i] = ergba;
+ break;
+ case 'p':
+ fields.offsets[i] = 2;
+ fieldSet[i] = estpq;
+ break;
+
+ case 'w':
+ fields.offsets[i] = 3;
+ fieldSet[i] = exyzw;
+ break;
+ case 'a':
+ fields.offsets[i] = 3;
+ fieldSet[i] = ergba;
+ break;
+ case 'q':
+ fields.offsets[i] = 3;
+ fieldSet[i] = estpq;
+ break;
+ default:
+ error(line, "illegal vector field selection", compString.c_str());
+ return false;
+ }
+ }
+
+ for (int i = 0; i < fields.num; ++i) {
+ if (fields.offsets[i] >= vecSize) {
+ error(line, "vector field selection out of range", compString.c_str());
+ return false;
+ }
+
+ if (i > 0) {
+ if (fieldSet[i] != fieldSet[i-1]) {
+ error(line, "illegal - vector component fields not from the same set", compString.c_str());
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+
+//
+// Look at a '.' field selector string and change it into offsets
+// for a matrix.
+//
+bool TParseContext::parseMatrixFields(const TString& compString, int matCols, int matRows, TMatrixFields& fields, const TSourceLoc& line)
+{
+ fields.wholeRow = false;
+ fields.wholeCol = false;
+ fields.row = -1;
+ fields.col = -1;
+
+ if (compString.size() != 2) {
+ error(line, "illegal length of matrix field selection", compString.c_str());
+ return false;
+ }
+
+ if (compString[0] == '_') {
+ if (compString[1] < '0' || compString[1] > '3') {
+ error(line, "illegal matrix field selection", compString.c_str());
+ return false;
+ }
+ fields.wholeCol = true;
+ fields.col = compString[1] - '0';
+ } else if (compString[1] == '_') {
+ if (compString[0] < '0' || compString[0] > '3') {
+ error(line, "illegal matrix field selection", compString.c_str());
+ return false;
+ }
+ fields.wholeRow = true;
+ fields.row = compString[0] - '0';
+ } else {
+ if (compString[0] < '0' || compString[0] > '3' ||
+ compString[1] < '0' || compString[1] > '3') {
+ error(line, "illegal matrix field selection", compString.c_str());
+ return false;
+ }
+ fields.row = compString[0] - '0';
+ fields.col = compString[1] - '0';
+ }
+
+ if (fields.row >= matRows || fields.col >= matCols) {
+ error(line, "matrix field selection out of range", compString.c_str());
+ return false;
+ }
+
+ return true;
+}
+
+///////////////////////////////////////////////////////////////////////
+//
+// Errors
+//
+////////////////////////////////////////////////////////////////////////
+
+//
+// Track whether errors have occurred.
+//
+void TParseContext::recover()
+{
+}
+
+//
+// Used by flex/bison to output all syntax and parsing errors.
+//
+void TParseContext::error(const TSourceLoc& loc,
+ const char* reason, const char* token,
+ const char* extraInfo)
+{
+ pp::SourceLocation srcLoc;
+ srcLoc.file = loc.first_file;
+ srcLoc.line = loc.first_line;
+ diagnostics.writeInfo(pp::Diagnostics::ERROR,
+ srcLoc, reason, token, extraInfo);
+
+}
+
+void TParseContext::warning(const TSourceLoc& loc,
+ const char* reason, const char* token,
+ const char* extraInfo) {
+ pp::SourceLocation srcLoc;
+ srcLoc.file = loc.first_file;
+ srcLoc.line = loc.first_line;
+ diagnostics.writeInfo(pp::Diagnostics::WARNING,
+ srcLoc, reason, token, extraInfo);
+}
+
+void TParseContext::trace(const char* str)
+{
+ diagnostics.writeDebug(str);
+}
+
+//
+// Same error message for all places assignments don't work.
+//
+void TParseContext::assignError(const TSourceLoc& line, const char* op, TString left, TString right)
+{
+ std::stringstream extraInfoStream;
+ extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, "", op, extraInfo.c_str());
+}
+
+//
+// Same error message for all places unary operations don't work.
+//
+void TParseContext::unaryOpError(const TSourceLoc& line, const char* op, TString operand)
+{
+ std::stringstream extraInfoStream;
+ extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " << operand
+ << " (or there is no acceptable conversion)";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " wrong operand type", op, extraInfo.c_str());
+}
+
+//
+// Same error message for all binary operations don't work.
+//
+void TParseContext::binaryOpError(const TSourceLoc& line, const char* op, TString left, TString right)
+{
+ std::stringstream extraInfoStream;
+ extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" << left
+ << "' and a right operand of type '" << right << "' (or there is no acceptable conversion)";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " wrong operand types ", op, extraInfo.c_str());
+}
+
+bool TParseContext::precisionErrorCheck(const TSourceLoc& line, TPrecision precision, TBasicType type){
+ if (!checksPrecisionErrors)
+ return false;
+ switch( type ){
+ case EbtFloat:
+ if( precision == EbpUndefined ){
+ error( line, "No precision specified for (float)", "" );
+ return true;
+ }
+ break;
+ case EbtInt:
+ if( precision == EbpUndefined ){
+ error( line, "No precision specified (int)", "" );
+ return true;
+ }
+ break;
+ default:
+ return false;
+ }
+ return false;
+}
+
+//
+// Both test and if necessary, spit out an error, to see if the node is really
+// an l-value that can be operated on this way.
+//
+// Returns true if the was an error.
+//
+bool TParseContext::lValueErrorCheck(const TSourceLoc& line, const char* op, TIntermTyped* node)
+{
+ TIntermSymbol* symNode = node->getAsSymbolNode();
+ TIntermBinary* binaryNode = node->getAsBinaryNode();
+
+ if (binaryNode) {
+ bool errorReturn;
+
+ switch(binaryNode->getOp()) {
+ case EOpIndexDirect:
+ case EOpIndexIndirect:
+ case EOpIndexDirectStruct:
+ case EOpIndexDirectInterfaceBlock:
+ return lValueErrorCheck(line, op, binaryNode->getLeft());
+ case EOpVectorSwizzle:
+ errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft());
+ if (!errorReturn) {
+ int offset[4] = {0,0,0,0};
+
+ TIntermTyped* rightNode = binaryNode->getRight();
+ TIntermAggregate *aggrNode = rightNode->getAsAggregate();
+
+ for (TIntermSequence::iterator p = aggrNode->getSequence().begin();
+ p != aggrNode->getSequence().end(); p++) {
+ int value = (*p)->getAsTyped()->getAsConstantUnion()->getIConst(0);
+ offset[value]++;
+ if (offset[value] > 1) {
+ error(line, " l-value of swizzle cannot have duplicate components", op);
+
+ return true;
+ }
+ }
+ }
+
+ return errorReturn;
+ default:
+ break;
+ }
+ error(line, " l-value required", op);
+
+ return true;
+ }
+
+
+ const char* symbol = 0;
+ if (symNode != 0)
+ symbol = symNode->getSymbol().c_str();
+
+ const char* message = 0;
+ switch (node->getQualifier()) {
+ case EvqConst: message = "can't modify a const"; break;
+ case EvqConstReadOnly: message = "can't modify a const"; break;
+ case EvqAttribute: message = "can't modify an attribute"; break;
+ case EvqFragmentIn: message = "can't modify an input"; break;
+ case EvqVertexIn: message = "can't modify an input"; break;
+ case EvqUniform: message = "can't modify a uniform"; break;
+ case EvqVaryingIn: message = "can't modify a varying"; break;
+ case EvqFragCoord: message = "can't modify gl_FragCoord"; break;
+ case EvqFrontFacing: message = "can't modify gl_FrontFacing"; break;
+ case EvqPointCoord: message = "can't modify gl_PointCoord"; break;
+ default:
+
+ //
+ // Type that can't be written to?
+ //
+ if (node->getBasicType() == EbtVoid) {
+ message = "can't modify void";
+ }
+ if (IsSampler(node->getBasicType())) {
+ message = "can't modify a sampler";
+ }
+ }
+
+ if (message == 0 && binaryNode == 0 && symNode == 0) {
+ error(line, " l-value required", op);
+
+ return true;
+ }
+
+
+ //
+ // Everything else is okay, no error.
+ //
+ if (message == 0)
+ return false;
+
+ //
+ // If we get here, we have an error and a message.
+ //
+ if (symNode) {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "\"" << symbol << "\" (" << message << ")";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " l-value required", op, extraInfo.c_str());
+ }
+ else {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "(" << message << ")";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " l-value required", op, extraInfo.c_str());
+ }
+
+ return true;
+}
+
+//
+// Both test, and if necessary spit out an error, to see if the node is really
+// a constant.
+//
+// Returns true if the was an error.
+//
+bool TParseContext::constErrorCheck(TIntermTyped* node)
+{
+ if (node->getQualifier() == EvqConst)
+ return false;
+
+ error(node->getLine(), "constant expression required", "");
+
+ return true;
+}
+
+//
+// Both test, and if necessary spit out an error, to see if the node is really
+// an integer.
+//
+// Returns true if the was an error.
+//
+bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token)
+{
+ if (node->isScalarInt())
+ return false;
+
+ error(node->getLine(), "integer expression required", token);
+
+ return true;
+}
+
+//
+// Both test, and if necessary spit out an error, to see if we are currently
+// globally scoped.
+//
+// Returns true if the was an error.
+//
+bool TParseContext::globalErrorCheck(const TSourceLoc& line, bool global, const char* token)
+{
+ if (global)
+ return false;
+
+ error(line, "only allowed at global scope", token);
+
+ return true;
+}
+
+//
+// For now, keep it simple: if it starts "gl_", it's reserved, independent
+// of scope. Except, if the symbol table is at the built-in push-level,
+// which is when we are parsing built-ins.
+// Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a
+// webgl shader.
+//
+// Returns true if there was an error.
+//
+bool TParseContext::reservedErrorCheck(const TSourceLoc& line, const TString& identifier)
+{
+ static const char* reservedErrMsg = "reserved built-in name";
+ if (!symbolTable.atBuiltInLevel()) {
+ if (identifier.compare(0, 3, "gl_") == 0) {
+ error(line, reservedErrMsg, "gl_");
+ return true;
+ }
+ if (isWebGLBasedSpec(shaderSpec)) {
+ if (identifier.compare(0, 6, "webgl_") == 0) {
+ error(line, reservedErrMsg, "webgl_");
+ return true;
+ }
+ if (identifier.compare(0, 7, "_webgl_") == 0) {
+ error(line, reservedErrMsg, "_webgl_");
+ return true;
+ }
+ if (shaderSpec == SH_CSS_SHADERS_SPEC && identifier.compare(0, 4, "css_") == 0) {
+ error(line, reservedErrMsg, "css_");
+ return true;
+ }
+ }
+ if (identifier.find("__") != TString::npos) {
+ error(line, "identifiers containing two consecutive underscores (__) are reserved as possible future keywords", identifier.c_str());
+ return true;
+ }
+ }
+
+ return false;
+}
+
+//
+// Make sure there is enough data provided to the constructor to build
+// something of the type of the constructor. Also returns the type of
+// the constructor.
+//
+// Returns true if there was an error in construction.
+//
+bool TParseContext::constructorErrorCheck(const TSourceLoc& line, TIntermNode* node, TFunction& function, TOperator op, TType* type)
+{
+ *type = function.getReturnType();
+
+ bool constructingMatrix = false;
+ switch(op) {
+ case EOpConstructMat2:
+ case EOpConstructMat3:
+ case EOpConstructMat4:
+ constructingMatrix = true;
+ break;
+ default:
+ break;
+ }
+
+ //
+ // Note: It's okay to have too many components available, but not okay to have unused
+ // arguments. 'full' will go to true when enough args have been seen. If we loop
+ // again, there is an extra argument, so 'overfull' will become true.
+ //
+
+ size_t size = 0;
+ bool constType = true;
+ bool full = false;
+ bool overFull = false;
+ bool matrixInMatrix = false;
+ bool arrayArg = false;
+ for (size_t i = 0; i < function.getParamCount(); ++i) {
+ const TParameter& param = function.getParam(i);
+ size += param.type->getObjectSize();
+
+ if (constructingMatrix && param.type->isMatrix())
+ matrixInMatrix = true;
+ if (full)
+ overFull = true;
+ if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize())
+ full = true;
+ if (param.type->getQualifier() != EvqConst)
+ constType = false;
+ if (param.type->isArray())
+ arrayArg = true;
+ }
+
+ if (constType)
+ type->setQualifier(EvqConst);
+
+ if (type->isArray() && static_cast<size_t>(type->getArraySize()) != function.getParamCount()) {
+ error(line, "array constructor needs one argument per array element", "constructor");
+ return true;
+ }
+
+ if (arrayArg && op != EOpConstructStruct) {
+ error(line, "constructing from a non-dereferenced array", "constructor");
+ return true;
+ }
+
+ if (matrixInMatrix && !type->isArray()) {
+ if (function.getParamCount() != 1) {
+ error(line, "constructing matrix from matrix can only take one argument", "constructor");
+ return true;
+ }
+ }
+
+ if (overFull) {
+ error(line, "too many arguments", "constructor");
+ return true;
+ }
+
+ if (op == EOpConstructStruct && !type->isArray() && int(type->getStruct()->fields().size()) != function.getParamCount()) {
+ error(line, "Number of constructor parameters does not match the number of structure fields", "constructor");
+ return true;
+ }
+
+ if (!type->isMatrix() || !matrixInMatrix) {
+ if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) ||
+ (op == EOpConstructStruct && size < type->getObjectSize())) {
+ error(line, "not enough data provided for construction", "constructor");
+ return true;
+ }
+ }
+
+ TIntermTyped *typed = node ? node->getAsTyped() : 0;
+ if (typed == 0) {
+ error(line, "constructor argument does not have a type", "constructor");
+ return true;
+ }
+ if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) {
+ error(line, "cannot convert a sampler", "constructor");
+ return true;
+ }
+ if (typed->getBasicType() == EbtVoid) {
+ error(line, "cannot convert a void", "constructor");
+ return true;
+ }
+
+ return false;
+}
+
+// This function checks to see if a void variable has been declared and raise an error message for such a case
+//
+// returns true in case of an error
+//
+bool TParseContext::voidErrorCheck(const TSourceLoc& line, const TString& identifier, const TPublicType& pubType)
+{
+ if (pubType.type == EbtVoid) {
+ error(line, "illegal use of type 'void'", identifier.c_str());
+ return true;
+ }
+
+ return false;
+}
+
+// This function checks to see if the node (for the expression) contains a scalar boolean expression or not
+//
+// returns true in case of an error
+//
+bool TParseContext::boolErrorCheck(const TSourceLoc& line, const TIntermTyped* type)
+{
+ if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) {
+ error(line, "boolean expression expected", "");
+ return true;
+ }
+
+ return false;
+}
+
+// This function checks to see if the node (for the expression) contains a scalar boolean expression or not
+//
+// returns true in case of an error
+//
+bool TParseContext::boolErrorCheck(const TSourceLoc& line, const TPublicType& pType)
+{
+ if (pType.type != EbtBool || pType.isAggregate()) {
+ error(line, "boolean expression expected", "");
+ return true;
+ }
+
+ return false;
+}
+
+bool TParseContext::samplerErrorCheck(const TSourceLoc& line, const TPublicType& pType, const char* reason)
+{
+ if (pType.type == EbtStruct) {
+ if (containsSampler(*pType.userDef)) {
+ error(line, reason, getBasicString(pType.type), "(structure contains a sampler)");
+
+ return true;
+ }
+
+ return false;
+ } else if (IsSampler(pType.type)) {
+ error(line, reason, getBasicString(pType.type));
+
+ return true;
+ }
+
+ return false;
+}
+
+bool TParseContext::structQualifierErrorCheck(const TSourceLoc& line, const TPublicType& pType)
+{
+ switch (pType.qualifier)
+ {
+ case EvqVaryingIn:
+ case EvqVaryingOut:
+ case EvqAttribute:
+ case EvqVertexIn:
+ case EvqFragmentOut:
+ if (pType.type == EbtStruct)
+ {
+ error(line, "cannot be used with a structure", getQualifierString(pType.qualifier));
+ return true;
+ }
+ }
+
+ if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform"))
+ return true;
+
+ return false;
+}
+
+bool TParseContext::locationDeclaratorListCheck(const TSourceLoc& line, const TPublicType &pType)
+{
+ if (pType.layoutQualifier.location != -1)
+ {
+ error(line, "location must only be specified for a single input or output variable", "location");
+ return true;
+ }
+
+ return false;
+}
+
+bool TParseContext::parameterSamplerErrorCheck(const TSourceLoc& line, TQualifier qualifier, const TType& type)
+{
+ if ((qualifier == EvqOut || qualifier == EvqInOut) &&
+ type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) {
+ error(line, "samplers cannot be output parameters", type.getBasicString());
+ return true;
+ }
+
+ return false;
+}
+
+bool TParseContext::containsSampler(TType& type)
+{
+ if (IsSampler(type.getBasicType()))
+ return true;
+
+ if (type.getBasicType() == EbtStruct || type.isInterfaceBlock()) {
+ const TFieldList& fields = type.getStruct()->fields();
+ for (unsigned int i = 0; i < fields.size(); ++i) {
+ if (containsSampler(*fields[i]->type()))
+ return true;
+ }
+ }
+
+ return false;
+}
+
+//
+// Do size checking for an array type's size.
+//
+// Returns true if there was an error.
+//
+bool TParseContext::arraySizeErrorCheck(const TSourceLoc& line, TIntermTyped* expr, int& size)
+{
+ TIntermConstantUnion* constant = expr->getAsConstantUnion();
+
+ if (constant == 0 || !constant->isScalarInt())
+ {
+ error(line, "array size must be a constant integer expression", "");
+ return true;
+ }
+
+ if (constant->getBasicType() == EbtUInt)
+ {
+ unsigned int uintSize = constant->getUConst(0);
+ if (uintSize > static_cast<unsigned int>(std::numeric_limits<int>::max()))
+ {
+ error(line, "array size too large", "");
+ size = 1;
+ return true;
+ }
+
+ size = static_cast<int>(uintSize);
+ }
+ else
+ {
+ size = constant->getIConst(0);
+
+ if (size <= 0)
+ {
+ error(line, "array size must be a positive integer", "");
+ size = 1;
+ return true;
+ }
+ }
+
+ return false;
+}
+
+//
+// See if this qualifier can be an array.
+//
+// Returns true if there is an error.
+//
+bool TParseContext::arrayQualifierErrorCheck(const TSourceLoc& line, TPublicType type)
+{
+ if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqVertexIn) || (type.qualifier == EvqConst)) {
+ error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str());
+ return true;
+ }
+
+ return false;
+}
+
+//
+// See if this type can be an array.
+//
+// Returns true if there is an error.
+//
+bool TParseContext::arrayTypeErrorCheck(const TSourceLoc& line, TPublicType type)
+{
+ //
+ // Can the type be an array?
+ //
+ if (type.array) {
+ error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str());
+ return true;
+ }
+
+ return false;
+}
+
+//
+// Do all the semantic checking for declaring an array, with and
+// without a size, and make the right changes to the symbol table.
+//
+// size == 0 means no specified size.
+//
+// Returns true if there was an error.
