| //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Chris Lattner and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements semantic analysis for declarations. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Sema.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Builtins.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/Type.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include "clang/Parse/Scope.h" |
| #include "clang/Lex/IdentifierTable.h" |
| #include "clang/Basic/LangOptions.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallSet.h" |
| using namespace clang; |
| |
| Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) const { |
| Decl *IIDecl = II.getFETokenInfo<Decl>(); |
| if (dyn_cast_or_null<TypedefDecl>(IIDecl) || |
| dyn_cast_or_null<ObjcInterfaceDecl>(IIDecl)) |
| return IIDecl; |
| return 0; |
| } |
| |
| void Sema::PopScope(SourceLocation Loc, Scope *S) { |
| if (S->decl_empty()) return; |
| assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!"); |
| |
| for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end(); |
| I != E; ++I) { |
| Decl *TmpD = static_cast<Decl*>(*I); |
| assert(TmpD && "This decl didn't get pushed??"); |
| ScopedDecl *D = dyn_cast<ScopedDecl>(TmpD); |
| assert(D && "This decl isn't a ScopedDecl?"); |
| |
| IdentifierInfo *II = D->getIdentifier(); |
| if (!II) continue; |
| |
| // Unlink this decl from the identifier. Because the scope contains decls |
| // in an unordered collection, and because we have multiple identifier |
| // namespaces (e.g. tag, normal, label),the decl may not be the first entry. |
| if (II->getFETokenInfo<Decl>() == D) { |
| // Normal case, no multiple decls in different namespaces. |
| II->setFETokenInfo(D->getNext()); |
| } else { |
| // Scan ahead. There are only three namespaces in C, so this loop can |
| // never execute more than 3 times. |
| ScopedDecl *SomeDecl = II->getFETokenInfo<ScopedDecl>(); |
| while (SomeDecl->getNext() != D) { |
| SomeDecl = SomeDecl->getNext(); |
| assert(SomeDecl && "Didn't find this decl on its identifier's chain!"); |
| } |
| SomeDecl->setNext(D->getNext()); |
| } |
| |
| // This will have to be revisited for C++: there we want to nest stuff in |
| // namespace decls etc. Even for C, we might want a top-level translation |
| // unit decl or something. |
| if (!CurFunctionDecl) |
| continue; |
| |
| // Chain this decl to the containing function, it now owns the memory for |
| // the decl. |
| D->setNext(CurFunctionDecl->getDeclChain()); |
| CurFunctionDecl->setDeclChain(D); |
| } |
| } |
| |
| /// getObjcInterfaceDecl - Look up a for a class declaration in the scope. |
| /// return 0 if one not found. |
| ObjcInterfaceDecl *Sema::getObjCInterfaceDecl(Scope *S, |
| IdentifierInfo *Id, |
| SourceLocation IdLoc) { |
| ScopedDecl *IdDecl = LookupScopedDecl(Id, Decl::IDNS_Ordinary, |
| IdLoc, S); |
| if (IdDecl && !isa<ObjcInterfaceDecl>(IdDecl)) |
| IdDecl = 0; |
| return cast_or_null<ObjcInterfaceDecl>(static_cast<Decl*>(IdDecl)); |
| } |
| |
| /// getObjcProtocolDecl - Look up a for a protocol declaration in the scope. |
| /// return 0 if one not found. |
| ObjcProtocolDecl *Sema::getObjCProtocolDecl(Scope *S, |
| IdentifierInfo *Id, |
| SourceLocation IdLoc) { |
| // Note that Protocols have their own namespace. |
| ScopedDecl *PrDecl = LookupScopedDecl(Id, Decl::IDNS_Protocol, |
| IdLoc, S); |
| if (PrDecl && !isa<ObjcProtocolDecl>(PrDecl)) |
| PrDecl = 0; |
| return cast_or_null<ObjcProtocolDecl>(static_cast<Decl*>(PrDecl)); |
| } |
| |
| /// LookupScopedDecl - Look up the inner-most declaration in the specified |
| /// namespace. |
| ScopedDecl *Sema::LookupScopedDecl(IdentifierInfo *II, unsigned NSI, |
| SourceLocation IdLoc, Scope *S) { |
| if (II == 0) return 0; |
| Decl::IdentifierNamespace NS = (Decl::IdentifierNamespace)NSI; |
| |
| // Scan up the scope chain looking for a decl that matches this identifier |
| // that is in the appropriate namespace. This search should not take long, as |
| // shadowing of names is uncommon, and deep shadowing is extremely uncommon. |
| for (ScopedDecl *D = II->getFETokenInfo<ScopedDecl>(); D; D = D->getNext()) |
| if (D->getIdentifierNamespace() == NS) |
| return D; |
| |
| // If we didn't find a use of this identifier, and if the identifier |
| // corresponds to a compiler builtin, create the decl object for the builtin |
| // now, injecting it into translation unit scope, and return it. |
| if (NS == Decl::IDNS_Ordinary) { |
| // If this is a builtin on some other target, or if this builtin varies |
| // across targets (e.g. in type), emit a diagnostic and mark the translation |
| // unit non-portable for using it. |
| if (II->isNonPortableBuiltin()) { |
| // Only emit this diagnostic once for this builtin. |
| II->setNonPortableBuiltin(false); |
| Context.Target.DiagnoseNonPortability(IdLoc, |
| diag::port_target_builtin_use); |
| } |
| // If this is a builtin on this (or all) targets, create the decl. |
| if (unsigned BuiltinID = II->getBuiltinID()) |
| return LazilyCreateBuiltin(II, BuiltinID, S); |
| } |
| return 0; |
| } |
| |
| /// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope. |
| /// lazily create a decl for it. |
| ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid, Scope *S) { |
| Builtin::ID BID = (Builtin::ID)bid; |
| |
| QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context); |
| FunctionDecl *New = new FunctionDecl(SourceLocation(), II, R, |
| FunctionDecl::Extern, false, 0); |
| |
| // Find translation-unit scope to insert this function into. |
| if (Scope *FnS = S->getFnParent()) |
| S = FnS->getParent(); // Skip all scopes in a function at once. |
| while (S->getParent()) |
| S = S->getParent(); |
| S->AddDecl(New); |
| |
| // Add this decl to the end of the identifier info. |
| if (ScopedDecl *LastDecl = II->getFETokenInfo<ScopedDecl>()) { |
| // Scan until we find the last (outermost) decl in the id chain. |
| while (LastDecl->getNext()) |
| LastDecl = LastDecl->getNext(); |
| // Insert before (outside) it. |
| LastDecl->setNext(New); |
| } else { |
| II->setFETokenInfo(New); |
| } |
| // Make sure clients iterating over decls see this. |
| LastInGroupList.push_back(New); |
| |
| return New; |
| } |
| |
| /// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name |
| /// and scope as a previous declaration 'Old'. Figure out how to resolve this |
| /// situation, merging decls or emitting diagnostics as appropriate. |
| /// |
| TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, ScopedDecl *OldD) { |
| // Verify the old decl was also a typedef. |
| TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD); |
| if (!Old) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind, |
| New->getName()); |
| Diag(OldD->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| |
| // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. |
| // TODO: This is totally simplistic. It should handle merging functions |
| // together etc, merging extern int X; int X; ... |
| Diag(New->getLocation(), diag::err_redefinition, New->getName()); |
| Diag(Old->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| |
| /// MergeFunctionDecl - We just parsed a function 'New' which has the same name |
| /// and scope as a previous declaration 'Old'. Figure out how to resolve this |
| /// situation, merging decls or emitting diagnostics as appropriate. |
| /// |
| FunctionDecl *Sema::MergeFunctionDecl(FunctionDecl *New, ScopedDecl *OldD) { |
| // Verify the old decl was also a function. |
| FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD); |
| if (!Old) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind, |
| New->getName()); |
| Diag(OldD->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| |
| // This is not right, but it's a start. If 'Old' is a function prototype with |
| // the same type as 'New', silently allow this. FIXME: We should link up decl |
| // objects here. |
| if (Old->getBody() == 0 && |
| Old->getCanonicalType() == New->getCanonicalType()) { |
| return New; |
| } |
| |
| // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. |
| // TODO: This is totally simplistic. It should handle merging functions |
| // together etc, merging extern int X; int X; ... |
| Diag(New->getLocation(), diag::err_redefinition, New->getName()); |
| Diag(Old->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| |
| /// MergeVarDecl - We just parsed a variable 'New' which has the same name |
| /// and scope as a previous declaration 'Old'. Figure out how to resolve this |
| /// situation, merging decls or emitting diagnostics as appropriate. |
| /// |
| /// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2). |
| /// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4. |
| /// |
| VarDecl *Sema::MergeVarDecl(VarDecl *New, ScopedDecl *OldD) { |
| // Verify the old decl was also a variable. |
| VarDecl *Old = dyn_cast<VarDecl>(OldD); |
| if (!Old) { |
| Diag(New->getLocation(), diag::err_redefinition_different_kind, |
| New->getName()); |
| Diag(OldD->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| FileVarDecl *OldFSDecl = dyn_cast<FileVarDecl>(Old); |
| FileVarDecl *NewFSDecl = dyn_cast<FileVarDecl>(New); |
| bool OldIsTentative = false; |
| |
| if (OldFSDecl && NewFSDecl) { // C99 6.9.2 |
| // Handle C "tentative" external object definitions. FIXME: finish! |
| if (!OldFSDecl->getInit() && |
| (OldFSDecl->getStorageClass() == VarDecl::None || |
| OldFSDecl->getStorageClass() == VarDecl::Static)) |
| OldIsTentative = true; |
| } |
| // Verify the types match. |
| if (Old->getCanonicalType() != New->getCanonicalType()) { |
| Diag(New->getLocation(), diag::err_redefinition, New->getName()); |
