Initial import from TransGaming

git-svn-id: https://angleproject.googlecode.com/svn/trunk@2 736b8ea6-26fd-11df-bfd4-992fa37f6226
diff --git a/Compiler/Intermediate.cpp b/Compiler/Intermediate.cpp
new file mode 100644
index 0000000..54fa796
--- /dev/null
+++ b/Compiler/Intermediate.cpp
@@ -0,0 +1,1483 @@
+//
+// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+//
+// Build the intermediate representation.
+//
+
+#include "localintermediate.h"
+#include "QualifierAlive.h"
+#include "RemoveTree.h"
+#include <float.h>
+
+bool CompareStructure(const TType& leftNodeType, constUnion* rightUnionArray, constUnion* leftUnionArray);
+
+////////////////////////////////////////////////////////////////////////////
+//
+// First set of functions are to help build the intermediate representation.
+// These functions are not member functions of the nodes.
+// They are called from parser productions.
+//
+/////////////////////////////////////////////////////////////////////////////
+
+//
+// Add a terminal node for an identifier in an expression.
+//
+// Returns the added node.
+//
+TIntermSymbol* TIntermediate::addSymbol(int id, const TString& name, const TType& type, TSourceLoc line)
+{
+	TIntermSymbol* node = new TIntermSymbol(id, name, type);
+	node->setLine(line);
+
+	return node;
+}
+
+//
+// Connect two nodes with a new parent that does a binary operation on the nodes.
+//
+// Returns the added node.
+//
+TIntermTyped* TIntermediate::addBinaryMath(TOperator op, TIntermTyped* left, TIntermTyped* right, TSourceLoc line, TSymbolTable& symbolTable)
+{
+	switch (op) {
+	case EOpLessThan:
+	case EOpGreaterThan:
+	case EOpLessThanEqual:
+	case EOpGreaterThanEqual:
+		if (left->getType().isMatrix() || left->getType().isArray() || left->getType().isVector() || left->getType().getBasicType() == EbtStruct) {
+			return 0;
+		}
+		break;
+	case EOpLogicalOr:
+	case EOpLogicalXor:
+	case EOpLogicalAnd:
+		if (left->getType().getBasicType() != EbtBool || left->getType().isMatrix() || left->getType().isArray() || left->getType().isVector()) {
+			return 0;
+		}
+		break;
+	case EOpAdd:
+	case EOpSub:
+	case EOpDiv:
+	case EOpMul:
+		if (left->getType().getBasicType() == EbtStruct || left->getType().getBasicType() == EbtBool)
+			return 0;
+	default: break;
+	}
+
+	//
+	// First try converting the children to compatible types.
+	//
+
+	if (!(left->getType().getStruct() && right->getType().getStruct())) {
+		TIntermTyped* child = addConversion(op, left->getType(), right);
+		if (child)
+			right = child;
+		else {
+			child = addConversion(op, right->getType(), left);
+			if (child)
+				left = child;
+			else
+				return 0;
+		}
+	} else {
+		if (left->getType() != right->getType())
+			return 0;
+	}
+
+
+	//
+	// Need a new node holding things together then.  Make
+	// one and promote it to the right type.
+	//
+	TIntermBinary* node = new TIntermBinary(op);
+	if (line == 0)
+		line = right->getLine();
+	node->setLine(line);
+
+	node->setLeft(left);
+	node->setRight(right);
+	if (! node->promote(infoSink))
+		return 0;
+
+	TIntermConstantUnion *leftTempConstant = left->getAsConstantUnion();
+	TIntermConstantUnion *rightTempConstant = right->getAsConstantUnion();
+
+	if (leftTempConstant)
+		leftTempConstant = left->getAsConstantUnion();
+
+	if (rightTempConstant)
+		rightTempConstant = right->getAsConstantUnion();
+
+	//
+	// See if we can fold constants.
+	//
+
+	TIntermTyped* typedReturnNode = 0;
+	if ( leftTempConstant && rightTempConstant) {
+		typedReturnNode = leftTempConstant->fold(node->getOp(), rightTempConstant, infoSink);
+
+		if (typedReturnNode)
+			return typedReturnNode;
+	}
+
+	return node;
+}
+
+//
+// Connect two nodes through an assignment.
+//
+// Returns the added node.
+//
+TIntermTyped* TIntermediate::addAssign(TOperator op, TIntermTyped* left, TIntermTyped* right, TSourceLoc line)
+{
+	//
+	// Like adding binary math, except the conversion can only go
+	// from right to left.
+	//
+	TIntermBinary* node = new TIntermBinary(op);
+	if (line == 0)
+		line = left->getLine();
+	node->setLine(line);
+
+	TIntermTyped* child = addConversion(op, left->getType(), right);
+	if (child == 0)
+		return 0;
+
+	node->setLeft(left);
+	node->setRight(child);
+	if (! node->promote(infoSink))
+		return 0;
+
+	return node;
+}
+
+//
+// Connect two nodes through an index operator, where the left node is the base
+// of an array or struct, and the right node is a direct or indirect offset.
+//
+// Returns the added node.
+// The caller should set the type of the returned node.
+//
+TIntermTyped* TIntermediate::addIndex(TOperator op, TIntermTyped* base, TIntermTyped* index, TSourceLoc line)
+{
+	TIntermBinary* node = new TIntermBinary(op);
+	if (line == 0)
+		line = index->getLine();
+	node->setLine(line);
+	node->setLeft(base);
+	node->setRight(index);
+
+	// caller should set the type
+
+	return node;
+}
+
+//
+// Add one node as the parent of another that it operates on.
+//
+// Returns the added node.
