blob: fe64946e14db1ba4a868990a0887371c22bd43a8 [file] [log] [blame]
//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//===----------------------------------------------------------------------===/
//
// This file implements C++ template argument deduction.
//
//===----------------------------------------------------------------------===/
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Parse/DeclSpec.h"
#include "llvm/Support/Compiler.h"
using namespace clang;
static bool
DeduceTemplateArguments(ASTContext &Context, const TemplateArgument &Param,
const TemplateArgument &Arg,
llvm::SmallVectorImpl<TemplateArgument> &Deduced);
/// \brief If the given expression is of a form that permits the deduction
/// of a non-type template parameter, return the declaration of that
/// non-type template parameter.
static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
E = IC->getSubExpr();
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
return 0;
}
/// \brief Deduce the value of the given non-type template parameter
/// from the given constant.
///
/// \returns true if deduction succeeded, false otherwise.
static bool DeduceNonTypeTemplateArgument(ASTContext &Context,
NonTypeTemplateParmDecl *NTTP,
llvm::APInt Value,
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
assert(NTTP->getDepth() == 0 &&
"Cannot deduce non-type template argument with depth > 0");
if (Deduced[NTTP->getIndex()].isNull()) {
Deduced[NTTP->getIndex()] = TemplateArgument(SourceLocation(),
llvm::APSInt(Value),
NTTP->getType());
return true;
}
if (Deduced[NTTP->getIndex()].getKind() != TemplateArgument::Integral)
return false;
// If the template argument was previously deduced to a negative value,
// then our deduction fails.
const llvm::APSInt *PrevValuePtr = Deduced[NTTP->getIndex()].getAsIntegral();
assert(PrevValuePtr && "Not an integral template argument?");
if (PrevValuePtr->isSigned() && PrevValuePtr->isNegative())
return false;
llvm::APInt PrevValue = *PrevValuePtr;
if (Value.getBitWidth() > PrevValue.getBitWidth())
PrevValue.zext(Value.getBitWidth());
else if (Value.getBitWidth() < PrevValue.getBitWidth())
Value.zext(PrevValue.getBitWidth());
return Value == PrevValue;
}
/// \brief Deduce the value of the given non-type template parameter
/// from the given type- or value-dependent expression.
///
/// \returns true if deduction succeeded, false otherwise.
static bool DeduceNonTypeTemplateArgument(ASTContext &Context,
NonTypeTemplateParmDecl *NTTP,
Expr *Value,
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
assert(NTTP->getDepth() == 0 &&
"Cannot deduce non-type template argument with depth > 0");
assert((Value->isTypeDependent() || Value->isValueDependent()) &&
"Expression template argument must be type- or value-dependent.");
if (Deduced[NTTP->getIndex()].isNull()) {
// FIXME: Clone the Value?
Deduced[NTTP->getIndex()] = TemplateArgument(Value);
return true;
}
if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral) {
// Okay, we deduced a constant in one case and a dependent expression
// in another case. FIXME: Later, we will check that instantiating the
// dependent expression gives us the constant value.
return true;
}
// FIXME: Compare the expressions for equality!
return true;
}
static bool DeduceTemplateArguments(ASTContext &Context,
TemplateName Param,
TemplateName Arg,
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
// FIXME: Implement template argument deduction for template
// template parameters.
TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
TemplateDecl *ArgDecl = Arg.getAsTemplateDecl();
if (!ParamDecl || !ArgDecl)
return false;
ParamDecl = cast<TemplateDecl>(Context.getCanonicalDecl(ParamDecl));
ArgDecl = cast<TemplateDecl>(Context.getCanonicalDecl(ArgDecl));
return ParamDecl == ArgDecl;
}
static bool DeduceTemplateArguments(ASTContext &Context, QualType Param,
QualType Arg,
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
// We only want to look at the canonical types, since typedefs and
// sugar are not part of template argument deduction.
