initial import
diff --git a/MathExtras.h b/MathExtras.h
new file mode 100644
index 0000000..98a6cb6
--- /dev/null
+++ b/MathExtras.h
@@ -0,0 +1,404 @@
+//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains some functions that are useful for math stuff.
+//
+//===----------------------------------------------------------------------===//
+
+/* Capstone Disassembler Engine */
+/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013> */
+
+#ifndef CS_LLVM_SUPPORT_MATHEXTRAS_H
+#define CS_LLVM_SUPPORT_MATHEXTRAS_H
+
+#include <stdint.h>
+
+#ifdef _MSC_VER
+# include <intrin.h>
+#endif
+
+// NOTE: The following support functions use the _32/_64 extensions instead of
+// type overloading so that signed and unsigned integers can be used without
+// ambiguity.
+
+/// Hi_32 - This function returns the high 32 bits of a 64 bit value.
+static inline uint32_t Hi_32(uint64_t Value) {
+	return (uint32_t)(Value >> 32);
+}
+
+/// Lo_32 - This function returns the low 32 bits of a 64 bit value.
+static inline uint32_t Lo_32(uint64_t Value) {
+	return (uint32_t)(Value);
+}
+
+/// isUIntN - Checks if an unsigned integer fits into the given (dynamic)
+/// bit width.
+static inline bool isUIntN(unsigned N, uint64_t x) {
+	return x == (x & (~0ULL >> (64 - N)));
+}
+
+/// isIntN - Checks if an signed integer fits into the given (dynamic)
+/// bit width.
+//static inline bool isIntN(unsigned N, int64_t x) {
+//  return N >= 64 || (-(INT64_C(1)<<(N-1)) <= x && x < (INT64_C(1)<<(N-1)));
+//}
+
+/// isMask_32 - This function returns true if the argument is a sequence of ones
+/// starting at the least significant bit with the remainder zero (32 bit
+/// version).   Ex. isMask_32(0x0000FFFFU) == true.
+static inline bool isMask_32(uint32_t Value) {
+	return Value && ((Value + 1) & Value) == 0;
+}
+
+/// isMask_64 - This function returns true if the argument is a sequence of ones
+/// starting at the least significant bit with the remainder zero (64 bit
+/// version).
+static inline bool isMask_64(uint64_t Value) {
+	return Value && ((Value + 1) & Value) == 0;
+}
+
+/// isShiftedMask_32 - This function returns true if the argument contains a
+/// sequence of ones with the remainder zero (32 bit version.)
+/// Ex. isShiftedMask_32(0x0000FF00U) == true.
+static inline bool isShiftedMask_32(uint32_t Value) {
+	return isMask_32((Value - 1) | Value);
+}
+
+/// isShiftedMask_64 - This function returns true if the argument contains a
+/// sequence of ones with the remainder zero (64 bit version.)
+static inline bool isShiftedMask_64(uint64_t Value) {
+	return isMask_64((Value - 1) | Value);
+}
+
+/// isPowerOf2_32 - This function returns true if the argument is a power of
+/// two > 0. Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
+static inline bool isPowerOf2_32(uint32_t Value) {
+	return Value && !(Value & (Value - 1));
+}
+
+/// CountLeadingZeros_32 - this function performs the platform optimal form of
+/// counting the number of zeros from the most significant bit to the first one
+/// bit.  Ex. CountLeadingZeros_32(0x00F000FF) == 8.
+/// Returns 32 if the word is zero.
+static inline unsigned CountLeadingZeros_32(uint32_t Value) {
+	unsigned Count; // result
+#if __GNUC__ >= 4
+	// PowerPC is defined for __builtin_clz(0)
+#if !defined(__ppc__) && !defined(__ppc64__)
+	if (!Value) return 32;
+#endif
+	Count = __builtin_clz(Value);
+#else
+	if (!Value) return 32;
+	Count = 0;
+	// bisection method for count leading zeros
+	for (unsigned Shift = 32 >> 1; Shift; Shift >>= 1) {
+		uint32_t Tmp = Value >> Shift;
+		if (Tmp) {
+			Value = Tmp;
+		} else {
+			Count |= Shift;
+		}
+	}
+#endif
+	return Count;
+}
+
+/// CountLeadingOnes_32 - this function performs the operation of
+/// counting the number of ones from the most significant bit to the first zero
+/// bit.  Ex. CountLeadingOnes_32(0xFF0FFF00) == 8.