+//
+bool TParseContext::arrayErrorCheck(const TSourceLoc& line, const TString& identifier, const TPublicType &type, TVariable*& variable)
+{
+ //
+ // Don't check for reserved word use until after we know it's not in the symbol table,
+ // because reserved arrays can be redeclared.
+ //
+
+ bool builtIn = false;
+ bool sameScope = false;
+ TSymbol* symbol = symbolTable.find(identifier, 0, &builtIn, &sameScope);
+ if (symbol == 0 || !sameScope) {
+ if (reservedErrorCheck(line, identifier))
+ return true;
+
+ variable = new TVariable(&identifier, TType(type));
+
+ if (type.arraySize)
+ variable->getType().setArraySize(type.arraySize);
+
+ if (! symbolTable.declare(*variable)) {
+ delete variable;
+ error(line, "INTERNAL ERROR inserting new symbol", identifier.c_str());
+ return true;
+ }
+ } else {
+ if (! symbol->isVariable()) {
+ error(line, "variable expected", identifier.c_str());
+ return true;
+ }
+
+ variable = static_cast<TVariable*>(symbol);
+ if (! variable->getType().isArray()) {
+ error(line, "redeclaring non-array as array", identifier.c_str());
+ return true;
+ }
+ if (variable->getType().getArraySize() > 0) {
+ error(line, "redeclaration of array with size", identifier.c_str());
+ return true;
+ }
+
+ if (! variable->getType().sameElementType(TType(type))) {
+ error(line, "redeclaration of array with a different type", identifier.c_str());
+ return true;
+ }
+
+ if (type.arraySize)
+ variable->getType().setArraySize(type.arraySize);
+ }
+
+ if (voidErrorCheck(line, identifier, type))
+ return true;
+
+ return false;
+}
+
+//
+// Enforce non-initializer type/qualifier rules.
+//
+// Returns true if there was an error.
+//
+bool TParseContext::nonInitConstErrorCheck(const TSourceLoc& line, const TString& identifier, TPublicType& type, bool array)
+{
+ if (type.qualifier == EvqConst)
+ {
+ // Make the qualifier make sense.
+ type.qualifier = EvqTemporary;
+
+ if (array)
+ {
+ error(line, "arrays may not be declared constant since they cannot be initialized", identifier.c_str());
+ }
+ else if (type.isStructureContainingArrays())
+ {
+ error(line, "structures containing arrays may not be declared constant since they cannot be initialized", identifier.c_str());
+ }
+ else
+ {
+ error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
+ }
+
+ return true;
+ }
+
+ return false;
+}
+
+//
+// Do semantic checking for a variable declaration that has no initializer,
+// and update the symbol table.
+//
+// Returns true if there was an error.
+//
+bool TParseContext::nonInitErrorCheck(const TSourceLoc& line, const TString& identifier, const TPublicType& type, TVariable*& variable)
+{
+ if (reservedErrorCheck(line, identifier))
+ recover();
+
+ variable = new TVariable(&identifier, TType(type));
+
+ if (! symbolTable.declare(*variable)) {
+ error(line, "redefinition", variable->getName().c_str());
+ delete variable;
+ variable = 0;
+ return true;
+ }
+
+ if (voidErrorCheck(line, identifier, type))
+ return true;
+
+ return false;
+}
+
+bool TParseContext::paramErrorCheck(const TSourceLoc& line, TQualifier qualifier, TQualifier paramQualifier, TType* type)
+{
+ if (qualifier != EvqConst && qualifier != EvqTemporary) {
+ error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier));
+ return true;
+ }
+ if (qualifier == EvqConst && paramQualifier != EvqIn) {
+ error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier));
+ return true;
+ }
+
+ if (qualifier == EvqConst)
+ type->setQualifier(EvqConstReadOnly);
+ else
+ type->setQualifier(paramQualifier);
+
+ return false;
+}
+
+bool TParseContext::extensionErrorCheck(const TSourceLoc& line, const TString& extension)
+{
+ const TExtensionBehavior& extBehavior = extensionBehavior();
+ TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str());
+ if (iter == extBehavior.end()) {
+ error(line, "extension", extension.c_str(), "is not supported");
+ return true;
+ }
+ // In GLSL ES, an extension's default behavior is "disable".
+ if (iter->second == EBhDisable || iter->second == EBhUndefined) {
+ error(line, "extension", extension.c_str(), "is disabled");
+ return true;
+ }
+ if (iter->second == EBhWarn) {
+ warning(line, "extension", extension.c_str(), "is being used");
+ return false;
+ }
+
+ return false;
+}
+
+bool TParseContext::singleDeclarationErrorCheck(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier)
+{
+ if (structQualifierErrorCheck(identifierLocation, publicType))
+ return true;
+
+ // check for layout qualifier issues
+ const TLayoutQualifier layoutQualifier = publicType.layoutQualifier;
+
+ if (layoutQualifier.matrixPacking != EmpUnspecified)
+ {
+ error(identifierLocation, "layout qualifier", getMatrixPackingString(layoutQualifier.matrixPacking), "only valid for interface blocks");
+ return true;
+ }
+
+ if (layoutQualifier.blockStorage != EbsUnspecified)
+ {
+ error(identifierLocation, "layout qualifier", getBlockStorageString(layoutQualifier.blockStorage), "only valid for interface blocks");
+ return true;
+ }
+
+ if (publicType.qualifier != EvqVertexIn && publicType.qualifier != EvqFragmentOut && layoutLocationErrorCheck(identifierLocation, publicType.layoutQualifier))
+ {
+ return true;
+ }
+
+ return false;
+}
+
+bool TParseContext::layoutLocationErrorCheck(const TSourceLoc& location, const TLayoutQualifier &layoutQualifier)
+{
+ if (layoutQualifier.location != -1)
+ {
+ error(location, "invalid layout qualifier:", "location", "only valid on program inputs and outputs");
+ return true;
+ }
+
+ return false;
+}
+
+bool TParseContext::supportsExtension(const char* extension)
+{
+ const TExtensionBehavior& extbehavior = extensionBehavior();
+ TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
+ return (iter != extbehavior.end());
+}
+
+bool TParseContext::isExtensionEnabled(const char* extension) const
+{
+ const TExtensionBehavior& extbehavior = extensionBehavior();
+ TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
+
+ if (iter == extbehavior.end())
+ {
+ return false;
+ }
+
+ return (iter->second == EBhEnable || iter->second == EBhRequire);
+}
+
+void TParseContext::handleExtensionDirective(const TSourceLoc& loc, const char* extName, const char* behavior)
+{
+ pp::SourceLocation srcLoc;
+ srcLoc.file = loc.first_file;
+ srcLoc.line = loc.first_line;
+ directiveHandler.handleExtension(srcLoc, extName, behavior);
+}
+
+void TParseContext::handlePragmaDirective(const TSourceLoc& loc, const char* name, const char* value)
+{
+ pp::SourceLocation srcLoc;
+ srcLoc.file = loc.first_file;
+ srcLoc.line = loc.first_line;
+ directiveHandler.handlePragma(srcLoc, name, value);
+}
+
+/////////////////////////////////////////////////////////////////////////////////
+//
+// Non-Errors.
+//
+/////////////////////////////////////////////////////////////////////////////////
+
+//
+// Look up a function name in the symbol table, and make sure it is a function.
+//
+// Return the function symbol if found, otherwise 0.
+//
+const TFunction* TParseContext::findFunction(const TSourceLoc& line, TFunction* call, int shaderVersion, bool *builtIn)
+{
+ // First find by unmangled name to check whether the function name has been
+ // hidden by a variable name or struct typename.
+ // If a function is found, check for one with a matching argument list.
+ const TSymbol* symbol = symbolTable.find(call->getName(), shaderVersion, builtIn);
+ if (symbol == 0 || symbol->isFunction()) {
+ symbol = symbolTable.find(call->getMangledName(), shaderVersion, builtIn);
+ }
+
+ if (symbol == 0) {
+ error(line, "no matching overloaded function found", call->getName().c_str());
+ return 0;
+ }
+
+ if (!symbol->isFunction()) {
+ error(line, "function name expected", call->getName().c_str());
+ return 0;
+ }
+
+ return static_cast<const TFunction*>(symbol);
+}
+
+//
+// Initializers show up in several places in the grammar. Have one set of
+// code to handle them here.