+//
+TIntermTyped* TIntermediate::addUnaryMath(TOperator op, TIntermNode* childNode, TSourceLoc line, TSymbolTable& symbolTable)
+{
+	TIntermUnary* node;
+	TIntermTyped* child = childNode->getAsTyped();
+
+	if (child == 0) {
+		infoSink.info.message(EPrefixInternalError, "Bad type in AddUnaryMath", line);
+		return 0;
+	}
+
+	switch (op) {
+	case EOpLogicalNot:
+		if (child->getType().getBasicType() != EbtBool || child->getType().isMatrix() || child->getType().isArray() || child->getType().isVector()) {
+			return 0;
+		}
+		break;
+
+	case EOpPostIncrement:
+	case EOpPreIncrement:
+	case EOpPostDecrement:
+	case EOpPreDecrement:
+	case EOpNegative:
+		if (child->getType().getBasicType() == EbtStruct || child->getType().isArray())
+			return 0;
+	default: break;
+	}
+
+	//
+	// Do we need to promote the operand?
+	//
+	// Note: Implicit promotions were removed from the language.
+	//
+	TBasicType newType = EbtVoid;
+	switch (op) {
+	case EOpConstructInt:   newType = EbtInt;   break;
+	case EOpConstructBool:  newType = EbtBool;  break;
+	case EOpConstructFloat: newType = EbtFloat; break;
+	default: break;
+	}
+
+	if (newType != EbtVoid) {
+		child = addConversion(op, TType(newType, EvqTemporary, child->getNominalSize(),
+															   child->isMatrix(),
+															   child->isArray()),
+							  child);
+		if (child == 0)
+			return 0;
+	}
+
+	//
+	// For constructors, we are now done, it's all in the conversion.
+	//
+	switch (op) {
+	case EOpConstructInt:
+	case EOpConstructBool:
+	case EOpConstructFloat:
+		return child;
+	default: break;
+	}
+
+	TIntermConstantUnion *childTempConstant = 0;
+	if (child->getAsConstantUnion())
+		childTempConstant = child->getAsConstantUnion();
+
+	//
+	// Make a new node for the operator.
+	//
+	node = new TIntermUnary(op);
+	if (line == 0)
+		line = child->getLine();
+	node->setLine(line);
+	node->setOperand(child);
+
+	if (! node->promote(infoSink))
+		return 0;
+
+	if (childTempConstant)  {
+		TIntermTyped* newChild = childTempConstant->fold(op, 0, infoSink);
+
+		if (newChild)
+			return newChild;
+	}
+
+	return node;
+}
+
+//
+// This is the safe way to change the operator on an aggregate, as it
+// does lots of error checking and fixing.  Especially for establishing
+// a function call's operation on it's set of parameters.  Sequences
+// of instructions are also aggregates, but they just direnctly set
+// their operator to EOpSequence.
+//
+// Returns an aggregate node, which could be the one passed in if
+// it was already an aggregate.
+//
+TIntermAggregate* TIntermediate::setAggregateOperator(TIntermNode* node, TOperator op, TSourceLoc line)
+{
+	TIntermAggregate* aggNode;
+
+	//
+	// Make sure we have an aggregate.  If not turn it into one.
+	//
+	if (node) {
+		aggNode = node->getAsAggregate();
+		if (aggNode == 0 || aggNode->getOp() != EOpNull) {
+			//
+			// Make an aggregate containing this node.
+			//
+			aggNode = new TIntermAggregate();
+			aggNode->getSequence().push_back(node);
+			if (line == 0)
+				line = node->getLine();
+		}
+	} else
+		aggNode = new TIntermAggregate();
+
+	//
+	// Set the operator.
+	//
+	aggNode->setOperator(op);
+	if (line != 0)
+		aggNode->setLine(line);
+
+	return aggNode;
+}
+
+//
+// Convert one type to another.
+//
+// Returns the node representing the conversion, which could be the same
+// node passed in if no conversion was needed.
+//
+// Return 0 if a conversion can't be done.
+//
+TIntermTyped* TIntermediate::addConversion(TOperator op, const TType& type, TIntermTyped* node)
+{
+	//
+	// Does the base type allow operation?
+	//
+	switch (node->getBasicType()) {
+	case EbtVoid:
+	case EbtSampler2D:
+	case EbtSamplerCube:
+		return 0;
+	default: break;
+	}
+
+	//
+	// Otherwise, if types are identical, no problem
+	//
+	if (type == node->getType())
+		return node;
+
+	//
+	// If one's a structure, then no conversions.
+	//
+	if (type.getStruct() || node->getType().getStruct())
+		return 0;
+
+	//
+	// If one's an array, then no conversions.
+	//
+	if (type.isArray() || node->getType().isArray())
+		return 0;
+
+	TBasicType promoteTo;
+
+	switch (op) {
+	//
+	// Explicit conversions
+	//
+	case EOpConstructBool:
+		promoteTo = EbtBool;
+		break;
+	case EOpConstructFloat:
+		promoteTo = EbtFloat;
+		break;
+	case EOpConstructInt:
+		promoteTo = EbtInt;
+		break;
+	default:
+		//
+		// implicit conversions were removed from the language.
+		//
+		if (type.getBasicType() != node->getType().getBasicType())
+			return 0;
+		//
+		// Size and structure could still differ, but that's
+		// handled by operator promotion.
+		//
+		return node;
+	}
+
+	if (node->getAsConstantUnion()) {
+
+		return (promoteConstantUnion(promoteTo, node->getAsConstantUnion()));
+	} else {
+
+		//
+		// Add a new newNode for the conversion.