+/// Returns 32 if the word is all ones.
+static inline unsigned CountLeadingOnes_32(uint32_t Value) {
+	return CountLeadingZeros_32(~Value);
+}
+
+/// CountLeadingZeros_64 - This function performs the platform optimal form
+/// of counting the number of zeros from the most significant bit to the first
+/// one bit (64 bit edition.)
+/// Returns 64 if the word is zero.
+static inline unsigned CountLeadingZeros_64(uint64_t Value) {
+	unsigned Count; // result
+#if __GNUC__ >= 4
+	// PowerPC is defined for __builtin_clzll(0)
+#if !defined(__ppc__) && !defined(__ppc64__)
+	if (!Value) return 64;
+#endif
+	Count = __builtin_clzll(Value);
+#else
+	if (sizeof(long) == sizeof(int64_t)) {
+		if (!Value) return 64;
+		Count = 0;
+		// bisection method for count leading zeros
+		for (unsigned Shift = 64 >> 1; Shift; Shift >>= 1) {
+			uint64_t Tmp = Value >> Shift;
+			if (Tmp) {
+				Value = Tmp;
+			} else {
+				Count |= Shift;
+			}
+		}
+	} else {
+		// get hi portion
+		uint32_t Hi = Hi_32(Value);
+
+		// if some bits in hi portion
+		if (Hi) {
+			// leading zeros in hi portion plus all bits in lo portion
+			Count = CountLeadingZeros_32(Hi);
+		} else {
+			// get lo portion
+			uint32_t Lo = Lo_32(Value);
+			// same as 32 bit value
+			Count = CountLeadingZeros_32(Lo)+32;
+		}
+	}
+#endif
+	return Count;
+}
+
+/// CountLeadingOnes_64 - This function performs the operation
+/// of counting the number of ones from the most significant bit to the first
+/// zero bit (64 bit edition.)
+/// Returns 64 if the word is all ones.
+static inline unsigned CountLeadingOnes_64(uint64_t Value) {
+	return CountLeadingZeros_64(~Value);
+}
+
+/// CountTrailingZeros_32 - this function performs the platform optimal form of
+/// counting the number of zeros from the least significant bit to the first one
+/// bit.  Ex. CountTrailingZeros_32(0xFF00FF00) == 8.
+/// Returns 32 if the word is zero.
+static inline unsigned CountTrailingZeros_32(uint32_t Value) {
+#if __GNUC__ >= 4
+	return Value ? __builtin_ctz(Value) : 32;
+#else
+	static const unsigned Mod37BitPosition[] = {
+		32, 0, 1, 26, 2, 23, 27, 0, 3, 16, 24, 30, 28, 11, 0, 13,
+		4, 7, 17, 0, 25, 22, 31, 15, 29, 10, 12, 6, 0, 21, 14, 9,
+		5, 20, 8, 19, 18
+	};
+	// Replace "-Value" by "1+~Value" in the following commented code to avoid 
+	// MSVC warning C4146
+	//    return Mod37BitPosition[(-Value & Value) % 37];
+	return Mod37BitPosition[((1 + ~Value) & Value) % 37];
+#endif
+}
+
+/// CountTrailingOnes_32 - this function performs the operation of
+/// counting the number of ones from the least significant bit to the first zero
+/// bit.  Ex. CountTrailingOnes_32(0x00FF00FF) == 8.
+/// Returns 32 if the word is all ones.
