Add brotli compressor

This commit is for the encoder for brotli compression format.
Brotli is a generic byte-level compression algorithm.
diff --git a/enc/entropy_encode.cc b/enc/entropy_encode.cc
new file mode 100644
index 0000000..9a4d3e4
--- /dev/null
+++ b/enc/entropy_encode.cc
@@ -0,0 +1,397 @@
+// Copyright 2010 Google Inc. All Rights Reserved.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// Entropy encoding (Huffman) utilities.
+
+#include "./entropy_encode.h"
+
+#include <stdint.h>
+#include <algorithm>
+#include <limits>
+#include <vector>
+
+#include "./histogram.h"
+
+namespace brotli {
+
+namespace {
+
+struct HuffmanTree {
+  HuffmanTree();
+  HuffmanTree(int count, int16_t left, int16_t right)
+      : total_count_(count),
+        index_left_(left),
+        index_right_or_value_(right) {
+  }
+  int total_count_;
+  int16_t index_left_;
+  int16_t index_right_or_value_;
+};
+
+HuffmanTree::HuffmanTree() {}
+
+// Sort the root nodes, least popular first.
+bool SortHuffmanTree(const HuffmanTree &v0, const HuffmanTree &v1) {
+  return v0.total_count_ < v1.total_count_;
+}
+
+void SetDepth(const HuffmanTree &p,
+              HuffmanTree *pool,
+              uint8_t *depth,
+              int level) {
+  if (p.index_left_ >= 0) {
+    ++level;
+    SetDepth(pool[p.index_left_], pool, depth, level);
+    SetDepth(pool[p.index_right_or_value_], pool, depth, level);
+  } else {
+    depth[p.index_right_or_value_] = level;
+  }
+}
+
+}  // namespace
+
+// This function will create a Huffman tree.
+//
+// The catch here is that the tree cannot be arbitrarily deep.
+// Brotli specifies a maximum depth of 15 bits for "code trees"
+// and 7 bits for "code length code trees."
+//
+// count_limit is the value that is to be faked as the minimum value
+// and this minimum value is raised until the tree matches the
+// maximum length requirement.
+//
+// This algorithm is not of excellent performance for very long data blocks,
+// especially when population counts are longer than 2**tree_limit, but
+// we are not planning to use this with extremely long blocks.
+//
+// See http://en.wikipedia.org/wiki/Huffman_coding
+void CreateHuffmanTree(const int *data,
+                       const int length,
+                       const int tree_limit,
+                       uint8_t *depth) {
+  // For block sizes below 64 kB, we never need to do a second iteration
+  // of this loop. Probably all of our block sizes will be smaller than
+  // that, so this loop is mostly of academic interest. If we actually
+  // would need this, we would be better off with the Katajainen algorithm.
+  for (int count_limit = 1; ; count_limit *= 2) {
+    std::vector<HuffmanTree> tree;
+    tree.reserve(2 * length + 1);
+
+    for (int i = 0; i < length; ++i) {
+      if (data[i]) {
+        const int count = std::max(data[i], count_limit);
+        tree.push_back(HuffmanTree(count, -1, i));
+      }
+    }
+
+    const int n = tree.size();
+    if (n == 1) {
+      depth[tree[0].index_right_or_value_] = 1;      // Only one element.
+      break;
+    }
+
+    std::sort(tree.begin(), tree.end(), SortHuffmanTree);
+
+    // The nodes are:
+    // [0, n): the sorted leaf nodes that we start with.
+    // [n]: we add a sentinel here.
+    // [n + 1, 2n): new parent nodes are added here, starting from
+    //              (n+1). These are naturally in ascending order.
+    // [2n]: we add a sentinel at the end as well.
+    // There will be (2n+1) elements at the end.
+    const HuffmanTree sentinel(std::numeric_limits<int>::max(), -1, -1);
+    tree.push_back(sentinel);
+    tree.push_back(sentinel);
+
+    int i = 0;      // Points to the next leaf node.
+    int j = n + 1;  // Points to the next non-leaf node.
+    for (int k = n - 1; k > 0; --k) {
+      int left, right;
+      if (tree[i].total_count_ <= tree[j].total_count_) {
+        left = i;
+        ++i;
+      } else {
+        left = j;
+        ++j;
+      }
+      if (tree[i].total_count_ <= tree[j].total_count_) {
+        right = i;
+        ++i;
+      } else {
+        right = j;
+        ++j;
+      }
+
+      // The sentinel node becomes the parent node.