+		//
+		TIntermUnary* newNode = 0;
+
+		TOperator newOp = EOpNull;
+		switch (promoteTo) {
+		case EbtFloat:
+			switch (node->getBasicType()) {
+			case EbtInt:   newOp = EOpConvIntToFloat;  break;
+			case EbtBool:  newOp = EOpConvBoolToFloat; break;
+			default:
+				infoSink.info.message(EPrefixInternalError, "Bad promotion node", node->getLine());
+				return 0;
+			}
+			break;
+		case EbtBool:
+			switch (node->getBasicType()) {
+			case EbtInt:   newOp = EOpConvIntToBool;   break;
+			case EbtFloat: newOp = EOpConvFloatToBool; break;
+			default:
+				infoSink.info.message(EPrefixInternalError, "Bad promotion node", node->getLine());
+				return 0;
+			}
+			break;
+		case EbtInt:
+			switch (node->getBasicType()) {
+			case EbtBool:   newOp = EOpConvBoolToInt;  break;
+			case EbtFloat:  newOp = EOpConvFloatToInt; break;
+			default:
+				infoSink.info.message(EPrefixInternalError, "Bad promotion node", node->getLine());
+				return 0;
+			}
+			break;
+		default:
+			infoSink.info.message(EPrefixInternalError, "Bad promotion type", node->getLine());
+			return 0;
+		}
+
+		TType type(promoteTo, EvqTemporary, node->getNominalSize(), node->isMatrix(), node->isArray());
+		newNode = new TIntermUnary(newOp, type);
+		newNode->setLine(node->getLine());
+		newNode->setOperand(node);
+
+		return newNode;
+	}
+}
+
+//
+// Safe way to combine two nodes into an aggregate.  Works with null pointers,
+// a node that's not a aggregate yet, etc.
+//
+// Returns the resulting aggregate, unless 0 was passed in for
+// both existing nodes.
+//
+TIntermAggregate* TIntermediate::growAggregate(TIntermNode* left, TIntermNode* right, TSourceLoc line)
+{
+	if (left == 0 && right == 0)
+		return 0;
+
+	TIntermAggregate* aggNode = 0;
+	if (left)
+		aggNode = left->getAsAggregate();
+	if (!aggNode || aggNode->getOp() != EOpNull) {
+		aggNode = new TIntermAggregate;
+		if (left)
+			aggNode->getSequence().push_back(left);
+	}
+
+	if (right)
+		aggNode->getSequence().push_back(right);
+
+	if (line != 0)
+		aggNode->setLine(line);
+
+	return aggNode;
+}
+
+//
+// Turn an existing node into an aggregate.
+//
+// Returns an aggregate, unless 0 was passed in for the existing node.
+//
+TIntermAggregate* TIntermediate::makeAggregate(TIntermNode* node, TSourceLoc line)
+{
+	if (node == 0)
+		return 0;
+
+	TIntermAggregate* aggNode = new TIntermAggregate;
+	aggNode->getSequence().push_back(node);
+
+	if (line != 0)
+		aggNode->setLine(line);
+	else
+		aggNode->setLine(node->getLine());
+
+	return aggNode;
+}
+
+//
+// For "if" test nodes.  There are three children; a condition,
+// a true path, and a false path.  The two paths are in the
+// nodePair.
+//
+// Returns the selection node created.
+//
+TIntermNode* TIntermediate::addSelection(TIntermTyped* cond, TIntermNodePair nodePair, TSourceLoc line)
+{
+	//
+	// For compile time constant selections, prune the code and
+	// test now.
+	//
+
+	if (cond->getAsTyped() && cond->getAsTyped()->getAsConstantUnion()) {
+		if (cond->getAsTyped()->getAsConstantUnion()->getUnionArrayPointer()->getBConst())
+			return nodePair.node1;
+		else
+			return nodePair.node2;
+	}
+
+	TIntermSelection* node = new TIntermSelection(cond, nodePair.node1, nodePair.node2);
+	node->setLine(line);
+
+	return node;
+}
+
+
+TIntermTyped* TIntermediate::addComma(TIntermTyped* left, TIntermTyped* right, TSourceLoc line)
+{
+	if (left->getType().getQualifier() == EvqConst && right->getType().getQualifier() == EvqConst) {
+		return right;
+	} else {
+		TIntermTyped *commaAggregate = growAggregate(left, right, line);
+		commaAggregate->getAsAggregate()->setOperator(EOpComma);
+		commaAggregate->setType(right->getType());
+		commaAggregate->getTypePointer()->changeQualifier(EvqTemporary);
+		return commaAggregate;
+	}
+}
+
+//
+// For "?:" test nodes.  There are three children; a condition,
+// a true path, and a false path.  The two paths are specified
+// as separate parameters.
+//
+// Returns the selection node created, or 0 if one could not be.
+//
+TIntermTyped* TIntermediate::addSelection(TIntermTyped* cond, TIntermTyped* trueBlock, TIntermTyped* falseBlock, TSourceLoc line)
+{
+	//
+	// Get compatible types.
+	//
+	TIntermTyped* child = addConversion(EOpSequence, trueBlock->getType(), falseBlock);
+	if (child)
+		falseBlock = child;
+	else {
+		child = addConversion(EOpSequence, falseBlock->getType(), trueBlock);
+		if (child)
+			trueBlock = child;
+		else
+			return 0;
+	}
+
+	//
+	// See if all the operands are constant, then fold it otherwise not.
+	//
+
+	if (cond->getAsConstantUnion() && trueBlock->getAsConstantUnion() && falseBlock->getAsConstantUnion()) {
+		if (cond->getAsConstantUnion()->getUnionArrayPointer()->getBConst())
+			return trueBlock;
+		else
+			return falseBlock;
+	}
+
+	//
+	// Make a selection node.
+	//
+	TIntermSelection* node = new TIntermSelection(cond, trueBlock, falseBlock, trueBlock->getType());
+	node->setLine(line);
+
+	return node;
+}
+
+//
+// Constant terminal nodes.  Has a union that contains bool, float or int constants
+//
+// Returns the constant union node created.
