Add mediump and lowp precision emulation support for GLSL output

This implements the rounding as specified in WEBGL_debug_shader_precision
extension proposal for desktop GLSL and ESSL output. The bulk of the new
functionality is added in the form of a new EmulatePrecision AST
traverser, which inserts calls to the rounding routines angle_frm and
angle_frl in the appropriate places, and writes the rounding routines
themselves to the shader.

Compound assignments which are subject to emulation are transformed from
"x op= y" to "angle_compound_op_frm(x, y)", a call to a function which
does the appropriate rounding and places the result of the operation to
x.

The angle_ prefixed names should not clash with user-defined names if
name hashing is on. If name hashing is not on, the precision emulation
can only be used if the angle_ prefix is reserved for use by ANGLE.

To support the rounding routines in output, a new operator type is added
for internal helper function calls, which are not subject to name
hashing.

In ESSL output, all variables are forced to highp when precision
emulation is on to ensure consistency with how precision emulation
performs on desktop.

Comprehensive tests for the added code generation are included.

BUG=angle:787

Change-Id: I0d0ad9327888f803a32e79b64b08763c654c913b
Reviewed-on: https://chromium-review.googlesource.com/229631
Reviewed-by: Jamie Madill <jmadill@chromium.org>
Tested-by: Olli Etuaho <oetuaho@nvidia.com>
diff --git a/src/compiler/translator/EmulatePrecision.cpp b/src/compiler/translator/EmulatePrecision.cpp
new file mode 100644
index 0000000..9f77261
--- /dev/null
+++ b/src/compiler/translator/EmulatePrecision.cpp
@@ -0,0 +1,497 @@
+//
+// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+//
+
+#include "compiler/translator/EmulatePrecision.h"
+
+namespace
+{
+
+static void writeVectorPrecisionEmulationHelpers(
+    TInfoSinkBase& sink, ShShaderOutput outputLanguage, unsigned int size)
+{
+    std::stringstream vecTypeStrStr;
+    if (outputLanguage == SH_ESSL_OUTPUT)
+        vecTypeStrStr << "highp ";
+    vecTypeStrStr << "vec" << size;
+    std::string vecType = vecTypeStrStr.str();
+
+    sink <<
+    vecType << " angle_frm(in " << vecType << " v) {\n"
+    "    v = clamp(v, -65504.0, 65504.0);\n"
+    "    " << vecType << " exponent = floor(log2(abs(v) + 1e-30)) - 10.0;\n"
+    "    bvec" << size << " isNonZero = greaterThanEqual(exponent, vec" << size << "(-25.0));\n"
+    "    v = v * exp2(-exponent);\n"
+    "    v = sign(v) * floor(abs(v));\n"
+    "    return v * exp2(exponent) * vec" << size << "(isNonZero);\n"
+    "}\n";
+
+    sink <<
+    vecType << " angle_frl(in " << vecType << " v) {\n"
+    "    v = clamp(v, -2.0, 2.0);\n"
+    "    v = v * 256.0;\n"
+    "    v = sign(v) * floor(abs(v));\n"
+    "    return v * 0.00390625;\n"
+    "}\n";
+}
+
+static void writeMatrixPrecisionEmulationHelper(
+    TInfoSinkBase& sink, ShShaderOutput outputLanguage, unsigned int size, const char *functionName)
+{
+    std::stringstream matTypeStrStr;
+    if (outputLanguage == SH_ESSL_OUTPUT)
+        matTypeStrStr << "highp ";
+    matTypeStrStr << "mat" << size;
+    std::string matType = matTypeStrStr.str();
+
+    sink << matType << " " << functionName << "(in " << matType << " m) {\n"
+            "    " << matType << " rounded;\n";
+
+    for (unsigned int i = 0; i < size; ++i)
+    {
+        sink << "    rounded[" << i << "] = " << functionName << "(m[" << i << "]);\n";
+    }
+
+    sink << "    return rounded;\n"
+            "}\n";
+}
+
+static void writeCommonPrecisionEmulationHelpers(TInfoSinkBase& sink, ShShaderOutput outputLanguage)
+{
+    // Write the angle_frm functions that round floating point numbers to
+    // half precision, and angle_frl functions that round them to minimum lowp
+    // precision.
