Initial commit of BoringSSL for Android.
diff --git a/src/crypto/cipher/e_aes.c b/src/crypto/cipher/e_aes.c
new file mode 100644
index 0000000..f92bb8e
--- /dev/null
+++ b/src/crypto/cipher/e_aes.c
@@ -0,0 +1,1364 @@
+/* ====================================================================
+ * Copyright (c) 2001-2011 The OpenSSL Project.  All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ *    notice, this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright
+ *    notice, this list of conditions and the following disclaimer in
+ *    the documentation and/or other materials provided with the
+ *    distribution.
+ *
+ * 3. All advertising materials mentioning features or use of this
+ *    software must display the following acknowledgment:
+ *    "This product includes software developed by the OpenSSL Project
+ *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
+ *
+ * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
+ *    endorse or promote products derived from this software without
+ *    prior written permission. For written permission, please contact
+ *    openssl-core@openssl.org.
+ *
+ * 5. Products derived from this software may not be called "OpenSSL"
+ *    nor may "OpenSSL" appear in their names without prior written
+ *    permission of the OpenSSL Project.
+ *
+ * 6. Redistributions of any form whatsoever must retain the following
+ *    acknowledgment:
+ *    "This product includes software developed by the OpenSSL Project
+ *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
+ * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
+ * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+ * OF THE POSSIBILITY OF SUCH DAMAGE.
+ * ==================================================================== */
+
+#include <string.h>
+
+#include <openssl/aead.h>
+#include <openssl/aes.h>
+#include <openssl/cipher.h>
+#include <openssl/cpu.h>
+#include <openssl/err.h>
+#include <openssl/mem.h>
+#include <openssl/modes.h>
+#include <openssl/obj.h>
+#include <openssl/rand.h>
+
+#include "internal.h"
+#include "../modes/internal.h"
+
+#if defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
+#include "../arm_arch.h"
+#endif
+
+
+typedef struct {
+  union {
+    double align;
+    AES_KEY ks;
+  } ks;
+  block128_f block;
+  union {
+    cbc128_f cbc;
+    ctr128_f ctr;
+  } stream;
+} EVP_AES_KEY;
+
+typedef struct {
+  union {
+    double align;
+    AES_KEY ks;
+  } ks;        /* AES key schedule to use */
+  int key_set; /* Set if key initialised */
+  int iv_set;  /* Set if an iv is set */
+  GCM128_CONTEXT gcm;
+  uint8_t *iv; /* Temporary IV store */
+  int ivlen;         /* IV length */
+  int taglen;
+  int iv_gen;      /* It is OK to generate IVs */
+  ctr128_f ctr;
+} EVP_AES_GCM_CTX;
+
+#if !defined(OPENSSL_NO_ASM) && \
+    (defined(OPENSSL_X86_64) || defined(OPENSSL_X86))
+#define VPAES
+extern unsigned int OPENSSL_ia32cap_P[];
+
+static char vpaes_capable(void) {
+  return (OPENSSL_ia32cap_P[1] & (1 << (41 - 32))) != 0;
+}
+
+#if defined(OPENSSL_X86_64)
+#define BSAES
+static char bsaes_capable(void) {
+  return vpaes_capable();
+}
+#endif
+
+#elif !defined(OPENSSL_NO_ASM) && \
+    (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
+#include "../arm_arch.h"
+
+#if defined(OPENSSL_ARM) && __ARM_ARCH__ >= 7
+#define BSAES
+static char bsaes_capable(void) {
+  return CRYPTO_is_NEON_capable();
+}
+#endif
+
+#define HWAES
+static char hwaes_capable(void) {
+  return (OPENSSL_armcap_P & ARMV8_AES) != 0;
+}
+
+int aes_v8_set_encrypt_key(const uint8_t *user_key, const int bits,
+                           AES_KEY *key);
+int aes_v8_set_decrypt_key(const uint8_t *user_key, const int bits,
+                           AES_KEY *key);
+void aes_v8_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
+void aes_v8_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
+void aes_v8_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
+                        const AES_KEY *key, uint8_t *ivec, const int enc);
+void aes_v8_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
+                                 const AES_KEY *key, const uint8_t ivec[16]);
+
+#endif  /* OPENSSL_ARM */
+
+#if defined(BSAES)
+/* On platforms where BSAES gets defined (just above), then these functions are
+ * provided by asm. */
+void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
+                       const AES_KEY *key, uint8_t ivec[16], int enc);
+void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
+                                const AES_KEY *key, const uint8_t ivec[16]);
+#else
+static char bsaes_capable(void) {
+  return 0;
+}
+
+/* On other platforms, bsaes_capable() will always return false and so the
+ * following will never be called. */
+void bsaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
+                       const AES_KEY *key, uint8_t ivec[16], int enc) {
+  abort();
+}
+
+void bsaes_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
+                                const AES_KEY *key, const uint8_t ivec[16]) {
+  abort();
+}
+#endif
+
+#if defined(VPAES)
+/* On platforms where VPAES gets defined (just above), then these functions are
+ * provided by asm. */
+int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
+int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
+
+void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
+void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
+
+void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
