| //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Expr nodes as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "CGCall.h" |
| #include "CGObjCRuntime.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "llvm/Target/TargetData.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| //===--------------------------------------------------------------------===// |
| // Miscellaneous Helper Methods |
| //===--------------------------------------------------------------------===// |
| |
| /// CreateTempAlloca - This creates a alloca and inserts it into the entry |
| /// block. |
| llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty, |
| const char *Name) { |
| return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt); |
| } |
| |
| /// EvaluateExprAsBool - Perform the usual unary conversions on the specified |
| /// expression and compare the result against zero, returning an Int1Ty value. |
| llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) { |
| QualType BoolTy = getContext().BoolTy; |
| if (!E->getType()->isAnyComplexType()) |
| return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy); |
| |
| return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy); |
| } |
| |
| /// EmitAnyExpr - Emit code to compute the specified expression which can have |
| /// any type. The result is returned as an RValue struct. If this is an |
| /// aggregate expression, the aggloc/agglocvolatile arguments indicate where |
| /// the result should be returned. |
| RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc, |
| bool isAggLocVolatile) { |
| if (!hasAggregateLLVMType(E->getType())) |
| return RValue::get(EmitScalarExpr(E)); |
| else if (E->getType()->isAnyComplexType()) |
| return RValue::getComplex(EmitComplexExpr(E)); |
| |
| EmitAggExpr(E, AggLoc, isAggLocVolatile); |
| return RValue::getAggregate(AggLoc); |
| } |
| |
| /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result |
| /// will always be accessible even if no aggregate location is |
| /// provided. |
| RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E, llvm::Value *AggLoc, |
| bool isAggLocVolatile) { |
| if (!AggLoc && hasAggregateLLVMType(E->getType()) && |
| !E->getType()->isAnyComplexType()) |
| AggLoc = CreateTempAlloca(ConvertType(E->getType()), "agg.tmp"); |
| return EmitAnyExpr(E, AggLoc, isAggLocVolatile); |
| } |
| |
| /// getAccessedFieldNo - Given an encoded value and a result number, return |
| /// the input field number being accessed. |
| unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx, |
| const llvm::Constant *Elts) { |
| if (isa<llvm::ConstantAggregateZero>(Elts)) |
| return 0; |
| |
| return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue(); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // LValue Expression Emission |
| //===----------------------------------------------------------------------===// |
| |
| LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E, |
| const char *Name) { |
| ErrorUnsupported(E, Name); |
| llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType())); |
| return LValue::MakeAddr(llvm::UndefValue::get(Ty), |
| E->getType().getCVRQualifiers()); |
| } |
| |
| /// EmitLValue - Emit code to compute a designator that specifies the location |
| /// of the expression. |
| /// |
| /// This can return one of two things: a simple address or a bitfield |
| /// reference. In either case, the LLVM Value* in the LValue structure is |
| /// guaranteed to be an LLVM pointer type. |
| /// |
| /// If this returns a bitfield reference, nothing about the pointee type of |
| /// the LLVM value is known: For example, it may not be a pointer to an |
| /// integer. |
| /// |
| /// If this returns a normal address, and if the lvalue's C type is fixed |
| /// size, this method guarantees that the returned pointer type will point to |
| /// an LLVM type of the same size of the lvalue's type. If the lvalue has a |
| /// variable length type, this is not possible. |
| /// |
| LValue CodeGenFunction::EmitLValue(const Expr *E) { |
| switch (E->getStmtClass()) { |
| default: return EmitUnsupportedLValue(E, "l-value expression"); |
| |
| case Expr::BinaryOperatorClass: |
| return EmitBinaryOperatorLValue(cast<BinaryOperator>(E)); |