+//
+
+TIntermConstantUnion* TIntermediate::addConstantUnion(constUnion* unionArrayPointer, const TType& t, TSourceLoc line)
+{
+	TIntermConstantUnion* node = new TIntermConstantUnion(unionArrayPointer, t);
+	node->setLine(line);
+
+	return node;
+}
+
+TIntermTyped* TIntermediate::addSwizzle(TVectorFields& fields, TSourceLoc line)
+{
+
+	TIntermAggregate* node = new TIntermAggregate(EOpSequence);
+
+	node->setLine(line);
+	TIntermConstantUnion* constIntNode;
+	TIntermSequence &sequenceVector = node->getSequence();
+	constUnion* unionArray;
+
+	for (int i = 0; i < fields.num; i++) {
+		unionArray = new constUnion[1];
+		unionArray->setIConst(fields.offsets[i]);
+		constIntNode = addConstantUnion(unionArray, TType(EbtInt, EvqConst), line);
+		sequenceVector.push_back(constIntNode);
+	}
+
+	return node;
+}
+
+//
+// Create loop nodes.
+//
+TIntermNode* TIntermediate::addLoop(TIntermNode *init, TIntermNode* body, TIntermTyped* test, TIntermTyped* terminal, bool testFirst, TSourceLoc line)
+{
+	TIntermNode* node = new TIntermLoop(init, body, test, terminal, testFirst);
+	node->setLine(line);
+
+	return node;
+}
+
+//
+// Add branches.
+//
+TIntermBranch* TIntermediate::addBranch(TOperator branchOp, TSourceLoc line)
+{
+	return addBranch(branchOp, 0, line);
+}
+
+TIntermBranch* TIntermediate::addBranch(TOperator branchOp, TIntermTyped* expression, TSourceLoc line)
+{
+	TIntermBranch* node = new TIntermBranch(branchOp, expression);
+	node->setLine(line);
+
+	return node;
+}
+
+//
+// This is to be executed once the final root is put on top by the parsing
+// process.
+//
+bool TIntermediate::postProcess(TIntermNode* root, EShLanguage language)
+{
+	if (root == 0)
+		return true;
+
+	//
+	// First, finish off the top level sequence, if any
+	//
+	TIntermAggregate* aggRoot = root->getAsAggregate();
+	if (aggRoot && aggRoot->getOp() == EOpNull)
+		aggRoot->setOperator(EOpSequence);
+
+	return true;
+}
+
+//
+// This deletes the tree.
+//
+void TIntermediate::remove(TIntermNode* root)
+{
+	if (root)
+		RemoveAllTreeNodes(root);
+}
+
+////////////////////////////////////////////////////////////////
+//
+// Member functions of the nodes used for building the tree.
+//
+////////////////////////////////////////////////////////////////
+
+//
+// Say whether or not an operation node changes the value of a variable.
+//
+// Returns true if state is modified.
+//
+bool TIntermOperator::modifiesState() const
+{
+	switch (op) {
+	case EOpPostIncrement:
+	case EOpPostDecrement:
+	case EOpPreIncrement:
+	case EOpPreDecrement:
+	case EOpAssign:
+	case EOpAddAssign:
+	case EOpSubAssign:
+	case EOpMulAssign:
+	case EOpVectorTimesMatrixAssign:
+	case EOpVectorTimesScalarAssign:
+	case EOpMatrixTimesScalarAssign:
+	case EOpMatrixTimesMatrixAssign:
+	case EOpDivAssign:
+	case EOpModAssign:
+	case EOpAndAssign:
+	case EOpInclusiveOrAssign:
+	case EOpExclusiveOrAssign:
+	case EOpLeftShiftAssign:
+	case EOpRightShiftAssign:
+		return true;
+	default:
+		return false;
+	}
+}
+
+//
+// returns true if the operator is for one of the constructors
+//
+bool TIntermOperator::isConstructor() const
+{
+	switch (op) {
+	case EOpConstructVec2:
+	case EOpConstructVec3:
+	case EOpConstructVec4:
+	case EOpConstructMat2:
+	case EOpConstructMat3:
+	case EOpConstructMat4:
+	case EOpConstructFloat:
+	case EOpConstructIVec2:
+	case EOpConstructIVec3:
+	case EOpConstructIVec4:
+	case EOpConstructInt:
+	case EOpConstructBVec2:
+	case EOpConstructBVec3:
+	case EOpConstructBVec4:
+	case EOpConstructBool:
+	case EOpConstructStruct:
+		return true;
+	default:
+		return false;
+	}
+}
+//
+// Make sure the type of a unary operator is appropriate for its
+// combination of operation and operand type.
+//
+// Returns false in nothing makes sense.
+//
+bool TIntermUnary::promote(TInfoSink&)
+{
+	switch (op) {
+	case EOpLogicalNot:
+		if (operand->getBasicType() != EbtBool)
+			return false;
+		break;
+	case EOpBitwiseNot:
+		if (operand->getBasicType() != EbtInt)
+			return false;
+		break;
+	case EOpNegative:
+	case EOpPostIncrement:
+	case EOpPostDecrement:
+	case EOpPreIncrement:
+	case EOpPreDecrement:
+		if (operand->getBasicType() == EbtBool)
+			return false;
+		break;
+
+	// operators for built-ins are already type checked against their prototype
+	case EOpAny:
+	case EOpAll:
+	case EOpVectorLogicalNot:
+		return true;
+
+	default:
+		if (operand->getBasicType() != EbtFloat)
+			return false;
+	}
+
+	setType(operand->getType());
+
+	return true;
+}
+
+//
+// Establishes the type of the resultant operation, as well as
+// makes the operator the correct one for the operands.
+//
+// Returns false if operator can't work on operands.
+//
+bool TIntermBinary::promote(TInfoSink& infoSink)
+{
+	int size = left->getNominalSize();
+	if (right->getNominalSize() > size)
+		size = right->getNominalSize();
+
+	TBasicType type = left->getBasicType();
+
+	//
+	// Arrays have to be exact matches.
+	//
+	if ((left->isArray() || right->isArray()) && (left->getType() != right->getType()))
+		return false;
+
+	//
+	// Base assumption:  just make the type the same as the left
+	// operand.  Then only deviations from this need be coded.
+	//
+	setType(TType(type, EvqTemporary, left->getNominalSize(), left->isMatrix()));
+
+	//
+	// Array operations.