+                       const AES_KEY *key, uint8_t *ivec, int enc);
+#else
+static char vpaes_capable(void) {
+  return 0;
+}
+
+/* On other platforms, vpaes_capable() will always return false and so the
+ * following will never be called. */
+int vpaes_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key) {
+  abort();
+}
+int vpaes_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key) {
+  abort();
+}
+void vpaes_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
+  abort();
+}
+void vpaes_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
+  abort();
+}
+void vpaes_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
+                       const AES_KEY *key, uint8_t *ivec, int enc) {
+  abort();
+}
+#endif
+
+#if !defined(HWAES)
+/* If HWAES isn't defined then we provide dummy functions for each of the hwaes
+ * functions. */
+int hwaes_capable(void) {
+  return 0;
+}
+
+int aes_v8_set_encrypt_key(const uint8_t *user_key, int bits,
+                           AES_KEY *key) {
+  abort();
+}
+
+int aes_v8_set_decrypt_key(const uint8_t *user_key, int bits, AES_KEY *key) {
+  abort();
+}
+
+void aes_v8_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
+  abort();
+}
+
+void aes_v8_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
+  abort();
+}
+
+void aes_v8_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
+                        const AES_KEY *key, uint8_t *ivec, int enc) {
+  abort();
+}
+
+void aes_v8_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t len,
+                                 const AES_KEY *key, const uint8_t ivec[16]) {
+  abort();
+}
+#endif
+
+#if !defined(OPENSSL_NO_ASM) && \
+    (defined(OPENSSL_X86_64) || defined(OPENSSL_X86))
+int aesni_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
+int aesni_set_decrypt_key(const uint8_t *userKey, int bits, AES_KEY *key);
+
+void aesni_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
+void aesni_decrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key);
+
+void aesni_ecb_encrypt(const uint8_t *in, uint8_t *out, size_t length,
+                       const AES_KEY *key, int enc);
+void aesni_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
+                       const AES_KEY *key, uint8_t *ivec, int enc);
+
+void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t blocks,
+                                const void *key, const uint8_t *ivec);
+
+#if defined(OPENSSL_X86_64)
+size_t aesni_gcm_encrypt(const uint8_t *in, uint8_t *out, size_t len,
+                         const void *key, uint8_t ivec[16], uint64_t *Xi);
+#define AES_gcm_encrypt aesni_gcm_encrypt
+size_t aesni_gcm_decrypt(const uint8_t *in, uint8_t *out, size_t len,
+                         const void *key, uint8_t ivec[16], uint64_t *Xi);
+#define AES_gcm_decrypt aesni_gcm_decrypt
+void gcm_ghash_avx(uint64_t Xi[2], const u128 Htable[16], const uint8_t *in,
+                   size_t len);
+#define AES_GCM_ASM(gctx) \
+  (gctx->ctr == aesni_ctr32_encrypt_blocks && gctx->gcm.ghash == gcm_ghash_avx)
+#endif  /* OPENSSL_X86_64 */
+
+#else
+
+/* On other platforms, aesni_capable() will always return false and so the
+ * following will never be called. */
+void aesni_encrypt(const uint8_t *in, uint8_t *out, const AES_KEY *key) {
+  abort();
+}
+int aesni_set_encrypt_key(const uint8_t *userKey, int bits, AES_KEY *key) {
+  abort();
+}
+void aesni_ctr32_encrypt_blocks(const uint8_t *in, uint8_t *out, size_t blocks,
+                                const void *key, const uint8_t *ivec) {
+  abort();
+}
+
+#endif
+
+static int aes_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
+                        const uint8_t *iv, int enc) {
+  int ret, mode;
+  EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
+
+  mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK;
+  if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) {
+    if (hwaes_capable()) {
+      ret = aes_v8_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
+      dat->block = (block128_f)aes_v8_decrypt;
+      dat->stream.cbc = NULL;
+      if (mode == EVP_CIPH_CBC_MODE) {
+        dat->stream.cbc = (cbc128_f)aes_v8_cbc_encrypt;
+      }
+    } else if (bsaes_capable() && mode == EVP_CIPH_CBC_MODE) {
+      ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
+      dat->block = (block128_f)AES_decrypt;
+      dat->stream.cbc = (cbc128_f)bsaes_cbc_encrypt;
+    } else if (vpaes_capable()) {
+      ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
+      dat->block = (block128_f)vpaes_decrypt;
+      dat->stream.cbc =
+          mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL;
+    } else {
+      ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
+      dat->block = (block128_f)AES_decrypt;
+      dat->stream.cbc =
+          mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL;
+    }
+  } else if (hwaes_capable()) {
+    ret = aes_v8_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
+    dat->block = (block128_f)aes_v8_encrypt;
+    dat->stream.cbc = NULL;
+    if (mode == EVP_CIPH_CBC_MODE) {
+      dat->stream.cbc = (cbc128_f)aes_v8_cbc_encrypt;
+    } else if (mode == EVP_CIPH_CTR_MODE) {
+      dat->stream.ctr = (ctr128_f)aes_v8_ctr32_encrypt_blocks;
+    }
+  } else if (bsaes_capable() && mode == EVP_CIPH_CTR_MODE) {
+    ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
+    dat->block = (block128_f)AES_encrypt;
+    dat->stream.ctr = (ctr128_f)bsaes_ctr32_encrypt_blocks;