| Diag(Old->getLocation(), diag::err_previous_definition); |
| return New; |
| } |
| // We've verified the types match, now check if Old is "extern". |
| if (Old->getStorageClass() != VarDecl::Extern) { |
| Diag(New->getLocation(), diag::err_redefinition, New->getName()); |
| Diag(Old->getLocation(), diag::err_previous_definition); |
| } |
| return New; |
| } |
| |
| /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with |
| /// no declarator (e.g. "struct foo;") is parsed. |
| Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) { |
| // TODO: emit error on 'int;' or 'const enum foo;'. |
| // TODO: emit error on 'typedef int;' |
| // if (!DS.isMissingDeclaratorOk()) Diag(...); |
| |
| return 0; |
| } |
| |
| bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) { |
| AssignmentCheckResult result; |
| SourceLocation loc = Init->getLocStart(); |
| // Get the type before calling CheckSingleAssignmentConstraints(), since |
| // it can promote the expression. |
| QualType rhsType = Init->getType(); |
| |
| result = CheckSingleAssignmentConstraints(DeclType, Init); |
| |
| // decode the result (notice that extensions still return a type). |
| switch (result) { |
| case Compatible: |
| break; |
| case Incompatible: |
| // FIXME: tighten up this check which should allow: |
| // char s[] = "abc", which is identical to char s[] = { 'a', 'b', 'c' }; |
| if (rhsType == Context.getPointerType(Context.CharTy)) |
| break; |
| Diag(loc, diag::err_typecheck_assign_incompatible, |
| DeclType.getAsString(), rhsType.getAsString(), |
| Init->getSourceRange()); |
| return true; |
| case PointerFromInt: |
| // check for null pointer constant (C99 6.3.2.3p3) |
| if (!Init->isNullPointerConstant(Context)) { |
| Diag(loc, diag::ext_typecheck_assign_pointer_int, |
| DeclType.getAsString(), rhsType.getAsString(), |
| Init->getSourceRange()); |
| return true; |
| } |
| break; |
| case IntFromPointer: |
| Diag(loc, diag::ext_typecheck_assign_pointer_int, |
| DeclType.getAsString(), rhsType.getAsString(), |
| Init->getSourceRange()); |
| break; |
| case IncompatiblePointer: |
| Diag(loc, diag::ext_typecheck_assign_incompatible_pointer, |
| DeclType.getAsString(), rhsType.getAsString(), |
| Init->getSourceRange()); |
| break; |
| case CompatiblePointerDiscardsQualifiers: |
| Diag(loc, diag::ext_typecheck_assign_discards_qualifiers, |
| DeclType.getAsString(), rhsType.getAsString(), |
| Init->getSourceRange()); |
| break; |
| } |
| return false; |
| } |
| |
| bool Sema::CheckInitExpr(Expr *expr, InitListExpr *IList, unsigned slot, |
| bool isStatic, QualType ElementType) { |
| SourceLocation loc; |
| Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer. |
| |
| if (isStatic && !expr->isConstantExpr(Context, &loc)) { // C99 6.7.8p4. |
| Diag(loc, diag::err_init_element_not_constant, expr->getSourceRange()); |
| return true; |
| } else if (CheckSingleInitializer(expr, ElementType)) { |
| return true; // types weren't compatible. |
| } |
| if (savExpr != expr) // The type was promoted, update initializer list. |
| IList->setInit(slot, expr); |
| return false; |
| } |
| |
| void Sema::CheckVariableInitList(QualType DeclType, InitListExpr *IList, |
| QualType ElementType, bool isStatic, |
| int &nInitializers, bool &hadError) { |
| for (unsigned i = 0; i < IList->getNumInits(); i++) { |
| Expr *expr = IList->getInit(i); |
| |
| if (InitListExpr *InitList = dyn_cast<InitListExpr>(expr)) { |
| if (const ConstantArrayType *CAT = DeclType->getAsConstantArrayType()) { |
| int maxElements = CAT->getMaximumElements(); |
| CheckConstantInitList(DeclType, InitList, ElementType, isStatic, |
| maxElements, hadError); |
| } |
| } else { |
| hadError = CheckInitExpr(expr, IList, i, isStatic, ElementType); |
| } |
| nInitializers++; |
| } |
| return; |
| } |
| |
| // FIXME: Doesn't deal with arrays of structures yet. |
| void Sema::CheckConstantInitList(QualType DeclType, InitListExpr *IList, |
| QualType ElementType, bool isStatic, |
| int &totalInits, bool &hadError) { |
| int maxElementsAtThisLevel = 0; |
| int nInitsAtLevel = 0; |
| |
| if (const ConstantArrayType *CAT = DeclType->getAsConstantArrayType()) { |
| // We have a constant array type, compute maxElements *at this level*. |
| maxElementsAtThisLevel = CAT->getMaximumElements(); |
| // Set DeclType, used below to recurse (for multi-dimensional arrays). |
| DeclType = CAT->getElementType(); |
| } else if (DeclType->isScalarType()) { |
| Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init, |
| IList->getSourceRange()); |
| maxElementsAtThisLevel = 1; |
| } |
| // The empty init list "{ }" is treated specially below. |
| unsigned numInits = IList->getNumInits(); |
| if (numInits) { |
| for (unsigned i = 0; i < numInits; i++) { |
| Expr *expr = IList->getInit(i); |
| |
| if (InitListExpr *InitList = dyn_cast<InitListExpr>(expr)) { |
| CheckConstantInitList(DeclType, InitList, ElementType, isStatic, |
| totalInits, hadError); |
| } else { |
| hadError = CheckInitExpr(expr, IList, i, isStatic, ElementType); |
| nInitsAtLevel++; // increment the number of initializers at this level. |
| totalInits--; // decrement the total number of initializers. |
| |
| // Check if we have space for another initializer. |
| if ((nInitsAtLevel > maxElementsAtThisLevel) || (totalInits < 0)) |
| Diag(expr->getLocStart(), diag::warn_excess_initializers, |
| expr->getSourceRange()); |
| } |
| } |
| if (nInitsAtLevel < maxElementsAtThisLevel) // fill the remaining elements. |
| totalInits -= (maxElementsAtThisLevel - nInitsAtLevel); |
| } else { |
| // we have an initializer list with no elements. |
| totalInits -= maxElementsAtThisLevel; |
| if (totalInits < 0) |
| Diag(IList->getLocStart(), diag::warn_excess_initializers, |
| IList->getSourceRange()); |
| } |
| return; |
| } |
| |
| bool Sema::CheckInitializer(Expr *&Init, QualType &DeclType, bool isStatic) { |
| InitListExpr *InitList = dyn_cast<InitListExpr>(Init); |
| if (!InitList) |
| return CheckSingleInitializer(Init, DeclType); |
| |
| // We have an InitListExpr, make sure we set the type. |
| Init->setType(DeclType); |
| |
| bool hadError = false; |
| |
| // C99 6.7.8p3: The type of the entity to be initialized shall be an array |
| // of unknown size ("[]") or an object type that is not a variable array type. |
| if (const VariableArrayType *VAT = DeclType->getAsVariableArrayType()) { |
| Expr *expr = VAT->getSizeExpr(); |
| if (expr) |
| return Diag(expr->getLocStart(), diag::err_variable_object_no_init, |
| expr->getSourceRange()); |
| |
| // We have a VariableArrayType with unknown size. Note that only the first |
| // array can have unknown size. For example, "int [][]" is illegal. |
| int numInits = 0; |
| CheckVariableInitList(VAT->getElementType(), InitList, VAT->getBaseType(), |
| isStatic, numInits, hadError); |
| if (!hadError) { |
| // Return a new array type from the number of initializers (C99 6.7.8p22). |
| llvm::APSInt ConstVal(32); |
| ConstVal = numInits; |
| DeclType = Context.getConstantArrayType(DeclType, ConstVal, |
| ArrayType::Normal, 0); |
| } |
| return hadError; |
| } |
| if (const ConstantArrayType *CAT = DeclType->getAsConstantArrayType()) { |
| int maxElements = CAT->getMaximumElements(); |
| CheckConstantInitList(DeclType, InitList, CAT->getBaseType(), |
| isStatic, maxElements, hadError); |
| return hadError; |
| } |
| if (DeclType->isScalarType()) { // C99 6.7.8p11: Allow "int x = { 1, 2 };" |
| int maxElements = 1; |
| CheckConstantInitList(DeclType, InitList, DeclType, isStatic, maxElements, |
| hadError); |
| return hadError; |
| } |
| // FIXME: Handle struct/union types. |
| return hadError; |
| } |
| |
| Sema::DeclTy * |
| Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) { |
| ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl); |
| IdentifierInfo *II = D.getIdentifier(); |
| |
| // All of these full declarators require an identifier. If it doesn't have |
| // one, the ParsedFreeStandingDeclSpec action should be used. |
| if (II == 0) { |
| Diag(D.getDeclSpec().getSourceRange().Begin(), |
| diag::err_declarator_need_ident, |
| D.getDeclSpec().getSourceRange(), D.getSourceRange()); |
| return 0; |
| } |
| |
| // The scope passed in may not be a decl scope. Zip up the scope tree until |
| // we find one that is. |
| while ((S->getFlags() & Scope::DeclScope) == 0) |
| S = S->getParent(); |
| |
| // See if this is a redefinition of a variable in the same scope. |
| ScopedDecl *PrevDecl = LookupScopedDecl(II, Decl::IDNS_Ordinary, |
| D.getIdentifierLoc(), S); |
| if (PrevDecl && !S->isDeclScope(PrevDecl)) |
| PrevDecl = 0; // If in outer scope, it isn't the same thing. |
| |
| ScopedDecl *New; |
| bool InvalidDecl = false; |
| |
| if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { |
| TypedefDecl *NewTD = ParseTypedefDecl(S, D, LastDeclarator); |
| if (!NewTD) return 0; |
| |
| // Handle attributes prior to checking for duplicates in MergeVarDecl |
| HandleDeclAttributes(NewTD, D.getDeclSpec().getAttributes(), |
| D.getAttributes()); |
| // Merge the decl with the existing one if appropriate. |
| if (PrevDecl) { |
| NewTD = MergeTypeDefDecl(NewTD, PrevDecl); |
| if (NewTD == 0) return 0; |
| } |
| New = NewTD; |
| if (S->getParent() == 0) { |
| // C99 6.7.7p2: If a typedef name specifies a variably modified type |
| // then it shall have block scope. |
| if (const VariableArrayType *VAT = |
| NewTD->getUnderlyingType()->getAsVariablyModifiedType()) { |
| Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla, |
| VAT->getSizeExpr()->getSourceRange()); |
| InvalidDecl = true; |
| } |
| } |
| } else if (D.isFunctionDeclarator()) { |
| QualType R = GetTypeForDeclarator(D, S); |