| case Expr::CallExprClass: return EmitCallExprLValue(cast<CallExpr>(E)); |
| case Expr::DeclRefExprClass: return EmitDeclRefLValue(cast<DeclRefExpr>(E)); |
| case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr()); |
| case Expr::PredefinedExprClass: |
| return EmitPredefinedLValue(cast<PredefinedExpr>(E)); |
| case Expr::StringLiteralClass: |
| return EmitStringLiteralLValue(cast<StringLiteral>(E)); |
| |
| case Expr::CXXConditionDeclExprClass: |
| return EmitCXXConditionDeclLValue(cast<CXXConditionDeclExpr>(E)); |
| |
| case Expr::ObjCMessageExprClass: |
| return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E)); |
| case Expr::ObjCIvarRefExprClass: |
| return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E)); |
| case Expr::ObjCPropertyRefExprClass: |
| return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E)); |
| case Expr::ObjCSuperExprClass: |
| return EmitObjCSuperExpr(cast<ObjCSuperExpr>(E)); |
| |
| case Expr::UnaryOperatorClass: |
| return EmitUnaryOpLValue(cast<UnaryOperator>(E)); |
| case Expr::ArraySubscriptExprClass: |
| return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E)); |
| case Expr::ExtVectorElementExprClass: |
| return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E)); |
| case Expr::MemberExprClass: return EmitMemberExpr(cast<MemberExpr>(E)); |
| case Expr::CompoundLiteralExprClass: |
| return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E)); |
| } |
| } |
| |
| /// EmitLoadOfLValue - Given an expression that represents a value lvalue, |
| /// this method emits the address of the lvalue, then loads the result as an |
| /// rvalue, returning the rvalue. |
| RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) { |
| if (LV.isSimple()) { |
| llvm::Value *Ptr = LV.getAddress(); |
| const llvm::Type *EltTy = |
| cast<llvm::PointerType>(Ptr->getType())->getElementType(); |
| |
| // Simple scalar l-value. |
| if (EltTy->isSingleValueType()) { |
| llvm::Value *V = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),"tmp"); |
| |
| // Bool can have different representation in memory than in registers. |
| if (ExprType->isBooleanType()) { |
| if (V->getType() != llvm::Type::Int1Ty) |
| V = Builder.CreateTrunc(V, llvm::Type::Int1Ty, "tobool"); |
| } |
| |
| return RValue::get(V); |
| } |
| |
| assert(ExprType->isFunctionType() && "Unknown scalar value"); |
| return RValue::get(Ptr); |
| } |
| |
| if (LV.isVectorElt()) { |
| llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(), |
| LV.isVolatileQualified(), "tmp"); |
| return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(), |
| "vecext")); |
| } |
| |
| // If this is a reference to a subset of the elements of a vector, either |
| // shuffle the input or extract/insert them as appropriate. |
| if (LV.isExtVectorElt()) |
| return EmitLoadOfExtVectorElementLValue(LV, ExprType); |
| |
| if (LV.isBitfield()) |
| return EmitLoadOfBitfieldLValue(LV, ExprType); |
| |
| if (LV.isPropertyRef()) |
| return EmitLoadOfPropertyRefLValue(LV, ExprType); |
| |
| assert(0 && "Unknown LValue type!"); |
| //an invalid RValue, but the assert will |
| //ensure that this point is never reached |
| return RValue(); |
| } |
| |
| RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV, |
| QualType ExprType) { |
| unsigned StartBit = LV.getBitfieldStartBit(); |
| unsigned BitfieldSize = LV.getBitfieldSize(); |
| llvm::Value *Ptr = LV.getBitfieldAddr(); |
| |
| const llvm::Type *EltTy = |
| cast<llvm::PointerType>(Ptr->getType())->getElementType(); |
| unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy); |
| |
| // In some cases the bitfield may straddle two memory locations. |
| // Currently we load the entire bitfield, then do the magic to |
| // sign-extend it if necessary. This results in somewhat more code |
| // than necessary for the common case (one load), since two shifts |
| // accomplish both the masking and sign extension. |
| unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit); |
| llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "tmp"); |
| |
| // Shift to proper location. |
| if (StartBit) |
| Val = Builder.CreateLShr(Val, llvm::ConstantInt::get(EltTy, StartBit), |
| "bf.lo"); |
| |
| // Mask off unused bits. |
| llvm::Constant *LowMask = |