+	//
+	if (left->isArray()) {
+
+		switch (op) {
+
+		//
+		// Promote to conditional
+		//
+		case EOpEqual:
+		case EOpNotEqual:
+			setType(TType(EbtBool));
+			break;
+
+		//
+		// Set array information.
+		//
+		case EOpAssign:
+		case EOpInitialize:
+			getType().setArraySize(left->getType().getArraySize());
+			getType().setArrayInformationType(left->getType().getArrayInformationType());
+			break;
+
+		default:
+			return false;
+		}
+
+		return true;
+	}
+
+	//
+	// All scalars.  Code after this test assumes this case is removed!
+	//
+	if (size == 1) {
+
+		switch (op) {
+
+		//
+		// Promote to conditional
+		//
+		case EOpEqual:
+		case EOpNotEqual:
+		case EOpLessThan:
+		case EOpGreaterThan:
+		case EOpLessThanEqual:
+		case EOpGreaterThanEqual:
+			setType(TType(EbtBool));
+			break;
+
+		//
+		// And and Or operate on conditionals
+		//
+		case EOpLogicalAnd:
+		case EOpLogicalOr:
+			if (left->getBasicType() != EbtBool || right->getBasicType() != EbtBool)
+				return false;
+			setType(TType(EbtBool));
+			break;
+
+		//
+		// Check for integer only operands.
+		//
+		case EOpMod:
+		case EOpRightShift:
+		case EOpLeftShift:
+		case EOpAnd:
+		case EOpInclusiveOr:
+		case EOpExclusiveOr:
+			if (left->getBasicType() != EbtInt || right->getBasicType() != EbtInt)
+				return false;
+			break;
+		case EOpModAssign:
+		case EOpAndAssign:
+		case EOpInclusiveOrAssign:
+		case EOpExclusiveOrAssign:
+		case EOpLeftShiftAssign:
+		case EOpRightShiftAssign:
+			if (left->getBasicType() != EbtInt || right->getBasicType() != EbtInt)
+				return false;
+			// fall through
+
+		//
+		// Everything else should have matching types
+		//
+		default:
+			if (left->getBasicType() != right->getBasicType() ||
+				left->isMatrix()     != right->isMatrix())
+				return false;
+		}
+
+		return true;
+	}
+
+	//
+	// Are the sizes compatible?
+	//
+	if ( left->getNominalSize() != size &&  left->getNominalSize() != 1 ||
+		right->getNominalSize() != size && right->getNominalSize() != 1)
+		return false;
+
+	//
+	// Can these two operands be combined?
+	//
+	switch (op) {
+	case EOpMul:
+		if (!left->isMatrix() && right->isMatrix()) {
+			if (left->isVector())
+				op = EOpVectorTimesMatrix;
+			else {
+				op = EOpMatrixTimesScalar;
+				setType(TType(type, EvqTemporary, size, true));
+			}
+		} else if (left->isMatrix() && !right->isMatrix()) {
+			if (right->isVector()) {
+				op = EOpMatrixTimesVector;
+				setType(TType(type, EvqTemporary, size, false));
+			} else {
+				op = EOpMatrixTimesScalar;
+			}
+		} else if (left->isMatrix() && right->isMatrix()) {
+			op = EOpMatrixTimesMatrix;
+		} else if (!left->isMatrix() && !right->isMatrix()) {
+			if (left->isVector() && right->isVector()) {
+				// leave as component product
+			} else if (left->isVector() || right->isVector()) {
+				op = EOpVectorTimesScalar;
+				setType(TType(type, EvqTemporary, size, false));
+			}
+		} else {
+			infoSink.info.message(EPrefixInternalError, "Missing elses", getLine());
+			return false;
+		}
+		break;
+	case EOpMulAssign:
+		if (!left->isMatrix() && right->isMatrix()) {
+			if (left->isVector())
+				op = EOpVectorTimesMatrixAssign;
+			else {
+				return false;
+			}
+		} else if (left->isMatrix() && !right->isMatrix()) {
+			if (right->isVector()) {
+				return false;
+			} else {
+				op = EOpMatrixTimesScalarAssign;
+			}
+		} else if (left->isMatrix() && right->isMatrix()) {
+			op = EOpMatrixTimesMatrixAssign;
+		} else if (!left->isMatrix() && !right->isMatrix()) {
+			if (left->isVector() && right->isVector()) {
+				// leave as component product
+			} else if (left->isVector() || right->isVector()) {
+				if (! left->isVector())
+					return false;
+				op = EOpVectorTimesScalarAssign;
+				setType(TType(type, EvqTemporary, size, false));
+			}
+		} else {
+			infoSink.info.message(EPrefixInternalError, "Missing elses", getLine());
+			return false;
+		}
+		break;
+	case EOpAssign:
+	case EOpInitialize:
+		if (left->getNominalSize() != right->getNominalSize())
+			return false;
+		// fall through
+	case EOpAdd:
+	case EOpSub:
+	case EOpDiv:
+	case EOpMod:
+	case EOpAddAssign:
+	case EOpSubAssign:
+	case EOpDivAssign:
+	case EOpModAssign:
+		if (left->isMatrix() && right->isVector() ||
+			left->isVector() && right->isMatrix() ||
+			left->getBasicType() != right->getBasicType())
+			return false;
+		setType(TType(type, EvqTemporary, size, left->isMatrix() || right->isMatrix()));
+		break;
+
+	case EOpEqual:
+	case EOpNotEqual:
+	case EOpLessThan:
+	case EOpGreaterThan:
+	case EOpLessThanEqual:
+	case EOpGreaterThanEqual:
+		if (left->isMatrix() && right->isVector() ||
+			left->isVector() && right->isMatrix() ||
+			left->getBasicType() != right->getBasicType())
+			return false;
+		setType(TType(EbtBool));
+		break;
+
+default:
+		return false;
+	}
+
+	//
+	// One more check for assignment.  The Resulting type has to match the left operand.