+  } else if (vpaes_capable()) {
+    ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
+    dat->block = (block128_f)vpaes_encrypt;
+    dat->stream.cbc =
+        mode == EVP_CIPH_CBC_MODE ? (cbc128_f)vpaes_cbc_encrypt : NULL;
+  } else {
+    ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
+    dat->block = (block128_f)AES_encrypt;
+    dat->stream.cbc =
+        mode == EVP_CIPH_CBC_MODE ? (cbc128_f)AES_cbc_encrypt : NULL;
+  }
+
+  if (ret < 0) {
+    OPENSSL_PUT_ERROR(CIPHER, aes_init_key, CIPHER_R_AES_KEY_SETUP_FAILED);
+    return 0;
+  }
+
+  return 1;
+}
+
+static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
+                          const unsigned char *in, size_t len) {
+  EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
+
+  if (dat->stream.cbc) {
+    (*dat->stream.cbc)(in, out, len, &dat->ks, ctx->iv, ctx->encrypt);
+  } else if (ctx->encrypt) {
+    CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, dat->block);
+  } else {
+    CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv, dat->block);
+  }
+
+  return 1;
+}
+
+static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
+                          const unsigned char *in, size_t len) {
+  size_t bl = ctx->cipher->block_size;
+  size_t i;
+  EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
+
+  if (len < bl) {
+    return 1;
+  }
+
+  for (i = 0, len -= bl; i <= len; i += bl) {
+    (*dat->block)(in + i, out + i, &dat->ks);
+  }
+
+  return 1;
+}
+
+static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
+                          const unsigned char *in, size_t len) {
+  unsigned int num = ctx->num;
+  EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
+
+  if (dat->stream.ctr) {
+    CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, ctx->iv, ctx->buf, &num,
+                                dat->stream.ctr);
+  } else {
+    CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, ctx->iv, ctx->buf, &num,
+                          dat->block);
+  }
+  ctx->num = (size_t)num;
+  return 1;
+}
+
+static ctr128_f aes_gcm_set_key(AES_KEY *aes_key, GCM128_CONTEXT *gcm_ctx,
+                                const uint8_t *key, size_t key_len) {
+  if (hwaes_capable()) {
+    aes_v8_set_encrypt_key(key, key_len * 8, aes_key);
+    CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)aes_v8_encrypt);
+    return (ctr128_f)aes_v8_ctr32_encrypt_blocks;
+  }
+
+  if (bsaes_capable()) {
+    AES_set_encrypt_key(key, key_len * 8, aes_key);
+    CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt);
+    return (ctr128_f)bsaes_ctr32_encrypt_blocks;
+  }
+
+  if (vpaes_capable()) {
+    vpaes_set_encrypt_key(key, key_len * 8, aes_key);
+    CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)vpaes_encrypt);
+    return NULL;
+  }
+
+  AES_set_encrypt_key(key, key_len * 8, aes_key);
+  CRYPTO_gcm128_init(gcm_ctx, aes_key, (block128_f)AES_encrypt);
+  return NULL;
+}
+
+static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
+                            const uint8_t *iv, int enc) {
+  EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
+  if (!iv && !key) {
+    return 1;
+  }
+  if (key) {
+    gctx->ctr = aes_gcm_set_key(&gctx->ks.ks, &gctx->gcm, key, ctx->key_len);
+    /* If we have an iv can set it directly, otherwise use saved IV. */
+    if (iv == NULL && gctx->iv_set) {
+      iv = gctx->iv;
+    }
+    if (iv) {
+      CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
+      gctx->iv_set = 1;
+    }
+    gctx->key_set = 1;
+  } else {
+    /* If key set use IV, otherwise copy */
+    if (gctx->key_set) {
+      CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
+    } else {
+      memcpy(gctx->iv, iv, gctx->ivlen);
+    }
+    gctx->iv_set = 1;
+    gctx->iv_gen = 0;
+  }
+  return 1;
+}
+
+static int aes_gcm_cleanup(EVP_CIPHER_CTX *c) {
+  EVP_AES_GCM_CTX *gctx = c->cipher_data;
+  OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
+  if (gctx->iv != c->iv) {
+    OPENSSL_free(gctx->iv);
+  }
+  return 1;
+}
+
+/* increment counter (64-bit int) by 1 */
+static void ctr64_inc(uint8_t *counter) {
+  int n = 8;
+  uint8_t c;
+
+  do {
+    --n;
+    c = counter[n];
+    ++c;
+    counter[n] = c;
+    if (c) {
+      return;
+    }
+  } while (n);
+}
+
+static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) {
+  EVP_AES_GCM_CTX *gctx = c->cipher_data;
+  switch (type) {
+    case EVP_CTRL_INIT:
+      gctx->key_set = 0;
+      gctx->iv_set = 0;
+      gctx->ivlen = c->cipher->iv_len;
+      gctx->iv = c->iv;
+      gctx->taglen = -1;
+      gctx->iv_gen = 0;
+      return 1;
+
+    case EVP_CTRL_GCM_SET_IVLEN:
+      if (arg <= 0) {
+        return 0;
+      }
+
+      /* Allocate memory for IV if needed */
+      if (arg > EVP_MAX_IV_LENGTH && arg > gctx->ivlen) {
+        if (gctx->iv != c->iv) {
+          OPENSSL_free(gctx->iv);
+        }
+        gctx->iv = OPENSSL_malloc(arg);
+        if (!gctx->iv) {
+          return 0;
+        }
+      }
+      gctx->ivlen = arg;
+      return 1;
+
+    case EVP_CTRL_GCM_SET_TAG:
+      if (arg <= 0 || arg > 16 || c->encrypt) {
+        return 0;
+      }
+      memcpy(c->buf, ptr, arg);
+      gctx->taglen = arg;
+      return 1;
+
+    case EVP_CTRL_GCM_GET_TAG:
+      if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) {
+        return 0;
+      }
+      memcpy(ptr, c->buf, arg);
+      return 1;
+
+    case EVP_CTRL_GCM_SET_IV_FIXED:
+      /* Special case: -1 length restores whole IV */