| llvm::ConstantInt::get(llvm::APInt::getLowBitsSet(EltTySize, LowBits)); |
| Val = Builder.CreateAnd(Val, LowMask, "bf.lo.cleared"); |
| |
| // Fetch the high bits if necessary. |
| if (LowBits < BitfieldSize) { |
| unsigned HighBits = BitfieldSize - LowBits; |
| llvm::Value *HighPtr = |
| Builder.CreateGEP(Ptr, llvm::ConstantInt::get(llvm::Type::Int32Ty, 1), |
| "bf.ptr.hi"); |
| llvm::Value *HighVal = Builder.CreateLoad(HighPtr, |
| LV.isVolatileQualified(), |
| "tmp"); |
| |
| // Mask off unused bits. |
| llvm::Constant *HighMask = |
| llvm::ConstantInt::get(llvm::APInt::getLowBitsSet(EltTySize, HighBits)); |
| HighVal = Builder.CreateAnd(HighVal, HighMask, "bf.lo.cleared"); |
| |
| // Shift to proper location and or in to bitfield value. |
| HighVal = Builder.CreateShl(HighVal, |
| llvm::ConstantInt::get(EltTy, LowBits)); |
| Val = Builder.CreateOr(Val, HighVal, "bf.val"); |
| } |
| |
| // Sign extend if necessary. |
| if (LV.isBitfieldSigned()) { |
| llvm::Value *ExtraBits = llvm::ConstantInt::get(EltTy, |
| EltTySize - BitfieldSize); |
| Val = Builder.CreateAShr(Builder.CreateShl(Val, ExtraBits), |
| ExtraBits, "bf.val.sext"); |
| } |
| |
| // The bitfield type and the normal type differ when the storage sizes |
| // differ (currently just _Bool). |
| Val = Builder.CreateIntCast(Val, ConvertType(ExprType), false, "tmp"); |
| |
| return RValue::get(Val); |
| } |
| |
| RValue CodeGenFunction::EmitLoadOfPropertyRefLValue(LValue LV, |
| QualType ExprType) { |
| return EmitObjCPropertyGet(LV.getPropertyRefExpr()); |
| } |
| |
| // If this is a reference to a subset of the elements of a vector, either |
| // shuffle the input or extract/insert them as appropriate. |
| RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV, |
| QualType ExprType) { |
| llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(), |
| LV.isVolatileQualified(), "tmp"); |
| |
| const llvm::Constant *Elts = LV.getExtVectorElts(); |
| |
| // If the result of the expression is a non-vector type, we must be |
| // extracting a single element. Just codegen as an extractelement. |
| const VectorType *ExprVT = ExprType->getAsVectorType(); |
| if (!ExprVT) { |
| unsigned InIdx = getAccessedFieldNo(0, Elts); |
| llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx); |
| return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp")); |
| } |
| |
| // If the source and destination have the same number of elements, use a |
| // vector shuffle instead of insert/extracts. |
| unsigned NumResultElts = ExprVT->getNumElements(); |
| unsigned NumSourceElts = |
| cast<llvm::VectorType>(Vec->getType())->getNumElements(); |
| |
| if (NumResultElts == NumSourceElts) { |
| llvm::SmallVector<llvm::Constant*, 4> Mask; |
| for (unsigned i = 0; i != NumResultElts; ++i) { |
| unsigned InIdx = getAccessedFieldNo(i, Elts); |
| Mask.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx)); |
| } |
| |
| llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size()); |
| Vec = Builder.CreateShuffleVector(Vec, |
| llvm::UndefValue::get(Vec->getType()), |
| MaskV, "tmp"); |
| return RValue::get(Vec); |
| } |
| |
| // Start out with an undef of the result type. |
| llvm::Value *Result = llvm::UndefValue::get(ConvertType(ExprType)); |
| |
| // Extract/Insert each element of the result. |
| for (unsigned i = 0; i != NumResultElts; ++i) { |
| unsigned InIdx = getAccessedFieldNo(i, Elts); |
| llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx); |
| Elt = Builder.CreateExtractElement(Vec, Elt, "tmp"); |
| |
| llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i); |
| Result = Builder.CreateInsertElement(Result, Elt, OutIdx, "tmp"); |
| } |
| |
| return RValue::get(Result); |
| } |
| |
| |
| |
| /// EmitStoreThroughLValue - Store the specified rvalue into the specified |
| /// lvalue, where both are guaranteed to the have the same type, and that type |
| /// is 'Ty'. |
| void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst, |
| QualType Ty) { |
| if (!Dst.isSimple()) { |
| if (Dst.isVectorElt()) { |
| // Read/modify/write the vector, inserting the new element. |
| llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(), |
| Dst.isVolatileQualified(), "tmp"); |
| Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(), |
| Dst.getVectorIdx(), "vecins"); |
| Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified()); |
| return; |
| } |
| |
| // If this is an update of extended vector elements, insert them as |
| // appropriate. |
| if (Dst.isExtVectorElt()) |
| return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty); |
| |
| if (Dst.isBitfield()) |
| return EmitStoreThroughBitfieldLValue(Src, Dst, Ty); |
| |
| if (Dst.isPropertyRef()) |
| return EmitStoreThroughPropertyRefLValue(Src, Dst, Ty); |
| |
| assert(0 && "Unknown LValue type"); |
| } |
| |
| llvm::Value *DstAddr = Dst.getAddress(); |
| assert(Src.isScalar() && "Can't emit an agg store with this method"); |
| // FIXME: Handle volatility etc. |
| const llvm::Type *SrcTy = Src.getScalarVal()->getType(); |
| const llvm::PointerType *DstPtr = cast<llvm::PointerType>(DstAddr->getType()); |
| const llvm::Type *AddrTy = DstPtr->getElementType(); |
| unsigned AS = DstPtr->getAddressSpace(); |
| |
| if (AddrTy != SrcTy) |
| DstAddr = Builder.CreateBitCast(DstAddr, |
| llvm::PointerType::get(SrcTy, AS), |
| "storetmp"); |
| Builder.CreateStore(Src.getScalarVal(), DstAddr, Dst.isVolatileQualified()); |
| } |
| |
| void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, |
| QualType Ty) { |
| unsigned StartBit = Dst.getBitfieldStartBit(); |
| unsigned BitfieldSize = Dst.getBitfieldSize(); |
| llvm::Value *Ptr = Dst.getBitfieldAddr(); |
| |
| const llvm::Type *EltTy = |
| cast<llvm::PointerType>(Ptr->getType())->getElementType(); |
| unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy); |
| |
| // Get the new value, cast to the appropriate type and masked to |
| // exactly the size of the bit-field. |
| llvm::Value *NewVal = Src.getScalarVal(); |
| NewVal = Builder.CreateIntCast(NewVal, EltTy, false, "tmp"); |
| llvm::Constant *Mask = |
| llvm::ConstantInt::get(llvm::APInt::getLowBitsSet(EltTySize, BitfieldSize)); |
| NewVal = Builder.CreateAnd(NewVal, Mask, "bf.value"); |
| |
| // In some cases the bitfield may straddle two memory locations. |
| // Emit the low part first and check to see if the high needs to be |
| // done. |
| unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit); |
| llvm::Value *LowVal = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), |
| "bf.prev.low"); |
| |
| // Compute the mask for zero-ing the low part of this bitfield. |
| llvm::Constant *InvMask = |
| llvm::ConstantInt::get(~llvm::APInt::getBitsSet(EltTySize, StartBit, |
| StartBit + LowBits)); |
| |
| // Compute the new low part as |
| // LowVal = (LowVal & InvMask) | (NewVal << StartBit), |
| // with the shift of NewVal implicitly stripping the high bits. |
| llvm::Value *NewLowVal = |
| Builder.CreateShl(NewVal, llvm::ConstantInt::get(EltTy, StartBit), |
| "bf.value.lo"); |
| LowVal = Builder.CreateAnd(LowVal, InvMask, "bf.prev.lo.cleared"); |
| LowVal = Builder.CreateOr(LowVal, NewLowVal, "bf.new.lo"); |
| |
| // Write back. |
| Builder.CreateStore(LowVal, Ptr, Dst.isVolatileQualified()); |
| |
| // If the low part doesn't cover the bitfield emit a high part. |
| if (LowBits < BitfieldSize) { |
| unsigned HighBits = BitfieldSize - LowBits; |
| llvm::Value *HighPtr = |
| Builder.CreateGEP(Ptr, llvm::ConstantInt::get(llvm::Type::Int32Ty, 1), |
| "bf.ptr.hi"); |
| llvm::Value *HighVal = Builder.CreateLoad(HighPtr, |
| Dst.isVolatileQualified(), |
| "bf.prev.hi"); |
| |
| // Compute the mask for zero-ing the high part of this bitfield. |
| llvm::Constant *InvMask = |
| llvm::ConstantInt::get(~llvm::APInt::getLowBitsSet(EltTySize, HighBits)); |
| |
| // Compute the new high part as |
| // HighVal = (HighVal & InvMask) | (NewVal lshr LowBits), |
| // where the high bits of NewVal have already been cleared and the |
| // shift stripping the low bits. |
| llvm::Value *NewHighVal = |
| Builder.CreateLShr(NewVal, llvm::ConstantInt::get(EltTy, LowBits), |
| "bf.value.high"); |
| HighVal = Builder.CreateAnd(HighVal, InvMask, "bf.prev.hi.cleared"); |
| HighVal = Builder.CreateOr(HighVal, NewHighVal, "bf.new.hi"); |
| |
| // Write back. |
| Builder.CreateStore(HighVal, HighPtr, Dst.isVolatileQualified()); |
| } |
| } |
| |
| void CodeGenFunction::EmitStoreThroughPropertyRefLValue(RValue Src, |
| LValue Dst, |
| QualType Ty) { |
| EmitObjCPropertySet(Dst.getPropertyRefExpr(), Src); |
| } |
| |