+//
+bool TParseContext::executeInitializer(const TSourceLoc& line, const TString& identifier, TPublicType& pType,
+ TIntermTyped* initializer, TIntermNode*& intermNode, TVariable* variable)
+{
+ TType type = TType(pType);
+
+ if (variable == 0) {
+ if (reservedErrorCheck(line, identifier))
+ return true;
+
+ if (voidErrorCheck(line, identifier, pType))
+ return true;
+
+ //
+ // add variable to symbol table
+ //
+ variable = new TVariable(&identifier, type);
+ if (! symbolTable.declare(*variable)) {
+ error(line, "redefinition", variable->getName().c_str());
+ return true;
+ // don't delete variable, it's used by error recovery, and the pool
+ // pop will take care of the memory
+ }
+ }
+
+ //
+ // identifier must be of type constant, a global, or a temporary
+ //
+ TQualifier qualifier = variable->getType().getQualifier();
+ if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) {
+ error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString());
+ return true;
+ }
+ //
+ // test for and propagate constant
+ //
+
+ if (qualifier == EvqConst) {
+ if (qualifier != initializer->getType().getQualifier()) {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " assigning non-constant to", "=", extraInfo.c_str());
+ variable->getType().setQualifier(EvqTemporary);
+ return true;
+ }
+ if (type != initializer->getType()) {
+ error(line, " non-matching types for const initializer ",
+ variable->getType().getQualifierString());
+ variable->getType().setQualifier(EvqTemporary);
+ return true;
+ }
+ if (initializer->getAsConstantUnion()) {
+ variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
+ } else if (initializer->getAsSymbolNode()) {
+ const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol(), 0);
+ const TVariable* tVar = static_cast<const TVariable*>(symbol);
+
+ ConstantUnion* constArray = tVar->getConstPointer();
+ variable->shareConstPointer(constArray);
+ } else {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, " cannot assign to", "=", extraInfo.c_str());
+ variable->getType().setQualifier(EvqTemporary);
+ return true;
+ }
+ }
+
+ if (qualifier != EvqConst) {
+ TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line);
+ intermNode = intermediate.addAssign(EOpInitialize, intermSymbol, initializer, line);
+ if (intermNode == 0) {
+ assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
+ return true;
+ }
+ } else
+ intermNode = 0;
+
+ return false;
+}
+
+bool TParseContext::areAllChildConst(TIntermAggregate* aggrNode)
+{
+ ASSERT(aggrNode != NULL);
+ if (!aggrNode->isConstructor())
+ return false;
+
+ bool allConstant = true;
+
+ // check if all the child nodes are constants so that they can be inserted into
+ // the parent node
+ TIntermSequence &sequence = aggrNode->getSequence() ;
+ for (TIntermSequence::iterator p = sequence.begin(); p != sequence.end(); ++p) {
+ if (!(*p)->getAsTyped()->getAsConstantUnion())
+ return false;
+ }
+
+ return allConstant;
+}
+
+TPublicType TParseContext::addFullySpecifiedType(TQualifier qualifier, TLayoutQualifier layoutQualifier, const TPublicType& typeSpecifier)
+{
+ TPublicType returnType = typeSpecifier;
+ returnType.qualifier = qualifier;
+ returnType.layoutQualifier = layoutQualifier;
+
+ if (typeSpecifier.array)
+ {
+ error(typeSpecifier.line, "not supported", "first-class array");
+ recover();
+ returnType.setArray(false);
+ }
+
+ if (shaderVersion < 300)
+ {
+ if (qualifier == EvqAttribute && (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt))
+ {
+ error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier));
+ recover();
+ }
+
+ if ((qualifier == EvqVaryingIn || qualifier == EvqVaryingOut) &&
+ (typeSpecifier.type == EbtBool || typeSpecifier.type == EbtInt))
+ {
+ error(typeSpecifier.line, "cannot be bool or int", getQualifierString(qualifier));
+ recover();
+ }
+ }
+ else
+ {
+ switch (qualifier)
+ {
+ case EvqSmoothIn:
+ case EvqSmoothOut:
+ case EvqVertexOut:
+ case EvqFragmentIn:
+ case EvqCentroidOut:
+ case EvqCentroidIn:
+ if (typeSpecifier.type == EbtBool)
+ {
+ error(typeSpecifier.line, "cannot be bool", getQualifierString(qualifier));
+ recover();
+ }
+ if (typeSpecifier.type == EbtInt || typeSpecifier.type == EbtUInt)
+ {
+ error(typeSpecifier.line, "must use 'flat' interpolation here", getQualifierString(qualifier));
+ recover();
+ }
+ break;
+
+ case EvqVertexIn:
+ case EvqFragmentOut:
+ case EvqFlatIn:
+ case EvqFlatOut:
+ if (typeSpecifier.type == EbtBool)
+ {
+ error(typeSpecifier.line, "cannot be bool", getQualifierString(qualifier));
+ recover();
+ }
+ break;
+
+ default: break;
+ }
+ }
+
+ return returnType;
+}
+
+TIntermAggregate* TParseContext::parseSingleDeclaration(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier)
+{
+ TIntermSymbol* symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation);
+ TIntermAggregate* aggregate = intermediate.makeAggregate(symbol, identifierLocation);
+
+ if (identifier != "")
+ {
+ if (singleDeclarationErrorCheck(publicType, identifierLocation, identifier))
+ recover();
+
+ // this error check can mutate the type
+ if (nonInitConstErrorCheck(identifierLocation, identifier, publicType, false))
+ recover();
+
+ TVariable* variable = 0;
+
+ if (nonInitErrorCheck(identifierLocation, identifier, publicType, variable))
+ recover();
+
+ if (variable && symbol)
+ {
+ symbol->setId(variable->getUniqueId());
+ }
+ }
+
+ return aggregate;
+}
+
+TIntermAggregate* TParseContext::parseSingleArrayDeclaration(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier, const TSourceLoc& indexLocation, TIntermTyped *indexExpression)
+{
+ if (singleDeclarationErrorCheck(publicType, identifierLocation, identifier))
+ recover();
+
+ // this error check can mutate the type
+ if (nonInitConstErrorCheck(identifierLocation, identifier, publicType, true))
+ recover();
+
+ if (arrayTypeErrorCheck(indexLocation, publicType) || arrayQualifierErrorCheck(indexLocation, publicType))
+ {
+ recover();
+ }
+
+ TPublicType arrayType = publicType;
+
+ int size;
+ if (arraySizeErrorCheck(identifierLocation, indexExpression, size))
+ {
+ recover();
+ }
+ else
+ {
+ arrayType.setArray(true, size);
+ }
+
+ TIntermSymbol* symbol = intermediate.addSymbol(0, identifier, TType(arrayType), identifierLocation);
+ TIntermAggregate* aggregate = intermediate.makeAggregate(symbol, identifierLocation);
+ TVariable* variable = 0;
+
+ if (arrayErrorCheck(identifierLocation, identifier, arrayType, variable))
+ recover();
+
+ if (variable && symbol)
+ {
+ symbol->setId(variable->getUniqueId());
+ }
+
+ return aggregate;
+}
+
+TIntermAggregate* TParseContext::parseSingleInitDeclaration(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier, const TSourceLoc& initLocation, TIntermTyped *initializer)
+{
+ if (singleDeclarationErrorCheck(publicType, identifierLocation, identifier))
+ recover();
+
+ TIntermNode* intermNode;
+ if (!executeInitializer(identifierLocation, identifier, publicType, initializer, intermNode))
+ {
+ //
+ // Build intermediate representation
+ //
+ return intermNode ? intermediate.makeAggregate(intermNode, initLocation) : NULL;
+ }
+ else
+ {
+ recover();
+ return NULL;
+ }
+}
+
+TIntermAggregate* TParseContext::parseDeclarator(TPublicType &publicType, TIntermAggregate *aggregateDeclaration, TSymbol *identifierSymbol, const TSourceLoc& identifierLocation, const TString &identifier)
+{
+ if (publicType.type == EbtInvariant && !identifierSymbol)
+ {
+ error(identifierLocation, "undeclared identifier declared as invariant", identifier.c_str());
+ recover();
+ }
+
+ TIntermSymbol* symbol = intermediate.addSymbol(0, identifier, TType(publicType), identifierLocation);
+ TIntermAggregate* intermAggregate = intermediate.growAggregate(aggregateDeclaration, symbol, identifierLocation);
+
+ if (structQualifierErrorCheck(identifierLocation, publicType))
+ recover();
+
+ if (locationDeclaratorListCheck(identifierLocation, publicType))
+ recover();
+
+ if (nonInitConstErrorCheck(identifierLocation, identifier, publicType, false))
+ recover();
+
+ TVariable* variable = 0;
+ if (nonInitErrorCheck(identifierLocation, identifier, publicType, variable))
+ recover();
+ if (symbol && variable)
+ symbol->setId(variable->getUniqueId());
+
+ return intermAggregate;
+}
+
+TIntermAggregate* TParseContext::parseArrayDeclarator(TPublicType &publicType, const TSourceLoc& identifierLocation, const TString &identifier, const TSourceLoc& arrayLocation, TIntermNode *declaratorList, TIntermTyped *indexExpression)
+{
+ if (structQualifierErrorCheck(identifierLocation, publicType))
+ recover();
+
+ if (locationDeclaratorListCheck(identifierLocation, publicType))
+ recover();
+
+ if (nonInitConstErrorCheck(identifierLocation, identifier, publicType, true))
+ recover();
+
+ if (arrayTypeErrorCheck(arrayLocation, publicType) || arrayQualifierErrorCheck(arrayLocation, publicType))
+ {
+ recover();
+ }
+ else if (indexExpression)
+ {
+ int size;
+ if (arraySizeErrorCheck(arrayLocation, indexExpression, size))
+ recover();
+ TPublicType arrayType(publicType);
+ arrayType.setArray(true, size);
+ TVariable* variable = NULL;
+ if (arrayErrorCheck(arrayLocation, identifier, arrayType, variable))
+ recover();
+ TType type = TType(arrayType);
+ type.setArraySize(size);
+
+ return intermediate.growAggregate(declaratorList, intermediate.addSymbol(variable ? variable->getUniqueId() : 0, identifier, type, identifierLocation), identifierLocation);
+ }
+ else
+ {
+ TPublicType arrayType(publicType);
+ arrayType.setArray(true);
+ TVariable* variable = NULL;
+ if (arrayErrorCheck(arrayLocation, identifier, arrayType, variable))
+ recover();
+ }
+
+ return NULL;
+}
+