Param = Context.getCanonicalType(Param);
Arg = Context.getCanonicalType(Arg);
// If the parameter type is not dependent, just compare the types
// directly.
if (!Param->isDependentType())
return Param == Arg;
// C++ [temp.deduct.type]p9:
//
// A template type argument T, a template template argument TT or a
// template non-type argument i can be deduced if P and A have one of
// the following forms:
//
// T
// cv-list T
if (const TemplateTypeParmType *TemplateTypeParm
= Param->getAsTemplateTypeParmType()) {
// The argument type can not be less qualified than the parameter
// type.
if (Param.isMoreQualifiedThan(Arg))
return false;
assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
unsigned Quals = Arg.getCVRQualifiers() & ~Param.getCVRQualifiers();
QualType DeducedType = Arg.getQualifiedType(Quals);
unsigned Index = TemplateTypeParm->getIndex();
if (Deduced[Index].isNull())
Deduced[Index] = TemplateArgument(SourceLocation(), DeducedType);
else {
// C++ [temp.deduct.type]p2:
// [...] If type deduction cannot be done for any P/A pair, or if for
// any pair the deduction leads to more than one possible set of
// deduced values, or if different pairs yield different deduced
// values, or if any template argument remains neither deduced nor
// explicitly specified, template argument deduction fails.
if (Deduced[Index].getAsType() != DeducedType)
return false;
}
return true;
}
if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
return false;
switch (Param->getTypeClass()) {
// No deduction possible for these types
case Type::Builtin:
return false;
// T *
case Type::Pointer: {
const PointerType *PointerArg = Arg->getAsPointerType();
if (!PointerArg)
return false;
return DeduceTemplateArguments(Context,
cast<PointerType>(Param)->getPointeeType(),
PointerArg->getPointeeType(),
Deduced);
}
// T &
case Type::LValueReference: {
const LValueReferenceType *ReferenceArg = Arg->getAsLValueReferenceType();
if (!ReferenceArg)
return false;
return DeduceTemplateArguments(Context,
cast<LValueReferenceType>(Param)->getPointeeType(),
ReferenceArg->getPointeeType(),
Deduced);
}
// T && [C++0x]
case Type::RValueReference: {
const RValueReferenceType *ReferenceArg = Arg->getAsRValueReferenceType();
if (!ReferenceArg)
return false;
return DeduceTemplateArguments(Context,
cast<RValueReferenceType>(Param)->getPointeeType(),
ReferenceArg->getPointeeType(),
Deduced);
}
// T [] (implied, but not stated explicitly)
case Type::IncompleteArray: {
const IncompleteArrayType *IncompleteArrayArg =
Context.getAsIncompleteArrayType(Arg);
if (!IncompleteArrayArg)
return false;
return DeduceTemplateArguments(Context,
Context.getAsIncompleteArrayType(Param)->getElementType(),
IncompleteArrayArg->getElementType(),
Deduced);
}
// T [integer-constant]
case Type::ConstantArray: {
const ConstantArrayType *ConstantArrayArg =
Context.getAsConstantArrayType(Arg);
if (!ConstantArrayArg)
return false;
const ConstantArrayType *ConstantArrayParm =
Context.getAsConstantArrayType(Param);
if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
return false;
return DeduceTemplateArguments(Context,
ConstantArrayParm->getElementType(),
ConstantArrayArg->getElementType(),
Deduced);
}
// type [i]
case Type::DependentSizedArray: {
const ArrayType *ArrayArg = dyn_cast<ArrayType>(Arg);
if (!ArrayArg)
return false;
// Check the element type of the arrays
const DependentSizedArrayType *DependentArrayParm
= cast<DependentSizedArrayType>(Param);
if (!DeduceTemplateArguments(Context,
DependentArrayParm->getElementType(),
ArrayArg->getElementType(),
Deduced))
return false;
// Determine the array bound is something we can deduce.
NonTypeTemplateParmDecl *NTTP
= getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
if (!NTTP)
return true;
// We can perform template argument deduction for the given non-type
// template parameter.
assert(NTTP->getDepth() == 0 &&
"Cannot deduce non-type template argument at depth > 0");
if (const ConstantArrayType *ConstantArrayArg
= dyn_cast<ConstantArrayType>(ArrayArg))
return DeduceNonTypeTemplateArgument(Context, NTTP,
ConstantArrayArg->getSize(),
Deduced);
if (const DependentSizedArrayType *DependentArrayArg
= dyn_cast<DependentSizedArrayType>(ArrayArg))
return DeduceNonTypeTemplateArgument(Context, NTTP,
DependentArrayArg->getSizeExpr(),
Deduced);
// Incomplete type does not match a dependently-sized array type
return false;
}
// type(*)(T)
// T(*)()
// T(*)(T)
case Type::FunctionProto: {
const FunctionProtoType *FunctionProtoArg =
dyn_cast<FunctionProtoType>(Arg);
if (!FunctionProtoArg)
return false;
const FunctionProtoType *FunctionProtoParam =
cast<FunctionProtoType>(Param);
if (FunctionProtoParam->getTypeQuals() !=
FunctionProtoArg->getTypeQuals())
return false;
if (FunctionProtoParam->getNumArgs() != FunctionProtoArg->getNumArgs())
return false;
if (FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
return false;
// Check return types.