| void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src, |
| LValue Dst, |
| QualType Ty) { |
| // This access turns into a read/modify/write of the vector. Load the input |
| // value now. |
| llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(), |
| Dst.isVolatileQualified(), "tmp"); |
| const llvm::Constant *Elts = Dst.getExtVectorElts(); |
| |
| llvm::Value *SrcVal = Src.getScalarVal(); |
| |
| if (const VectorType *VTy = Ty->getAsVectorType()) { |
| unsigned NumSrcElts = VTy->getNumElements(); |
| |
| // Extract/Insert each element. |
| for (unsigned i = 0; i != NumSrcElts; ++i) { |
| llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, i); |
| Elt = Builder.CreateExtractElement(SrcVal, Elt, "tmp"); |
| |
| unsigned Idx = getAccessedFieldNo(i, Elts); |
| llvm::Value *OutIdx = llvm::ConstantInt::get(llvm::Type::Int32Ty, Idx); |
| Vec = Builder.CreateInsertElement(Vec, Elt, OutIdx, "tmp"); |
| } |
| } else { |
| // If the Src is a scalar (not a vector) it must be updating one element. |
| unsigned InIdx = getAccessedFieldNo(0, Elts); |
| llvm::Value *Elt = llvm::ConstantInt::get(llvm::Type::Int32Ty, InIdx); |
| Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp"); |
| } |
| |
| Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified()); |
| } |
| |
| |
| LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) { |
| const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()); |
| |
| if (VD && (VD->isBlockVarDecl() || isa<ParmVarDecl>(VD) || |
| isa<ImplicitParamDecl>(VD))) { |
| if (VD->getStorageClass() == VarDecl::Extern) |
| return LValue::MakeAddr(CGM.GetAddrOfGlobalVar(VD), |
| E->getType().getCVRQualifiers()); |
| else { |
| llvm::Value *V = LocalDeclMap[VD]; |
| assert(V && "BlockVarDecl not entered in LocalDeclMap?"); |
| return LValue::MakeAddr(V, E->getType().getCVRQualifiers()); |
| } |
| } else if (VD && VD->isFileVarDecl()) { |
| return LValue::MakeAddr(CGM.GetAddrOfGlobalVar(VD), |
| E->getType().getCVRQualifiers()); |
| } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl())) { |
| return LValue::MakeAddr(CGM.GetAddrOfFunction(FD), |
| E->getType().getCVRQualifiers()); |
| } |
| else if (const ImplicitParamDecl *IPD = |
| dyn_cast<ImplicitParamDecl>(E->getDecl())) { |
| llvm::Value *V = LocalDeclMap[IPD]; |
| assert(V && "BlockVarDecl not entered in LocalDeclMap?"); |
| return LValue::MakeAddr(V, E->getType().getCVRQualifiers()); |
| } |
| assert(0 && "Unimp declref"); |
| //an invalid LValue, but the assert will |
| //ensure that this point is never reached. |
| return LValue(); |
| } |
| |
| LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) { |
| // __extension__ doesn't affect lvalue-ness. |
| if (E->getOpcode() == UnaryOperator::Extension) |
| return EmitLValue(E->getSubExpr()); |
| |
| QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType()); |
| switch (E->getOpcode()) { |
| default: assert(0 && "Unknown unary operator lvalue!"); |
| case UnaryOperator::Deref: |
| return LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()), |
| ExprTy->getAsPointerType()->getPointeeType() |
| .getCVRQualifiers()); |
| case UnaryOperator::Real: |
| case UnaryOperator::Imag: |
| LValue LV = EmitLValue(E->getSubExpr()); |
| unsigned Idx = E->getOpcode() == UnaryOperator::Imag; |
| return LValue::MakeAddr(Builder.CreateStructGEP(LV.getAddress(), |
| Idx, "idx"), |
| ExprTy.getCVRQualifiers()); |
| } |
| } |
| |
| LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) { |
| return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromLiteral(E), 0); |
| } |
| |
| LValue CodeGenFunction::EmitPredefinedFunctionName(unsigned Type) { |
| std::string GlobalVarName; |
| |
| switch (Type) { |
| default: |
| assert(0 && "Invalid type"); |
| case PredefinedExpr::Func: |
| GlobalVarName = "__func__."; |
| break; |
| case PredefinedExpr::Function: |
| GlobalVarName = "__FUNCTION__."; |
| break; |
| case PredefinedExpr::PrettyFunction: |
| // FIXME:: Demangle C++ method names |
| GlobalVarName = "__PRETTY_FUNCTION__."; |
| break; |
| } |
| |
| std::string FunctionName; |
| if(const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurFuncDecl)) { |
| FunctionName = FD->getName(); |
| } else { |
| // Just get the mangled name. |
| FunctionName = CurFn->getName(); |
