Change comma nodes to TIntermBinary
Comma nodes always have just two parameters. If there's an expression
with several commas in the middle, it's parsed as a tree of comma
operations. It makes more sense to represent it as a binary node
rather than an aggregate node.
After this patch, TIntermAggregate is still used for function
prototypes, function parameter lists, function calls, and variable and
invariant declarations.
BUG=angleproject:1490
TEST=angle_unittests, angle_end2end_tests
Change-Id: I66be10624bf27bcf25987b4d93958d4a07600771
Reviewed-on: https://chromium-review.googlesource.com/397320
Reviewed-by: Geoff Lang <geofflang@chromium.org>
Commit-Queue: Olli Etuaho <oetuaho@nvidia.com>
diff --git a/src/compiler/translator/OutputHLSL.cpp b/src/compiler/translator/OutputHLSL.cpp
index d4ba304..feae684 100644
--- a/src/compiler/translator/OutputHLSL.cpp
+++ b/src/compiler/translator/OutputHLSL.cpp
@@ -867,133 +867,139 @@
switch (node->getOp())
{
- case EOpAssign:
- if (node->getLeft()->isArray())
- {
- TIntermAggregate *rightAgg = node->getRight()->getAsAggregate();
- if (rightAgg != nullptr && rightAgg->isConstructor())
+ case EOpComma:
+ outputTriplet(out, visit, "(", ", ", ")");
+ break;
+ case EOpAssign:
+ if (node->getLeft()->isArray())
{
- const TString &functionName = addArrayConstructIntoFunction(node->getType());
- out << functionName << "(";
- node->getLeft()->traverse(this);
- TIntermSequence *seq = rightAgg->getSequence();
- for (auto &arrayElement : *seq)
+ TIntermAggregate *rightAgg = node->getRight()->getAsAggregate();
+ if (rightAgg != nullptr && rightAgg->isConstructor())
{
- out << ", ";
- arrayElement->traverse(this);
+ const TString &functionName = addArrayConstructIntoFunction(node->getType());
+ out << functionName << "(";
+ node->getLeft()->traverse(this);
+ TIntermSequence *seq = rightAgg->getSequence();
+ for (auto &arrayElement : *seq)
+ {
+ out << ", ";
+ arrayElement->traverse(this);
+ }
+ out << ")";
+ return false;
}
- out << ")";
- return false;
+ // ArrayReturnValueToOutParameter should have eliminated expressions where a
+ // function call is assigned.
+ ASSERT(rightAgg == nullptr || rightAgg->getOp() != EOpFunctionCall);
+
+ const TString &functionName = addArrayAssignmentFunction(node->getType());
+ outputTriplet(out, visit, (functionName + "(").c_str(), ", ", ")");
}
- // ArrayReturnValueToOutParameter should have eliminated expressions where a function call is assigned.
- ASSERT(rightAgg == nullptr || rightAgg->getOp() != EOpFunctionCall);
-
- const TString &functionName = addArrayAssignmentFunction(node->getType());
- outputTriplet(out, visit, (functionName + "(").c_str(), ", ", ")");
- }
- else
- {
- outputTriplet(out, visit, "(", " = ", ")");
- }
- break;
- case EOpInitialize:
- if (visit == PreVisit)
- {
- TIntermSymbol *symbolNode = node->getLeft()->getAsSymbolNode();
- ASSERT(symbolNode);
- TIntermTyped *expression = node->getRight();
-
- // Global initializers must be constant at this point.
- ASSERT(symbolNode->getQualifier() != EvqGlobal || canWriteAsHLSLLiteral(expression));
-
- // GLSL allows to write things like "float x = x;" where a new variable x is defined
- // and the value of an existing variable x is assigned. HLSL uses C semantics (the
- // new variable is created before the assignment is evaluated), so we need to convert
- // this to "float t = x, x = t;".
- if (writeSameSymbolInitializer(out, symbolNode, expression))
+ else
{
- // Skip initializing the rest of the expression
- return false;
+ outputTriplet(out, visit, "(", " = ", ")");
}
- else if (writeConstantInitialization(out, symbolNode, expression))
+ break;
+ case EOpInitialize:
+ if (visit == PreVisit)
{
- return false;
+ TIntermSymbol *symbolNode = node->getLeft()->getAsSymbolNode();
+ ASSERT(symbolNode);
+ TIntermTyped *expression = node->getRight();
+
+ // Global initializers must be constant at this point.
+ ASSERT(symbolNode->getQualifier() != EvqGlobal ||
+ canWriteAsHLSLLiteral(expression));
+
+ // GLSL allows to write things like "float x = x;" where a new variable x is defined
+ // and the value of an existing variable x is assigned. HLSL uses C semantics (the
+ // new variable is created before the assignment is evaluated), so we need to
+ // convert
+ // this to "float t = x, x = t;".