if (!DeduceTemplateArguments(Context,
FunctionProtoParam->getResultType(),
FunctionProtoArg->getResultType(),
Deduced))
return false;
for (unsigned I = 0, N = FunctionProtoParam->getNumArgs(); I != N; ++I) {
// Check argument types.
if (!DeduceTemplateArguments(Context,
FunctionProtoParam->getArgType(I),
FunctionProtoArg->getArgType(I),
Deduced))
return false;
}
return true;
}
// template-name<T> (wheretemplate-name refers to a class template)
// template-name<i>
// TT<T> (TODO)
// TT<i> (TODO)
// TT<> (TODO)
case Type::TemplateSpecialization: {
const TemplateSpecializationType *SpecParam
= cast<TemplateSpecializationType>(Param);
// Check whether the template argument is a dependent template-id.
// FIXME: This is untested code; it can be tested when we implement
// partial ordering of class template partial specializations.
if (const TemplateSpecializationType *SpecArg
= dyn_cast<TemplateSpecializationType>(Arg)) {
// Perform template argument deduction for the template name.
if (!DeduceTemplateArguments(Context,
SpecParam->getTemplateName(),
SpecArg->getTemplateName(),
Deduced))
return false;
unsigned NumArgs = SpecParam->getNumArgs();
// FIXME: When one of the template-names refers to a
// declaration with default template arguments, do we need to
// fill in those default template arguments here? Most likely,
// the answer is "yes", but I don't see any references. This
// issue may be resolved elsewhere, because we may want to
// instantiate default template arguments when
if (SpecArg->getNumArgs() != NumArgs)
return false;
// Perform template argument deduction on each template
// argument.
for (unsigned I = 0; I != NumArgs; ++I)
if (!DeduceTemplateArguments(Context,
SpecParam->getArg(I),
SpecArg->getArg(I),
Deduced))
return false;
return true;
}
// If the argument type is a class template specialization, we
// perform template argument deduction using its template
// arguments.
const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
if (!RecordArg)
return false;
ClassTemplateSpecializationDecl *SpecArg
= dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
if (!SpecArg)
return false;
// Perform template argument deduction for the template name.
if (!DeduceTemplateArguments(Context,
SpecParam->getTemplateName(),
TemplateName(SpecArg->getSpecializedTemplate()),
Deduced))
return false;
// FIXME: Can the # of arguments in the parameter and the argument differ?
unsigned NumArgs = SpecParam->getNumArgs();
const TemplateArgumentList &ArgArgs = SpecArg->getTemplateArgs();
if (NumArgs != ArgArgs.size())
return false;
for (unsigned I = 0; I != NumArgs; ++I)
if (!DeduceTemplateArguments(Context,
SpecParam->getArg(I),
ArgArgs.get(I),
Deduced))
return false;
return true;
}
// T type::*
// T T::*
// T (type::*)()
// type (T::*)()
// type (type::*)(T)
// type (T::*)(T)
// T (type::*)(T)
// T (T::*)()
// T (T::*)(T)
case Type::MemberPointer: {
const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
if (!MemPtrArg)
return false;
return DeduceTemplateArguments(Context,
MemPtrParam->getPointeeType(),
MemPtrArg->getPointeeType(),
Deduced) &&
DeduceTemplateArguments(Context,
QualType(MemPtrParam->getClass(), 0),
QualType(MemPtrArg->getClass(), 0),
Deduced);
}
case Type::TypeOfExpr:
case Type::TypeOf:
case Type::Typename:
// No template argument deduction for these types
return true;
default:
break;
}
// FIXME: Many more cases to go (to go).