+      if (arg == -1) {
+        memcpy(gctx->iv, ptr, gctx->ivlen);
+        gctx->iv_gen = 1;
+        return 1;
+      }
+      /* Fixed field must be at least 4 bytes and invocation field
+       * at least 8. */
+      if (arg < 4 || (gctx->ivlen - arg) < 8) {
+        return 0;
+      }
+      if (arg) {
+        memcpy(gctx->iv, ptr, arg);
+      }
+      if (c->encrypt && !RAND_bytes(gctx->iv + arg, gctx->ivlen - arg)) {
+        return 0;
+      }
+      gctx->iv_gen = 1;
+      return 1;
+
+    case EVP_CTRL_GCM_IV_GEN:
+      if (gctx->iv_gen == 0 || gctx->key_set == 0) {
+        return 0;
+      }
+      CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
+      if (arg <= 0 || arg > gctx->ivlen) {
+        arg = gctx->ivlen;
+      }
+      memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
+      /* Invocation field will be at least 8 bytes in size and
+       * so no need to check wrap around or increment more than
+       * last 8 bytes. */
+      ctr64_inc(gctx->iv + gctx->ivlen - 8);
+      gctx->iv_set = 1;
+      return 1;
+
+    case EVP_CTRL_GCM_SET_IV_INV:
+      if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) {
+        return 0;
+      }
+      memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
+      CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
+      gctx->iv_set = 1;
+      return 1;
+
+    case EVP_CTRL_COPY: {
+      EVP_CIPHER_CTX *out = ptr;
+      EVP_AES_GCM_CTX *gctx_out = out->cipher_data;
+      if (gctx->gcm.key) {
+        if (gctx->gcm.key != &gctx->ks) {
+          return 0;
+        }
+        gctx_out->gcm.key = &gctx_out->ks;
+      }
+      if (gctx->iv == c->iv) {
+        gctx_out->iv = out->iv;
+      } else {
+        gctx_out->iv = OPENSSL_malloc(gctx->ivlen);
+        if (!gctx_out->iv) {
+          return 0;
+        }
+        memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
+      }
+      return 1;
+    }
+
+    default:
+      return -1;
+  }
+}
+
+static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
+                          size_t len) {
+  EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
+
+  /* If not set up, return error */
+  if (!gctx->key_set) {
+    return -1;
+  }
+  if (!gctx->iv_set) {
+    return -1;
+  }
+
+  if (in) {
+    if (out == NULL) {
+      if (!CRYPTO_gcm128_aad(&gctx->gcm, in, len)) {
+        return -1;
+      }
+    } else if (ctx->encrypt) {
+      if (gctx->ctr) {
+        size_t bulk = 0;
+#if defined(AES_GCM_ASM)
+        if (len >= 32 && AES_GCM_ASM(gctx)) {
+          size_t res = (16 - gctx->gcm.mres) % 16;
+
+          if (!CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) {
+            return -1;
+          }
+
+          bulk = AES_gcm_encrypt(in + res, out + res, len - res, gctx->gcm.key,
+                                 gctx->gcm.Yi.c, gctx->gcm.Xi.u);
+          gctx->gcm.len.u[1] += bulk;
+          bulk += res;
+        }
+#endif
+        if (!CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in + bulk, out + bulk,
+                                        len - bulk, gctx->ctr)) {
+          return -1;
+        }
+      } else {
+        size_t bulk = 0;
+        if (!CRYPTO_gcm128_encrypt(&gctx->gcm, in + bulk, out + bulk,
+                                  len - bulk)) {
+          return -1;
+        }
+      }
+    } else {
+      if (gctx->ctr) {
+        size_t bulk = 0;
+#if defined(AES_GCM_ASM)
+        if (len >= 16 && AES_GCM_ASM(gctx)) {
+          size_t res = (16 - gctx->gcm.mres) % 16;
+
+          if (!CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) {
+            return -1;
+          }
+
+          bulk = AES_gcm_decrypt(in + res, out + res, len - res, gctx->gcm.key,
+                                 gctx->gcm.Yi.c, gctx->gcm.Xi.u);
+          gctx->gcm.len.u[1] += bulk;
+          bulk += res;
+        }
+#endif
+        if (!CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in + bulk, out + bulk,
+                                        len - bulk, gctx->ctr)) {
+          return -1;
+        }
+      } else {
+        size_t bulk = 0;
+        if (!CRYPTO_gcm128_decrypt(&gctx->gcm, in + bulk, out + bulk,
+                                  len - bulk)) {
+          return -1;
+        }
+      }
+    }
+    return len;
+  } else {
+    if (!ctx->encrypt) {
+      if (gctx->taglen < 0 ||
+          !CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0) {
+        return -1;
+      }
+      gctx->iv_set = 0;
+      return 0;
+    }
+    CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
+    gctx->taglen = 16;
+    /* Don't reuse the IV */
+    gctx->iv_set = 0;
+    return 0;
+  }
+}
+
+static const EVP_CIPHER aes_128_cbc = {
+    NID_aes_128_cbc,     16 /* block_size */, 16 /* key_size */,
+    16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE,
+    NULL /* app_data */, aes_init_key,        aes_cbc_cipher,
+    NULL /* cleanup */,  NULL /* ctrl */};
+
+static const EVP_CIPHER aes_128_ctr = {
+    NID_aes_128_ctr,     1 /* block_size */,  16 /* key_size */,
+    16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE,
+    NULL /* app_data */, aes_init_key,        aes_ctr_cipher,
+    NULL /* cleanup */,  NULL /* ctrl */};
+
+static const EVP_CIPHER aes_128_ecb = {
+    NID_aes_128_ecb,     16 /* block_size */, 16 /* key_size */,
+    0 /* iv_len */,      sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE,
+    NULL /* app_data */, aes_init_key,        aes_ecb_cipher,