| assert(!R.isNull() && "GetTypeForDeclarator() returned null type"); |
| |
| FunctionDecl::StorageClass SC = FunctionDecl::None; |
| switch (D.getDeclSpec().getStorageClassSpec()) { |
| default: assert(0 && "Unknown storage class!"); |
| case DeclSpec::SCS_auto: |
| case DeclSpec::SCS_register: |
| Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func, |
| R.getAsString()); |
| InvalidDecl = true; |
| break; |
| case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break; |
| case DeclSpec::SCS_extern: SC = FunctionDecl::Extern; break; |
| case DeclSpec::SCS_static: SC = FunctionDecl::Static; break; |
| } |
| |
| FunctionDecl *NewFD = new FunctionDecl(D.getIdentifierLoc(), II, R, SC, |
| D.getDeclSpec().isInlineSpecified(), |
| LastDeclarator); |
| |
| // Merge the decl with the existing one if appropriate. |
| if (PrevDecl) { |
| NewFD = MergeFunctionDecl(NewFD, PrevDecl); |
| if (NewFD == 0) return 0; |
| } |
| New = NewFD; |
| } else { |
| QualType R = GetTypeForDeclarator(D, S); |
| assert(!R.isNull() && "GetTypeForDeclarator() returned null type"); |
| |
| VarDecl *NewVD; |
| VarDecl::StorageClass SC; |
| switch (D.getDeclSpec().getStorageClassSpec()) { |
| default: assert(0 && "Unknown storage class!"); |
| case DeclSpec::SCS_unspecified: SC = VarDecl::None; break; |
| case DeclSpec::SCS_extern: SC = VarDecl::Extern; break; |
| case DeclSpec::SCS_static: SC = VarDecl::Static; break; |
| case DeclSpec::SCS_auto: SC = VarDecl::Auto; break; |
| case DeclSpec::SCS_register: SC = VarDecl::Register; break; |
| } |
| if (S->getParent() == 0) { |
| // C99 6.9p2: The storage-class specifiers auto and register shall not |
| // appear in the declaration specifiers in an external declaration. |
| if (SC == VarDecl::Auto || SC == VarDecl::Register) { |
| Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope, |
| R.getAsString()); |
| InvalidDecl = true; |
| } |
| NewVD = new FileVarDecl(D.getIdentifierLoc(), II, R, SC, LastDeclarator); |
| } else { |
| NewVD = new BlockVarDecl(D.getIdentifierLoc(), II, R, SC, LastDeclarator); |
| } |
| // Handle attributes prior to checking for duplicates in MergeVarDecl |
| HandleDeclAttributes(NewVD, D.getDeclSpec().getAttributes(), |
| D.getAttributes()); |
| |
| // Merge the decl with the existing one if appropriate. |
| if (PrevDecl) { |
| NewVD = MergeVarDecl(NewVD, PrevDecl); |
| if (NewVD == 0) return 0; |
| } |
| New = NewVD; |
| } |
| |
| // If this has an identifier, add it to the scope stack. |
| if (II) { |
| New->setNext(II->getFETokenInfo<ScopedDecl>()); |
| II->setFETokenInfo(New); |
| S->AddDecl(New); |
| } |
| |
| if (S->getParent() == 0) |
| AddTopLevelDecl(New, LastDeclarator); |
| |
| // If any semantic error occurred, mark the decl as invalid. |
| if (D.getInvalidType() || InvalidDecl) |
| New->setInvalidDecl(); |
| |
| return New; |
| } |
| |
| void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) { |
| Decl *RealDecl = static_cast<Decl *>(dcl); |
| Expr *Init = static_cast<Expr *>(init); |
| |
| assert((RealDecl && Init) && "missing decl or initializer"); |
| |
| VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); |
| if (!VDecl) { |
| Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(), |
| diag::err_illegal_initializer); |
| RealDecl->setInvalidDecl(); |
| return; |
| } |
| // Get the decls type and save a reference for later, since |
| // CheckInitializer may change it. |
| QualType DclT = VDecl->getType(), SavT = DclT; |
| if (BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(VDecl)) { |
| VarDecl::StorageClass SC = BVD->getStorageClass(); |
| if (SC == VarDecl::Extern) { // C99 6.7.8p5 |
| Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); |
| BVD->setInvalidDecl(); |
| } else if (!BVD->isInvalidDecl()) { |
| CheckInitializer(Init, DclT, SC == VarDecl::Static); |
| } |
| } else if (FileVarDecl *FVD = dyn_cast<FileVarDecl>(VDecl)) { |
| if (FVD->getStorageClass() == VarDecl::Extern) |
| Diag(VDecl->getLocation(), diag::warn_extern_init); |
| if (!FVD->isInvalidDecl()) |
| CheckInitializer(Init, DclT, true); |
| } |
| // If the type changed, it means we had an incomplete type that was |
| // completed by the initializer. For example: |
| // int ary[] = { 1, 3, 5 }; |
| // "ary" transitions from a VariableArrayType to a ConstantArrayType. |
| if (!VDecl->isInvalidDecl() && (DclT != SavT)) |
| VDecl->setType(DclT); |
| |
| // Attach the initializer to the decl. |
| VDecl->setInit(Init); |
| return; |
| } |
| |
| /// The declarators are chained together backwards, reverse the list. |
| Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) { |
| // Often we have single declarators, handle them quickly. |
| Decl *GroupDecl = static_cast<Decl*>(group); |
| if (GroupDecl == 0) |
| return 0; |
| |
| ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl); |
| ScopedDecl *NewGroup = 0; |
| if (Group->getNextDeclarator() == 0) |
| NewGroup = Group; |
| else { // reverse the list. |
| while (Group) { |
| ScopedDecl *Next = Group->getNextDeclarator(); |
| Group->setNextDeclarator(NewGroup); |
| NewGroup = Group; |
| Group = Next; |
| } |
| } |
| // Perform semantic analysis that depends on having fully processed both |
| // the declarator and initializer. |
| for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) { |
| VarDecl *IDecl = dyn_cast<VarDecl>(ID); |
| if (!IDecl) |
| continue; |
| FileVarDecl *FVD = dyn_cast<FileVarDecl>(IDecl); |
| BlockVarDecl *BVD = dyn_cast<BlockVarDecl>(IDecl); |
| QualType T = IDecl->getType(); |
| |
| // C99 6.7.5.2p2: If an identifier is declared to be an object with |
| // static storage duration, it shall not have a variable length array. |
| if ((FVD || BVD) && IDecl->getStorageClass() == VarDecl::Static) { |
| if (const VariableArrayType *VLA = T->getAsVariableArrayType()) { |
| if (VLA->getSizeExpr()) { |
| Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla); |
| IDecl->setInvalidDecl(); |
| } |
| } |
| } |
| // Block scope. C99 6.7p7: If an identifier for an object is declared with |
| // no linkage (C99 6.2.2p6), the type for the object shall be complete... |
| if (BVD && IDecl->getStorageClass() != VarDecl::Extern) { |
| if (T->isIncompleteType()) { |
| Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type, |
| T.getAsString()); |
| IDecl->setInvalidDecl(); |
| } |
| } |
| // File scope. C99 6.9.2p2: A declaration of an identifier for and |
| // object that has file scope without an initializer, and without a |
| // storage-class specifier or with the storage-class specifier "static", |
| // constitutes a tentative definition. Note: A tentative definition with |
| // external linkage is valid (C99 6.2.2p5). |
| if (FVD && !FVD->getInit() && FVD->getStorageClass() == VarDecl::Static) { |
| // C99 6.9.2p3: If the declaration of an identifier for an object is |
| // a tentative definition and has internal linkage (C99 6.2.2p3), the |
| // declared type shall not be an incomplete type. |
| if (T->isIncompleteType()) { |
| Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type, |
| T.getAsString()); |
| IDecl->setInvalidDecl(); |
| } |
| } |
| } |
| return NewGroup; |
| } |
| |
| // Called from Sema::ParseStartOfFunctionDef(). |
| ParmVarDecl * |
| Sema::ParseParamDeclarator(DeclaratorChunk &FTI, unsigned ArgNo, |
| Scope *FnScope) { |
| const DeclaratorChunk::ParamInfo &PI = FTI.Fun.ArgInfo[ArgNo]; |
| |
| IdentifierInfo *II = PI.Ident; |
| // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope. |
| // Can this happen for params? We already checked that they don't conflict |
| // among each other. Here they can only shadow globals, which is ok. |
| if (/*Decl *PrevDecl = */LookupScopedDecl(II, Decl::IDNS_Ordinary, |
| PI.IdentLoc, FnScope)) { |
| |
| } |
| |
| // FIXME: Handle storage class (auto, register). No declarator? |
| // TODO: Chain to previous parameter with the prevdeclarator chain? |
| |
| // Perform the default function/array conversion (C99 6.7.5.3p[7,8]). |
| // Doing the promotion here has a win and a loss. The win is the type for |
| // both Decl's and DeclRefExpr's will match (a convenient invariant for the |
| // code generator). The loss is the orginal type isn't preserved. For example: |
| // |
| // void func(int parmvardecl[5]) { // convert "int [5]" to "int *" |
| // int blockvardecl[5]; |
| // sizeof(parmvardecl); // size == 4 |
| // sizeof(blockvardecl); // size == 20 |
| // } |
| // |
| // For expressions, all implicit conversions are captured using the |
| // ImplicitCastExpr AST node (we have no such mechanism for Decl's). |
| // |
| // FIXME: If a source translation tool needs to see the original type, then |
| // we need to consider storing both types (in ParmVarDecl)... |
| // |
| QualType parmDeclType = QualType::getFromOpaquePtr(PI.TypeInfo); |
| if (const ArrayType *AT = parmDeclType->getAsArrayType()) |
| parmDeclType = Context.getPointerType(AT->getElementType()); |
| else if (parmDeclType->isFunctionType()) |
| parmDeclType = Context.getPointerType(parmDeclType); |
| |
| ParmVarDecl *New = new ParmVarDecl(PI.IdentLoc, II, parmDeclType, |
| VarDecl::None, 0); |
| if (PI.InvalidType) |
| New->setInvalidDecl(); |
| |
| // If this has an identifier, add it to the scope stack. |
| if (II) { |
| New->setNext(II->getFETokenInfo<ScopedDecl>()); |
| II->setFETokenInfo(New); |
| FnScope->AddDecl(New); |
| } |
| |
| return New; |
| } |
| |
| |
| Sema::DeclTy *Sema::ParseStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) { |
| assert(CurFunctionDecl == 0 && "Function parsing confused"); |
| assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function && |
| "Not a function declarator!"); |
| DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; |