return false;
}
static bool
DeduceTemplateArguments(ASTContext &Context, const TemplateArgument &Param,
const TemplateArgument &Arg,
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
switch (Param.getKind()) {
case TemplateArgument::Null:
assert(false && "Null template argument in parameter list");
break;
case TemplateArgument::Type:
assert(Arg.getKind() == TemplateArgument::Type && "Type/value mismatch");
return DeduceTemplateArguments(Context, Param.getAsType(),
Arg.getAsType(), Deduced);
case TemplateArgument::Declaration:
// FIXME: Implement this check
assert(false && "Unimplemented template argument deduction case");
return false;
case TemplateArgument::Integral:
if (Arg.getKind() == TemplateArgument::Integral) {
// FIXME: Zero extension + sign checking here?
return *Param.getAsIntegral() == *Arg.getAsIntegral();
}
if (Arg.getKind() == TemplateArgument::Expression)
return false;
assert(false && "Type/value mismatch");
return false;
case TemplateArgument::Expression: {
if (NonTypeTemplateParmDecl *NTTP
= getDeducedParameterFromExpr(Param.getAsExpr())) {
if (Arg.getKind() == TemplateArgument::Integral)
// FIXME: Sign problems here
return DeduceNonTypeTemplateArgument(Context, NTTP,
*Arg.getAsIntegral(), Deduced);
if (Arg.getKind() == TemplateArgument::Expression)
return DeduceNonTypeTemplateArgument(Context, NTTP, Arg.getAsExpr(),
Deduced);
assert(false && "Type/value mismatch");
return false;
}
// Can't deduce anything, but that's okay.
return true;
}
}
return true;
}
static bool
DeduceTemplateArguments(ASTContext &Context,
const TemplateArgumentList &ParamList,
const TemplateArgumentList &ArgList,
llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
assert(ParamList.size() == ArgList.size());
for (unsigned I = 0, N = ParamList.size(); I != N; ++I) {
if (!DeduceTemplateArguments(Context, ParamList[I], ArgList[I], Deduced))
return false;
}
return true;
}
TemplateArgumentList *
Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
const TemplateArgumentList &TemplateArgs) {
// Deduce the template arguments for the partial specialization
llvm::SmallVector<TemplateArgument, 4> Deduced;
Deduced.resize(Partial->getTemplateParameters()->size());
if (! ::DeduceTemplateArguments(Context, Partial->getTemplateArgs(),
TemplateArgs, Deduced))
return 0;
// FIXME: It isn't clear whether we want the diagnostic to point at
// the partial specialization itself or at the actual point of
// instantiation.
InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
Deduced.data(), Deduced.size());
if (Inst)
return 0;
// C++ [temp.deduct.type]p2:
// [...] or if any template argument remains neither deduced nor
// explicitly specified, template argument deduction fails.
TemplateArgumentListBuilder Builder(Context);
for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
if (Deduced[I].isNull())
return 0;
Builder.push_back(Deduced[I]);
}
// Form the template argument list from the deduced template arguments.
TemplateArgumentList *DeducedArgumentList
= new (Context) TemplateArgumentList(Context, Builder, /*CopyArgs=*/true,
/*FlattenArgs=*/true);
// Now that we have all of the deduced template arguments, take
// another pass through them to convert any integral template
// arguments to the appropriate type.
for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
TemplateArgument &Arg = Deduced[I];
if (Arg.getKind() == TemplateArgument::Integral) {
const NonTypeTemplateParmDecl *Parm
= cast<NonTypeTemplateParmDecl>(Partial->getTemplateParameters()
->getParam(I));
QualType T = InstantiateType(Parm->getType(), *DeducedArgumentList,
Parm->getLocation(), Parm->getDeclName());
if (T.isNull()) // FIXME: DeducedArgumentList->Destroy(Context);
return 0;
// FIXME: Make sure we didn't overflow our data type!
llvm::APSInt &Value = *Arg.getAsIntegral();
unsigned AllowedBits = Context.getTypeSize(T);
if (Value.getBitWidth() != AllowedBits)
Value.extOrTrunc(AllowedBits);
Value.setIsSigned(T->isSignedIntegerType());
Arg.setIntegralType(T);
}
(*DeducedArgumentList)[I] = Arg;
}
// Substitute the deduced template arguments into the template
// arguments of the class template partial specialization, and
// verify that the instantiated template arguments are both valid
// and are equivalent to the template arguments originally provided
// to the class template.
ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
const TemplateArgumentList &PartialTemplateArgs = Partial->getTemplateArgs();
for (unsigned I = 0, N = PartialTemplateArgs.flat_size(); I != N; ++I) {
TemplateArgument InstArg = Instantiate(PartialTemplateArgs[I],
*DeducedArgumentList);
if (InstArg.isNull()) {
// FIXME: DeducedArgumentList->Destroy(Context); (or use RAII)
return 0;
}
Decl *Param
= const_cast<Decl *>(ClassTemplate->getTemplateParameters()->getParam(I));
if (isa<TemplateTypeParmDecl>(Param)) {
if (InstArg.getKind() != TemplateArgument::Type ||
Context.getCanonicalType(InstArg.getAsType())
!= Context.getCanonicalType(TemplateArgs[I].getAsType()))
// FIXME: DeducedArgumentList->Destroy(Context); (or use RAII)
return 0;
} else if (NonTypeTemplateParmDecl *NTTP
= dyn_cast<NonTypeTemplateParmDecl>(Param)) {
QualType T = InstantiateType(NTTP->getType(), TemplateArgs,
NTTP->getLocation(), NTTP->getDeclName());
if (T.isNull())
// FIXME: DeducedArgumentList->Destroy(Context); (or use RAII)
return 0;
if (InstArg.getKind() == TemplateArgument::Declaration ||
InstArg.getKind() == TemplateArgument::Expression) {
// Turn the template argument into an expression, so that we can
// perform type checking on it and convert it to the type of the
// non-type template parameter. FIXME: Will this expression be
// leaked? It's hard to tell, since our ownership model for
// expressions in template arguments is so poor.
Expr *E = 0;
if (InstArg.getKind() == TemplateArgument::Declaration) {
NamedDecl *D = cast<NamedDecl>(InstArg.getAsDecl());
QualType T = Context.OverloadTy;
if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
T = VD->getType().getNonReferenceType();
E = new (Context) DeclRefExpr(D, T, InstArg.getLocation());
} else {
E = InstArg.getAsExpr();
}
// Check that the template argument can be used to initialize
// the corresponding template parameter.
if (CheckTemplateArgument(NTTP, T, E, InstArg))
return 0;
}
switch (InstArg.getKind()) {
case TemplateArgument::Null:
assert(false && "Null template arguments cannot get here");
return 0;
case TemplateArgument::Type:
assert(false && "Type/value mismatch");
return 0;
case TemplateArgument::Integral: {
llvm::APSInt &Value = *InstArg.getAsIntegral();
if (T->isIntegralType() || T->isEnumeralType()) {
QualType IntegerType = Context.getCanonicalType(T);
if (const EnumType *Enum = dyn_cast<EnumType>(IntegerType))
IntegerType = Context.getCanonicalType(
Enum->getDecl()->getIntegerType());
// Check that an unsigned parameter does not receive a negative
// value.
if (IntegerType->isUnsignedIntegerType()
&& (Value.isSigned() && Value.isNegative()))
return 0;
// Check for truncation. If the number of bits in the
// instantiated template argument exceeds what is allowed by
// the type, template argument deduction fails.
unsigned AllowedBits = Context.getTypeSize(IntegerType);
if (Value.getActiveBits() > AllowedBits)
return 0;
if (Value.getBitWidth() != AllowedBits)
Value.extOrTrunc(AllowedBits);
Value.setIsSigned(IntegerType->isSignedIntegerType());
// Check that the instantiated value is the same as the
// value provided as a template argument.
if (Value != *TemplateArgs[I].getAsIntegral())
return 0;
} else if (T->isPointerType() || T->isMemberPointerType()) {
// Deal with NULL pointers that are used to initialize
// pointer and pointer-to-member non-type template
// parameters (C++0x).
if (TemplateArgs[I].getAsDecl())
return 0; // Not a NULL declaration
// Check that the integral value is 0, the NULL pointer
// constant.
if (Value != 0)
return 0;
} else
return 0;
break;
}
case TemplateArgument::Declaration:
if (Context.getCanonicalDecl(InstArg.getAsDecl())
!= Context.getCanonicalDecl(TemplateArgs[I].getAsDecl()))
return 0;
break;
case TemplateArgument::Expression:
// FIXME: Check equality of expressions
break;
}
} else {
assert(isa<TemplateTemplateParmDecl>(Param));
// FIXME: Check template template arguments
}
}
return DeducedArgumentList;
}