+
+    // Unoptimized version of angle_frm for single floats:
+    //
+    // int webgl_maxNormalExponent(in int exponentBits) {
+    //     int possibleExponents = int(exp2(float(exponentBits)));
+    //     int exponentBias = possibleExponents / 2 - 1;
+    //     int allExponentBitsOne = possibleExponents - 1;
+    //     return (allExponentBitsOne - 1) - exponentBias;
+    // }
+    //
+    // float angle_frm(in float x) {
+    //     int mantissaBits = 10;
+    //     int exponentBits = 5;
+    //     float possibleMantissas = exp2(float(mantissaBits));
+    //     float mantissaMax = 2.0 - 1.0 / possibleMantissas;
+    //     int maxNE = webgl_maxNormalExponent(exponentBits);
+    //     float max = exp2(float(maxNE)) * mantissaMax;
+    //     if (x > max) {
+    //         return max;
+    //     }
+    //     if (x < -max) {
+    //         return -max;
+    //     }
+    //     float exponent = floor(log2(abs(x)));
+    //     if (abs(x) == 0.0 || exponent < -float(maxNE)) {
+    //         return 0.0 * sign(x)
+    //     }
+    //     x = x * exp2(-(exponent - float(mantissaBits)));
+    //     x = sign(x) * floor(abs(x));
+    //     return x * exp2(exponent - float(mantissaBits));
+    // }
+
+    // All numbers with a magnitude less than 2^-15 are subnormal, and are
+    // flushed to zero.
+
+    // Note the constant numbers below:
+    // a) 65504 is the maximum possible mantissa (1.1111111111 in binary) times
+    //    2^15, the maximum normal exponent.
+    // b) 10.0 is the number of mantissa bits.
+    // c) -25.0 is the minimum normal half-float exponent -15.0 minus the number
+    //    of mantissa bits.
+    // d) + 1e-30 is to make sure the argument of log2() won't be zero. It can
+    //    only affect the result of log2 on x where abs(x) < 1e-22. Since these
+    //    numbers will be flushed to zero either way (2^-15 is the smallest
+    //    normal positive number), this does not introduce any error.
+
+    std::string floatType = "float";
+    if (outputLanguage == SH_ESSL_OUTPUT)
+        floatType = "highp float";
+
+    sink <<
+    floatType << " angle_frm(in " << floatType << " x) {\n"
+    "    x = clamp(x, -65504.0, 65504.0);\n"
+    "    " << floatType << " exponent = floor(log2(abs(x) + 1e-30)) - 10.0;\n"
+    "    bool isNonZero = (exponent >= -25.0);\n"
+    "    x = x * exp2(-exponent);\n"
+    "    x = sign(x) * floor(abs(x));\n"
+    "    return x * exp2(exponent) * float(isNonZero);\n"
+    "}\n";
+
+    sink <<
+    floatType << " angle_frl(in " << floatType << " x) {\n"
+    "    x = clamp(x, -2.0, 2.0);\n"
+    "    x = x * 256.0;\n"
+    "    x = sign(x) * floor(abs(x));\n"
+    "    return x * 0.00390625;\n"
+    "}\n";
+
+    writeVectorPrecisionEmulationHelpers(sink, outputLanguage, 2);
+    writeVectorPrecisionEmulationHelpers(sink, outputLanguage, 3);
+    writeVectorPrecisionEmulationHelpers(sink, outputLanguage, 4);
+    for (unsigned int size = 2; size <= 4; ++size)
+    {
+        writeMatrixPrecisionEmulationHelper(sink, outputLanguage, size, "angle_frm");
+        writeMatrixPrecisionEmulationHelper(sink, outputLanguage, size, "angle_frl");
+    }
+}
+
+static void writeCompoundAssignmentPrecisionEmulation(
+    TInfoSinkBase& sink, ShShaderOutput outputLanguage,
+    const char *lType, const char *rType, const char *opStr, const char *opNameStr)
+{
+    std::string lTypeStr = lType;
+    std::string rTypeStr = rType;
+    if (outputLanguage == SH_ESSL_OUTPUT)
+    {
+        std::stringstream lTypeStrStr;
+        lTypeStrStr << "highp " << lType;
+        lTypeStr = lTypeStrStr.str();
+        std::stringstream rTypeStrStr;
+        rTypeStrStr << "highp " << rType;
+        rTypeStr = rTypeStrStr.str();
+    }
+
+    // Note that y should be passed through angle_frm at the function call site,
+    // but x can't be passed through angle_frm there since it is an inout parameter.