| |
| // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared' |
| // for a K&R function. |
| if (!FTI.hasPrototype) { |
| for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) { |
| if (FTI.ArgInfo[i].TypeInfo == 0) { |
| Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared, |
| FTI.ArgInfo[i].Ident->getName()); |
| // Implicitly declare the argument as type 'int' for lack of a better |
| // type. |
| FTI.ArgInfo[i].TypeInfo = Context.IntTy.getAsOpaquePtr(); |
| } |
| } |
| |
| // Since this is a function definition, act as though we have information |
| // about the arguments. |
| FTI.hasPrototype = true; |
| } else { |
| // FIXME: Diagnose arguments without names in C. |
| |
| } |
| |
| Scope *GlobalScope = FnBodyScope->getParent(); |
| |
| FunctionDecl *FD = |
| static_cast<FunctionDecl*>(ActOnDeclarator(GlobalScope, D, 0)); |
| CurFunctionDecl = FD; |
| |
| // Create Decl objects for each parameter, adding them to the FunctionDecl. |
| llvm::SmallVector<ParmVarDecl*, 16> Params; |
| |
| // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs function that takes |
| // no arguments, not a function that takes a single void argument. |
| if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && |
| FTI.ArgInfo[0].TypeInfo == Context.VoidTy.getAsOpaquePtr()) { |
| // empty arg list, don't push any params. |
| } else { |
| for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) |
| Params.push_back(ParseParamDeclarator(D.getTypeObject(0), i,FnBodyScope)); |
| } |
| |
| FD->setParams(&Params[0], Params.size()); |
| |
| return FD; |
| } |
| |
| Sema::DeclTy *Sema::ParseFunctionDefBody(DeclTy *D, StmtTy *Body) { |
| FunctionDecl *FD = static_cast<FunctionDecl*>(D); |
| FD->setBody((Stmt*)Body); |
| |
| assert(FD == CurFunctionDecl && "Function parsing confused"); |
| CurFunctionDecl = 0; |
| |
| // Verify and clean out per-function state. |
| |
| // Check goto/label use. |
| for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator |
| I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) { |
| // Verify that we have no forward references left. If so, there was a goto |
| // or address of a label taken, but no definition of it. Label fwd |
| // definitions are indicated with a null substmt. |
| if (I->second->getSubStmt() == 0) { |
| LabelStmt *L = I->second; |
| // Emit error. |
| Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName()); |
| |
| // At this point, we have gotos that use the bogus label. Stitch it into |
| // the function body so that they aren't leaked and that the AST is well |
| // formed. |
| L->setSubStmt(new NullStmt(L->getIdentLoc())); |
| cast<CompoundStmt>((Stmt*)Body)->push_back(L); |
| } |
| } |
| LabelMap.clear(); |
| |
| return FD; |
| } |
| |
| |
| /// ImplicitlyDefineFunction - An undeclared identifier was used in a function |
| /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). |
| ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, |
| IdentifierInfo &II, Scope *S) { |
| if (getLangOptions().C99) // Extension in C99. |
| Diag(Loc, diag::ext_implicit_function_decl, II.getName()); |
| else // Legal in C90, but warn about it. |
| Diag(Loc, diag::warn_implicit_function_decl, II.getName()); |
| |
| // FIXME: handle stuff like: |
| // void foo() { extern float X(); } |
| // void bar() { X(); } <-- implicit decl for X in another scope. |
| |
| // Set a Declarator for the implicit definition: int foo(); |
| const char *Dummy; |
| DeclSpec DS; |
| bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy); |
| Error = Error; // Silence warning. |
| assert(!Error && "Error setting up implicit decl!"); |
| Declarator D(DS, Declarator::BlockContext); |
| D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc)); |
| D.SetIdentifier(&II, Loc); |
| |
| // Find translation-unit scope to insert this function into. |
| if (Scope *FnS = S->getFnParent()) |
| S = FnS->getParent(); // Skip all scopes in a function at once. |
| while (S->getParent()) |
| S = S->getParent(); |
| |
| return dyn_cast<ScopedDecl>(static_cast<Decl*>(ActOnDeclarator(S, D, 0))); |
| } |
| |
| |
| TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, |
| ScopedDecl *LastDeclarator) { |
| assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); |
| |
| QualType T = GetTypeForDeclarator(D, S); |
| assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); |
| |
| // Scope manipulation handled by caller. |
| TypedefDecl *NewTD = new TypedefDecl(D.getIdentifierLoc(), D.getIdentifier(), |
| T, LastDeclarator); |
| if (D.getInvalidType()) |
| NewTD->setInvalidDecl(); |
| return NewTD; |
| } |
| |
| Sema::DeclTy *Sema::ObjcStartClassInterface(Scope* S, |
| SourceLocation AtInterfaceLoc, |
| IdentifierInfo *ClassName, SourceLocation ClassLoc, |
| IdentifierInfo *SuperName, SourceLocation SuperLoc, |
| IdentifierInfo **ProtocolNames, unsigned NumProtocols, |
| AttributeList *AttrList) { |
| assert(ClassName && "Missing class identifier"); |
| |
| // Check for another declaration kind with the same name. |
| ScopedDecl *PrevDecl = LookupScopedDecl(ClassName, Decl::IDNS_Ordinary, |
| ClassLoc, S); |
| if (PrevDecl && !isa<ObjcInterfaceDecl>(PrevDecl) |
| && !isa<ObjcProtocolDecl>(PrevDecl)) { |
| Diag(ClassLoc, diag::err_redefinition_different_kind, |
| ClassName->getName()); |
| Diag(PrevDecl->getLocation(), diag::err_previous_definition); |
| } |
| |
| ObjcInterfaceDecl* IDecl = getObjCInterfaceDecl(S, ClassName, ClassLoc); |
| if (IDecl) { |
| // Class already seen. Is it a forward declaration? |
| if (!IDecl->getIsForwardDecl()) |
| Diag(AtInterfaceLoc, diag::err_duplicate_class_def, ClassName->getName()); |
| else { |
| IDecl->setIsForwardDecl(false); |
| IDecl->AllocIntfRefProtocols(NumProtocols); |
| } |
| } |
| else { |
| IDecl = new ObjcInterfaceDecl(AtInterfaceLoc, NumProtocols, ClassName); |
| |
| // Chain & install the interface decl into the identifier. |
| IDecl->setNext(ClassName->getFETokenInfo<ScopedDecl>()); |
| ClassName->setFETokenInfo(IDecl); |
| } |
| |
| if (SuperName) { |
| ObjcInterfaceDecl* SuperClassEntry = 0; |
| // Check if a different kind of symbol declared in this scope. |
| PrevDecl = LookupScopedDecl(SuperName, Decl::IDNS_Ordinary, |
| SuperLoc, S); |
| if (PrevDecl && !isa<ObjcInterfaceDecl>(PrevDecl) |
| && !isa<ObjcProtocolDecl>(PrevDecl)) { |
| Diag(SuperLoc, diag::err_redefinition_different_kind, |
| SuperName->getName()); |
| Diag(PrevDecl->getLocation(), diag::err_previous_definition); |
| } |
| else { |
| // Check that super class is previously defined |
| SuperClassEntry = getObjCInterfaceDecl(S, SuperName, SuperLoc); |
| |
| if (!SuperClassEntry || SuperClassEntry->getIsForwardDecl()) { |
| Diag(AtInterfaceLoc, diag::err_undef_superclass, SuperName->getName(), |
| ClassName->getName()); |
| } |
| } |
| IDecl->setSuperClass(SuperClassEntry); |
| } |
| |
| /// Check then save referenced protocols |
| for (unsigned int i = 0; i != NumProtocols; i++) { |
| ObjcProtocolDecl* RefPDecl = getObjCProtocolDecl(S, ProtocolNames[i], |
| ClassLoc); |
| if (!RefPDecl || RefPDecl->getIsForwardProtoDecl()) |
| Diag(ClassLoc, diag::err_undef_protocolref, |
| ProtocolNames[i]->getName(), |
| ClassName->getName()); |
| IDecl->setIntfRefProtocols((int)i, RefPDecl); |
| } |
| |
| return IDecl; |
| } |
| |
| Sema::DeclTy *Sema::ObjcStartProtoInterface(Scope* S, |
| SourceLocation AtProtoInterfaceLoc, |
| IdentifierInfo *ProtocolName, SourceLocation ProtocolLoc, |
| IdentifierInfo **ProtoRefNames, unsigned NumProtoRefs) { |
| assert(ProtocolName && "Missing protocol identifier"); |
| ObjcProtocolDecl *PDecl = getObjCProtocolDecl(S, ProtocolName, ProtocolLoc); |
| if (PDecl) { |
| // Protocol already seen. Better be a forward protocol declaration |
| if (!PDecl->getIsForwardProtoDecl()) |
| Diag(ProtocolLoc, diag::err_duplicate_protocol_def, |
| ProtocolName->getName()); |
| else { |
| PDecl->setIsForwardProtoDecl(false); |
| PDecl->AllocReferencedProtocols(NumProtoRefs); |
| } |
| } |
| else { |
| PDecl = new ObjcProtocolDecl(AtProtoInterfaceLoc, NumProtoRefs, |
| ProtocolName); |
| PDecl->setIsForwardProtoDecl(false); |
| // Chain & install the protocol decl into the identifier. |
| PDecl->setNext(ProtocolName->getFETokenInfo<ScopedDecl>()); |
| ProtocolName->setFETokenInfo(PDecl); |
| } |
| |
| /// Check then save referenced protocols |
| for (unsigned int i = 0; i != NumProtoRefs; i++) { |
| ObjcProtocolDecl* RefPDecl = getObjCProtocolDecl(S, ProtoRefNames[i], |
| ProtocolLoc); |
| if (!RefPDecl || RefPDecl->getIsForwardProtoDecl()) |
| Diag(ProtocolLoc, diag::err_undef_protocolref, |
| ProtoRefNames[i]->getName(), |
| ProtocolName->getName()); |
| PDecl->setReferencedProtocols((int)i, RefPDecl); |
| } |
| |
| return PDecl; |
| } |
| |
| /// ObjcForwardProtocolDeclaration - |
| /// Scope will always be top level file scope. |
| Action::DeclTy * |
| Sema::ObjcForwardProtocolDeclaration(Scope *S, SourceLocation AtProtocolLoc, |
| IdentifierInfo **IdentList, unsigned NumElts) { |
| ObjcForwardProtocolDecl *FDecl = new ObjcForwardProtocolDecl(AtProtocolLoc, |
| NumElts); |
| |
| for (unsigned i = 0; i != NumElts; ++i) { |
| ObjcProtocolDecl *PDecl; |
| PDecl = getObjCProtocolDecl(S, IdentList[i], AtProtocolLoc); |
| if (!PDecl) {// Already seen? |
| PDecl = new ObjcProtocolDecl(SourceLocation(), 0, IdentList[i], true); |
| // Chain & install the protocol decl into the identifier. |
| PDecl->setNext(IdentList[i]->getFETokenInfo<ScopedDecl>()); |
| IdentList[i]->setFETokenInfo(PDecl); |
| } |
| // Remember that this needs to be removed when the scope is popped. |
| S->AddDecl(IdentList[i]); |
| |
| FDecl->setForwardProtocolDecl((int)i, PDecl); |
| } |