+    NULL /* cleanup */,  NULL /* ctrl */};
+
+static const EVP_CIPHER aes_128_gcm = {
+    NID_aes_128_gcm, 1 /* block_size */, 16 /* key_size */, 12 /* iv_len */,
+    sizeof(EVP_AES_GCM_CTX),
+    EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER |
+        EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT |
+        EVP_CIPH_FLAG_AEAD_CIPHER,
+    NULL /* app_data */, aes_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup,
+    aes_gcm_ctrl};
+
+
+static const EVP_CIPHER aes_256_cbc = {
+    NID_aes_128_cbc,     16 /* block_size */, 32 /* key_size */,
+    16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE,
+    NULL /* app_data */, aes_init_key,        aes_cbc_cipher,
+    NULL /* cleanup */,  NULL /* ctrl */};
+
+static const EVP_CIPHER aes_256_ctr = {
+    NID_aes_128_ctr,     1 /* block_size */,  32 /* key_size */,
+    16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE,
+    NULL /* app_data */, aes_init_key,        aes_ctr_cipher,
+    NULL /* cleanup */,  NULL /* ctrl */};
+
+static const EVP_CIPHER aes_256_ecb = {
+    NID_aes_128_ecb,     16 /* block_size */, 32 /* key_size */,
+    0 /* iv_len */,      sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE,
+    NULL /* app_data */, aes_init_key,        aes_ecb_cipher,
+    NULL /* cleanup */,  NULL /* ctrl */};
+
+static const EVP_CIPHER aes_256_gcm = {
+    NID_aes_128_gcm, 1 /* block_size */, 32 /* key_size */, 12 /* iv_len */,
+    sizeof(EVP_AES_GCM_CTX),
+    EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER |
+        EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT |
+        EVP_CIPH_FLAG_AEAD_CIPHER,
+    NULL /* app_data */, aes_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup,
+    aes_gcm_ctrl};
+
+#if !defined(OPENSSL_NO_ASM) && \
+    (defined(OPENSSL_X86_64) || defined(OPENSSL_X86))
+
+/* AES-NI section. */
+
+static char aesni_capable(void) {
+  return (OPENSSL_ia32cap_P[1] & (1 << (57 - 32))) != 0;
+}
+
+static int aesni_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
+                          const uint8_t *iv, int enc) {
+  int ret, mode;
+  EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
+
+  mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK;
+  if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) {
+    ret = aesni_set_decrypt_key(key, ctx->key_len * 8, ctx->cipher_data);
+    dat->block = (block128_f)aesni_decrypt;
+    dat->stream.cbc =
+        mode == EVP_CIPH_CBC_MODE ? (cbc128_f)aesni_cbc_encrypt : NULL;
+  } else {
+    ret = aesni_set_encrypt_key(key, ctx->key_len * 8, ctx->cipher_data);
+    dat->block = (block128_f)aesni_encrypt;
+    if (mode == EVP_CIPH_CBC_MODE) {
+      dat->stream.cbc = (cbc128_f)aesni_cbc_encrypt;
+    } else if (mode == EVP_CIPH_CTR_MODE) {
+      dat->stream.ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
+    } else {
+      dat->stream.cbc = NULL;
+    }
+  }
+
+  if (ret < 0) {
+    OPENSSL_PUT_ERROR(CIPHER, aesni_init_key, CIPHER_R_AES_KEY_SETUP_FAILED);
+    return 0;
+  }
+
+  return 1;
+}
+
+static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out,
+                            const uint8_t *in, size_t len) {
+  aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv, ctx->encrypt);
+
+  return 1;
+}
+
+static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out,
+                            const uint8_t *in, size_t len) {
+  size_t bl = ctx->cipher->block_size;
+
+  if (len < bl) {
+    return 1;
+  }
+
+  aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt);
+
+  return 1;
+}
+
+static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
+                              const uint8_t *iv, int enc) {
+  EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
+  if (!iv && !key) {
+    return 1;
+  }
+  if (key) {
+    aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
+    CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f)aesni_encrypt);
+    gctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
+    /* If we have an iv can set it directly, otherwise use
+     * saved IV. */
+    if (iv == NULL && gctx->iv_set) {
+      iv = gctx->iv;
+    }
+    if (iv) {
+      CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
+      gctx->iv_set = 1;
+    }
+    gctx->key_set = 1;
+  } else {
+    /* If key set use IV, otherwise copy */
+    if (gctx->key_set) {
+      CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
+    } else {
+      memcpy(gctx->iv, iv, gctx->ivlen);
+    }
+    gctx->iv_set = 1;
+    gctx->iv_gen = 0;
+  }
+  return 1;
+}
+
+static const EVP_CIPHER aesni_128_cbc = {
+    NID_aes_128_cbc,     16 /* block_size */, 16 /* key_size */,
+    16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE,
+    NULL /* app_data */, aesni_init_key,      aesni_cbc_cipher,
+    NULL /* cleanup */,  NULL /* ctrl */};
+
+static const EVP_CIPHER aesni_128_ctr = {
+    NID_aes_128_ctr,     1 /* block_size */,  16 /* key_size */,
+    16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE,
+    NULL /* app_data */, aesni_init_key,      aes_ctr_cipher,
+    NULL /* cleanup */,  NULL /* ctrl */};
+
+static const EVP_CIPHER aesni_128_ecb = {
+    NID_aes_128_ecb,     16 /* block_size */, 16 /* key_size */,
+    0 /* iv_len */,      sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE,
+    NULL /* app_data */, aesni_init_key,      aesni_ecb_cipher,
+    NULL /* cleanup */,  NULL /* ctrl */};
+
+static const EVP_CIPHER aesni_128_gcm = {
