| //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This coordinates the per-module state used while generating code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenModule.h" |
| #include "CGDebugInfo.h" |
| #include "CodeGenFunction.h" |
| #include "CGCall.h" |
| #include "CGObjCRuntime.h" |
| #include "Mangle.h" |
| #include "clang/Frontend/CompileOptions.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "clang/Basic/ConvertUTF.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Module.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Target/TargetData.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| |
| CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts, |
| llvm::Module &M, const llvm::TargetData &TD, |
| Diagnostic &diags) |
| : BlockModule(C, M, TD, Types, *this), Context(C), |
| Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M), |
| TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), |
| MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0), |
| VMContext(M.getContext()) { |
| |
| if (!Features.ObjC1) |
| Runtime = 0; |
| else if (!Features.NeXTRuntime) |
| Runtime = CreateGNUObjCRuntime(*this); |
| else if (Features.ObjCNonFragileABI) |
| Runtime = CreateMacNonFragileABIObjCRuntime(*this); |
| else |
| Runtime = CreateMacObjCRuntime(*this); |
| |
| // If debug info generation is enabled, create the CGDebugInfo object. |
| DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0; |
| } |
| |
| CodeGenModule::~CodeGenModule() { |
| delete Runtime; |
| delete DebugInfo; |
| } |
| |
| void CodeGenModule::Release() { |
| EmitDeferred(); |
| if (Runtime) |
| if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) |
| AddGlobalCtor(ObjCInitFunction); |
| EmitCtorList(GlobalCtors, "llvm.global_ctors"); |
| EmitCtorList(GlobalDtors, "llvm.global_dtors"); |
| EmitAnnotations(); |
| EmitLLVMUsed(); |
| } |
| |
| /// ErrorUnsupported - Print out an error that codegen doesn't support the |
| /// specified stmt yet. |
| void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, |
| bool OmitOnError) { |
| if (OmitOnError && getDiags().hasErrorOccurred()) |
| return; |
| unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, |
| "cannot compile this %0 yet"); |
| std::string Msg = Type; |
| getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) |
| << Msg << S->getSourceRange(); |
| } |
| |
| /// ErrorUnsupported - Print out an error that codegen doesn't support the |
| /// specified decl yet. |
| void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, |
| bool OmitOnError) { |
| if (OmitOnError && getDiags().hasErrorOccurred()) |
| return; |
| unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, |
| "cannot compile this %0 yet"); |
| std::string Msg = Type; |
| getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; |
| } |
| |
| LangOptions::VisibilityMode |
| CodeGenModule::getDeclVisibilityMode(const Decl *D) const { |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
| if (VD->getStorageClass() == VarDecl::PrivateExtern) |
| return LangOptions::Hidden; |
| |
| if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { |
| switch (attr->getVisibility()) { |
| default: assert(0 && "Unknown visibility!"); |
| case VisibilityAttr::DefaultVisibility: |
| return LangOptions::Default; |
| case VisibilityAttr::HiddenVisibility: |
| return LangOptions::Hidden; |
| case VisibilityAttr::ProtectedVisibility: |
| return LangOptions::Protected; |
| } |
| } |
| |
| return getLangOptions().getVisibilityMode(); |
| } |
| |
| void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, |
| const Decl *D) const { |
| // Internal definitions always have default visibility. |
| if (GV->hasLocalLinkage()) { |
| GV->setVisibility(llvm::GlobalValue::DefaultVisibility); |
| return; |
| } |
| |
| switch (getDeclVisibilityMode(D)) { |
| default: assert(0 && "Unknown visibility!"); |
| case LangOptions::Default: |
| return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); |
| case LangOptions::Hidden: |
| return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| case LangOptions::Protected: |
| return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); |
| } |
| } |
| |
| const char *CodeGenModule::getMangledName(const GlobalDecl &GD) { |
| const NamedDecl *ND = GD.getDecl(); |
| |
| if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) |
| return getMangledCXXCtorName(D, GD.getCtorType()); |
| if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) |
| return getMangledCXXDtorName(D, GD.getDtorType()); |