+TIntermAggregate* TParseContext::parseInitDeclarator(TPublicType &publicType, TIntermAggregate *declaratorList, const TSourceLoc& identifierLocation, const TString &identifier, const TSourceLoc& initLocation, TIntermTyped *initializer)
+{
+ if (structQualifierErrorCheck(identifierLocation, publicType))
+ recover();
+
+ if (locationDeclaratorListCheck(identifierLocation, publicType))
+ recover();
+
+ TIntermNode* intermNode;
+ if (!executeInitializer(identifierLocation, identifier, publicType, initializer, intermNode))
+ {
+ //
+ // build the intermediate representation
+ //
+ if (intermNode)
+ {
+ return intermediate.growAggregate(declaratorList, intermNode, initLocation);
+ }
+ else
+ {
+ return declaratorList;
+ }
+ }
+ else
+ {
+ recover();
+ return NULL;
+ }
+}
+
+void TParseContext::parseGlobalLayoutQualifier(const TPublicType &typeQualifier)
+{
+ if (typeQualifier.qualifier != EvqUniform)
+ {
+ error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "global layout must be uniform");
+ recover();
+ return;
+ }
+
+ const TLayoutQualifier layoutQualifier = typeQualifier.layoutQualifier;
+ ASSERT(!layoutQualifier.isEmpty());
+
+ if (shaderVersion < 300)
+ {
+ error(typeQualifier.line, "layout qualifiers supported in GLSL ES 3.00 only", "layout");
+ recover();
+ return;
+ }
+
+ if (layoutLocationErrorCheck(typeQualifier.line, typeQualifier.layoutQualifier))
+ {
+ recover();
+ return;
+ }
+
+ if (layoutQualifier.matrixPacking != EmpUnspecified)
+ {
+ defaultMatrixPacking = layoutQualifier.matrixPacking;
+ }
+
+ if (layoutQualifier.blockStorage != EmpUnspecified)
+ {
+ defaultBlockStorage = layoutQualifier.blockStorage;
+ }
+}
+
+TFunction *TParseContext::addConstructorFunc(TPublicType publicType)
+{
+ TOperator op = EOpNull;
+ if (publicType.userDef)
+ {
+ op = EOpConstructStruct;
+ }
+ else
+ {
+ switch (publicType.type)
+ {
+ case EbtFloat:
+ if (publicType.isMatrix())
+ {
+ // TODO: non-square matrices
+ switch(publicType.getCols())
+ {
+ case 2: op = EOpConstructMat2; break;
+ case 3: op = EOpConstructMat3; break;
+ case 4: op = EOpConstructMat4; break;
+ }
+ }
+ else
+ {
+ switch(publicType.getNominalSize())
+ {
+ case 1: op = EOpConstructFloat; break;
+ case 2: op = EOpConstructVec2; break;
+ case 3: op = EOpConstructVec3; break;
+ case 4: op = EOpConstructVec4; break;
+ }
+ }
+ break;
+
+ case EbtInt:
+ switch(publicType.getNominalSize())
+ {
+ case 1: op = EOpConstructInt; break;
+ case 2: op = EOpConstructIVec2; break;
+ case 3: op = EOpConstructIVec3; break;
+ case 4: op = EOpConstructIVec4; break;
+ }
+ break;
+
+ case EbtUInt:
+ switch(publicType.getNominalSize())
+ {
+ case 1: op = EOpConstructUInt; break;
+ case 2: op = EOpConstructUVec2; break;
+ case 3: op = EOpConstructUVec3; break;
+ case 4: op = EOpConstructUVec4; break;
+ }
+ break;
+
+ case EbtBool:
+ switch(publicType.getNominalSize())
+ {
+ case 1: op = EOpConstructBool; break;
+ case 2: op = EOpConstructBVec2; break;
+ case 3: op = EOpConstructBVec3; break;
+ case 4: op = EOpConstructBVec4; break;
+ }
+ break;
+
+ default: break;
+ }
+
+ if (op == EOpNull)
+ {
+ error(publicType.line, "cannot construct this type", getBasicString(publicType.type));
+ recover();
+ publicType.type = EbtFloat;
+ op = EOpConstructFloat;
+ }
+ }
+
+ TString tempString;
+ TType type(publicType);
+ return new TFunction(&tempString, type, op);
+}
+
+// This function is used to test for the correctness of the parameters passed to various constructor functions
+// and also convert them to the right datatype if it is allowed and required.
+//
+// Returns 0 for an error or the constructed node (aggregate or typed) for no error.
+//
+TIntermTyped* TParseContext::addConstructor(TIntermNode* node, const TType* type, TOperator op, TFunction* fnCall, const TSourceLoc& line)
+{
+ if (node == 0)
+ return 0;
+
+ TIntermAggregate* aggrNode = node->getAsAggregate();
+
+ TFieldList::const_iterator memberTypes;
+ if (op == EOpConstructStruct)
+ memberTypes = type->getStruct()->fields().begin();
+
+ TType elementType = *type;
+ if (type->isArray())
+ elementType.clearArrayness();
+
+ bool singleArg;
+ if (aggrNode) {
+ if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1)
+ singleArg = true;
+ else
+ singleArg = false;
+ } else
+ singleArg = true;
+
+ TIntermTyped *newNode;
+ if (singleArg) {
+ // If structure constructor or array constructor is being called
+ // for only one parameter inside the structure, we need to call constructStruct function once.
+ if (type->isArray())
+ newNode = constructStruct(node, &elementType, 1, node->getLine(), false);
+ else if (op == EOpConstructStruct)
+ newNode = constructStruct(node, (*memberTypes)->type(), 1, node->getLine(), false);
+ else
+ newNode = constructBuiltIn(type, op, node, node->getLine(), false);
+
+ if (newNode && newNode->getAsAggregate()) {
+ TIntermTyped* constConstructor = foldConstConstructor(newNode->getAsAggregate(), *type);
+ if (constConstructor)
+ return constConstructor;
+ }
+
+ return newNode;
+ }
+
+ //
+ // Handle list of arguments.
+ //
+ TIntermSequence &sequenceVector = aggrNode->getSequence() ; // Stores the information about the parameter to the constructor
+ // if the structure constructor contains more than one parameter, then construct
+ // each parameter
+
+ int paramCount = 0; // keeps a track of the constructor parameter number being checked
+
+ // for each parameter to the constructor call, check to see if the right type is passed or convert them
+ // to the right type if possible (and allowed).
+ // for structure constructors, just check if the right type is passed, no conversion is allowed.
+
+ for (TIntermSequence::iterator p = sequenceVector.begin();
+ p != sequenceVector.end(); p++, paramCount++) {
+ if (type->isArray())
+ newNode = constructStruct(*p, &elementType, paramCount+1, node->getLine(), true);
+ else if (op == EOpConstructStruct)
+ newNode = constructStruct(*p, (memberTypes[paramCount])->type(), paramCount+1, node->getLine(), true);
+ else
+ newNode = constructBuiltIn(type, op, *p, node->getLine(), true);
+
+ if (newNode) {
+ *p = newNode;
+ }
+ }
+
+ TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, line);
+ TIntermTyped* constConstructor = foldConstConstructor(constructor->getAsAggregate(), *type);
+ if (constConstructor)
+ return constConstructor;
+
+ return constructor;
+}
+
+TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type)
+{
+ bool canBeFolded = areAllChildConst(aggrNode);
+ aggrNode->setType(type);
+ if (canBeFolded) {
+ bool returnVal = false;
+ ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()];
+ if (aggrNode->getSequence().size() == 1) {
+ returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type, true);
+ }
+ else {
+ returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), type);
+ }
+ if (returnVal)
+ return 0;
+
+ return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine());
+ }
+
+ return 0;
+}
+
+// Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
+// for the parameter to the constructor (passed to this function). Essentially, it converts
+// the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
+// float, then float is converted to int.
+//
+// Returns 0 for an error or the constructed node.
+//
+TIntermTyped* TParseContext::constructBuiltIn(const TType* type, TOperator op, TIntermNode* node, const TSourceLoc& line, bool subset)
+{
+ TIntermTyped* newNode;
+ TOperator basicOp;
+
+ //
+ // First, convert types as needed.
+ //
+ switch (op) {
+ case EOpConstructVec2:
+ case EOpConstructVec3:
+ case EOpConstructVec4:
+ case EOpConstructMat2:
+ case EOpConstructMat3:
+ case EOpConstructMat4:
+ case EOpConstructFloat:
+ basicOp = EOpConstructFloat;
+ break;
+
+ case EOpConstructIVec2:
+ case EOpConstructIVec3:
+ case EOpConstructIVec4:
+ case EOpConstructInt:
+ basicOp = EOpConstructInt;
+ break;
+
+ case EOpConstructUVec2:
+ case EOpConstructUVec3:
+ case EOpConstructUVec4:
+ case EOpConstructUInt:
+ basicOp = EOpConstructUInt;
+ break;
+
+ case EOpConstructBVec2:
+ case EOpConstructBVec3:
+ case EOpConstructBVec4:
+ case EOpConstructBool:
+ basicOp = EOpConstructBool;
+ break;
+
+ default:
+ error(line, "unsupported construction", "");
+ recover();
+
+ return 0;
+ }
+ newNode = intermediate.addUnaryMath(basicOp, node, node->getLine());
+ if (newNode == 0) {
+ error(line, "can't convert", "constructor");
+ return 0;
+ }
+
+ //
+ // Now, if there still isn't an operation to do the construction, and we need one, add one.
+ //
+
+ // Otherwise, skip out early.
+ if (subset || (newNode != node && newNode->getType() == *type))
+ return newNode;
+
+ // setAggregateOperator will insert a new node for the constructor, as needed.
+ return intermediate.setAggregateOperator(newNode, op, line);
+}
+
+// This function tests for the type of the parameters to the structures constructors. Raises
+// an error message if the expected type does not match the parameter passed to the constructor.
+//
+// Returns 0 for an error or the input node itself if the expected and the given parameter types match.
+//
+TIntermTyped* TParseContext::constructStruct(TIntermNode* node, TType* type, int paramCount, const TSourceLoc& line, bool subset)
+{
+ if (*type == node->getAsTyped()->getType()) {
+ if (subset)
+ return node->getAsTyped();
+ else
+ return intermediate.setAggregateOperator(node->getAsTyped(), EOpConstructStruct, line);
+ } else {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "cannot convert parameter " << paramCount
+ << " from '" << node->getAsTyped()->getType().getBasicString()
+ << "' to '" << type->getBasicString() << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, "", "constructor", extraInfo.c_str());
+ recover();
+ }
+
+ return 0;
+}
+
+//
+// This function returns the tree representation for the vector field(s) being accessed from contant vector.