+    // So only pass x and the result through angle_frm here.
+    sink <<
+    lTypeStr << " angle_compound_" << opNameStr << "_frm(inout " << lTypeStr << " x, in " << rTypeStr << " y) {\n"
+    "    x = angle_frm(angle_frm(x) " << opStr << " y);\n"
+    "    return x;\n"
+    "}\n";
+    sink <<
+    lTypeStr << " angle_compound_" << opNameStr << "_frl(inout " << lTypeStr << " x, in " << rTypeStr << " y) {\n"
+    "    x = angle_frl(angle_frm(x) " << opStr << " y);\n"
+    "    return x;\n"
+    "}\n";
+}
+
+const char *getFloatTypeStr(const TType& type)
+{
+    switch (type.getNominalSize())
+    {
+      case 1:
+        return "float";
+      case 2:
+        return type.getSecondarySize() > 1 ? "mat2" : "vec2";
+      case 3:
+        return type.getSecondarySize() > 1 ? "mat3" : "vec3";
+      case 4:
+        return type.getSecondarySize() > 1 ? "mat4" : "vec4";
+      default:
+        UNREACHABLE();
+        return NULL;
+    }
+}
+
+bool canRoundFloat(const TType &type)
+{
+    return type.getBasicType() == EbtFloat && !type.isNonSquareMatrix() && !type.isArray() &&
+        (type.getPrecision() == EbpLow || type.getPrecision() == EbpMedium);
+}
+
+TIntermAggregate *createInternalFunctionCallNode(TString name, TIntermNode *child)
+{
+    TIntermAggregate *callNode = new TIntermAggregate();
+    callNode->setOp(EOpInternalFunctionCall);
+    callNode->setName(name);
+    callNode->getSequence()->push_back(child);
+    return callNode;
+}
+
+TIntermAggregate *createRoundingFunctionCallNode(TIntermTyped *roundedChild)
+{
+    TString roundFunctionName;
+    if (roundedChild->getPrecision() == EbpMedium)
+        roundFunctionName = "angle_frm";
+    else
+        roundFunctionName = "angle_frl";
+    return createInternalFunctionCallNode(roundFunctionName, roundedChild);
+}
+
+TIntermAggregate *createCompoundAssignmentFunctionCallNode(TIntermTyped *left, TIntermTyped *right, const char *opNameStr)
+{
+    std::stringstream strstr;
+    if (left->getPrecision() == EbpMedium)
+        strstr << "angle_compound_" << opNameStr << "_frm";
+    else
+        strstr << "angle_compound_" << opNameStr << "_frl";
+    TString functionName = strstr.str().c_str();
+    TIntermAggregate *callNode = createInternalFunctionCallNode(functionName, left);
+    callNode->getSequence()->push_back(right);
+    return callNode;
+}
+
+}  // namespace anonymous
+
+EmulatePrecision::EmulatePrecision()
+    : TIntermTraverser(true, true, true),
+      mDeclaringVariables(false),
+      mInLValue(false),
+      mInFunctionCallOutParameter(false)
+{}
+
+void EmulatePrecision::visitSymbol(TIntermSymbol *node)
+{
+    if (canRoundFloat(node->getType()) &&
+        !mDeclaringVariables && !mInLValue && !mInFunctionCallOutParameter)
+    {
+        TIntermNode *parent = getParentNode();
+        TIntermNode *replacement = createRoundingFunctionCallNode(node);
+        mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
+    }
+}
+
+
+bool EmulatePrecision::visitBinary(Visit visit, TIntermBinary *node)
+{
+    bool visitChildren = true;
+
+    if (node->isAssignment())
+    {
+        if (visit == PreVisit)
+            mInLValue = true;
+        else if (visit == InVisit)
+            mInLValue = false;
+    }
+
+    TOperator op = node->getOp();
+
+    // RHS of initialize is not being declared.