| return FDecl; |
| } |
| |
| Sema::DeclTy *Sema::ObjcStartCatInterface(Scope* S, |
| SourceLocation AtInterfaceLoc, |
| IdentifierInfo *ClassName, SourceLocation ClassLoc, |
| IdentifierInfo *CategoryName, SourceLocation CategoryLoc, |
| IdentifierInfo **ProtoRefNames, unsigned NumProtoRefs) { |
| ObjcCategoryDecl *CDecl; |
| ObjcInterfaceDecl* IDecl = getObjCInterfaceDecl(S, ClassName, ClassLoc); |
| CDecl = new ObjcCategoryDecl(AtInterfaceLoc, NumProtoRefs, ClassName); |
| CDecl->setClassInterface(IDecl); |
| |
| /// Check that class of this category is already completely declared. |
| if (!IDecl || IDecl->getIsForwardDecl()) |
| Diag(ClassLoc, diag::err_undef_interface, ClassName->getName()); |
| else { |
| /// Check for duplicate interface declaration for this category |
| ObjcCategoryDecl *CDeclChain; |
| for (CDeclChain = IDecl->getListCategories(); CDeclChain; |
| CDeclChain = CDeclChain->getNextClassCategory()) { |
| if (CDeclChain->getCatName() == CategoryName) { |
| Diag(CategoryLoc, diag::err_dup_category_def, ClassName->getName(), |
| CategoryName->getName()); |
| break; |
| } |
| } |
| if (!CDeclChain) { |
| CDecl->setCatName(CategoryName); |
| CDecl->insertNextClassCategory(); |
| } |
| } |
| |
| /// Check then save referenced protocols |
| for (unsigned int i = 0; i != NumProtoRefs; i++) { |
| ObjcProtocolDecl* RefPDecl = getObjCProtocolDecl(S, ProtoRefNames[i], |
| CategoryLoc); |
| if (!RefPDecl || RefPDecl->getIsForwardProtoDecl()) |
| Diag(CategoryLoc, diag::err_undef_protocolref, |
| ProtoRefNames[i]->getName(), |
| CategoryName->getName()); |
| CDecl->setCatReferencedProtocols((int)i, RefPDecl); |
| } |
| |
| return CDecl; |
| } |
| |
| Sema::DeclTy *Sema::ObjcStartClassImplementation(Scope *S, |
| SourceLocation AtClassImplLoc, |
| IdentifierInfo *ClassName, SourceLocation ClassLoc, |
| IdentifierInfo *SuperClassname, |
| SourceLocation SuperClassLoc) { |
| ObjcInterfaceDecl* IDecl = 0; |
| // Check for another declaration kind with the same name. |
| ScopedDecl *PrevDecl = LookupScopedDecl(ClassName, Decl::IDNS_Ordinary, |
| ClassLoc, S); |
| if (PrevDecl && !isa<ObjcInterfaceDecl>(PrevDecl)) { |
| Diag(ClassLoc, diag::err_redefinition_different_kind, |
| ClassName->getName()); |
| Diag(PrevDecl->getLocation(), diag::err_previous_definition); |
| } |
| else { |
| // Is there an interface declaration of this class; if not, warn! |
| IDecl = getObjCInterfaceDecl(S, ClassName, ClassLoc); |
| if (!IDecl) |
| Diag(ClassLoc, diag::warn_undef_interface, ClassName->getName()); |
| } |
| |
| // Check that super class name is valid class name |
| ObjcInterfaceDecl* SDecl = 0; |
| if (SuperClassname) { |
| // Check if a different kind of symbol declared in this scope. |
| PrevDecl = LookupScopedDecl(SuperClassname, Decl::IDNS_Ordinary, |
| SuperClassLoc, S); |
| if (PrevDecl && !isa<ObjcInterfaceDecl>(PrevDecl) |
| && !isa<ObjcProtocolDecl>(PrevDecl)) { |
| Diag(SuperClassLoc, diag::err_redefinition_different_kind, |
| SuperClassname->getName()); |
| Diag(PrevDecl->getLocation(), diag::err_previous_definition); |
| } |
| else { |
| SDecl = getObjCInterfaceDecl(S, SuperClassname, SuperClassLoc); |
| if (!SDecl) |
| Diag(SuperClassLoc, diag::err_undef_superclass, |
| SuperClassname->getName(), ClassName->getName()); |
| else if (IDecl && IDecl->getSuperClass() != SDecl) { |
| // This implementation and its interface do not have the same |
| // super class. |
| Diag(SuperClassLoc, diag::err_conflicting_super_class, |
| SuperClassname->getName()); |
| Diag(SDecl->getLocation(), diag::err_previous_definition); |
| } |
| } |
| } |
| |
| ObjcImplementationDecl* IMPDecl = |
| new ObjcImplementationDecl(AtClassImplLoc, ClassName, SDecl); |
| if (!IDecl) { |
| // Legacy case of @implementation with no corresponding @interface. |
| // Build, chain & install the interface decl into the identifier. |
| IDecl = new ObjcInterfaceDecl(AtClassImplLoc, 0, ClassName); |
| IDecl->setNext(ClassName->getFETokenInfo<ScopedDecl>()); |
| ClassName->setFETokenInfo(IDecl); |
| |
| } |
| |
| // Check that there is no duplicate implementation of this class. |
| bool err = false; |
| for (unsigned i = 0; i != Context.sizeObjcImplementationClass(); i++) { |
| if (Context.getObjcImplementationClass(i)->getIdentifier() == ClassName) { |
| Diag(ClassLoc, diag::err_dup_implementation_class, ClassName->getName()); |
| err = true; |
| break; |
| } |
| } |
| if (!err) |
| Context.setObjcImplementationClass(IMPDecl); |
| |
| return IMPDecl; |
| } |
| |
| void Sema::ActOnImpleIvarVsClassIvars(DeclTy *ClassDecl, |
| DeclTy **Fields, unsigned numIvars) { |
| ObjcInterfaceDecl* IDecl = |
| cast<ObjcInterfaceDecl>(static_cast<Decl*>(ClassDecl)); |
| assert(IDecl && "missing named interface class decl"); |
| ObjcIvarDecl** ivars = reinterpret_cast<ObjcIvarDecl**>(Fields); |
| assert(ivars && "missing @implementation ivars"); |
| |
| // Check interface's Ivar list against those in the implementation. |
| // names and types must match. |
| // |
| ObjcIvarDecl** IntfIvars = IDecl->getIntfDeclIvars(); |
| int IntfNumIvars = IDecl->getIntfDeclNumIvars(); |
| unsigned j = 0; |
| bool err = false; |
| while (numIvars > 0 && IntfNumIvars > 0) { |
| ObjcIvarDecl* ImplIvar = ivars[j]; |
| ObjcIvarDecl* ClsIvar = IntfIvars[j++]; |
| assert (ImplIvar && "missing implementation ivar"); |
| assert (ClsIvar && "missing class ivar"); |
| if (ImplIvar->getCanonicalType() != ClsIvar->getCanonicalType()) { |
| Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type, |
| ImplIvar->getIdentifier()->getName()); |
| Diag(ClsIvar->getLocation(), diag::err_previous_definition, |
| ClsIvar->getIdentifier()->getName()); |
| } |
| // TODO: Two mismatched (unequal width) Ivar bitfields should be diagnosed |
| // as error. |
| else if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) { |
| Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name, |
| ImplIvar->getIdentifier()->getName()); |
| Diag(ClsIvar->getLocation(), diag::err_previous_definition, |
| ClsIvar->getIdentifier()->getName()); |
| err = true; |
| break; |
| } |
| --numIvars; |
| --IntfNumIvars; |
| } |
| if (!err && (numIvars > 0 || IntfNumIvars > 0)) |
| Diag(numIvars > 0 ? ivars[j]->getLocation() : IntfIvars[j]->getLocation(), |
| diag::err_inconsistant_ivar); |
| |
| } |
| |
| /// CheckProtocolMethodDefs - This routine checks unimpletented methods |
| /// Declared in protocol, and those referenced by it. |
| /// |
| static void CheckProtocolMethodDefs(Sema* objSema, ObjcProtocolDecl *PDecl, |
| const llvm::DenseMap<void *, char>& InsMap, |
| const llvm::DenseMap<void *, char>& ClsMap) { |
| // check unimplemented instance methods. |
| ObjcMethodDecl** methods = PDecl->getInsMethods(); |
| for (int j = 0; j < PDecl->getNumInsMethods(); j++) |
| if (!InsMap.count(methods[j]->getSelector().getAsOpaquePtr())) { |
| llvm::SmallString<128> buf; |
| objSema->Diag(methods[j]->getLocation(), diag::warn_undef_method_impl, |
| methods[j]->getSelector().getName(buf)); |
| } |
| // check unimplemented class methods |
| methods = PDecl->getClsMethods(); |
| for (int j = 0; j < PDecl->getNumClsMethods(); j++) |
| if (!ClsMap.count(methods[j]->getSelector().getAsOpaquePtr())) { |
| llvm::SmallString<128> buf; |
| objSema->Diag(methods[j]->getLocation(), diag::warn_undef_method_impl, |
| methods[j]->getSelector().getName(buf)); |
| } |
| |
| // Check on this protocols's referenced protocols, recursively |
| ObjcProtocolDecl** RefPDecl = PDecl->getReferencedProtocols(); |
| for (int i = 0; i < PDecl->getNumReferencedProtocols(); i++) |
| CheckProtocolMethodDefs(objSema, RefPDecl[i], InsMap, ClsMap); |
| } |
| |
| static void ImplMethodsVsClassMethods(Sema* objSema, |
| ObjcImplementationDecl* IMPDecl, |
| ObjcInterfaceDecl* IDecl) { |
| llvm::DenseMap<void *, char> InsMap; |
| // Check and see if instance methods in class interface have been |
| // implemented in the implementation class. |
| ObjcMethodDecl **methods = IMPDecl->getInsMethods(); |
| for (int i=0; i < IMPDecl->getNumInsMethods(); i++) { |
| InsMap[methods[i]->getSelector().getAsOpaquePtr()] = 'a'; |
| } |
| |
| methods = IDecl->getInsMethods(); |
| for (int j = 0; j < IDecl->getNumInsMethods(); j++) |
| if (!InsMap.count(methods[j]->getSelector().getAsOpaquePtr())) { |
| llvm::SmallString<128> buf; |
| objSema->Diag(methods[j]->getLocation(), diag::warn_undef_method_impl, |
| methods[j]->getSelector().getName(buf)); |
| } |
| llvm::DenseMap<void *, char> ClsMap; |
| // Check and see if class methods in class interface have been |
| // implemented in the implementation class. |
| methods = IMPDecl->getClsMethods(); |
| for (int i=0; i < IMPDecl->getNumClsMethods(); i++) { |
| ClsMap[methods[i]->getSelector().getAsOpaquePtr()] = 'a'; |
| } |
| |
| methods = IDecl->getClsMethods(); |
| for (int j = 0; j < IDecl->getNumClsMethods(); j++) |
| if (!ClsMap.count(methods[j]->getSelector().getAsOpaquePtr())) { |
| llvm::SmallString<128> buf; |
| objSema->Diag(methods[j]->getLocation(), diag::warn_undef_method_impl, |
| methods[j]->getSelector().getName(buf)); |
| } |
| |
| // Check the protocol list for unimplemented methods in the @implementation |
| // class. |
| ObjcProtocolDecl** protocols = IDecl->getIntfRefProtocols(); |
| for (int i = 0; i < IDecl->getNumIntfRefProtocols(); i++) { |
| ObjcProtocolDecl* PDecl = protocols[i]; |
| CheckProtocolMethodDefs(objSema, PDecl, InsMap, ClsMap); |
| } |
| return; |
| } |
| |
| /// ObjcClassDeclaration - |
| /// Scope will always be top level file scope. |
| Action::DeclTy * |
| Sema::ObjcClassDeclaration(Scope *S, SourceLocation AtClassLoc, |
| IdentifierInfo **IdentList, unsigned NumElts) { |