+// If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is
+// returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol
+// node or it could be the intermediate tree representation of accessing fields in a constant structure or column of
+// a constant matrix.
+//
+TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, const TSourceLoc& line)
+{
+ TIntermTyped* typedNode;
+ TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
+
+ ConstantUnion *unionArray;
+ if (tempConstantNode) {
+ unionArray = tempConstantNode->getUnionArrayPointer();
+
+ if (!unionArray) {
+ return node;
+ }
+ } else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error
+ error(line, "Cannot offset into the vector", "Error");
+ recover();
+
+ return 0;
+ }
+
+ ConstantUnion* constArray = new ConstantUnion[fields.num];
+
+ for (int i = 0; i < fields.num; i++) {
+ if (fields.offsets[i] >= node->getType().getNominalSize()) {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "vector field selection out of range '" << fields.offsets[i] << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, "", "[", extraInfo.c_str());
+ recover();
+ fields.offsets[i] = 0;
+ }
+
+ constArray[i] = unionArray[fields.offsets[i]];
+
+ }
+ typedNode = intermediate.addConstantUnion(constArray, node->getType(), line);
+ return typedNode;
+}
+
+//
+// This function returns the column being accessed from a constant matrix. The values are retrieved from
+// the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input
+// to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a
+// constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure)
+//
+TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, const TSourceLoc& line)
+{
+ TIntermTyped* typedNode;
+ TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
+
+ if (index >= node->getType().getCols()) {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "matrix field selection out of range '" << index << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, "", "[", extraInfo.c_str());
+ recover();
+ index = 0;
+ }
+
+ if (tempConstantNode) {
+ ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
+ int size = tempConstantNode->getType().getCols();
+ typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line);
+ } else {
+ error(line, "Cannot offset into the matrix", "Error");
+ recover();
+
+ return 0;
+ }
+
+ return typedNode;
+}
+
+
+//
+// This function returns an element of an array accessed from a constant array. The values are retrieved from
+// the symbol table and parse-tree is built for the type of the element. The input
+// to the function could either be a symbol node (a[0] where a is a constant array)that represents a
+// constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure)
+//
+TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, const TSourceLoc& line)
+{
+ TIntermTyped* typedNode;
+ TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
+ TType arrayElementType = node->getType();
+ arrayElementType.clearArrayness();
+
+ if (index >= node->getType().getArraySize()) {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "array field selection out of range '" << index << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(line, "", "[", extraInfo.c_str());
+ recover();
+ index = 0;
+ }
+
+ if (tempConstantNode) {
+ size_t arrayElementSize = arrayElementType.getObjectSize();
+ ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
+ typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line);
+ } else {
+ error(line, "Cannot offset into the array", "Error");
+ recover();
+
+ return 0;
+ }
+
+ return typedNode;
+}
+
+
+//
+// This function returns the value of a particular field inside a constant structure from the symbol table.
+// If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr
+// function and returns the parse-tree with the values of the embedded/nested struct.
+//
+TIntermTyped* TParseContext::addConstStruct(const TString &identifier, TIntermTyped *node, const TSourceLoc& line)
+{
+ const TFieldList& fields = node->getType().getStruct()->fields();
+ size_t instanceSize = 0;
+
+ for (size_t index = 0; index < fields.size(); ++index) {
+ if (fields[index]->name() == identifier) {
+ break;
+ } else {
+ instanceSize += fields[index]->type()->getObjectSize();
+ }
+ }
+
+ TIntermTyped *typedNode;
+ TIntermConstantUnion *tempConstantNode = node->getAsConstantUnion();
+ if (tempConstantNode) {
+ ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer();
+
+ typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function
+ } else {
+ error(line, "Cannot offset into the structure", "Error");
+ recover();
+
+ return 0;
+ }
+
+ return typedNode;
+}
+
+//
+// Interface/uniform blocks
+//
+TIntermAggregate* TParseContext::addInterfaceBlock(const TPublicType& typeQualifier, const TSourceLoc& nameLine, const TString& blockName, TFieldList* fieldList,
+ const TString* instanceName, const TSourceLoc& instanceLine, TIntermTyped* arrayIndex, const TSourceLoc& arrayIndexLine)
+{
+ if (reservedErrorCheck(nameLine, blockName))
+ recover();
+
+ if (typeQualifier.qualifier != EvqUniform)
+ {
+ error(typeQualifier.line, "invalid qualifier:", getQualifierString(typeQualifier.qualifier), "interface blocks must be uniform");
+ recover();
+ }
+
+ TLayoutQualifier blockLayoutQualifier = typeQualifier.layoutQualifier;
+ if (layoutLocationErrorCheck(typeQualifier.line, blockLayoutQualifier))
+ {
+ recover();
+ }
+
+ if (blockLayoutQualifier.matrixPacking == EmpUnspecified)
+ {
+ blockLayoutQualifier.matrixPacking = defaultMatrixPacking;
+ }
+
+ if (blockLayoutQualifier.blockStorage == EbsUnspecified)
+ {
+ blockLayoutQualifier.blockStorage = defaultBlockStorage;
+ }
+
+ TSymbol* blockNameSymbol = new TInterfaceBlockName(&blockName);
+ if (!symbolTable.declare(*blockNameSymbol)) {
+ error(nameLine, "redefinition", blockName.c_str(), "interface block name");
+ recover();
+ }
+
+ // check for sampler types and apply layout qualifiers
+ for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex) {
+ TField* field = (*fieldList)[memberIndex];
+ TType* fieldType = field->type();
+ if (IsSampler(fieldType->getBasicType())) {
+ error(field->line(), "unsupported type", fieldType->getBasicString(), "sampler types are not allowed in interface blocks");
+ recover();
+ }
+
+ const TQualifier qualifier = fieldType->getQualifier();
+ switch (qualifier)
+ {
+ case EvqGlobal:
+ case EvqUniform:
+ break;
+ default:
+ error(field->line(), "invalid qualifier on interface block member", getQualifierString(qualifier));
+ recover();
+ break;
+ }
+
+ // check layout qualifiers
+ TLayoutQualifier fieldLayoutQualifier = fieldType->getLayoutQualifier();
+ if (layoutLocationErrorCheck(field->line(), fieldLayoutQualifier))
+ {
+ recover();
+ }
+
+ if (fieldLayoutQualifier.blockStorage != EbsUnspecified)
+ {
+ error(field->line(), "invalid layout qualifier:", getBlockStorageString(fieldLayoutQualifier.blockStorage), "cannot be used here");
+ recover();
+ }
+
+ if (fieldLayoutQualifier.matrixPacking == EmpUnspecified)
+ {
+ fieldLayoutQualifier.matrixPacking = blockLayoutQualifier.matrixPacking;
+ }
+ else if (!fieldType->isMatrix())
+ {
+ error(field->line(), "invalid layout qualifier:", getMatrixPackingString(fieldLayoutQualifier.matrixPacking), "can only be used on matrix types");
+ recover();
+ }
+
+ fieldType->setLayoutQualifier(fieldLayoutQualifier);
+ }
+
+ // add array index
+ int arraySize = 0;
+ if (arrayIndex != NULL)
+ {
+ if (arraySizeErrorCheck(arrayIndexLine, arrayIndex, arraySize))
+ recover();
+ }
+
+ TInterfaceBlock* interfaceBlock = new TInterfaceBlock(&blockName, fieldList, instanceName, arraySize, blockLayoutQualifier);
+ TType interfaceBlockType(interfaceBlock, typeQualifier.qualifier, blockLayoutQualifier, arraySize);
+
+ TString symbolName = "";
+ int symbolId = 0;
+
+ if (!instanceName)
+ {
+ // define symbols for the members of the interface block
+ for (size_t memberIndex = 0; memberIndex < fieldList->size(); ++memberIndex)
+ {
+ TField* field = (*fieldList)[memberIndex];
+ TType* fieldType = field->type();
+
+ // set parent pointer of the field variable
+ fieldType->setInterfaceBlock(interfaceBlock);
+
+ TVariable* fieldVariable = new TVariable(&field->name(), *fieldType);
+ fieldVariable->setQualifier(typeQualifier.qualifier);
+
+ if (!symbolTable.declare(*fieldVariable)) {
+ error(field->line(), "redefinition", field->name().c_str(), "interface block member name");
+ recover();
+ }
+ }
+ }
+ else
+ {
+ // add a symbol for this interface block
+ TVariable* instanceTypeDef = new TVariable(instanceName, interfaceBlockType, false);
+ instanceTypeDef->setQualifier(typeQualifier.qualifier);
+
+ if (!symbolTable.declare(*instanceTypeDef)) {
+ error(instanceLine, "redefinition", instanceName->c_str(), "interface block instance name");
+ recover();
+ }
+
+ symbolId = instanceTypeDef->getUniqueId();
+ symbolName = instanceTypeDef->getName();
+ }
+
+ TIntermAggregate *aggregate = intermediate.makeAggregate(intermediate.addSymbol(symbolId, symbolName, interfaceBlockType, typeQualifier.line), nameLine);
+ aggregate->setOp(EOpDeclaration);
+
+ exitStructDeclaration();
+ return aggregate;
+}
+
+bool TParseContext::enterStructDeclaration(const TSourceLoc& line, const TString& identifier)
+{
+ ++structNestingLevel;
+
+ // Embedded structure definitions are not supported per GLSL ES spec.
+ // They aren't allowed in GLSL either, but we need to detect this here
+ // so we don't rely on the GLSL compiler to catch it.