+    NID_aes_128_gcm, 1 /* block_size */, 16 /* key_size */, 12 /* iv_len */,
+    sizeof(EVP_AES_GCM_CTX),
+    EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER |
+        EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT |
+        EVP_CIPH_FLAG_AEAD_CIPHER,
+    NULL /* app_data */, aesni_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup,
+    aes_gcm_ctrl};
+
+
+static const EVP_CIPHER aesni_256_cbc = {
+    NID_aes_128_cbc,     16 /* block_size */, 32 /* key_size */,
+    16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CBC_MODE,
+    NULL /* app_data */, aesni_init_key,      aesni_cbc_cipher,
+    NULL /* cleanup */,  NULL /* ctrl */};
+
+static const EVP_CIPHER aesni_256_ctr = {
+    NID_aes_128_ctr,     1 /* block_size */,  32 /* key_size */,
+    16 /* iv_len */,     sizeof(EVP_AES_KEY), EVP_CIPH_CTR_MODE,
+    NULL /* app_data */, aesni_init_key,      aes_ctr_cipher,
+    NULL /* cleanup */,  NULL /* ctrl */};
+
+static const EVP_CIPHER aesni_256_ecb = {
+    NID_aes_128_ecb,     16 /* block_size */, 32 /* key_size */,
+    0 /* iv_len */,      sizeof(EVP_AES_KEY), EVP_CIPH_ECB_MODE,
+    NULL /* app_data */, aesni_init_key,      aesni_ecb_cipher,
+    NULL /* cleanup */,  NULL /* ctrl */};
+
+static const EVP_CIPHER aesni_256_gcm = {
+    NID_aes_256_gcm, 1 /* block_size */, 32 /* key_size */, 12 /* iv_len */,
+    sizeof(EVP_AES_GCM_CTX),
+    EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER |
+        EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT | EVP_CIPH_CUSTOM_COPY |
+        EVP_CIPH_FLAG_AEAD_CIPHER,
+    NULL /* app_data */, aesni_gcm_init_key, aes_gcm_cipher, aes_gcm_cleanup,
+    aes_gcm_ctrl};
+
+#define EVP_CIPHER_FUNCTION(keybits, mode)             \
+  const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \
+    if (aesni_capable()) {                             \
+      return &aesni_##keybits##_##mode;                \
+    } else {                                           \
+      return &aes_##keybits##_##mode;                  \
+    }                                                  \
+  }
+
+#else  /* ^^^  OPENSSL_X86_64 || OPENSSL_X86 */
+
+static char aesni_capable(void) {
+  return 0;
+}
+
+#define EVP_CIPHER_FUNCTION(keybits, mode)             \
+  const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \
+    return &aes_##keybits##_##mode;                    \
+  }
+
+#endif
+
+EVP_CIPHER_FUNCTION(128, cbc)
+EVP_CIPHER_FUNCTION(128, ctr)
+EVP_CIPHER_FUNCTION(128, ecb)
+EVP_CIPHER_FUNCTION(128, gcm)
+
+EVP_CIPHER_FUNCTION(256, cbc)
+EVP_CIPHER_FUNCTION(256, ctr)
+EVP_CIPHER_FUNCTION(256, ecb)
+EVP_CIPHER_FUNCTION(256, gcm)
+
+
+#define EVP_AEAD_AES_GCM_TAG_LEN 16
+
+struct aead_aes_gcm_ctx {
+  union {
+    double align;
+    AES_KEY ks;
+  } ks;
+  GCM128_CONTEXT gcm;
+  ctr128_f ctr;
+  uint8_t tag_len;
+};
+
+static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
+                             size_t key_len, size_t tag_len) {
+  struct aead_aes_gcm_ctx *gcm_ctx;
+  const size_t key_bits = key_len * 8;
+
+  if (key_bits != 128 && key_bits != 256) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_init, CIPHER_R_BAD_KEY_LENGTH);
+    return 0; /* EVP_AEAD_CTX_init should catch this. */
+  }
+
+  if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
+    tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
+  }
+
+  if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_init, CIPHER_R_TAG_TOO_LARGE);
+    return 0;
+  }
+
+  gcm_ctx = OPENSSL_malloc(sizeof(struct aead_aes_gcm_ctx));
+  if (gcm_ctx == NULL) {
+    return 0;
+  }
+
+  if (aesni_capable()) {
+    aesni_set_encrypt_key(key, key_len * 8, &gcm_ctx->ks.ks);
+    CRYPTO_gcm128_init(&gcm_ctx->gcm, &gcm_ctx->ks.ks,
+                       (block128_f)aesni_encrypt);
+    gcm_ctx->ctr = (ctr128_f)aesni_ctr32_encrypt_blocks;
+  } else {
+    gcm_ctx->ctr =
+        aes_gcm_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm, key, key_len);
+  }
+  gcm_ctx->tag_len = tag_len;
+  ctx->aead_state = gcm_ctx;
+
+  return 1;
+}
+
+static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) {
+  struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
+  OPENSSL_cleanse(gcm_ctx, sizeof(struct aead_aes_gcm_ctx));
+  OPENSSL_free(gcm_ctx);
+}
+
+static int aead_aes_gcm_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
+                             size_t *out_len, size_t max_out_len,
+                             const uint8_t *nonce, size_t nonce_len,
+                             const uint8_t *in, size_t in_len,
+                             const uint8_t *ad, size_t ad_len) {
+  size_t bulk = 0;
+  const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
+  GCM128_CONTEXT gcm;
+
+  if (in_len + gcm_ctx->tag_len < in_len) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_seal, CIPHER_R_TOO_LARGE);
+    return 0;
+  }
+
+  if (max_out_len < in_len + gcm_ctx->tag_len) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_seal, CIPHER_R_BUFFER_TOO_SMALL);
+    return 0;
+  }
+
+  memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm));
+  CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len);
+
+  if (ad_len > 0 && !CRYPTO_gcm128_aad(&gcm, ad, ad_len)) {
+    return 0;
+  }
+
+  if (gcm_ctx->ctr) {
+    if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, in + bulk, out + bulk, in_len - bulk,
+                                     gcm_ctx->ctr)) {
+      return 0;
+    }
+  } else {