+      int j_end = tree.size() - 1;
+      tree[j_end].total_count_ =
+          tree[left].total_count_ + tree[right].total_count_;
+      tree[j_end].index_left_ = left;
+      tree[j_end].index_right_or_value_ = right;
+
+      // Add back the last sentinel node.
+      tree.push_back(sentinel);
+    }
+    SetDepth(tree[2 * n - 1], &tree[0], depth, 0);
+
+    // We need to pack the Huffman tree in tree_limit bits.
+    // If this was not successful, add fake entities to the lowest values
+    // and retry.
+    if (*std::max_element(&depth[0], &depth[length]) <= tree_limit) {
+      break;
+    }
+  }
+}
+
+void WriteHuffmanTreeRepetitions(
+    const int previous_value,
+    const int value,
+    int repetitions,
+    uint8_t* tree,
+    uint8_t* extra_bits,
+    int* tree_size) {
+  if (previous_value != value) {
+    tree[*tree_size] = value;
+    extra_bits[*tree_size] = 0;
+    ++(*tree_size);
+    --repetitions;
+  }
+  while (repetitions >= 1) {
+    if (repetitions < 3) {
+      for (int i = 0; i < repetitions; ++i) {
+        tree[*tree_size] = value;
+        extra_bits[*tree_size] = 0;
+        ++(*tree_size);
+      }
+      return;
+    } else if (repetitions < 7) {
+      // 3 to 6 left.
+      tree[*tree_size] = 16;
+      extra_bits[*tree_size] = repetitions - 3;
+      ++(*tree_size);
+      return;
+    } else {
+      tree[*tree_size] = 16;
+      extra_bits[*tree_size] = 3;
+      ++(*tree_size);
+      repetitions -= 6;
+    }
+  }
+}
+
+void WriteHuffmanTreeRepetitionsZeros(
+    int repetitions,
+    uint8_t* tree,
+    uint8_t* extra_bits,
+    int* tree_size) {
+  while (repetitions >= 1) {
+    if (repetitions < 3) {
+      for (int i = 0; i < repetitions; ++i) {
+        tree[*tree_size] = 0;
+        extra_bits[*tree_size] = 0;
+        ++(*tree_size);
+      }
+      return;
+    } else if (repetitions < 11) {
+      tree[*tree_size] = 17;
+      extra_bits[*tree_size] = repetitions - 3;
+      ++(*tree_size);
+      return;
+    } else if (repetitions < 139) {
+      tree[*tree_size] = 18;
+      extra_bits[*tree_size] = repetitions - 11;
+      ++(*tree_size);
+      return;
+    } else {
+      tree[*tree_size] = 18;
+      extra_bits[*tree_size] = 0x7f;  // 138 repeated 0s
+      ++(*tree_size);
+      repetitions -= 138;
+    }
+  }
+}
+
+
+// Heuristics for selecting the stride ranges to collapse.
+int ValuesShouldBeCollapsedToStrideAverage(int a, int b) {
+  return abs(a - b) < 4;
+}
+
+int OptimizeHuffmanCountsForRle(int length, int* counts) {
+  int stride;
+  int limit;
+  int sum;
+  uint8_t* good_for_rle;
+  // Let's make the Huffman code more compatible with rle encoding.
+  int i;
+  for (; length >= 0; --length) {
+    if (length == 0) {
+      return 1;  // All zeros.
+    }
+    if (counts[length - 1] != 0) {
+      // Now counts[0..length - 1] does not have trailing zeros.
+      break;
+    }
+  }
+  // 2) Let's mark all population counts that already can be encoded
+  // with an rle code.
+  good_for_rle = (uint8_t*)calloc(length, 1);
+  if (good_for_rle == NULL) {
+    return 0;
+  }
+  {
+    // Let's not spoil any of the existing good rle codes.
+    // Mark any seq of 0's that is longer as 5 as a good_for_rle.
+    // Mark any seq of non-0's that is longer as 7 as a good_for_rle.