| } |
| |
| GlobalVarName += FunctionName; |
| llvm::Constant *C = |
| CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str()); |
| return LValue::MakeAddr(C, 0); |
| } |
| |
| LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) { |
| switch (E->getIdentType()) { |
| default: |
| return EmitUnsupportedLValue(E, "predefined expression"); |
| case PredefinedExpr::Func: |
| case PredefinedExpr::Function: |
| case PredefinedExpr::PrettyFunction: |
| return EmitPredefinedFunctionName(E->getIdentType()); |
| } |
| } |
| |
| LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) { |
| // The index must always be an integer, which is not an aggregate. Emit it. |
| llvm::Value *Idx = EmitScalarExpr(E->getIdx()); |
| |
| // If the base is a vector type, then we are forming a vector element lvalue |
| // with this subscript. |
| if (E->getBase()->getType()->isVectorType()) { |
| // Emit the vector as an lvalue to get its address. |
| LValue LHS = EmitLValue(E->getBase()); |
| assert(LHS.isSimple() && "Can only subscript lvalue vectors here!"); |
| // FIXME: This should properly sign/zero/extend or truncate Idx to i32. |
| return LValue::MakeVectorElt(LHS.getAddress(), Idx, |
| E->getBase()->getType().getCVRQualifiers()); |
| } |
| |
| // The base must be a pointer, which is not an aggregate. Emit it. |
| llvm::Value *Base = EmitScalarExpr(E->getBase()); |
| |
| // Extend or truncate the index type to 32 or 64-bits. |
| QualType IdxTy = E->getIdx()->getType(); |
| bool IdxSigned = IdxTy->isSignedIntegerType(); |
| unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth(); |
| if (IdxBitwidth != LLVMPointerWidth) |
| Idx = Builder.CreateIntCast(Idx, llvm::IntegerType::get(LLVMPointerWidth), |
| IdxSigned, "idxprom"); |
| |
| // We know that the pointer points to a type of the correct size, unless the |
| // size is a VLA. |
| if (!E->getType()->isConstantSizeType()) |
| return EmitUnsupportedLValue(E, "VLA index"); |
| QualType ExprTy = getContext().getCanonicalType(E->getBase()->getType()); |
| |
| return LValue::MakeAddr(Builder.CreateGEP(Base, Idx, "arrayidx"), |
| ExprTy->getAsPointerType()->getPointeeType() |
| .getCVRQualifiers()); |
| } |
| |
| static |
| llvm::Constant *GenerateConstantVector(llvm::SmallVector<unsigned, 4> &Elts) { |
| llvm::SmallVector<llvm::Constant *, 4> CElts; |
| |
| for (unsigned i = 0, e = Elts.size(); i != e; ++i) |
| CElts.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, Elts[i])); |
| |
| return llvm::ConstantVector::get(&CElts[0], CElts.size()); |
| } |
| |
| LValue CodeGenFunction:: |
| EmitExtVectorElementExpr(const ExtVectorElementExpr *E) { |
| // Emit the base vector as an l-value. |
| LValue Base = EmitLValue(E->getBase()); |
| |
| // Encode the element access list into a vector of unsigned indices. |
| llvm::SmallVector<unsigned, 4> Indices; |
| E->getEncodedElementAccess(Indices); |
| |
| if (Base.isSimple()) { |
| llvm::Constant *CV = GenerateConstantVector(Indices); |
| return LValue::MakeExtVectorElt(Base.getAddress(), CV, |
| E->getBase()->getType().getCVRQualifiers()); |
| } |
| assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!"); |
| |
| llvm::Constant *BaseElts = Base.getExtVectorElts(); |
| llvm::SmallVector<llvm::Constant *, 4> CElts; |
| |
| for (unsigned i = 0, e = Indices.size(); i != e; ++i) { |
| if (isa<llvm::ConstantAggregateZero>(BaseElts)) |
| CElts.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, 0)); |
| else |
| CElts.push_back(BaseElts->getOperand(Indices[i])); |
| } |
| llvm::Constant *CV = llvm::ConstantVector::get(&CElts[0], CElts.size()); |
| return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, |
| E->getBase()->getType().getCVRQualifiers()); |
| } |
| |
| LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) { |
| bool isUnion = false; |
| Expr *BaseExpr = E->getBase(); |
| llvm::Value *BaseValue = NULL; |
| unsigned CVRQualifiers=0; |
| |
| // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar. |
| if (E->isArrow()) { |
| BaseValue = EmitScalarExpr(BaseExpr); |
| const PointerType *PTy = |
| cast<PointerType>(getContext().getCanonicalType(BaseExpr->getType())); |
| if (PTy->getPointeeType()->isUnionType()) |
| isUnion = true; |
| CVRQualifiers = PTy->getPointeeType().getCVRQualifiers(); |