+ if (writeSameSymbolInitializer(out, symbolNode, expression))
+ {
+ // Skip initializing the rest of the expression
+ return false;
+ }
+ else if (writeConstantInitialization(out, symbolNode, expression))
+ {
+ return false;
+ }
}
- }
- else if (visit == InVisit)
- {
- out << " = ";
- }
- break;
- case EOpAddAssign:
- outputTriplet(out, visit, "(", " += ", ")");
- break;
- case EOpSubAssign:
- outputTriplet(out, visit, "(", " -= ", ")");
- break;
- case EOpMulAssign:
- outputTriplet(out, visit, "(", " *= ", ")");
- break;
- case EOpVectorTimesScalarAssign:
- outputTriplet(out, visit, "(", " *= ", ")");
- break;
- case EOpMatrixTimesScalarAssign:
- outputTriplet(out, visit, "(", " *= ", ")");
- break;
- case EOpVectorTimesMatrixAssign:
- if (visit == PreVisit)
- {
- out << "(";
- }
- else if (visit == InVisit)
- {
- out << " = mul(";
- node->getLeft()->traverse(this);
- out << ", transpose(";
- }
- else
- {
- out << ")))";
- }
- break;
- case EOpMatrixTimesMatrixAssign:
- if (visit == PreVisit)
- {
- out << "(";
- }
- else if (visit == InVisit)
- {
- out << " = transpose(mul(transpose(";
- node->getLeft()->traverse(this);
- out << "), transpose(";
- }
- else
- {
- out << "))))";
- }
- break;
- case EOpDivAssign:
- outputTriplet(out, visit, "(", " /= ", ")");
- break;
- case EOpIModAssign:
- outputTriplet(out, visit, "(", " %= ", ")");
- break;
- case EOpBitShiftLeftAssign:
- outputTriplet(out, visit, "(", " <<= ", ")");
- break;
- case EOpBitShiftRightAssign:
- outputTriplet(out, visit, "(", " >>= ", ")");
- break;
- case EOpBitwiseAndAssign:
- outputTriplet(out, visit, "(", " &= ", ")");
- break;
- case EOpBitwiseXorAssign:
- outputTriplet(out, visit, "(", " ^= ", ")");
- break;
- case EOpBitwiseOrAssign:
- outputTriplet(out, visit, "(", " |= ", ")");
- break;
- case EOpIndexDirect:
+ else if (visit == InVisit)
+ {
+ out << " = ";
+ }
+ break;
+ case EOpAddAssign:
+ outputTriplet(out, visit, "(", " += ", ")");
+ break;
+ case EOpSubAssign:
+ outputTriplet(out, visit, "(", " -= ", ")");
+ break;
+ case EOpMulAssign:
+ outputTriplet(out, visit, "(", " *= ", ")");
+ break;
+ case EOpVectorTimesScalarAssign:
+ outputTriplet(out, visit, "(", " *= ", ")");
+ break;
+ case EOpMatrixTimesScalarAssign:
+ outputTriplet(out, visit, "(", " *= ", ")");
+ break;
+ case EOpVectorTimesMatrixAssign:
+ if (visit == PreVisit)
+ {
+ out << "(";
+ }
+ else if (visit == InVisit)
+ {
+ out << " = mul(";
+ node->getLeft()->traverse(this);
+ out << ", transpose(";
+ }
+ else
+ {
+ out << ")))";
+ }
+ break;
+ case EOpMatrixTimesMatrixAssign:
+ if (visit == PreVisit)
+ {
+ out << "(";
+ }
+ else if (visit == InVisit)
+ {
+ out << " = transpose(mul(transpose(";
+ node->getLeft()->traverse(this);
+ out << "), transpose(";
+ }
+ else
+ {
+ out << "))))";
+ }
+ break;
+ case EOpDivAssign:
+ outputTriplet(out, visit, "(", " /= ", ")");
+ break;
+ case EOpIModAssign:
+ outputTriplet(out, visit, "(", " %= ", ")");
+ break;
+ case EOpBitShiftLeftAssign:
+ outputTriplet(out, visit, "(", " <<= ", ")");
+ break;
+ case EOpBitShiftRightAssign:
+ outputTriplet(out, visit, "(", " >>= ", ")");
+ break;
+ case EOpBitwiseAndAssign:
+ outputTriplet(out, visit, "(", " &= ", ")");
+ break;
+ case EOpBitwiseXorAssign:
+ outputTriplet(out, visit, "(", " ^= ", ")");
+ break;
+ case EOpBitwiseOrAssign:
+ outputTriplet(out, visit, "(", " |= ", ")");
+ break;
+ case EOpIndexDirect:
{
const TType& leftType = node->getLeft()->getType();
if (leftType.isInterfaceBlock())
@@ -1642,9 +1648,6 @@
return false;
}
break;
- case EOpComma:
- outputTriplet(out, visit, "(", ", ", ")");
- break;
case EOpFunctionCall:
{
TIntermSequence *arguments = node->getSequence();