+ if (structNestingLevel > 1) {
+ error(line, "", "Embedded struct definitions are not allowed");
+ return true;
+ }
+
+ return false;
+}
+
+void TParseContext::exitStructDeclaration()
+{
+ --structNestingLevel;
+}
+
+namespace {
+
+const int kWebGLMaxStructNesting = 4;
+
+} // namespace
+
+bool TParseContext::structNestingErrorCheck(const TSourceLoc& line, const TField& field)
+{
+ if (!isWebGLBasedSpec(shaderSpec)) {
+ return false;
+ }
+
+ if (field.type()->getBasicType() != EbtStruct) {
+ return false;
+ }
+
+ // We're already inside a structure definition at this point, so add
+ // one to the field's struct nesting.
+ if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting) {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "Reference of struct type " << field.type()->getStruct()->name()
+ << " exceeds maximum struct nesting of " << kWebGLMaxStructNesting;
+ std::string extraInfo = extraInfoStream.str();
+ error(line, "", "", extraInfo.c_str());
+ return true;
+ }
+
+ return false;
+}
+
+//
+// Parse an array index expression
+//
+TIntermTyped* TParseContext::addIndexExpression(TIntermTyped *baseExpression, const TSourceLoc& location, TIntermTyped *indexExpression)
+{
+ TIntermTyped *indexedExpression = NULL;
+
+ if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector())
+ {
+ if (baseExpression->getAsSymbolNode())
+ {
+ error(location, " left of '[' is not of type array, matrix, or vector ", baseExpression->getAsSymbolNode()->getSymbol().c_str());
+ }
+ else
+ {
+ error(location, " left of '[' is not of type array, matrix, or vector ", "expression");
+ }
+ recover();
+ }
+
+ if (indexExpression->getQualifier() == EvqConst)
+ {
+ int index = indexExpression->getAsConstantUnion()->getIConst(0);
+ if (index < 0)
+ {
+ std::stringstream infoStream;
+ infoStream << index;
+ std::string info = infoStream.str();
+ error(location, "negative index", info.c_str());
+ recover();
+ index = 0;
+ }
+ if (baseExpression->getType().getQualifier() == EvqConst)
+ {
+ if (baseExpression->isArray())
+ {
+ // constant folding for arrays
+ indexedExpression = addConstArrayNode(index, baseExpression, location);
+ }
+ else if (baseExpression->isVector())
+ {
+ // constant folding for vectors
+ TVectorFields fields;
+ fields.num = 1;
+ fields.offsets[0] = index; // need to do it this way because v.xy sends fields integer array
+ indexedExpression = addConstVectorNode(fields, baseExpression, location);
+ }
+ else if (baseExpression->isMatrix())
+ {
+ // constant folding for matrices
+ indexedExpression = addConstMatrixNode(index, baseExpression, location);
+ }
+ }
+ else
+ {
+ if (baseExpression->isArray())
+ {
+ if (index >= baseExpression->getType().getArraySize())
+ {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "array index out of range '" << index << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(location, "", "[", extraInfo.c_str());
+ recover();
+ index = baseExpression->getType().getArraySize() - 1;
+ }
+ else if (baseExpression->getQualifier() == EvqFragData && index > 0 && !isExtensionEnabled("GL_EXT_draw_buffers"))
+ {
+ error(location, "", "[", "array indexes for gl_FragData must be zero when GL_EXT_draw_buffers is disabled");
+ recover();
+ index = 0;
+ }
+ }
+ else if ((baseExpression->isVector() || baseExpression->isMatrix()) && baseExpression->getType().getNominalSize() <= index)
+ {
+ std::stringstream extraInfoStream;
+ extraInfoStream << "field selection out of range '" << index << "'";
+ std::string extraInfo = extraInfoStream.str();
+ error(location, "", "[", extraInfo.c_str());
+ recover();
+ index = baseExpression->getType().getNominalSize() - 1;
+ }
+
+ indexExpression->getAsConstantUnion()->getUnionArrayPointer()->setIConst(index);
+ indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location);
+ }
+ }
+ else
+ {
+ if (baseExpression->isInterfaceBlock())
+ {
+ error(location, "", "[", "array indexes for interface blocks arrays must be constant integral expressions");
+ recover();
+ }
+ else if (baseExpression->getQualifier() == EvqFragmentOut)
+ {
+ error(location, "", "[", "array indexes for fragment outputs must be constant integral expressions");
+ recover();
+ }
+
+ indexedExpression = intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location);
+ }
+
+ if (indexedExpression == 0)
+ {
+ ConstantUnion *unionArray = new ConstantUnion[1];
+ unionArray->setFConst(0.0f);
+ indexedExpression = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConst), location);
+ }
+ else if (baseExpression->isArray())
+ {
+ const TType &baseType = baseExpression->getType();
+ if (baseType.getStruct())
+ {
+ TType copyOfType(baseType.getStruct());
+ indexedExpression->setType(copyOfType);
+ }
+ else if (baseType.isInterfaceBlock())
+ {
+ TType copyOfType(baseType.getInterfaceBlock(), baseType.getQualifier(), baseType.getLayoutQualifier(), 0);
+ indexedExpression->setType(copyOfType);
+ }
+ else
+ {
+ indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary, baseExpression->getNominalSize(), baseExpression->getSecondarySize()));
+ }
+
+ if (baseExpression->getType().getQualifier() == EvqConst)
+ {
+ indexedExpression->getTypePointer()->setQualifier(EvqConst);
+ }
+ }
+ else if (baseExpression->isMatrix())
+ {
+ TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConst ? EvqConst : EvqTemporary;
+ indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier, baseExpression->getRows()));
+ }
+ else if (baseExpression->isVector())
+ {
+ TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConst ? EvqConst : EvqTemporary;
+ indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier));
+ }
+ else
+ {
+ indexedExpression->setType(baseExpression->getType());
+ }
+
+ return indexedExpression;
+}
+
+TIntermTyped* TParseContext::addFieldSelectionExpression(TIntermTyped *baseExpression, const TSourceLoc& dotLocation, const TString &fieldString, const TSourceLoc& fieldLocation)
+{
+ TIntermTyped *indexedExpression = NULL;
+
+ if (baseExpression->isArray())
+ {
+ error(fieldLocation, "cannot apply dot operator to an array", ".");
+ recover();
+ }
+
+ if (baseExpression->isVector())
+ {
+ TVectorFields fields;
+ if (!parseVectorFields(fieldString, baseExpression->getNominalSize(), fields, fieldLocation))
+ {
+ fields.num = 1;
+ fields.offsets[0] = 0;
+ recover();
+ }
+
+ if (baseExpression->getType().getQualifier() == EvqConst)
+ {
+ // constant folding for vector fields
+ indexedExpression = addConstVectorNode(fields, baseExpression, fieldLocation);
+ if (indexedExpression == 0)
+ {
+ recover();
+ indexedExpression = baseExpression;
+ }
+ else
+ {
+ indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqConst, (int) (fieldString).size()));
+ }
+ }
+ else
+ {
+ TString vectorString = fieldString;
+ TIntermTyped* index = intermediate.addSwizzle(fields, fieldLocation);
+ indexedExpression = intermediate.addIndex(EOpVectorSwizzle, baseExpression, index, dotLocation);
+ indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary, (int) vectorString.size()));
+ }
+ }
+ else if (baseExpression->isMatrix())
+ {
+ TMatrixFields fields;
+ if (!parseMatrixFields(fieldString, baseExpression->getCols(), baseExpression->getRows(), fields, fieldLocation))
+ {
+ fields.wholeRow = false;
+ fields.wholeCol = false;
+ fields.row = 0;
+ fields.col = 0;
+ recover();
+ }
+
+ if (fields.wholeRow || fields.wholeCol)
+ {
+ error(dotLocation, " non-scalar fields not implemented yet", ".");
+ recover();
+ ConstantUnion *unionArray = new ConstantUnion[1];
+ unionArray->setIConst(0);
+ TIntermTyped* index = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), fieldLocation);
+ indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, index, dotLocation);
+ indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(),EvqTemporary, baseExpression->getCols(), baseExpression->getRows()));
+ }
+ else
+ {
+ ConstantUnion *unionArray = new ConstantUnion[1];
+ unionArray->setIConst(fields.col * baseExpression->getRows() + fields.row);
+ TIntermTyped* index = intermediate.addConstantUnion(unionArray, TType(EbtInt, EbpUndefined, EvqConst), fieldLocation);
+ indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, index, dotLocation);
+ indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision()));
+ }
+ }
+ else if (baseExpression->getBasicType() == EbtStruct)
+ {
+ bool fieldFound = false;
+ const TFieldList& fields = baseExpression->getType().getStruct()->fields();
+ if (fields.empty())
+ {
+ error(dotLocation, "structure has no fields", "Internal Error");
+ recover();
+ indexedExpression = baseExpression;
+ }
+ else
+ {
+ unsigned int i;
+ for (i = 0; i < fields.size(); ++i)
+ {
+ if (fields[i]->name() == fieldString)
+ {
+ fieldFound = true;
+ break;
+ }
+ }
+ if (fieldFound)
+ {
+ if (baseExpression->getType().getQualifier() == EvqConst)
+ {
+ indexedExpression = addConstStruct(fieldString, baseExpression, dotLocation);
+ if (indexedExpression == 0)
+ {
+ recover();
+ indexedExpression = baseExpression;
+ }
+ else
+ {
+ indexedExpression->setType(*fields[i]->type());
+ // change the qualifier of the return type, not of the structure field
+ // as the structure definition is shared between various structures.