+	//
+	switch (op) {
+	case EOpAssign:
+	case EOpInitialize:
+	case EOpAddAssign:
+	case EOpSubAssign:
+	case EOpMulAssign:
+	case EOpDivAssign:
+	case EOpModAssign:
+	case EOpAndAssign:
+	case EOpInclusiveOrAssign:
+	case EOpExclusiveOrAssign:
+	case EOpLeftShiftAssign:
+	case EOpRightShiftAssign:
+		if (getType() != left->getType())
+			return false;
+		break;
+	default:
+		break;
+	}
+
+	return true;
+}
+
+bool CompareStruct(const TType& leftNodeType, constUnion* rightUnionArray, constUnion* leftUnionArray)
+{
+	TTypeList* fields = leftNodeType.getStruct();
+
+	size_t structSize = fields->size();
+	int index = 0;
+
+	for (size_t j = 0; j < structSize; j++) {
+		int size = (*fields)[j].type->getObjectSize();
+		for (int i = 0; i < size; i++) {
+			if ((*fields)[j].type->getBasicType() == EbtStruct) {
+				if (!CompareStructure(*(*fields)[j].type, &rightUnionArray[index], &leftUnionArray[index]))
+					return false;
+			} else {
+				if (leftUnionArray[index] != rightUnionArray[index])
+					return false;
+				index++;
+			}
+
+		}
+	}
+	return true;
+}
+
+bool CompareStructure(const TType& leftNodeType, constUnion* rightUnionArray, constUnion* leftUnionArray)
+{
+	if (leftNodeType.isArray()) {
+		TType typeWithoutArrayness = leftNodeType;
+		typeWithoutArrayness.clearArrayness();
+
+		int arraySize = leftNodeType.getArraySize();
+
+		for (int i = 0; i < arraySize; ++i) {
+			int offset = typeWithoutArrayness.getObjectSize() * i;
+			if (!CompareStruct(typeWithoutArrayness, &rightUnionArray[offset], &leftUnionArray[offset]))
+				return false;
+		}
+	} else
+		return CompareStruct(leftNodeType, rightUnionArray, leftUnionArray);
+
+	return true;
+}
+
+//
+// The fold functions see if an operation on a constant can be done in place,
+// without generating run-time code.
+//
+// Returns the node to keep using, which may or may not be the node passed in.
+//
+
+TIntermTyped* TIntermConstantUnion::fold(TOperator op, TIntermTyped* constantNode, TInfoSink& infoSink)
+{
+	constUnion *unionArray = getUnionArrayPointer();
+	int objectSize = getType().getObjectSize();
+
+	if (constantNode) {  // binary operations
+		TIntermConstantUnion *node = constantNode->getAsConstantUnion();
+		constUnion *rightUnionArray = node->getUnionArrayPointer();
+		TType returnType = getType();
+
+		// for a case like float f = 1.2 + vec4(2,3,4,5);
+		if (constantNode->getType().getObjectSize() == 1 && objectSize > 1) {
+			rightUnionArray = new constUnion[objectSize];
+			for (int i = 0; i < objectSize; ++i)
+				rightUnionArray[i] = *node->getUnionArrayPointer();
+			returnType = getType();
+		} else if (constantNode->getType().getObjectSize() > 1 && objectSize == 1) {
+			// for a case like float f = vec4(2,3,4,5) + 1.2;
+			unionArray = new constUnion[constantNode->getType().getObjectSize()];
+			for (int i = 0; i < constantNode->getType().getObjectSize(); ++i)
+				unionArray[i] = *getUnionArrayPointer();
+			returnType = node->getType();
+			objectSize = constantNode->getType().getObjectSize();
+		}
+
+		constUnion* tempConstArray = 0;
+		TIntermConstantUnion *tempNode;
+
+		bool boolNodeFlag = false;
+		switch(op) {
+		case EOpAdd:
+			tempConstArray = new constUnion[objectSize];
+			{// support MSVC++6.0
+				for (int i = 0; i < objectSize; i++)
+					tempConstArray[i] = unionArray[i] + rightUnionArray[i];
+			}
+			break;
+		case EOpSub:
+			tempConstArray = new constUnion[objectSize];
+			{// support MSVC++6.0
+				for (int i = 0; i < objectSize; i++)
+					tempConstArray[i] = unionArray[i] - rightUnionArray[i];
+			}
+			break;
+
+		case EOpMul:
+		case EOpVectorTimesScalar:
+		case EOpMatrixTimesScalar:
+			tempConstArray = new constUnion[objectSize];
+			{// support MSVC++6.0
+				for (int i = 0; i < objectSize; i++)
+					tempConstArray[i] = unionArray[i] * rightUnionArray[i];
+			}
+			break;
+		case EOpMatrixTimesMatrix:
+			if (getType().getBasicType() != EbtFloat || node->getBasicType() != EbtFloat) {
+				infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for matrix multiply", getLine());
+				return 0;
+			}
+			{// support MSVC++6.0
+				int size = getNominalSize();
+				tempConstArray = new constUnion[size*size];
+				for (int row = 0; row < size; row++) {
+					for (int column = 0; column < size; column++) {
+						tempConstArray[size * column + row].setFConst(0.0f);
+						for (int i = 0; i < size; i++) {
+							tempConstArray[size * column + row].setFConst(tempConstArray[size * column + row].getFConst() + unionArray[i * size + row].getFConst() * (rightUnionArray[column * size + i].getFConst()));
+						}
+					}
+				}
+			}
+			break;
+		case EOpDiv:
+			tempConstArray = new constUnion[objectSize];
+			{// support MSVC++6.0
+				for (int i = 0; i < objectSize; i++) {
+					switch (getType().getBasicType()) {
+					case EbtFloat:
+						if (rightUnionArray[i] == 0.0f) {
+							infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
+							tempConstArray[i].setFConst(FLT_MAX);
+						} else
+							tempConstArray[i].setFConst(unionArray[i].getFConst() / rightUnionArray[i].getFConst());