| ObjcClassDecl *CDecl = new ObjcClassDecl(AtClassLoc, NumElts); |
| |
| for (unsigned i = 0; i != NumElts; ++i) { |
| ObjcInterfaceDecl *IDecl; |
| IDecl = getObjCInterfaceDecl(S, IdentList[i], AtClassLoc); |
| if (!IDecl) {// Already seen? |
| IDecl = new ObjcInterfaceDecl(SourceLocation(), 0, IdentList[i], true); |
| // Chain & install the interface decl into the identifier. |
| IDecl->setNext(IdentList[i]->getFETokenInfo<ScopedDecl>()); |
| IdentList[i]->setFETokenInfo(IDecl); |
| } |
| // Remember that this needs to be removed when the scope is popped. |
| S->AddDecl(IdentList[i]); |
| |
| CDecl->setInterfaceDecl((int)i, IDecl); |
| } |
| return CDecl; |
| } |
| |
| |
| /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the |
| /// former case, Name will be non-null. In the later case, Name will be null. |
| /// TagType indicates what kind of tag this is. TK indicates whether this is a |
| /// reference/declaration/definition of a tag. |
| Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK, |
| SourceLocation KWLoc, IdentifierInfo *Name, |
| SourceLocation NameLoc, AttributeList *Attr) { |
| // If this is a use of an existing tag, it must have a name. |
| assert((Name != 0 || TK == TK_Definition) && |
| "Nameless record must be a definition!"); |
| |
| Decl::Kind Kind; |
| switch (TagType) { |
| default: assert(0 && "Unknown tag type!"); |
| case DeclSpec::TST_struct: Kind = Decl::Struct; break; |
| case DeclSpec::TST_union: Kind = Decl::Union; break; |
| //case DeclSpec::TST_class: Kind = Decl::Class; break; |
| case DeclSpec::TST_enum: Kind = Decl::Enum; break; |
| } |
| |
| // If this is a named struct, check to see if there was a previous forward |
| // declaration or definition. |
| if (TagDecl *PrevDecl = |
| dyn_cast_or_null<TagDecl>(LookupScopedDecl(Name, Decl::IDNS_Tag, |
| NameLoc, S))) { |
| |
| // If this is a use of a previous tag, or if the tag is already declared in |
| // the same scope (so that the definition/declaration completes or |
| // rementions the tag), reuse the decl. |
| if (TK == TK_Reference || S->isDeclScope(PrevDecl)) { |
| // Make sure that this wasn't declared as an enum and now used as a struct |
| // or something similar. |
| if (PrevDecl->getKind() != Kind) { |
| Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName()); |
| Diag(PrevDecl->getLocation(), diag::err_previous_use); |
| } |
| |
| // If this is a use or a forward declaration, we're good. |
| if (TK != TK_Definition) |
| return PrevDecl; |
| |
| // Diagnose attempts to redefine a tag. |
| if (PrevDecl->isDefinition()) { |
| Diag(NameLoc, diag::err_redefinition, Name->getName()); |
| Diag(PrevDecl->getLocation(), diag::err_previous_definition); |
| // If this is a redefinition, recover by making this struct be |
| // anonymous, which will make any later references get the previous |
| // definition. |
| Name = 0; |
| } else { |
| // Okay, this is definition of a previously declared or referenced tag. |
| // Move the location of the decl to be the definition site. |
| PrevDecl->setLocation(NameLoc); |
| return PrevDecl; |
| } |
| } |
| // If we get here, this is a definition of a new struct type in a nested |
| // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new |
| // type. |
| } |
| |
| // If there is an identifier, use the location of the identifier as the |
| // location of the decl, otherwise use the location of the struct/union |
| // keyword. |
| SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; |
| |
| // Otherwise, if this is the first time we've seen this tag, create the decl. |
| TagDecl *New; |
| switch (Kind) { |
| default: assert(0 && "Unknown tag kind!"); |
| case Decl::Enum: |
| // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: |
| // enum X { A, B, C } D; D should chain to X. |
| New = new EnumDecl(Loc, Name, 0); |
| // If this is an undefined enum, warn. |
| if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum); |
| break; |
| case Decl::Union: |
| case Decl::Struct: |
| case Decl::Class: |
| // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: |
| // struct X { int A; } D; D should chain to X. |
| New = new RecordDecl(Kind, Loc, Name, 0); |
| break; |
| } |
| |
| // If this has an identifier, add it to the scope stack. |
| if (Name) { |
| // The scope passed in may not be a decl scope. Zip up the scope tree until |
| // we find one that is. |
| while ((S->getFlags() & Scope::DeclScope) == 0) |
| S = S->getParent(); |
| |
| // Add it to the decl chain. |
| New->setNext(Name->getFETokenInfo<ScopedDecl>()); |
| Name->setFETokenInfo(New); |
| S->AddDecl(New); |
| } |
| |
| return New; |
| } |
| |
| /// ActOnField - Each field of a struct/union/class is passed into this in order |
| /// to create a FieldDecl object for it. |
| Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagDecl, |
| SourceLocation DeclStart, |
| Declarator &D, ExprTy *BitfieldWidth) { |
| IdentifierInfo *II = D.getIdentifier(); |
| Expr *BitWidth = (Expr*)BitfieldWidth; |
| SourceLocation Loc = DeclStart; |
| if (II) Loc = D.getIdentifierLoc(); |
| |
| // FIXME: Unnamed fields can be handled in various different ways, for |
| // example, unnamed unions inject all members into the struct namespace! |
| |
| |
| if (BitWidth) { |
| // TODO: Validate. |
| //printf("WARNING: BITFIELDS IGNORED!\n"); |
| |
| // 6.7.2.1p3 |
| // 6.7.2.1p4 |
| |
| } else { |
| // Not a bitfield. |
| |
| // validate II. |
| |
| } |
| |
| QualType T = GetTypeForDeclarator(D, S); |
| assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); |
| bool InvalidDecl = false; |
| |
| // C99 6.7.2.1p8: A member of a structure or union may have any type other |
| // than a variably modified type. |
| if (const VariableArrayType *VAT = T->getAsVariablyModifiedType()) { |
| Diag(Loc, diag::err_typecheck_illegal_vla, |
| VAT->getSizeExpr()->getSourceRange()); |
| InvalidDecl = true; |
| } |
| // FIXME: Chain fielddecls together. |
| FieldDecl *NewFD; |
| |
| if (isa<RecordDecl>(static_cast<Decl *>(TagDecl))) |
| NewFD = new FieldDecl(Loc, II, T); |
| else if (isa<ObjcInterfaceDecl>(static_cast<Decl *>(TagDecl)) |
| || isa<ObjcImplementationDecl>(static_cast<Decl *>(TagDecl))) |
| NewFD = new ObjcIvarDecl(Loc, II, T); |
| else |
| assert(0 && "Sema::ActOnField(): Unknown TagDecl"); |
| |
| if (D.getInvalidType() || InvalidDecl) |
| NewFD->setInvalidDecl(); |
| return NewFD; |
| } |
| |
| static void ObjcSetIvarVisibility(ObjcIvarDecl *OIvar, |
| tok::ObjCKeywordKind ivarVisibility) { |
| assert(OIvar && "missing instance variable"); |
| switch (ivarVisibility) { |
| case tok::objc_private: |
| OIvar->setAccessControl(ObjcIvarDecl::Private); |
| break; |
| case tok::objc_public: |
| OIvar->setAccessControl(ObjcIvarDecl::Public); |
| break; |
| case tok::objc_protected: |
| OIvar->setAccessControl(ObjcIvarDecl::Protected); |
| break; |
| case tok::objc_package: |
| OIvar->setAccessControl(ObjcIvarDecl::Package); |
| break; |
| default: |
| OIvar->setAccessControl(ObjcIvarDecl::None); |
| break; |
| } |
| } |
| |
| void Sema::ActOnFields(Scope* S, |
| SourceLocation RecLoc, DeclTy *RecDecl, |
| DeclTy **Fields, unsigned NumFields, |
| tok::ObjCKeywordKind *visibility) { |
| Decl *EnclosingDecl = static_cast<Decl*>(RecDecl); |
| assert(EnclosingDecl && "missing record or interface decl"); |
| RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); |
| |
| if (Record && Record->isDefinition()) { |
| // Diagnose code like: |
| // struct S { struct S {} X; }; |
| // We discover this when we complete the outer S. Reject and ignore the |
| // outer S. |
| Diag(Record->getLocation(), diag::err_nested_redefinition, |
| Record->getKindName()); |
| Diag(RecLoc, diag::err_previous_definition); |
| Record->setInvalidDecl(); |
| return; |
| } |
| // Verify that all the fields are okay. |
| unsigned NumNamedMembers = 0; |
| llvm::SmallVector<FieldDecl*, 32> RecFields; |
| llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs; |
| |
| for (unsigned i = 0; i != NumFields; ++i) { |
| |
| FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i])); |
| assert(FD && "missing field decl"); |
| |
| // Remember all fields. |
| RecFields.push_back(FD); |
| |
| // Get the type for the field. |
| Type *FDTy = FD->getType().getTypePtr(); |
| |
| // If we have visibility info, make sure the AST is set accordingly. |
| if (visibility) |
| ObjcSetIvarVisibility(dyn_cast<ObjcIvarDecl>(FD), visibility[i]); |
| |
| // C99 6.7.2.1p2 - A field may not be a function type. |
| if (FDTy->isFunctionType()) { |
| Diag(FD->getLocation(), diag::err_field_declared_as_function, |
| FD->getName()); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| // C99 6.7.2.1p2 - A field may not be an incomplete type except... |
| if (FDTy->isIncompleteType()) { |
| if (!Record) { // Incomplete ivar type is always an error. |
| Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName()); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| if (i != NumFields-1 || // ... that the last member ... |
| Record->getKind() != Decl::Struct || // ... of a structure ... |
| !FDTy->isArrayType()) { //... may have incomplete array type. |
| Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName()); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| if (NumNamedMembers < 1) { //... must have more than named member ... |
| Diag(FD->getLocation(), diag::err_flexible_array_empty_struct, |
| FD->getName()); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| // Okay, we have a legal flexible array member at the end of the struct. |
| if (Record) |
| Record->setHasFlexibleArrayMember(true); |
| } |
| /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the |