+static inline unsigned CountTrailingOnes_32(uint32_t Value) {
+	return CountTrailingZeros_32(~Value);
+}
+
+/// CountTrailingZeros_64 - This function performs the platform optimal form
+/// of counting the number of zeros from the least significant bit to the first
+/// one bit (64 bit edition.)
+/// Returns 64 if the word is zero.
+static inline unsigned CountTrailingZeros_64(uint64_t Value) {
+#if __GNUC__ >= 4
+	return Value ? __builtin_ctzll(Value) : 64;
+#else
+	static const unsigned Mod67Position[] = {
+		64, 0, 1, 39, 2, 15, 40, 23, 3, 12, 16, 59, 41, 19, 24, 54,
+		4, 64, 13, 10, 17, 62, 60, 28, 42, 30, 20, 51, 25, 44, 55,
+		47, 5, 32, 65, 38, 14, 22, 11, 58, 18, 53, 63, 9, 61, 27,
+		29, 50, 43, 46, 31, 37, 21, 57, 52, 8, 26, 49, 45, 36, 56,
+		7, 48, 35, 6, 34, 33, 0
+	};
+	// Replace "-Value" by "1+~Value" in the following commented code to avoid 
+	// MSVC warning C4146
+	//    return Mod67Position[(-Value & Value) % 67];
+	return Mod67Position[((1 + ~Value) & Value) % 67];
+#endif
+}
+
+/// CountTrailingOnes_64 - This function performs the operation
+/// of counting the number of ones from the least significant bit to the first
+/// zero bit (64 bit edition.)
+/// Returns 64 if the word is all ones.
+static inline unsigned CountTrailingOnes_64(uint64_t Value) {
+	return CountTrailingZeros_64(~Value);
+}
+
+/// CountPopulation_32 - this function counts the number of set bits in a value.
+/// Ex. CountPopulation(0xF000F000) = 8
+/// Returns 0 if the word is zero.
+static inline unsigned CountPopulation_32(uint32_t Value) {
+#if __GNUC__ >= 4
+	return __builtin_popcount(Value);
+#else
+	uint32_t v = Value - ((Value >> 1) & 0x55555555);
+	v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
+	return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
+#endif
+}
+
+/// CountPopulation_64 - this function counts the number of set bits in a value,
+/// (64 bit edition.)
+static inline unsigned CountPopulation_64(uint64_t Value) {
+#if __GNUC__ >= 4
+	return __builtin_popcountll(Value);
+#else
+	uint64_t v = Value - ((Value >> 1) & 0x5555555555555555ULL);
+	v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
+	v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
+	return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
+#endif
+}
+
+/// Log2_32 - This function returns the floor log base 2 of the specified value,
+/// -1 if the value is zero. (32 bit edition.)
+/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
+static inline unsigned Log2_32(uint32_t Value) {
+	return 31 - CountLeadingZeros_32(Value);
+}
+
+/// Log2_64 - This function returns the floor log base 2 of the specified value,
+/// -1 if the value is zero. (64 bit edition.)
+static inline unsigned Log2_64(uint64_t Value) {
+	return 63 - CountLeadingZeros_64(Value);
+}
+
+/// Log2_32_Ceil - This function returns the ceil log base 2 of the specified
+/// value, 32 if the value is zero. (32 bit edition).
+/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
+static inline unsigned Log2_32_Ceil(uint32_t Value) {
+	return 32-CountLeadingZeros_32(Value-1);
+}
+
+/// Log2_64_Ceil - This function returns the ceil log base 2 of the specified
+/// value, 64 if the value is zero. (64 bit edition.)
+static inline unsigned Log2_64_Ceil(uint64_t Value) {
+	return 64-CountLeadingZeros_64(Value-1);
+}
+
+/// GreatestCommonDivisor64 - Return the greatest common divisor of the two
+/// values using Euclid's algorithm.
+static inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
+	while (B) {
+		uint64_t T = B;
+		B = A % B;
+		A = T;
+	}
+	return A;
+}
+
+/// BitsToDouble - This function takes a 64-bit integer and returns the bit
+/// equivalent double.