| |
| return getMangledName(ND); |
| } |
| |
| /// \brief Retrieves the mangled name for the given declaration. |
| /// |
| /// If the given declaration requires a mangled name, returns an |
| /// const char* containing the mangled name. Otherwise, returns |
| /// the unmangled name. |
| /// |
| const char *CodeGenModule::getMangledName(const NamedDecl *ND) { |
| // In C, functions with no attributes never need to be mangled. Fastpath them. |
| if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) { |
| assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); |
| return ND->getNameAsCString(); |
| } |
| |
| llvm::SmallString<256> Name; |
| llvm::raw_svector_ostream Out(Name); |
| if (!mangleName(ND, Context, Out)) { |
| assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); |
| return ND->getNameAsCString(); |
| } |
| |
| Name += '\0'; |
| return UniqueMangledName(Name.begin(), Name.end()); |
| } |
| |
| const char *CodeGenModule::UniqueMangledName(const char *NameStart, |
| const char *NameEnd) { |
| assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!"); |
| |
| return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData(); |
| } |
| |
| /// AddGlobalCtor - Add a function to the list that will be called before |
| /// main() runs. |
| void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { |
| // FIXME: Type coercion of void()* types. |
| GlobalCtors.push_back(std::make_pair(Ctor, Priority)); |
| } |
| |
| /// AddGlobalDtor - Add a function to the list that will be called |
| /// when the module is unloaded. |
| void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { |
| // FIXME: Type coercion of void()* types. |
| GlobalDtors.push_back(std::make_pair(Dtor, Priority)); |
| } |
| |
| void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { |
| // Ctor function type is void()*. |
| llvm::FunctionType* CtorFTy = |
| VMContext.getFunctionType(llvm::Type::VoidTy, |
| std::vector<const llvm::Type*>(), |
| false); |
| llvm::Type *CtorPFTy = VMContext.getPointerTypeUnqual(CtorFTy); |
| |
| // Get the type of a ctor entry, { i32, void ()* }. |
| llvm::StructType* CtorStructTy = |
| VMContext.getStructType(llvm::Type::Int32Ty, |
| VMContext.getPointerTypeUnqual(CtorFTy), NULL); |
| |
| // Construct the constructor and destructor arrays. |
| std::vector<llvm::Constant*> Ctors; |
| for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { |
| std::vector<llvm::Constant*> S; |
| S.push_back( |
| VMContext.getConstantInt(llvm::Type::Int32Ty, I->second, false)); |
| S.push_back(VMContext.getConstantExprBitCast(I->first, CtorPFTy)); |
| Ctors.push_back(VMContext.getConstantStruct(CtorStructTy, S)); |
| } |
| |
| if (!Ctors.empty()) { |
| llvm::ArrayType *AT = VMContext.getArrayType(CtorStructTy, Ctors.size()); |
| new llvm::GlobalVariable(TheModule, AT, false, |
| llvm::GlobalValue::AppendingLinkage, |
| VMContext.getConstantArray(AT, Ctors), |
| GlobalName); |
| } |
| } |
| |
| void CodeGenModule::EmitAnnotations() { |
| if (Annotations.empty()) |
| return; |
| |
| // Create a new global variable for the ConstantStruct in the Module. |
| llvm::Constant *Array = |
| VMContext.getConstantArray(VMContext.getArrayType(Annotations[0]->getType(), |
| Annotations.size()), |
| Annotations); |
| llvm::GlobalValue *gv = |
| new llvm::GlobalVariable(TheModule, Array->getType(), false, |
| llvm::GlobalValue::AppendingLinkage, Array, |
| "llvm.global.annotations"); |
| gv->setSection("llvm.metadata"); |
| } |
| |
| static CodeGenModule::GVALinkage |
| GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, |
| const LangOptions &Features) { |
| // The kind of external linkage this function will have, if it is not |
| // inline or static. |
| CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; |
| if (Context.getLangOptions().CPlusPlus && |
| (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) && |
| !FD->isExplicitSpecialization()) |
| External = CodeGenModule::GVA_TemplateInstantiation; |
| |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
| // C++ member functions defined inside the class are always inline. |
| if (MD->isInline() || !MD->isOutOfLine()) |
| return CodeGenModule::GVA_CXXInline; |
| |
| return External; |
| } |
| |
| // "static" functions get internal linkage. |
| if (FD->getStorageClass() == FunctionDecl::Static) |
| return CodeGenModule::GVA_Internal; |
| |
| if (!FD->isInline()) |
| return External; |
| |
| // If the inline function explicitly has the GNU inline attribute on it, or if |