+					break;
+
+					case EbtInt:
+						if (rightUnionArray[i] == 0) {
+							infoSink.info.message(EPrefixWarning, "Divide by zero error during constant folding", getLine());
+							tempConstArray[i].setIConst(INT_MAX);
+						} else
+							tempConstArray[i].setIConst(unionArray[i].getIConst() / rightUnionArray[i].getIConst());
+						break;
+					default:
+						infoSink.info.message(EPrefixInternalError, "Constant folding cannot be done for \"/\"", getLine());
+						return 0;
+					}
+				}
+			}
+			break;
+
+		case EOpMatrixTimesVector:
+			if (node->getBasicType() != EbtFloat) {
+				infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for matrix times vector", getLine());
+				return 0;
+			}
+			tempConstArray = new constUnion[getNominalSize()];
+
+			{// support MSVC++6.0
+				for (int size = getNominalSize(), i = 0; i < size; i++) {
+					tempConstArray[i].setFConst(0.0f);
+					for (int j = 0; j < size; j++) {
+						tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j*size + i].getFConst()) * rightUnionArray[j].getFConst()));
+					}
+				}
+			}
+
+			tempNode = new TIntermConstantUnion(tempConstArray, node->getType());
+			tempNode->setLine(getLine());
+
+			return tempNode;
+
+		case EOpVectorTimesMatrix:
+			if (getType().getBasicType() != EbtFloat) {
+				infoSink.info.message(EPrefixInternalError, "Constant Folding cannot be done for vector times matrix", getLine());
+				return 0;
+			}
+
+			tempConstArray = new constUnion[getNominalSize()];
+			{// support MSVC++6.0
+				for (int size = getNominalSize(), i = 0; i < size; i++) {
+					tempConstArray[i].setFConst(0.0f);
+					for (int j = 0; j < size; j++) {
+						tempConstArray[i].setFConst(tempConstArray[i].getFConst() + ((unionArray[j].getFConst()) * rightUnionArray[i*size + j].getFConst()));
+					}
+				}
+			}
+			break;
+
+		case EOpMod:
+			tempConstArray = new constUnion[objectSize];
+			{// support MSVC++6.0
+				for (int i = 0; i < objectSize; i++)
+					tempConstArray[i] = unionArray[i] % rightUnionArray[i];
+			}
+			break;
+
+		case EOpRightShift:
+			tempConstArray = new constUnion[objectSize];
+			{// support MSVC++6.0
+				for (int i = 0; i < objectSize; i++)
+					tempConstArray[i] = unionArray[i] >> rightUnionArray[i];
+			}
+			break;
+
+		case EOpLeftShift:
+			tempConstArray = new constUnion[objectSize];
+			{// support MSVC++6.0
+				for (int i = 0; i < objectSize; i++)
+					tempConstArray[i] = unionArray[i] << rightUnionArray[i];
+			}
+			break;
+
+		case EOpAnd:
+			tempConstArray = new constUnion[objectSize];
+			{// support MSVC++6.0
+				for (int i = 0; i < objectSize; i++)
+					tempConstArray[i] = unionArray[i] & rightUnionArray[i];
+			}
+			break;
+		case EOpInclusiveOr:
+			tempConstArray = new constUnion[objectSize];
+			{// support MSVC++6.0
+				for (int i = 0; i < objectSize; i++)
+					tempConstArray[i] = unionArray[i] | rightUnionArray[i];
+			}
+			break;
+		case EOpExclusiveOr:
+			tempConstArray = new constUnion[objectSize];
+			{// support MSVC++6.0
+				for (int i = 0; i < objectSize; i++)
+					tempConstArray[i] = unionArray[i] ^ rightUnionArray[i];
+			}
+			break;
+
+		case EOpLogicalAnd: // this code is written for possible future use, will not get executed currently
+			tempConstArray = new constUnion[objectSize];
+			{// support MSVC++6.0
+				for (int i = 0; i < objectSize; i++)
+					tempConstArray[i] = unionArray[i] && rightUnionArray[i];
+			}
+			break;
+
+		case EOpLogicalOr: // this code is written for possible future use, will not get executed currently
+			tempConstArray = new constUnion[objectSize];
+			{// support MSVC++6.0
+				for (int i = 0; i < objectSize; i++)
+					tempConstArray[i] = unionArray[i] || rightUnionArray[i];
+			}
+			break;
+
+		case EOpLogicalXor:
+			tempConstArray = new constUnion[objectSize];
+			{// support MSVC++6.0
+				for (int i = 0; i < objectSize; i++)
+					switch (getType().getBasicType()) {
+					case EbtBool: tempConstArray[i].setBConst((unionArray[i] == rightUnionArray[i]) ? false : true); break;
+					default: assert(false && "Default missing");
+					}
+			}
+			break;
+
+		case EOpLessThan:
+			assert(objectSize == 1);
+			tempConstArray = new constUnion[1];
+			tempConstArray->setBConst(*unionArray < *rightUnionArray);
+			returnType = TType(EbtBool, EvqConst);
+			break;
+		case EOpGreaterThan:
+			assert(objectSize == 1);
+			tempConstArray = new constUnion[1];
+			tempConstArray->setBConst(*unionArray > *rightUnionArray);
+			returnType = TType(EbtBool, EvqConst);
+			break;
+		case EOpLessThanEqual:
+		{
+			assert(objectSize == 1);
+			constUnion constant;
+			constant.setBConst(*unionArray > *rightUnionArray);
+			tempConstArray = new constUnion[1];
+			tempConstArray->setBConst(!constant.getBConst());
+			returnType = TType(EbtBool, EvqConst);
+			break;
+		}
+		case EOpGreaterThanEqual:
+		{
+			assert(objectSize == 1);
+			constUnion constant;
+			constant.setBConst(*unionArray < *rightUnionArray);
+			tempConstArray = new constUnion[1];
+			tempConstArray->setBConst(!constant.getBConst());