+    int symbol = counts[0];
+    int stride = 0;
+    for (i = 0; i < length + 1; ++i) {
+      if (i == length || counts[i] != symbol) {
+        if ((symbol == 0 && stride >= 5) ||
+            (symbol != 0 && stride >= 7)) {
+          int k;
+          for (k = 0; k < stride; ++k) {
+            good_for_rle[i - k - 1] = 1;
+          }
+        }
+        stride = 1;
+        if (i != length) {
+          symbol = counts[i];
+        }
+      } else {
+        ++stride;
+      }
+    }
+  }
+  // 3) Let's replace those population counts that lead to more rle codes.
+  stride = 0;
+  limit = counts[0];
+  sum = 0;
+  for (i = 0; i < length + 1; ++i) {
+    if (i == length || good_for_rle[i] ||
+        (i != 0 && good_for_rle[i - 1]) ||
+        !ValuesShouldBeCollapsedToStrideAverage(counts[i], limit)) {
+      if (stride >= 4 || (stride >= 3 && sum == 0)) {
+        int k;
+        // The stride must end, collapse what we have, if we have enough (4).
+        int count = (sum + stride / 2) / stride;
+        if (count < 1) {
+          count = 1;
+        }
+        if (sum == 0) {
+          // Don't make an all zeros stride to be upgraded to ones.
+          count = 0;
+        }
+        for (k = 0; k < stride; ++k) {
+          // We don't want to change value at counts[i],
+          // that is already belonging to the next stride. Thus - 1.
+          counts[i - k - 1] = count;
+        }
+      }
+      stride = 0;
+      sum = 0;
+      if (i < length - 3) {
+        // All interesting strides have a count of at least 4,
+        // at least when non-zeros.
+        limit = (counts[i] + counts[i + 1] +
+                 counts[i + 2] + counts[i + 3] + 2) / 4;
+      } else if (i < length) {
+        limit = counts[i];
+      } else {
+        limit = 0;
+      }
+    }
+    ++stride;
+    if (i != length) {
+      sum += counts[i];
+      if (stride >= 4) {
+        limit = (sum + stride / 2) / stride;
+      }
+    }
+  }
+  free(good_for_rle);
+  return 1;
+}
+
+
+void WriteHuffmanTree(const uint8_t* depth, const int length,
+                      uint8_t* tree,
+                      uint8_t* extra_bits_data,
+                      int* huffman_tree_size) {
+  int previous_value = 0;
+  for (uint32_t i = 0; i < length;) {
+    const int value = depth[i];
+    int reps = 1;
+    for (uint32_t k = i + 1; k < length && depth[k] == value; ++k) {
+      ++reps;
+    }
+    if (value == 0) {
+      WriteHuffmanTreeRepetitionsZeros(reps, tree, extra_bits_data,
+                                       huffman_tree_size);
+    } else {
+      WriteHuffmanTreeRepetitions(previous_value, value, reps, tree,
+                                  extra_bits_data, huffman_tree_size);
+      previous_value = value;
+    }
+    i += reps;
+  }
+}
+
+namespace {
+
+uint16_t ReverseBits(int num_bits, uint16_t bits) {
+  static const size_t kLut[16] = {  // Pre-reversed 4-bit values.
+    0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
+    0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
+  };
+  size_t retval = kLut[bits & 0xf];
+  for (int i = 4; i < num_bits; i += 4) {
+    retval <<= 4;
+    bits >>= 4;
+    retval |= kLut[bits & 0xf];
+  }
+  retval >>= (-num_bits & 0x3);
+  return retval;
+}
+
+}  // namespace
+
+void ConvertBitDepthsToSymbols(const uint8_t *depth, int len, uint16_t *bits) {
+  // In Brotli, all bit depths are [1..15]
+  // 0 bit depth means that the symbol does not exist.
+  const int kMaxBits = 16;  // 0..15 are values for bits
+  uint16_t bl_count[kMaxBits] = { 0 };
+  {
+    for (int i = 0; i < len; ++i) {
+      ++bl_count[depth[i]];
+    }
+    bl_count[0] = 0;
+  }
+  uint16_t next_code[kMaxBits];
+  next_code[0] = 0;
+  {
+    int code = 0;
+    for (int bits = 1; bits < kMaxBits; ++bits) {
+      code = (code + bl_count[bits - 1]) << 1;
+      next_code[bits] = code;
+    }
+  }
+  for (int i = 0; i < len; ++i) {
+    if (depth[i]) {
+      bits[i] = ReverseBits(depth[i], next_code[depth[i]]++);
+    }
+  }
+}
+
+}  // namespace brotli