| /// field of another structure or the element of an array. |
| if (const RecordType *FDTTy = FDTy->getAsRecordType()) { |
| if (FDTTy->getDecl()->hasFlexibleArrayMember()) { |
| // If this is a member of a union, then entire union becomes "flexible". |
| if (Record && Record->getKind() == Decl::Union) { |
| Record->setHasFlexibleArrayMember(true); |
| } else { |
| // If this is a struct/class and this is not the last element, reject |
| // it. Note that GCC supports variable sized arrays in the middle of |
| // structures. |
| if (i != NumFields-1) { |
| Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct, |
| FD->getName()); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| // We support flexible arrays at the end of structs in other structs |
| // as an extension. |
| Diag(FD->getLocation(), diag::ext_flexible_array_in_struct, |
| FD->getName()); |
| if (Record) |
| Record->setHasFlexibleArrayMember(true); |
| } |
| } |
| } |
| // Keep track of the number of named members. |
| if (IdentifierInfo *II = FD->getIdentifier()) { |
| // Detect duplicate member names. |
| if (!FieldIDs.insert(II)) { |
| Diag(FD->getLocation(), diag::err_duplicate_member, II->getName()); |
| // Find the previous decl. |
| SourceLocation PrevLoc; |
| for (unsigned i = 0, e = RecFields.size(); ; ++i) { |
| assert(i != e && "Didn't find previous def!"); |
| if (RecFields[i]->getIdentifier() == II) { |
| PrevLoc = RecFields[i]->getLocation(); |
| break; |
| } |
| } |
| Diag(PrevLoc, diag::err_previous_definition); |
| FD->setInvalidDecl(); |
| EnclosingDecl->setInvalidDecl(); |
| continue; |
| } |
| ++NumNamedMembers; |
| } |
| } |
| |
| // Okay, we successfully defined 'Record'. |
| if (Record) |
| Record->defineBody(&RecFields[0], RecFields.size()); |
| else { |
| ObjcIvarDecl **ClsFields = |
| reinterpret_cast<ObjcIvarDecl**>(&RecFields[0]); |
| if (isa<ObjcInterfaceDecl>(static_cast<Decl*>(RecDecl))) |
| cast<ObjcInterfaceDecl>(static_cast<Decl*>(RecDecl))-> |
| ObjcAddInstanceVariablesToClass(ClsFields, RecFields.size()); |
| else if (isa<ObjcImplementationDecl>(static_cast<Decl*>(RecDecl))) { |
| ObjcImplementationDecl* IMPDecl = |
| cast<ObjcImplementationDecl>(static_cast<Decl*>(RecDecl)); |
| assert(IMPDecl && "ActOnFields - missing ObjcImplementationDecl"); |
| IMPDecl->ObjcAddInstanceVariablesToClassImpl(ClsFields, RecFields.size()); |
| ObjcInterfaceDecl* IDecl = getObjCInterfaceDecl(S, |
| IMPDecl->getIdentifier(), RecLoc); |
| if (IDecl) |
| ActOnImpleIvarVsClassIvars(static_cast<DeclTy*>(IDecl), |
| reinterpret_cast<DeclTy**>(&RecFields[0]), RecFields.size()); |
| } |
| } |
| } |
| |
| void Sema::ObjcAddMethodsToClass(Scope* S, DeclTy *ClassDecl, |
| DeclTy **allMethods, unsigned allNum) { |
| // FIXME: Fix this when we can handle methods declared in protocols. |
| // See Parser::ParseObjCAtProtocolDeclaration |
| if (!ClassDecl) |
| return; |
| llvm::SmallVector<ObjcMethodDecl*, 32> insMethods; |
| llvm::SmallVector<ObjcMethodDecl*, 16> clsMethods; |
| |
| for (unsigned i = 0; i < allNum; i++ ) { |
| ObjcMethodDecl *Method = |
| cast_or_null<ObjcMethodDecl>(static_cast<Decl*>(allMethods[i])); |
| if (!Method) continue; // Already issued a diagnostic. |
| if (Method->isInstance()) |
| insMethods.push_back(Method); |
| else |
| clsMethods.push_back(Method); |
| } |
| if (isa<ObjcInterfaceDecl>(static_cast<Decl *>(ClassDecl))) { |
| ObjcInterfaceDecl *Interface = cast<ObjcInterfaceDecl>( |
| static_cast<Decl*>(ClassDecl)); |
| Interface->ObjcAddMethods(&insMethods[0], insMethods.size(), |
| &clsMethods[0], clsMethods.size()); |
| } |
| else if (isa<ObjcProtocolDecl>(static_cast<Decl *>(ClassDecl))) { |
| ObjcProtocolDecl *Protocol = cast<ObjcProtocolDecl>( |
| static_cast<Decl*>(ClassDecl)); |
| Protocol->ObjcAddProtoMethods(&insMethods[0], insMethods.size(), |
| &clsMethods[0], clsMethods.size()); |
| } |
| else if (isa<ObjcCategoryDecl>(static_cast<Decl *>(ClassDecl))) { |
| ObjcCategoryDecl *Category = cast<ObjcCategoryDecl>( |
| static_cast<Decl*>(ClassDecl)); |
| Category->ObjcAddCatMethods(&insMethods[0], insMethods.size(), |
| &clsMethods[0], clsMethods.size()); |
| } |
| else if (isa<ObjcImplementationDecl>(static_cast<Decl *>(ClassDecl))) { |
| ObjcImplementationDecl* ImplClass = cast<ObjcImplementationDecl>( |
| static_cast<Decl*>(ClassDecl)); |
| ImplClass->ObjcAddImplMethods(&insMethods[0], insMethods.size(), |
| &clsMethods[0], clsMethods.size()); |
| ObjcInterfaceDecl* IDecl = getObjCInterfaceDecl(S, |
| ImplClass->getIdentifier(), SourceLocation()); |
| if (IDecl) |
| ImplMethodsVsClassMethods(this, ImplClass, IDecl); |
| } |
| else |
| assert(0 && "Sema::ObjcAddMethodsToClass(): Unknown DeclTy"); |
| return; |
| } |
| |
| Sema::DeclTy *Sema::ObjcBuildMethodDeclaration(SourceLocation MethodLoc, |
| tok::TokenKind MethodType, TypeTy *ReturnType, Selector Sel, |
| // optional arguments. The number of types/arguments is obtained |
| // from the Sel.getNumArgs(). |
| TypeTy **ArgTypes, IdentifierInfo **ArgNames, |
| AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind) { |
| llvm::SmallVector<ParmVarDecl*, 16> Params; |
| |
| for (unsigned i = 0; i < Sel.getNumArgs(); i++) { |
| // FIXME: arg->AttrList must be stored too! |
| ParmVarDecl* Param = new ParmVarDecl(SourceLocation(/*FIXME*/), ArgNames[i], |
| QualType::getFromOpaquePtr(ArgTypes[i]), |
| VarDecl::None, 0); |
| Params.push_back(Param); |
| } |
| QualType resultDeclType = QualType::getFromOpaquePtr(ReturnType); |
| ObjcMethodDecl* ObjcMethod = new ObjcMethodDecl(MethodLoc, Sel, |
| resultDeclType, 0, -1, AttrList, |
| MethodType == tok::minus); |
| ObjcMethod->setMethodParams(&Params[0], Sel.getNumArgs()); |
| if (MethodDeclKind == tok::objc_optional) |
| ObjcMethod->setDeclImplementation(ObjcMethodDecl::Optional); |
| else |
| ObjcMethod->setDeclImplementation(ObjcMethodDecl::Required); |
| return ObjcMethod; |
| } |
| |
| Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl, |
| DeclTy *lastEnumConst, |
| SourceLocation IdLoc, IdentifierInfo *Id, |
| SourceLocation EqualLoc, ExprTy *val) { |
| theEnumDecl = theEnumDecl; // silence unused warning. |
| EnumConstantDecl *LastEnumConst = |
| cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst)); |
| Expr *Val = static_cast<Expr*>(val); |
| |
| // The scope passed in may not be a decl scope. Zip up the scope tree until |
| // we find one that is. |
| while ((S->getFlags() & Scope::DeclScope) == 0) |
| S = S->getParent(); |
| |
| // Verify that there isn't already something declared with this name in this |
| // scope. |
| if (ScopedDecl *PrevDecl = LookupScopedDecl(Id, Decl::IDNS_Ordinary, |
| IdLoc, S)) { |
| if (S->isDeclScope(PrevDecl)) { |
| if (isa<EnumConstantDecl>(PrevDecl)) |
| Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName()); |
| else |
| Diag(IdLoc, diag::err_redefinition, Id->getName()); |
| Diag(PrevDecl->getLocation(), diag::err_previous_definition); |
| // FIXME: Don't leak memory: delete Val; |
| return 0; |
| } |
| } |
| |
| llvm::APSInt EnumVal(32); |
| QualType EltTy; |
| if (Val) { |
| // Make sure to promote the operand type to int. |
| UsualUnaryConversions(Val); |
| |
| // C99 6.7.2.2p2: Make sure we have an integer constant expression. |
| SourceLocation ExpLoc; |
| if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) { |
| Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr, |
| Id->getName()); |
| // FIXME: Don't leak memory: delete Val; |
| Val = 0; // Just forget about it. |
| } else { |
| EltTy = Val->getType(); |
| } |
| } |
| |
| if (!Val) { |
| if (LastEnumConst) { |
| // Assign the last value + 1. |
| EnumVal = LastEnumConst->getInitVal(); |
| ++EnumVal; |
| |
| // Check for overflow on increment. |
| if (EnumVal < LastEnumConst->getInitVal()) |
| Diag(IdLoc, diag::warn_enum_value_overflow); |
| |
| EltTy = LastEnumConst->getType(); |
| } else { |
| // First value, set to zero. |
| EltTy = Context.IntTy; |
| EnumVal.zextOrTrunc( |
| static_cast<uint32_t>(Context.getTypeSize(EltTy, IdLoc))); |
| } |
| } |
| |
| EnumConstantDecl *New = new EnumConstantDecl(IdLoc, Id, EltTy, Val, EnumVal, |
| LastEnumConst); |
| |
| // Register this decl in the current scope stack. |
| New->setNext(Id->getFETokenInfo<ScopedDecl>()); |
| Id->setFETokenInfo(New); |
| S->AddDecl(New); |
| return New; |
| } |
| |
| void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX, |
| DeclTy **Elements, unsigned NumElements) { |
| EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX)); |
| assert(!Enum->isDefinition() && "Enum redefinitions can't reach here"); |
| |
| // TODO: If the result value doesn't fit in an int, it must be a long or long |
| // long value. ISO C does not support this, but GCC does as an extension, |
| // emit a warning. |
| unsigned IntWidth = Context.Target.getIntWidth(Enum->getLocation()); |
| |
| |
| // Verify that all the values are okay, compute the size of the values, and |
| // reverse the list. |
| unsigned NumNegativeBits = 0; |
| unsigned NumPositiveBits = 0; |
| |
| // Keep track of whether all elements have type int. |
| bool AllElementsInt = true; |
| |
| EnumConstantDecl *EltList = 0; |
| for (unsigned i = 0; i != NumElements; ++i) { |
| EnumConstantDecl *ECD = |
| cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i])); |
| if (!ECD) continue; // Already issued a diagnostic. |
| |
| // If the enum value doesn't fit in an int, emit an extension warning. |
| assert(ECD->getInitVal().getBitWidth() >= IntWidth && |
| "Should have promoted value to int"); |
| const llvm::APSInt &InitVal = ECD->getInitVal(); |
| if (InitVal.getBitWidth() > IntWidth) { |
| llvm::APSInt V(InitVal); |
| V.trunc(IntWidth); |
| V.extend(InitVal.getBitWidth()); |