+			returnType = TType(EbtBool, EvqConst);
+			break;
+		}
+
+		case EOpEqual:
+			if (getType().getBasicType() == EbtStruct) {
+				if (!CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
+					boolNodeFlag = true;
+			} else {
+				for (int i = 0; i < objectSize; i++) {
+					if (unionArray[i] != rightUnionArray[i]) {
+						boolNodeFlag = true;
+						break;  // break out of for loop
+					}
+				}
+			}
+
+			tempConstArray = new constUnion[1];
+			if (!boolNodeFlag) {
+				tempConstArray->setBConst(true);
+			}
+			else {
+				tempConstArray->setBConst(false);
+			}
+
+			tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EvqConst));
+			tempNode->setLine(getLine());
+
+			return tempNode;
+
+		case EOpNotEqual:
+			if (getType().getBasicType() == EbtStruct) {
+				if (CompareStructure(node->getType(), node->getUnionArrayPointer(), unionArray))
+					boolNodeFlag = true;
+			} else {
+				for (int i = 0; i < objectSize; i++) {
+					if (unionArray[i] == rightUnionArray[i]) {
+						boolNodeFlag = true;
+						break;  // break out of for loop
+					}
+				}
+			}
+
+			tempConstArray = new constUnion[1];
+			if (!boolNodeFlag) {
+				tempConstArray->setBConst(true);
+			}
+			else {
+				tempConstArray->setBConst(false);
+			}
+
+			tempNode = new TIntermConstantUnion(tempConstArray, TType(EbtBool, EvqConst));
+			tempNode->setLine(getLine());
+
+			return tempNode;
+
+		default:
+			infoSink.info.message(EPrefixInternalError, "Invalid operator for constant folding", getLine());
+			return 0;
+		}
+		tempNode = new TIntermConstantUnion(tempConstArray, returnType);
+		tempNode->setLine(getLine());
+
+		return tempNode;
+	} else {
+		//
+		// Do unary operations
+		//
+		TIntermConstantUnion *newNode = 0;
+		constUnion* tempConstArray = new constUnion[objectSize];
+		for (int i = 0; i < objectSize; i++) {
+			switch(op) {
+			case EOpNegative:
+				switch (getType().getBasicType()) {
+				case EbtFloat: tempConstArray[i].setFConst(-unionArray[i].getFConst()); break;
+				case EbtInt:   tempConstArray[i].setIConst(-unionArray[i].getIConst()); break;
+				default:
+					infoSink.info.message(EPrefixInternalError, "Unary operation not folded into constant", getLine());
+					return 0;
+				}
+				break;
+			case EOpLogicalNot: // this code is written for possible future use, will not get executed currently
+				switch (getType().getBasicType()) {
+				case EbtBool:  tempConstArray[i].setBConst(!unionArray[i].getBConst()); break;
+				default:
+					infoSink.info.message(EPrefixInternalError, "Unary operation not folded into constant", getLine());
+					return 0;
+				}
+				break;
+			default:
+				return 0;
+			}
+		}
+		newNode = new TIntermConstantUnion(tempConstArray, getType());
+		newNode->setLine(getLine());
+		return newNode;
+	}
+
+	return this;
+}
+
+TIntermTyped* TIntermediate::promoteConstantUnion(TBasicType promoteTo, TIntermConstantUnion* node)
+{
+	constUnion *rightUnionArray = node->getUnionArrayPointer();
+	int size = node->getType().getObjectSize();
+
+	constUnion *leftUnionArray = new constUnion[size];
+
+	for (int i=0; i < size; i++) {
+
+		switch (promoteTo) {
+		case EbtFloat:
+			switch (node->getType().getBasicType()) {
+			case EbtInt:
+				leftUnionArray[i].setFConst(static_cast<float>(rightUnionArray[i].getIConst()));
+				break;
+			case EbtBool:
+				leftUnionArray[i].setFConst(static_cast<float>(rightUnionArray[i].getBConst()));
+				break;
+			case EbtFloat:
+				leftUnionArray[i] = rightUnionArray[i];
+				break;
+			default:
+				infoSink.info.message(EPrefixInternalError, "Cannot promote", node->getLine());
+				return 0;
+			}
+			break;
+		case EbtInt:
+			switch (node->getType().getBasicType()) {
+			case EbtInt:
+				leftUnionArray[i] = rightUnionArray[i];
+				break;
+			case EbtBool:
+				leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getBConst()));
+				break;
+			case EbtFloat:
+				leftUnionArray[i].setIConst(static_cast<int>(rightUnionArray[i].getFConst()));
+				break;
+			default:
+				infoSink.info.message(EPrefixInternalError, "Cannot promote", node->getLine());
+				return 0;
+			}
+			break;
+		case EbtBool:
+			switch (node->getType().getBasicType()) {
+			case EbtInt:
+				leftUnionArray[i].setBConst(rightUnionArray[i].getIConst() != 0);
+				break;
+			case EbtBool:
+				leftUnionArray[i] = rightUnionArray[i];
+				break;
+			case EbtFloat:
+				leftUnionArray[i].setBConst(rightUnionArray[i].getFConst() != 0.0f);
+				break;
+			default:
+				infoSink.info.message(EPrefixInternalError, "Cannot promote", node->getLine());
+				return 0;
+			}
+
+			break;
+		default:
+			infoSink.info.message(EPrefixInternalError, "Incorrect data type found", node->getLine());
+			return 0;
+		}
+
+	}
+
+	const TType& t = node->getType();
+
+	return addConstantUnion(leftUnionArray, TType(promoteTo, t.getQualifier(), t.getNominalSize(), t.isMatrix(), t.isArray()), node->getLine());
+}
+
+void TIntermAggregate::addToPragmaTable(const TPragmaTable& pTable)
+{
+	assert(!pragmaTable);
+	pragmaTable = new TPragmaTable();
+	*pragmaTable = pTable;
+}
+