| // this is C89 mode, we use to GNU semantics. |
| if (!Features.C99 && !Features.CPlusPlus) { |
| // extern inline in GNU mode is like C99 inline. |
| if (FD->getStorageClass() == FunctionDecl::Extern) |
| return CodeGenModule::GVA_C99Inline; |
| // Normal inline is a strong symbol. |
| return CodeGenModule::GVA_StrongExternal; |
| } else if (FD->hasActiveGNUInlineAttribute(Context)) { |
| // GCC in C99 mode seems to use a different decision-making |
| // process for extern inline, which factors in previous |
| // declarations. |
| if (FD->isExternGNUInline(Context)) |
| return CodeGenModule::GVA_C99Inline; |
| // Normal inline is a strong symbol. |
| return External; |
| } |
| |
| // The definition of inline changes based on the language. Note that we |
| // have already handled "static inline" above, with the GVA_Internal case. |
| if (Features.CPlusPlus) // inline and extern inline. |
| return CodeGenModule::GVA_CXXInline; |
| |
| assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode"); |
| if (FD->isC99InlineDefinition()) |
| return CodeGenModule::GVA_C99Inline; |
| |
| return CodeGenModule::GVA_StrongExternal; |
| } |
| |
| /// SetFunctionDefinitionAttributes - Set attributes for a global. |
| /// |
| /// FIXME: This is currently only done for aliases and functions, but not for |
| /// variables (these details are set in EmitGlobalVarDefinition for variables). |
| void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, |
| llvm::GlobalValue *GV) { |
| GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); |
| |
| if (Linkage == GVA_Internal) { |
| GV->setLinkage(llvm::Function::InternalLinkage); |
| } else if (D->hasAttr<DLLExportAttr>()) { |
| GV->setLinkage(llvm::Function::DLLExportLinkage); |
| } else if (D->hasAttr<WeakAttr>()) { |
| GV->setLinkage(llvm::Function::WeakAnyLinkage); |
| } else if (Linkage == GVA_C99Inline) { |
| // In C99 mode, 'inline' functions are guaranteed to have a strong |
| // definition somewhere else, so we can use available_externally linkage. |
| GV->setLinkage(llvm::Function::AvailableExternallyLinkage); |
| } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { |
| // In C++, the compiler has to emit a definition in every translation unit |
| // that references the function. We should use linkonce_odr because |
| // a) if all references in this translation unit are optimized away, we |
| // don't need to codegen it. b) if the function persists, it needs to be |
| // merged with other definitions. c) C++ has the ODR, so we know the |
| // definition is dependable. |
| GV->setLinkage(llvm::Function::LinkOnceODRLinkage); |
| } else { |
| assert(Linkage == GVA_StrongExternal); |
| // Otherwise, we have strong external linkage. |
| GV->setLinkage(llvm::Function::ExternalLinkage); |
| } |
| |
| SetCommonAttributes(D, GV); |
| } |
| |
| void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, |
| const CGFunctionInfo &Info, |
| llvm::Function *F) { |
| AttributeListType AttributeList; |
| ConstructAttributeList(Info, D, AttributeList); |
| |
| F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), |
| AttributeList.size())); |
| |
| // Set the appropriate calling convention for the Function. |
| if (D->hasAttr<FastCallAttr>()) |
| F->setCallingConv(llvm::CallingConv::X86_FastCall); |
| |
| if (D->hasAttr<StdCallAttr>()) |
| F->setCallingConv(llvm::CallingConv::X86_StdCall); |
| } |
| |
| void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, |
| llvm::Function *F) { |
| if (!Features.Exceptions && !Features.ObjCNonFragileABI) |
| F->addFnAttr(llvm::Attribute::NoUnwind); |
| |
| if (D->hasAttr<AlwaysInlineAttr>()) |
| F->addFnAttr(llvm::Attribute::AlwaysInline); |
| |
| if (D->hasAttr<NoinlineAttr>()) |
| F->addFnAttr(llvm::Attribute::NoInline); |
| } |
| |
| void CodeGenModule::SetCommonAttributes(const Decl *D, |
| llvm::GlobalValue *GV) { |
| setGlobalVisibility(GV, D); |
| |
| if (D->hasAttr<UsedAttr>()) |
| AddUsedGlobal(GV); |
| |
| if (const SectionAttr *SA = D->getAttr<SectionAttr>()) |
| GV->setSection(SA->getName()); |
| } |
| |
| void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, |
| llvm::Function *F, |
| const CGFunctionInfo &FI) { |
| SetLLVMFunctionAttributes(D, FI, F); |
| SetLLVMFunctionAttributesForDefinition(D, F); |
| |
| F->setLinkage(llvm::Function::InternalLinkage); |
| |
| SetCommonAttributes(D, F); |
| } |
| |
| void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, |
| llvm::Function *F, |
| bool IsIncompleteFunction) { |
| if (!IsIncompleteFunction) |
| SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); |
| |
| // Only a few attributes are set on declarations; these may later be |
| // overridden by a definition. |
| |
| if (FD->hasAttr<DLLImportAttr>()) { |
| F->setLinkage(llvm::Function::DLLImportLinkage); |
| } else if (FD->hasAttr<WeakAttr>() || |
| FD->hasAttr<WeakImportAttr>()) { |
| // "extern_weak" is overloaded in LLVM; we probably should have |
| // separate linkage types for this. |
| F->setLinkage(llvm::Function::ExternalWeakLinkage); |
| } else { |
| F->setLinkage(llvm::Function::ExternalLinkage); |
| } |
| |
| if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) |
| F->setSection(SA->getName()); |
| } |
| |
| void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { |
| assert(!GV->isDeclaration() && |
| "Only globals with definition can force usage."); |
| LLVMUsed.push_back(GV); |
| } |
| |
| void CodeGenModule::EmitLLVMUsed() { |
| // Don't create llvm.used if there is no need. |
| if (LLVMUsed.empty()) |
| return; |
| |
| llvm::Type *i8PTy = VMContext.getPointerTypeUnqual(llvm::Type::Int8Ty); |
| |
| // Convert LLVMUsed to what ConstantArray needs. |
| std::vector<llvm::Constant*> UsedArray; |
| UsedArray.resize(LLVMUsed.size()); |
| for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { |
| UsedArray[i] = |
| VMContext.getConstantExprBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), |
| i8PTy); |
| } |
| |
| if (UsedArray.empty()) |
| return; |
| llvm::ArrayType *ATy = VMContext.getArrayType(i8PTy, UsedArray.size()); |
| |
| llvm::GlobalVariable *GV = |
| new llvm::GlobalVariable(getModule(), ATy, false, |
| llvm::GlobalValue::AppendingLinkage, |
| VMContext.getConstantArray(ATy, UsedArray), |
| "llvm.used"); |
| |
| GV->setSection("llvm.metadata"); |
| } |
| |
| void CodeGenModule::EmitDeferred() { |
| // Emit code for any potentially referenced deferred decls. Since a |
| // previously unused static decl may become used during the generation of code |
| // for a static function, iterate until no changes are made. |
| while (!DeferredDeclsToEmit.empty()) { |
| GlobalDecl D = DeferredDeclsToEmit.back(); |
| DeferredDeclsToEmit.pop_back(); |
| |
| // The mangled name for the decl must have been emitted in GlobalDeclMap. |
| // Look it up to see if it was defined with a stronger definition (e.g. an |
| // extern inline function with a strong function redefinition). If so, |
| // just ignore the deferred decl. |
| llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)]; |
| assert(CGRef && "Deferred decl wasn't referenced?"); |
| |
| if (!CGRef->isDeclaration()) |
| continue; |
| |
| // Otherwise, emit the definition and move on to the next one. |
| EmitGlobalDefinition(D); |
| } |
| } |
| |
| /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the |
| /// annotation information for a given GlobalValue. The annotation struct is |
| /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the |
| /// GlobalValue being annotated. The second field is the constant string |
| /// created from the AnnotateAttr's annotation. The third field is a constant |
| /// string containing the name of the translation unit. The fourth field is |
| /// the line number in the file of the annotated value declaration. |
| /// |
| /// FIXME: this does not unique the annotation string constants, as llvm-gcc |
| /// appears to. |
| /// |
| llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, |
| const AnnotateAttr *AA, |
| unsigned LineNo) { |
| llvm::Module *M = &getModule(); |
| |
| // get [N x i8] constants for the annotation string, and the filename string |
| // which are the 2nd and 3rd elements of the global annotation structure. |
| const llvm::Type *SBP = VMContext.getPointerTypeUnqual(llvm::Type::Int8Ty); |
| llvm::Constant *anno = VMContext.getConstantArray(AA->getAnnotation(), true); |
| llvm::Constant *unit = VMContext.getConstantArray(M->getModuleIdentifier(), |
| true); |
| |
| // Get the two global values corresponding to the ConstantArrays we just |
| // created to hold the bytes of the strings. |
| llvm::GlobalValue *annoGV = |
| new llvm::GlobalVariable(*M, anno->getType(), false, |
| llvm::GlobalValue::PrivateLinkage, anno, |
| GV->getName()); |
| // translation unit name string, emitted into the llvm.metadata section. |
| llvm::GlobalValue *unitGV = |
| new llvm::GlobalVariable(*M, unit->getType(), false, |
| llvm::GlobalValue::PrivateLinkage, unit, |
| ".str"); |
| |
| // Create the ConstantStruct for the global annotation. |
| llvm::Constant *Fields[4] = { |