+static inline double BitsToDouble(uint64_t Bits) {
+	union {
+		uint64_t L;
+		double D;
+	} T;
+	T.L = Bits;
+	return T.D;
+}
+
+/// BitsToFloat - This function takes a 32-bit integer and returns the bit
+/// equivalent float.
+static inline float BitsToFloat(uint32_t Bits) {
+	union {
+		uint32_t I;
+		float F;
+	} T;
+	T.I = Bits;
+	return T.F;
+}
+
+/// DoubleToBits - This function takes a double and returns the bit
+/// equivalent 64-bit integer.  Note that copying doubles around
+/// changes the bits of NaNs on some hosts, notably x86, so this
+/// routine cannot be used if these bits are needed.
+static inline uint64_t DoubleToBits(double Double) {
+	union {
+		uint64_t L;
+		double D;
+	} T;
+	T.D = Double;
+	return T.L;
+}
+
+/// FloatToBits - This function takes a float and returns the bit
+/// equivalent 32-bit integer.  Note that copying floats around
+/// changes the bits of NaNs on some hosts, notably x86, so this
+/// routine cannot be used if these bits are needed.
+static inline uint32_t FloatToBits(float Float) {
+	union {
+		uint32_t I;
+		float F;
+	} T;
+	T.F = Float;
+	return T.I;
+}
+
+/// MinAlign - A and B are either alignments or offsets.  Return the minimum
+/// alignment that may be assumed after adding the two together.
+static inline uint64_t MinAlign(uint64_t A, uint64_t B) {
+	// The largest power of 2 that divides both A and B.
+	//
+	// Replace "-Value" by "1+~Value" in the following commented code to avoid 
+	// MSVC warning C4146
+	//    return (A | B) & -(A | B);
+	return (A | B) & (1 + ~(A | B));
+}
+
+/// NextPowerOf2 - Returns the next power of two (in 64-bits)
+/// that is strictly greater than A.  Returns zero on overflow.
+static inline uint64_t NextPowerOf2(uint64_t A) {
+	A |= (A >> 1);
+	A |= (A >> 2);
+	A |= (A >> 4);
+	A |= (A >> 8);
+	A |= (A >> 16);
+	A |= (A >> 32);
+	return A + 1;
+}
+
+/// Returns the next integer (mod 2**64) that is greater than or equal to
+/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
+///
+/// Examples:
+/// \code
+///   RoundUpToAlignment(5, 8) = 8
+///   RoundUpToAlignment(17, 8) = 24
+///   RoundUpToAlignment(~0LL, 8) = 0
+/// \endcode
+static inline uint64_t RoundUpToAlignment(uint64_t Value, uint64_t Align) {
+	return ((Value + Align - 1) / Align) * Align;
+}
+
+/// Returns the offset to the next integer (mod 2**64) that is greater than
+/// or equal to \p Value and is a multiple of \p Align. \p Align must be
+/// non-zero.
+static inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
+	return RoundUpToAlignment(Value, Align) - Value;
+}
+
+/// abs64 - absolute value of a 64-bit int.  Not all environments support
+/// "abs" on whatever their name for the 64-bit int type is.  The absolute
+/// value of the largest negative number is undefined, as with "abs".
+static inline int64_t abs64(int64_t x) {
+	return (x < 0) ? -x : x;
+}
+
+/// \brief Sign extend number in the bottom B bits of X to a 32-bit int.
+/// Requires 0 < B <= 32.
+static inline int32_t SignExtend32(uint32_t X, unsigned B) {
+	return (int32_t)(X << (32 - B)) >> (32 - B);
+}
+
+/// \brief Sign extend number in the bottom B bits of X to a 64-bit int.
+/// Requires 0 < B <= 64.
+static inline int64_t SignExtend64(uint64_t X, unsigned B) {
+	return (int64_t)(X << (64 - B)) >> (64 - B);
+}
+
+#endif