+    if (op == EOpInitialize && visit == InVisit)
+        mDeclaringVariables = false;
+
+    if ((op == EOpIndexDirectStruct || op == EOpVectorSwizzle) && visit == InVisit)
+        visitChildren = false;
+
+    if (visit != PreVisit)
+        return visitChildren;
+
+    const TType& type = node->getType();
+    bool roundFloat = canRoundFloat(type);
+
+    if (roundFloat) {
+        switch (op) {
+          // Math operators that can result in a float may need to apply rounding to the return
+          // value. Note that in the case of assignment, the rounding is applied to its return
+          // value here, not the value being assigned.
+          case EOpAssign:
+          case EOpAdd:
+          case EOpSub:
+          case EOpMul:
+          case EOpDiv:
+          case EOpVectorTimesScalar:
+          case EOpVectorTimesMatrix:
+          case EOpMatrixTimesVector:
+          case EOpMatrixTimesScalar:
+          case EOpMatrixTimesMatrix:
+          {
+            TIntermNode *parent = getParentNode();
+            TIntermNode *replacement = createRoundingFunctionCallNode(node);
+            mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
+            break;
+          }
+
+          // Compound assignment cases need to replace the operator with a function call.
+          case EOpAddAssign:
+          {
+            mEmulateCompoundAdd.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType())));
+            TIntermNode *parent = getParentNode();
+            TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "add");
+            mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false));
+            break;
+          }
+          case EOpSubAssign:
+          {
+            mEmulateCompoundSub.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType())));
+            TIntermNode *parent = getParentNode();
+            TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "sub");
+            mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false));
+            break;
+          }
+          case EOpMulAssign:
+          case EOpVectorTimesMatrixAssign:
+          case EOpVectorTimesScalarAssign:
+          case EOpMatrixTimesScalarAssign:
+          case EOpMatrixTimesMatrixAssign:
+          {
+            mEmulateCompoundMul.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType())));
+            TIntermNode *parent = getParentNode();
+            TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "mul");
+            mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false));
+            break;
+          }
+          case EOpDivAssign:
+          {
+            mEmulateCompoundDiv.insert(TypePair(getFloatTypeStr(type), getFloatTypeStr(node->getRight()->getType())));
+            TIntermNode *parent = getParentNode();
+            TIntermNode *replacement = createCompoundAssignmentFunctionCallNode(node->getLeft(), node->getRight(), "div");
+            mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, false));
+            break;
+          }
+          default:
+            // The rest of the binary operations should not need precision emulation.
+            break;
+        }
+    }
+    return visitChildren;
+}
+
+bool EmulatePrecision::visitAggregate(Visit visit, TIntermAggregate *node)
+{
+    bool visitChildren = true;
+    switch (node->getOp())
+    {
+      case EOpSequence:
+      case EOpConstructStruct:
+        // No special handling
+        break;
+      case EOpFunction:
+        if (visit == PreVisit)
+        {
+            const TIntermSequence &sequence = *(node->getSequence());
+            TIntermSequence::const_iterator seqIter = sequence.begin();
+            TIntermAggregate *params = (*seqIter)->getAsAggregate();
+            ASSERT(params != NULL);
+            ASSERT(params->getOp() == EOpParameters);
+            mFunctionMap[node->getName()] = params->getSequence();
+        }
+        break;
+      case EOpPrototype:
+        if (visit == PreVisit)
+            mFunctionMap[node->getName()] = node->getSequence();
+        visitChildren = false;
+        break;
+      case EOpParameters:
+        visitChildren = false;
+        break;
+      case EOpInvariantDeclaration:
+        visitChildren = false;
+        break;
+      case EOpDeclaration:
+        // Variable declaration.