+    if (!CRYPTO_gcm128_encrypt(&gcm, in + bulk, out + bulk, in_len - bulk)) {
+      return 0;
+    }
+  }
+
+  CRYPTO_gcm128_tag(&gcm, out + in_len, gcm_ctx->tag_len);
+  *out_len = in_len + gcm_ctx->tag_len;
+  return 1;
+}
+
+static int aead_aes_gcm_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
+                             size_t *out_len, size_t max_out_len,
+                             const uint8_t *nonce, size_t nonce_len,
+                             const uint8_t *in, size_t in_len,
+                             const uint8_t *ad, size_t ad_len) {
+  size_t bulk = 0;
+  const struct aead_aes_gcm_ctx *gcm_ctx = ctx->aead_state;
+  uint8_t tag[EVP_AEAD_AES_GCM_TAG_LEN];
+  size_t plaintext_len;
+  GCM128_CONTEXT gcm;
+
+  if (in_len < gcm_ctx->tag_len) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_open, CIPHER_R_BAD_DECRYPT);
+    return 0;
+  }
+
+  plaintext_len = in_len - gcm_ctx->tag_len;
+
+  if (max_out_len < plaintext_len) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_open, CIPHER_R_BUFFER_TOO_SMALL);
+    return 0;
+  }
+
+  memcpy(&gcm, &gcm_ctx->gcm, sizeof(gcm));
+  CRYPTO_gcm128_setiv(&gcm, nonce, nonce_len);
+
+  if (!CRYPTO_gcm128_aad(&gcm, ad, ad_len)) {
+    return 0;
+  }
+
+  if (gcm_ctx->ctr) {
+    if (!CRYPTO_gcm128_decrypt_ctr32(&gcm, in + bulk, out + bulk,
+                                     in_len - bulk - gcm_ctx->tag_len,
+                                     gcm_ctx->ctr)) {
+      return 0;
+    }
+  } else {
+    if (!CRYPTO_gcm128_decrypt(&gcm, in + bulk, out + bulk,
+                               in_len - bulk - gcm_ctx->tag_len)) {
+      return 0;
+    }
+  }
+
+  CRYPTO_gcm128_tag(&gcm, tag, gcm_ctx->tag_len);
+  if (CRYPTO_memcmp(tag, in + plaintext_len, gcm_ctx->tag_len) != 0) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_open, CIPHER_R_BAD_DECRYPT);
+    return 0;
+  }
+
+  *out_len = plaintext_len;
+  return 1;
+}
+
+static const EVP_AEAD aead_aes_128_gcm = {
+    16,                       /* key len */
+    12,                       /* nonce len */
+    EVP_AEAD_AES_GCM_TAG_LEN, /* overhead */
+    EVP_AEAD_AES_GCM_TAG_LEN, /* max tag length */
+    aead_aes_gcm_init,        aead_aes_gcm_cleanup,
+    aead_aes_gcm_seal,        aead_aes_gcm_open,
+};
+
+static const EVP_AEAD aead_aes_256_gcm = {
+    32,                       /* key len */
+    12,                       /* nonce len */
+    EVP_AEAD_AES_GCM_TAG_LEN, /* overhead */
+    EVP_AEAD_AES_GCM_TAG_LEN, /* max tag length */
+    aead_aes_gcm_init,        aead_aes_gcm_cleanup,
+    aead_aes_gcm_seal,        aead_aes_gcm_open,
+};
+
+const EVP_AEAD *EVP_aead_aes_128_gcm(void) { return &aead_aes_128_gcm; }
+
+const EVP_AEAD *EVP_aead_aes_256_gcm(void) { return &aead_aes_256_gcm; }
+
+
+/* AES Key Wrap is specified in
+ * http://csrc.nist.gov/groups/ST/toolkit/documents/kms/key-wrap.pdf
+ * or https://tools.ietf.org/html/rfc3394 */
+
+struct aead_aes_key_wrap_ctx {
+  uint8_t key[32];
+  unsigned key_bits;
+};
+
+static int aead_aes_key_wrap_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
+                                  size_t key_len, size_t tag_len) {
+  struct aead_aes_key_wrap_ctx *kw_ctx;
+  const size_t key_bits = key_len * 8;
+
+  if (key_bits != 128 && key_bits != 256) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_init, CIPHER_R_BAD_KEY_LENGTH);
+    return 0; /* EVP_AEAD_CTX_init should catch this. */
+  }
+
+  if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
+    tag_len = 8;
+  }
+
+  if (tag_len != 8) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_init,
+                      CIPHER_R_UNSUPPORTED_TAG_SIZE);
+    return 0;
+  }
+
+  kw_ctx = OPENSSL_malloc(sizeof(struct aead_aes_key_wrap_ctx));
+  if (kw_ctx == NULL) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_init, ERR_R_MALLOC_FAILURE);
+    return 0;
+  }
+
+  memcpy(kw_ctx->key, key, key_len);
+  kw_ctx->key_bits = key_bits;
+
+  ctx->aead_state = kw_ctx;
+  return 1;
+}
+
+static void aead_aes_key_wrap_cleanup(EVP_AEAD_CTX *ctx) {
+  struct aead_aes_key_wrap_ctx *kw_ctx = ctx->aead_state;
+  OPENSSL_cleanse(kw_ctx, sizeof(struct aead_aes_key_wrap_ctx));
+  OPENSSL_free(kw_ctx);
+}
+
+/* kDefaultAESKeyWrapNonce is the default nonce value given in 2.2.3.1. */
+static const uint8_t kDefaultAESKeyWrapNonce[8] = {0xa6, 0xa6, 0xa6, 0xa6,
+                                                   0xa6, 0xa6, 0xa6, 0xa6};
+
+
+static int aead_aes_key_wrap_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
+                                  size_t *out_len, size_t max_out_len,
+                                  const uint8_t *nonce, size_t nonce_len,
+                                  const uint8_t *in, size_t in_len,
+                                  const uint8_t *ad, size_t ad_len) {
+  const struct aead_aes_key_wrap_ctx *kw_ctx = ctx->aead_state;
+  union {
+    double align;
+    AES_KEY ks;
+  } ks;
+  /* Variables in this function match up with the variables in the second half
+   * of section 2.2.1. */
+  unsigned i, j, n;
+  uint8_t A[AES_BLOCK_SIZE];
+
+  if (ad_len != 0) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal,
+                      CIPHER_R_UNSUPPORTED_AD_SIZE);
+    return 0;
+  }
+
+  if (nonce_len == 0) {
+    nonce = kDefaultAESKeyWrapNonce;
+    nonce_len = sizeof(kDefaultAESKeyWrapNonce);
+  }
+
+  if (nonce_len != 8) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal,
+                      CIPHER_R_UNSUPPORTED_NONCE_SIZE);
+    return 0;