+ indexedExpression->getTypePointer()->setQualifier(EvqConst);
+ }
+ }
+ else
+ {
+ ConstantUnion *unionArray = new ConstantUnion[1];
+ unionArray->setIConst(i);
+ TIntermTyped* index = intermediate.addConstantUnion(unionArray, *fields[i]->type(), fieldLocation);
+ indexedExpression = intermediate.addIndex(EOpIndexDirectStruct, baseExpression, index, dotLocation);
+ indexedExpression->setType(*fields[i]->type());
+ }
+ }
+ else
+ {
+ error(dotLocation, " no such field in structure", fieldString.c_str());
+ recover();
+ indexedExpression = baseExpression;
+ }
+ }
+ }
+ else if (baseExpression->isInterfaceBlock())
+ {
+ bool fieldFound = false;
+ const TFieldList& fields = baseExpression->getType().getInterfaceBlock()->fields();
+ if (fields.empty())
+ {
+ error(dotLocation, "interface block has no fields", "Internal Error");
+ recover();
+ indexedExpression = baseExpression;
+ }
+ else
+ {
+ unsigned int i;
+ for (i = 0; i < fields.size(); ++i)
+ {
+ if (fields[i]->name() == fieldString)
+ {
+ fieldFound = true;
+ break;
+ }
+ }
+ if (fieldFound)
+ {
+ ConstantUnion *unionArray = new ConstantUnion[1];
+ unionArray->setIConst(i);
+ TIntermTyped* index = intermediate.addConstantUnion(unionArray, *fields[i]->type(), fieldLocation);
+ indexedExpression = intermediate.addIndex(EOpIndexDirectInterfaceBlock, baseExpression, index, dotLocation);
+ indexedExpression->setType(*fields[i]->type());
+ }
+ else
+ {
+ error(dotLocation, " no such field in interface block", fieldString.c_str());
+ recover();
+ indexedExpression = baseExpression;
+ }
+ }
+ }
+ else
+ {
+ if (shaderVersion < 300)
+ {
+ error(dotLocation, " field selection requires structure, vector, or matrix on left hand side", fieldString.c_str());
+ }
+ else
+ {
+ error(dotLocation, " field selection requires structure, vector, matrix, or interface block on left hand side", fieldString.c_str());
+ }
+ recover();
+ indexedExpression = baseExpression;
+ }
+
+ return indexedExpression;
+}
+
+TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine)
+{
+ TLayoutQualifier qualifier;
+
+ qualifier.location = -1;
+ qualifier.matrixPacking = EmpUnspecified;
+ qualifier.blockStorage = EbsUnspecified;
+
+ if (qualifierType == "shared")
+ {
+ qualifier.blockStorage = EbsShared;
+ }
+ else if (qualifierType == "packed")
+ {
+ qualifier.blockStorage = EbsPacked;
+ }
+ else if (qualifierType == "std140")
+ {
+ qualifier.blockStorage = EbsStd140;
+ }
+ else if (qualifierType == "row_major")
+ {
+ qualifier.matrixPacking = EmpRowMajor;
+ }
+ else if (qualifierType == "column_major")
+ {
+ qualifier.matrixPacking = EmpColumnMajor;
+ }
+ else if (qualifierType == "location")
+ {
+ error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "location requires an argument");
+ recover();
+ }
+ else
+ {
+ error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str());
+ recover();
+ }
+
+ return qualifier;
+}
+
+TLayoutQualifier TParseContext::parseLayoutQualifier(const TString &qualifierType, const TSourceLoc& qualifierTypeLine, const TString &intValueString, int intValue, const TSourceLoc& intValueLine)
+{
+ TLayoutQualifier qualifier;
+
+ qualifier.location = -1;
+ qualifier.matrixPacking = EmpUnspecified;
+ qualifier.blockStorage = EbsUnspecified;
+
+ if (qualifierType != "location")
+ {
+ error(qualifierTypeLine, "invalid layout qualifier", qualifierType.c_str(), "only location may have arguments");
+ recover();
+ }
+ else
+ {
+ // must check that location is non-negative
+ if (intValue < 0)
+ {
+ error(intValueLine, "out of range:", intValueString.c_str(), "location must be non-negative");
+ recover();
+ }
+ else
+ {
+ qualifier.location = intValue;
+ }
+ }
+
+ return qualifier;
+}
+
+TLayoutQualifier TParseContext::joinLayoutQualifiers(TLayoutQualifier leftQualifier, TLayoutQualifier rightQualifier)
+{
+ TLayoutQualifier joinedQualifier = leftQualifier;
+
+ if (rightQualifier.location != -1)
+ {
+ joinedQualifier.location = rightQualifier.location;
+ }
+ if (rightQualifier.matrixPacking != EmpUnspecified)
+ {
+ joinedQualifier.matrixPacking = rightQualifier.matrixPacking;
+ }
+ if (rightQualifier.blockStorage != EbsUnspecified)
+ {
+ joinedQualifier.blockStorage = rightQualifier.blockStorage;
+ }
+
+ return joinedQualifier;
+}
+
+TPublicType TParseContext::joinInterpolationQualifiers(const TSourceLoc &interpolationLoc, TQualifier interpolationQualifier,
+ const TSourceLoc &storageLoc, TQualifier storageQualifier)
+{
+ TQualifier mergedQualifier = EvqSmoothIn;
+
+ if (storageQualifier == EvqFragmentIn) {
+ if (interpolationQualifier == EvqSmooth)
+ mergedQualifier = EvqSmoothIn;
+ else if (interpolationQualifier == EvqFlat)
+ mergedQualifier = EvqFlatIn;
+ else UNREACHABLE();
+ }
+ else if (storageQualifier == EvqCentroidIn) {
+ if (interpolationQualifier == EvqSmooth)
+ mergedQualifier = EvqCentroidIn;
+ else if (interpolationQualifier == EvqFlat)
+ mergedQualifier = EvqFlatIn;
+ else UNREACHABLE();
+ }
+ else if (storageQualifier == EvqVertexOut) {
+ if (interpolationQualifier == EvqSmooth)
+ mergedQualifier = EvqSmoothOut;
+ else if (interpolationQualifier == EvqFlat)
+ mergedQualifier = EvqFlatOut;
+ else UNREACHABLE();
+ }
+ else if (storageQualifier == EvqCentroidOut) {
+ if (interpolationQualifier == EvqSmooth)
+ mergedQualifier = EvqCentroidOut;
+ else if (interpolationQualifier == EvqFlat)
+ mergedQualifier = EvqFlatOut;
+ else UNREACHABLE();
+ }
+ else {
+ error(interpolationLoc, "interpolation qualifier requires a fragment 'in' or vertex 'out' storage qualifier", getInterpolationString(interpolationQualifier));
+ recover();
+
+ mergedQualifier = storageQualifier;
+ }
+
+ TPublicType type;
+ type.setBasic(EbtVoid, mergedQualifier, storageLoc);
+ return type;
+}
+
+TFieldList *TParseContext::addStructDeclaratorList(const TPublicType& typeSpecifier, TFieldList *fieldList)
+{
+ if (voidErrorCheck(typeSpecifier.line, (*fieldList)[0]->name(), typeSpecifier)) {
+ recover();
+ }
+
+ for (unsigned int i = 0; i < fieldList->size(); ++i) {
+ //
+ // Careful not to replace already known aspects of type, like array-ness
+ //
+ TType* type = (*fieldList)[i]->type();
+ type->setBasicType(typeSpecifier.type);
+ type->setPrimarySize(typeSpecifier.primarySize);
+ type->setSecondarySize(typeSpecifier.secondarySize);
+ type->setPrecision(typeSpecifier.precision);
+ type->setQualifier(typeSpecifier.qualifier);
+ type->setLayoutQualifier(typeSpecifier.layoutQualifier);
+
+ // don't allow arrays of arrays
+ if (type->isArray()) {
+ if (arrayTypeErrorCheck(typeSpecifier.line, typeSpecifier))
+ recover();
+ }
+ if (typeSpecifier.array)
+ type->setArraySize(typeSpecifier.arraySize);
+ if (typeSpecifier.userDef) {
+ type->setStruct(typeSpecifier.userDef->getStruct());
+ }
+
+ if (structNestingErrorCheck(typeSpecifier.line, *(*fieldList)[i])) {
+ recover();
+ }
+ }
+
+ return fieldList;
+}
+
+TPublicType TParseContext::addStructure(const TSourceLoc& structLine, const TSourceLoc& nameLine, const TString *structName, TFieldList* fieldList)
+{
+ TStructure* structure = new TStructure(structName, fieldList);
+ TType* structureType = new TType(structure);
+
+ if (!structName->empty())
+ {
+ if (reservedErrorCheck(nameLine, *structName))
+ {
+ recover();
+ }
+ TVariable* userTypeDef = new TVariable(structName, *structureType, true);
+ if (!symbolTable.declare(*userTypeDef)) {
+ error(nameLine, "redefinition", structName->c_str(), "struct");
+ recover();
+ }
+ }
+
+ // ensure we do not specify any storage qualifiers on the struct members
+ for (unsigned int typeListIndex = 0; typeListIndex < fieldList->size(); typeListIndex++)
+ {
+ const TField &field = *(*fieldList)[typeListIndex];
+ const TQualifier qualifier = field.type()->getQualifier();
+ switch (qualifier)
+ {
+ case EvqGlobal:
+ case EvqTemporary:
+ break;
+ default:
+ error(field.line(), "invalid qualifier on struct member", getQualifierString(qualifier));
+ recover();
+ break;
+ }
+ }
+
+ TPublicType publicType;
+ publicType.setBasic(EbtStruct, EvqTemporary, structLine);
+ publicType.userDef = structureType;
+ exitStructDeclaration();
+
+ return publicType;
+}
+
+//
+// Parse an array of strings using yyparse.
+//
+// Returns 0 for success.
+//
+int PaParseStrings(size_t count, const char* const string[], const int length[],
+ TParseContext* context) {
+ if ((count == 0) || (string == NULL))
+ return 1;
+
+ if (glslang_initialize(context))
+ return 1;
+
+ int error = glslang_scan(count, string, length, context);
+ if (!error)
+ error = glslang_parse(context);
+
+ glslang_finalize(context);
+
+ return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
+}
+
+
+