+        if (visit == PreVisit)
+        {
+            mDeclaringVariables = true;
+        }
+        else if (visit == InVisit)
+        {
+            mDeclaringVariables = true;
+        }
+        else
+        {
+            mDeclaringVariables = false;
+        }
+        break;
+      case EOpFunctionCall:
+      {
+        // Function call.
+        bool inFunctionMap = (mFunctionMap.find(node->getName()) != mFunctionMap.end());
+        if (visit == PreVisit)
+        {
+            if (canRoundFloat(node->getType()) && !inFunctionMap) {
+                TIntermNode *parent = getParentNode();
+                TIntermNode *replacement = createRoundingFunctionCallNode(node);
+                mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
+            }
+
+            if (inFunctionMap)
+            {
+                mSeqIterStack.push_back(mFunctionMap[node->getName()]->begin());
+                if (mSeqIterStack.back() != mFunctionMap[node->getName()]->end())
+                {
+                    TQualifier qualifier = (*mSeqIterStack.back())->getAsTyped()->getQualifier();
+                    mInFunctionCallOutParameter = (qualifier == EvqOut || qualifier == EvqInOut);
+                }
+            }
+            else
+            {
+                // The function is not user-defined - it is likely built-in texture function.
+                // Assume that those do not have out parameters.
+                mInFunctionCallOutParameter = false;
+            }
+        }
+        else if (visit == InVisit)
+        {
+            if (inFunctionMap)
+            {
+                ++mSeqIterStack.back();
+                TQualifier qualifier = (*mSeqIterStack.back())->getAsTyped()->getQualifier();
+                mInFunctionCallOutParameter = (qualifier == EvqOut || qualifier == EvqInOut);
+            }
+        }
+        else
+        {
+            if (inFunctionMap)
+            {
+                mSeqIterStack.pop_back();
+                mInFunctionCallOutParameter = false;
+            }
+        }
+        break;
+      }
+      default:
+        if (canRoundFloat(node->getType()) && visit == PreVisit)
+        {
+            TIntermNode *parent = getParentNode();
+            TIntermNode *replacement = createRoundingFunctionCallNode(node);
+            mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
+        }
+        break;
+    }
+    return visitChildren;
+}
+
+bool EmulatePrecision::visitUnary(Visit visit, TIntermUnary *node)
+{
+    switch (node->getOp())
+    {
+      case EOpNegative:
+      case EOpVectorLogicalNot:
+      case EOpLogicalNot:
+        break;
+      case EOpPostIncrement:
+      case EOpPostDecrement:
+      case EOpPreIncrement:
+      case EOpPreDecrement:
+        if (visit == PreVisit)
+            mInLValue = true;
+        else if (visit == PostVisit)
+            mInLValue = false;
+        break;
+      default:
+        if (canRoundFloat(node->getType()) && visit == PreVisit)
+        {
+            TIntermNode *parent = getParentNode();
+            TIntermNode *replacement = createRoundingFunctionCallNode(node);
+            mReplacements.push_back(NodeUpdateEntry(parent, node, replacement, true));
+        }
+        break;
+    }
+
+    return true;
+}
+
+void EmulatePrecision::writeEmulationHelpers(TInfoSinkBase& sink, ShShaderOutput outputLanguage)
+{
+    // Other languages not yet supported
+    ASSERT(outputLanguage == SH_GLSL_OUTPUT || outputLanguage == SH_ESSL_OUTPUT);
+    writeCommonPrecisionEmulationHelpers(sink, outputLanguage);
+
+    EmulationSet::const_iterator it;
+    for (it = mEmulateCompoundAdd.begin(); it != mEmulateCompoundAdd.end(); it++)
+        writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "+", "add");
+    for (it = mEmulateCompoundSub.begin(); it != mEmulateCompoundSub.end(); it++)
+        writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "-", "sub");
+    for (it = mEmulateCompoundDiv.begin(); it != mEmulateCompoundDiv.end(); it++)
+        writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "/", "div");
+    for (it = mEmulateCompoundMul.begin(); it != mEmulateCompoundMul.end(); it++)
+        writeCompoundAssignmentPrecisionEmulation(sink, outputLanguage, it->lType, it->rType, "*", "mul");
+}
+