+  }
+
+  if (in_len % 8 != 0) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal,
+                      CIPHER_R_UNSUPPORTED_INPUT_SIZE);
+    return 0;
+  }
+
+  /* The code below only handles a 32-bit |t| thus 6*|n| must be less than
+   * 2^32, where |n| is |in_len| / 8. So in_len < 4/3 * 2^32 and we
+   * conservatively cap it to 2^32-16 to stop 32-bit platforms complaining that
+   * a comparison is always true. */
+  if (in_len > 0xfffffff0) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal, CIPHER_R_TOO_LARGE);
+    return 0;
+  }
+
+  n = in_len / 8;
+
+  if (n < 2) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal,
+                      CIPHER_R_UNSUPPORTED_INPUT_SIZE);
+    return 0;
+  }
+
+  if (in_len + 8 < in_len) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal, CIPHER_R_TOO_LARGE);
+    return 0;
+  }
+
+  if (max_out_len < in_len + 8) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal,
+                      CIPHER_R_BUFFER_TOO_SMALL);
+    return 0;
+  }
+
+  if (AES_set_encrypt_key(kw_ctx->key, kw_ctx->key_bits, &ks.ks) < 0) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_seal,
+                      CIPHER_R_AES_KEY_SETUP_FAILED);
+    return 0;
+  }
+
+  memmove(out + 8, in, in_len);
+  memcpy(A, nonce, 8);
+
+  for (j = 0; j < 6; j++) {
+    for (i = 1; i <= n; i++) {
+      uint32_t t;
+
+      memcpy(A + 8, out + 8 * i, 8);
+      AES_encrypt(A, A, &ks.ks);
+      t = n * j + i;
+      A[7] ^= t & 0xff;
+      A[6] ^= (t >> 8) & 0xff;
+      A[5] ^= (t >> 16) & 0xff;
+      A[4] ^= (t >> 24) & 0xff;
+      memcpy(out + 8 * i, A + 8, 8);
+    }
+  }
+
+  memcpy(out, A, 8);
+  *out_len = in_len + 8;
+  return 1;
+}
+
+static int aead_aes_key_wrap_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
+                                  size_t *out_len, size_t max_out_len,
+                                  const uint8_t *nonce, size_t nonce_len,
+                                  const uint8_t *in, size_t in_len,
+                                  const uint8_t *ad, size_t ad_len) {
+  const struct aead_aes_key_wrap_ctx *kw_ctx = ctx->aead_state;
+  union {
+    double align;
+    AES_KEY ks;
+  } ks;
+  /* Variables in this function match up with the variables in the second half
+   * of section 2.2.1. */
+  unsigned i, j, n;
+  uint8_t A[AES_BLOCK_SIZE];
+
+  if (ad_len != 0) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_open,
+                      CIPHER_R_UNSUPPORTED_AD_SIZE);
+    return 0;
+  }
+
+  if (nonce_len == 0) {
+    nonce = kDefaultAESKeyWrapNonce;
+    nonce_len = sizeof(kDefaultAESKeyWrapNonce);
+  }
+
+  if (nonce_len != 8) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_open,
+                      CIPHER_R_UNSUPPORTED_NONCE_SIZE);
+    return 0;
+  }
+
+  if (in_len % 8 != 0) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_open,
+                      CIPHER_R_UNSUPPORTED_INPUT_SIZE);
+    return 0;
+  }
+
+  /* The code below only handles a 32-bit |t| thus 6*|n| must be less than
+   * 2^32, where |n| is |in_len| / 8. So in_len < 4/3 * 2^32 and we
+   * conservatively cap it to 2^32-8 to stop 32-bit platforms complaining that
+   * a comparison is always true. */
+  if (in_len > 0xfffffff8) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_open, CIPHER_R_TOO_LARGE);
+    return 0;
+  }
+
+  if (in_len < 24) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_open, CIPHER_R_BAD_DECRYPT);
+    return 0;
+  }
+
+  n = (in_len / 8) - 1;
+
+  if (max_out_len < in_len - 8) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_open,
+                      CIPHER_R_BUFFER_TOO_SMALL);
+    return 0;
+  }
+
+  if (AES_set_decrypt_key(kw_ctx->key, kw_ctx->key_bits, &ks.ks) < 0) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_key_wrap_open,
+                      CIPHER_R_AES_KEY_SETUP_FAILED);
+    return 0;
+  }
+
+  memcpy(A, in, 8);
+  memmove(out, in + 8, in_len - 8);
+
+  for (j = 5; j < 6; j--) {
+    for (i = n; i > 0; i--) {
+      uint32_t t;
+
+      t = n * j + i;
+      A[7] ^= t & 0xff;
+      A[6] ^= (t >> 8) & 0xff;
+      A[5] ^= (t >> 16) & 0xff;
+      A[4] ^= (t >> 24) & 0xff;
+      memcpy(A + 8, out + 8 * (i - 1), 8);
+      AES_decrypt(A, A, &ks.ks);
+      memcpy(out + 8 * (i - 1), A + 8, 8);
+    }
+  }
+
+  if (CRYPTO_memcmp(A, nonce, 8) != 0) {
+    OPENSSL_PUT_ERROR(CIPHER, aead_aes_gcm_open, CIPHER_R_BAD_DECRYPT);
+    return 0;
+  }
+
+  *out_len = in_len - 8;
+  return 1;
+}
+
+static const EVP_AEAD aead_aes_128_key_wrap = {
+    16, /* key len */
+    8,  /* nonce len */
+    8,  /* overhead */
+    8,  /* max tag length */
+    aead_aes_key_wrap_init, aead_aes_key_wrap_cleanup,
+    aead_aes_key_wrap_seal, aead_aes_key_wrap_open,
+};
+
+static const EVP_AEAD aead_aes_256_key_wrap = {
+    32, /* key len */
+    8,  /* nonce len */
+    8,  /* overhead */
+    8,  /* max tag length */
+    aead_aes_key_wrap_init, aead_aes_key_wrap_cleanup,
+    aead_aes_key_wrap_seal, aead_aes_key_wrap_open,
+};
+
+const EVP_AEAD *EVP_aead_aes_128_key_wrap(void) { return &aead_aes_128_key_wrap; }
+
+const EVP_AEAD *EVP_aead_aes_256_key_wrap(void) { return &aead_aes_256_key_wrap; }
+
+int EVP_has_aes_hardware(void) {
+#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
+  return aesni_capable() && crypto_gcm_clmul_enabled();
+#elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
+  return hwaes_capable() && (OPENSSL_armcap_P & ARMV8_PMULL);
+#else
+  return 0;
+#endif
+}