| if (V != InitVal) |
| Diag(ECD->getLocation(), diag::ext_enum_value_not_int, |
| InitVal.toString()); |
| } |
| |
| // Keep track of the size of positive and negative values. |
| if (InitVal.isUnsigned() || !InitVal.isNegative()) |
| NumPositiveBits = std::max(NumPositiveBits, InitVal.getActiveBits()); |
| else |
| NumNegativeBits = std::max(NumNegativeBits, InitVal.getMinSignedBits()); |
| |
| // Keep track of whether every enum element has type int (very commmon). |
| if (AllElementsInt) |
| AllElementsInt = ECD->getType() == Context.IntTy; |
| |
| ECD->setNextDeclarator(EltList); |
| EltList = ECD; |
| } |
| |
| // Figure out the type that should be used for this enum. |
| // FIXME: Support attribute(packed) on enums and -fshort-enums. |
| QualType BestType; |
| unsigned BestWidth; |
| |
| if (NumNegativeBits) { |
| // If there is a negative value, figure out the smallest integer type (of |
| // int/long/longlong) that fits. |
| if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { |
| BestType = Context.IntTy; |
| BestWidth = IntWidth; |
| } else { |
| BestWidth = Context.Target.getLongWidth(Enum->getLocation()); |
| if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) |
| BestType = Context.LongTy; |
| else { |
| BestWidth = Context.Target.getLongLongWidth(Enum->getLocation()); |
| if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) |
| Diag(Enum->getLocation(), diag::warn_enum_too_large); |
| BestType = Context.LongLongTy; |
| } |
| } |
| } else { |
| // If there is no negative value, figure out which of uint, ulong, ulonglong |
| // fits. |
| if (NumPositiveBits <= IntWidth) { |
| BestType = Context.UnsignedIntTy; |
| BestWidth = IntWidth; |
| } else if (NumPositiveBits <= |
| (BestWidth = Context.Target.getLongWidth(Enum->getLocation()))) |
| BestType = Context.UnsignedLongTy; |
| else { |
| BestWidth = Context.Target.getLongLongWidth(Enum->getLocation()); |
| assert(NumPositiveBits <= BestWidth && |
| "How could an initializer get larger than ULL?"); |
| BestType = Context.UnsignedLongLongTy; |
| } |
| } |
| |
| // Loop over all of the enumerator constants, changing their types to match |
| // the type of the enum if needed. |
| for (unsigned i = 0; i != NumElements; ++i) { |
| EnumConstantDecl *ECD = |
| cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i])); |
| if (!ECD) continue; // Already issued a diagnostic. |
| |
| // Standard C says the enumerators have int type, but we allow, as an |
| // extension, the enumerators to be larger than int size. If each |
| // enumerator value fits in an int, type it as an int, otherwise type it the |
| // same as the enumerator decl itself. This means that in "enum { X = 1U }" |
| // that X has type 'int', not 'unsigned'. |
| if (ECD->getType() == Context.IntTy) |
| continue; // Already int type. |
| |
| // Determine whether the value fits into an int. |
| llvm::APSInt InitVal = ECD->getInitVal(); |
| bool FitsInInt; |
| if (InitVal.isUnsigned() || !InitVal.isNegative()) |
| FitsInInt = InitVal.getActiveBits() < IntWidth; |
| else |
| FitsInInt = InitVal.getMinSignedBits() <= IntWidth; |
| |
| // If it fits into an integer type, force it. Otherwise force it to match |
| // the enum decl type. |
| QualType NewTy; |
| unsigned NewWidth; |
| bool NewSign; |
| if (FitsInInt) { |
| NewTy = Context.IntTy; |
| NewWidth = IntWidth; |
| NewSign = true; |
| } else if (ECD->getType() == BestType) { |
| // Already the right type! |
| continue; |
| } else { |
| NewTy = BestType; |
| NewWidth = BestWidth; |
| NewSign = BestType->isSignedIntegerType(); |
| } |
| |
| // Adjust the APSInt value. |
| InitVal.extOrTrunc(NewWidth); |
| InitVal.setIsSigned(NewSign); |
| ECD->setInitVal(InitVal); |
| |
| // Adjust the Expr initializer and type. |
| ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr())); |
| ECD->setType(NewTy); |
| } |
| |
| Enum->defineElements(EltList, BestType); |
| } |
| |
| void Sema::AddTopLevelDecl(Decl *current, Decl *last) { |
| if (!current) return; |
| |
| // If this is a top-level decl that is chained to some other (e.g. int A,B,C;) |
| // remember this in the LastInGroupList list. |
| if (last) |
| LastInGroupList.push_back((Decl*)last); |
| } |
| |
| void Sema::HandleDeclAttribute(Decl *New, AttributeList *rawAttr) { |
| if (strcmp(rawAttr->getAttributeName()->getName(), "vector_size") == 0) { |
| if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) { |
| QualType newType = HandleVectorTypeAttribute(vDecl->getType(), rawAttr); |
| if (!newType.isNull()) // install the new vector type into the decl |
| vDecl->setType(newType); |
| } |
| if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) { |
| QualType newType = HandleVectorTypeAttribute(tDecl->getUnderlyingType(), |
| rawAttr); |
| if (!newType.isNull()) // install the new vector type into the decl |
| tDecl->setUnderlyingType(newType); |
| } |
| } |
| if (strcmp(rawAttr->getAttributeName()->getName(), "ocu_vector_type") == 0) { |
| if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) |
| HandleOCUVectorTypeAttribute(tDecl, rawAttr); |
| else |
| Diag(rawAttr->getAttributeLoc(), |
| diag::err_typecheck_ocu_vector_not_typedef); |
| } |
| // FIXME: add other attributes... |
| } |
| |
| void Sema::HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix, |
| AttributeList *declarator_postfix) { |
| while (declspec_prefix) { |
| HandleDeclAttribute(New, declspec_prefix); |
| declspec_prefix = declspec_prefix->getNext(); |
| } |
| while (declarator_postfix) { |
| HandleDeclAttribute(New, declarator_postfix); |
| declarator_postfix = declarator_postfix->getNext(); |
| } |
| } |
| |
| void Sema::HandleOCUVectorTypeAttribute(TypedefDecl *tDecl, |
| AttributeList *rawAttr) { |
| QualType curType = tDecl->getUnderlyingType(); |
| // check the attribute arugments. |
| if (rawAttr->getNumArgs() != 1) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("1")); |
| return; |
| } |
| Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0)); |
| llvm::APSInt vecSize(32); |
| if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_vector_size_not_int, |
| sizeExpr->getSourceRange()); |
| return; |
| } |
| // unlike gcc's vector_size attribute, we do not allow vectors to be defined |
| // in conjunction with complex types (pointers, arrays, functions, etc.). |
| Type *canonType = curType.getCanonicalType().getTypePtr(); |
| if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_invalid_vector_type, |
| curType.getCanonicalType().getAsString()); |
| return; |
| } |
| // unlike gcc's vector_size attribute, the size is specified as the |
| // number of elements, not the number of bytes. |
| unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue()); |
| |
| if (vectorSize == 0) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_zero_size, |
| sizeExpr->getSourceRange()); |
| return; |
| } |
| // Instantiate/Install the vector type, the number of elements is > 0. |
| tDecl->setUnderlyingType(Context.getOCUVectorType(curType, vectorSize)); |
| // Remember this typedef decl, we will need it later for diagnostics. |
| OCUVectorDecls.push_back(tDecl); |
| } |
| |
| QualType Sema::HandleVectorTypeAttribute(QualType curType, |
| AttributeList *rawAttr) { |
| // check the attribute arugments. |
| if (rawAttr->getNumArgs() != 1) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_wrong_number_arguments, |
| std::string("1")); |
| return QualType(); |
| } |
| Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0)); |
| llvm::APSInt vecSize(32); |
| if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_vector_size_not_int, |
| sizeExpr->getSourceRange()); |
| return QualType(); |
| } |
| // navigate to the base type - we need to provide for vector pointers, |
| // vector arrays, and functions returning vectors. |
| Type *canonType = curType.getCanonicalType().getTypePtr(); |
| |
| if (canonType->isPointerType() || canonType->isArrayType() || |
| canonType->isFunctionType()) { |
| assert(1 && "HandleVector(): Complex type construction unimplemented"); |
| /* FIXME: rebuild the type from the inside out, vectorizing the inner type. |
| do { |
| if (PointerType *PT = dyn_cast<PointerType>(canonType)) |
| canonType = PT->getPointeeType().getTypePtr(); |
| else if (ArrayType *AT = dyn_cast<ArrayType>(canonType)) |
| canonType = AT->getElementType().getTypePtr(); |
| else if (FunctionType *FT = dyn_cast<FunctionType>(canonType)) |
| canonType = FT->getResultType().getTypePtr(); |
| } while (canonType->isPointerType() || canonType->isArrayType() || |
| canonType->isFunctionType()); |
| */ |
| } |
| // the base type must be integer or float. |
| if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_invalid_vector_type, |
| curType.getCanonicalType().getAsString()); |
| return QualType(); |
| } |
| unsigned typeSize = static_cast<unsigned>( |
| Context.getTypeSize(curType, rawAttr->getAttributeLoc())); |
| // vecSize is specified in bytes - convert to bits. |
| unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8); |
| |
| // the vector size needs to be an integral multiple of the type size. |
| if (vectorSize % typeSize) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_invalid_size, |
| sizeExpr->getSourceRange()); |
| return QualType(); |
| } |
| if (vectorSize == 0) { |
| Diag(rawAttr->getAttributeLoc(), diag::err_attribute_zero_size, |
| sizeExpr->getSourceRange()); |
| return QualType(); |
| } |
| // Since OpenCU requires 3 element vectors (OpenCU 5.1.2), we don't restrict |
| // the number of elements to be a power of two (unlike GCC). |
| // Instantiate the vector type, the number of elements is > 0. |
| return Context.getVectorType(curType, vectorSize/typeSize); |
| } |
| |