| } |
| else { |
| LValue BaseLV = EmitLValue(BaseExpr); |
| // FIXME: this isn't right for bitfields. |
| BaseValue = BaseLV.getAddress(); |
| if (BaseExpr->getType()->isUnionType()) |
| isUnion = true; |
| CVRQualifiers = BaseExpr->getType().getCVRQualifiers(); |
| } |
| |
| FieldDecl *Field = E->getMemberDecl(); |
| return EmitLValueForField(BaseValue, Field, isUnion, CVRQualifiers); |
| } |
| |
| LValue CodeGenFunction::EmitLValueForField(llvm::Value* BaseValue, |
| FieldDecl* Field, |
| bool isUnion, |
| unsigned CVRQualifiers) |
| { |
| llvm::Value *V; |
| unsigned idx = CGM.getTypes().getLLVMFieldNo(Field); |
| |
| if (Field->isBitField()) { |
| // FIXME: CodeGenTypes should expose a method to get the appropriate |
| // type for FieldTy (the appropriate type is ABI-dependent). |
| const llvm::Type *FieldTy = CGM.getTypes().ConvertTypeForMem(Field->getType()); |
| const llvm::PointerType *BaseTy = |
| cast<llvm::PointerType>(BaseValue->getType()); |
| unsigned AS = BaseTy->getAddressSpace(); |
| BaseValue = Builder.CreateBitCast(BaseValue, |
| llvm::PointerType::get(FieldTy, AS), |
| "tmp"); |
| V = Builder.CreateGEP(BaseValue, |
| llvm::ConstantInt::get(llvm::Type::Int32Ty, idx), |
| "tmp"); |
| |
| CodeGenTypes::BitFieldInfo bitFieldInfo = |
| CGM.getTypes().getBitFieldInfo(Field); |
| return LValue::MakeBitfield(V, bitFieldInfo.Begin, bitFieldInfo.Size, |
| Field->getType()->isSignedIntegerType(), |
| Field->getType().getCVRQualifiers()|CVRQualifiers); |
| } |
| |
| V = Builder.CreateStructGEP(BaseValue, idx, "tmp"); |
| |
| // Match union field type. |
| if (isUnion) { |
| const llvm::Type *FieldTy = |
| CGM.getTypes().ConvertTypeForMem(Field->getType()); |
| const llvm::PointerType * BaseTy = |
| cast<llvm::PointerType>(BaseValue->getType()); |
| unsigned AS = BaseTy->getAddressSpace(); |
| V = Builder.CreateBitCast(V, |
| llvm::PointerType::get(FieldTy, AS), |
| "tmp"); |
| } |
| |
| return LValue::MakeAddr(V, |
| Field->getType().getCVRQualifiers()|CVRQualifiers); |
| } |
| |
| LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr* E) |
| { |
| const llvm::Type *LTy = ConvertType(E->getType()); |
| llvm::Value *DeclPtr = CreateTempAlloca(LTy, ".compoundliteral"); |
| |
| const Expr* InitExpr = E->getInitializer(); |
| LValue Result = LValue::MakeAddr(DeclPtr, E->getType().getCVRQualifiers()); |
| |
| if (E->getType()->isComplexType()) { |
| EmitComplexExprIntoAddr(InitExpr, DeclPtr, false); |
| } else if (hasAggregateLLVMType(E->getType())) { |
| EmitAnyExpr(InitExpr, DeclPtr, false); |
| } else { |
| EmitStoreThroughLValue(EmitAnyExpr(InitExpr), Result, E->getType()); |
| } |
| |
| return Result; |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Expression Emission |
| //===--------------------------------------------------------------------===// |
| |
| |
| RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) { |
| if (const ImplicitCastExpr *IcExpr = |
| dyn_cast<const ImplicitCastExpr>(E->getCallee())) |
| if (const DeclRefExpr *DRExpr = |
| dyn_cast<const DeclRefExpr>(IcExpr->getSubExpr())) |
| if (const FunctionDecl *FDecl = |
| dyn_cast<const FunctionDecl>(DRExpr->getDecl())) |
| if (unsigned builtinID = FDecl->getIdentifier()->getBuiltinID()) |
| return EmitBuiltinExpr(builtinID, E); |
| |
| llvm::Value *Callee = EmitScalarExpr(E->getCallee()); |
| return EmitCallExpr(Callee, E->getCallee()->getType(), |
| E->arg_begin(), E->arg_end()); |
| } |
| |
| RValue CodeGenFunction::EmitCallExpr(Expr *FnExpr, |
| CallExpr::const_arg_iterator ArgBeg, |
| CallExpr::const_arg_iterator ArgEnd) { |
| |
| llvm::Value *Callee = EmitScalarExpr(FnExpr); |
| return EmitCallExpr(Callee, FnExpr->getType(), ArgBeg, ArgEnd); |
| } |
| |
| LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) { |
| // Can only get l-value for binary operator expressions which are a |
| // simple assignment of aggregate type. |
| if (E->getOpcode() != BinaryOperator::Assign) |
| return EmitUnsupportedLValue(E, "binary l-value expression"); |
| |
| llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType())); |
| EmitAggExpr(E, Temp, false); |
| // FIXME: Are these qualifiers correct? |
| return LValue::MakeAddr(Temp, E->getType().getCVRQualifiers()); |
| } |
| |
| LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) { |
| // Can only get l-value for call expression returning aggregate type |
| RValue RV = EmitCallExpr(E); |
| // FIXME: can this be volatile? |
| return LValue::MakeAddr(RV.getAggregateAddr(), |
| E->getType().getCVRQualifiers()); |
| } |
| |
| LValue |
| CodeGenFunction::EmitCXXConditionDeclLValue(const CXXConditionDeclExpr *E) { |
| EmitLocalBlockVarDecl(*E->getVarDecl()); |
| return EmitDeclRefLValue(E); |
| } |
| |
| LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) { |
| // Can only get l-value for message expression returning aggregate type |
| RValue RV = EmitObjCMessageExpr(E); |
| // FIXME: can this be volatile? |
| return LValue::MakeAddr(RV.getAggregateAddr(), |
| E->getType().getCVRQualifiers()); |
| } |
| |
| llvm::Value *CodeGenFunction::EmitIvarOffset(ObjCInterfaceDecl *Interface, |
| const ObjCIvarDecl *Ivar) { |
| // Objective-C objects are traditionally C structures with their layout |
| // defined at compile-time. In some implementations, their layout is not |
| // defined until run time in order to allow instance variables to be added to |
| // a class without recompiling all of the subclasses. If this is the case |
| // then the CGObjCRuntime subclass must return true to LateBoundIvars and |
| // implement the lookup itself. |
| if (CGM.getObjCRuntime().LateBoundIVars()) |
| assert(0 && "late-bound ivars are unsupported"); |
| |
| const llvm::Type *InterfaceLTy = |
| CGM.getTypes().ConvertType(getContext().getObjCInterfaceType(Interface)); |
| const llvm::StructLayout *Layout = |
| CGM.getTargetData().getStructLayout(cast<llvm::StructType>(InterfaceLTy)); |
| uint64_t Offset = |
| Layout->getElementOffset(CGM.getTypes().getLLVMFieldNo(Ivar)); |
| |
| return llvm::ConstantInt::get(CGM.getTypes().ConvertType(getContext().LongTy), |
| Offset); |
| } |
| |
| LValue CodeGenFunction::EmitLValueForIvar(llvm::Value *BaseValue, |
| const ObjCIvarDecl *Ivar, |
| unsigned CVRQualifiers) { |
| // See comment in EmitIvarOffset. |
| if (CGM.getObjCRuntime().LateBoundIVars()) |
| assert(0 && "late-bound ivars are unsupported"); |
| |
| if (Ivar->isBitField()) |
| assert(0 && "ivar bitfields are unsupported"); |
| |
| // TODO: Add a special case for isa (index 0) |
| unsigned Index = CGM.getTypes().getLLVMFieldNo(Ivar); |
| |
| llvm::Value *V = Builder.CreateStructGEP(BaseValue, Index, "tmp"); |
| return LValue::MakeAddr(V, Ivar->getType().getCVRQualifiers()|CVRQualifiers); |
| } |
| |
| LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) { |
| // FIXME: A lot of the code below could be shared with EmitMemberExpr. |
| llvm::Value *BaseValue = 0; |
| const Expr *BaseExpr = E->getBase(); |
| unsigned CVRQualifiers = 0; |
| if (E->isArrow()) { |
| BaseValue = EmitScalarExpr(BaseExpr); |
| const PointerType *PTy = |
| cast<PointerType>(getContext().getCanonicalType(BaseExpr->getType())); |
| CVRQualifiers = PTy->getPointeeType().getCVRQualifiers(); |
| } else { |
| LValue BaseLV = EmitLValue(BaseExpr); |
| // FIXME: this isn't right for bitfields. |
| BaseValue = BaseLV.getAddress(); |
| CVRQualifiers = BaseExpr->getType().getCVRQualifiers(); |
| } |
| |
| return EmitLValueForIvar(BaseValue, E->getDecl(), CVRQualifiers); |
| } |
| |
| LValue |
| CodeGenFunction::EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E) { |
| // This is a special l-value that just issues sends when we load or |
| // store through it. |
| return LValue::MakePropertyRef(E, E->getType().getCVRQualifiers()); |
| } |
| |
| LValue |
| CodeGenFunction::EmitObjCSuperExpr(const ObjCSuperExpr *E) { |
| return EmitUnsupportedLValue(E, "use of super"); |
| } |
| |
| RValue CodeGenFunction::EmitCallExpr(llvm::Value *Callee, QualType FnType, |
| CallExpr::const_arg_iterator ArgBeg, |
| CallExpr::const_arg_iterator ArgEnd) { |
| |
| // The callee type will always be a pointer to function type, get the function |
| // type. |
| FnType = FnType->getAsPointerType()->getPointeeType(); |
| QualType ResultType = FnType->getAsFunctionType()->getResultType(); |
| |
| CallArgList Args; |
| for (CallExpr::const_arg_iterator I = ArgBeg; I != ArgEnd; ++I) |
| Args.push_back(std::make_pair(EmitAnyExprToTemp(*I), |
| I->getType())); |
| |
| return EmitCall(Callee, ResultType, Args); |
| } |