| VMContext.getConstantExprBitCast(GV, SBP), |
| VMContext.getConstantExprBitCast(annoGV, SBP), |
| VMContext.getConstantExprBitCast(unitGV, SBP), |
| VMContext.getConstantInt(llvm::Type::Int32Ty, LineNo) |
| }; |
| return VMContext.getConstantStruct(Fields, 4, false); |
| } |
| |
| bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { |
| // Never defer when EmitAllDecls is specified or the decl has |
| // attribute used. |
| if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) |
| return false; |
| |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { |
| // Constructors and destructors should never be deferred. |
| if (FD->hasAttr<ConstructorAttr>() || |
| FD->hasAttr<DestructorAttr>()) |
| return false; |
| |
| GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); |
| |
| // static, static inline, always_inline, and extern inline functions can |
| // always be deferred. Normal inline functions can be deferred in C99/C++. |
| if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || |
| Linkage == GVA_CXXInline) |
| return true; |
| return false; |
| } |
| |
| const VarDecl *VD = cast<VarDecl>(Global); |
| assert(VD->isFileVarDecl() && "Invalid decl"); |
| |
| return VD->getStorageClass() == VarDecl::Static; |
| } |
| |
| void CodeGenModule::EmitGlobal(GlobalDecl GD) { |
| const ValueDecl *Global = GD.getDecl(); |
| |
| // If this is an alias definition (which otherwise looks like a declaration) |
| // emit it now. |
| if (Global->hasAttr<AliasAttr>()) |
| return EmitAliasDefinition(Global); |
| |
| // Ignore declarations, they will be emitted on their first use. |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { |
| // Forward declarations are emitted lazily on first use. |
| if (!FD->isThisDeclarationADefinition()) |
| return; |
| } else { |
| const VarDecl *VD = cast<VarDecl>(Global); |
| assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); |
| |
| // In C++, if this is marked "extern", defer code generation. |
| if (getLangOptions().CPlusPlus && !VD->getInit() && |
| (VD->getStorageClass() == VarDecl::Extern || |
| VD->isExternC(getContext()))) |
| return; |
| |
| // In C, if this isn't a definition, defer code generation. |
| if (!getLangOptions().CPlusPlus && !VD->getInit()) |
| return; |
| } |
| |
| // Defer code generation when possible if this is a static definition, inline |
| // function etc. These we only want to emit if they are used. |
| if (MayDeferGeneration(Global)) { |
| // If the value has already been used, add it directly to the |
| // DeferredDeclsToEmit list. |
| const char *MangledName = getMangledName(GD); |
| if (GlobalDeclMap.count(MangledName)) |
| DeferredDeclsToEmit.push_back(GD); |
| else { |
| // Otherwise, remember that we saw a deferred decl with this name. The |
| // first use of the mangled name will cause it to move into |
| // DeferredDeclsToEmit. |
| DeferredDecls[MangledName] = GD; |
| } |
| return; |
| } |
| |
| // Otherwise emit the definition. |
| EmitGlobalDefinition(GD); |
| } |
| |
| void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { |
| const ValueDecl *D = GD.getDecl(); |
| |
| if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) |
| EmitCXXConstructor(CD, GD.getCtorType()); |
| else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) |
| EmitCXXDestructor(DD, GD.getDtorType()); |
| else if (isa<FunctionDecl>(D)) |
| EmitGlobalFunctionDefinition(GD); |
| else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
| EmitGlobalVarDefinition(VD); |
| else { |
| assert(0 && "Invalid argument to EmitGlobalDefinition()"); |
| } |
| } |
| |
| /// GetOrCreateLLVMFunction - If the specified mangled name is not in the |
| /// module, create and return an llvm Function with the specified type. If there |
| /// is something in the module with the specified name, return it potentially |
| /// bitcasted to the right type. |
| /// |
| /// If D is non-null, it specifies a decl that correspond to this. This is used |
| /// to set the attributes on the function when it is first created. |
| llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName, |
| const llvm::Type *Ty, |
| GlobalDecl D) { |
| // Lookup the entry, lazily creating it if necessary. |
| llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; |
| if (Entry) { |
| if (Entry->getType()->getElementType() == Ty) |
| return Entry; |
| |
| // Make sure the result is of the correct type. |
| const llvm::Type *PTy = VMContext.getPointerTypeUnqual(Ty); |
| return VMContext.getConstantExprBitCast(Entry, PTy); |
| } |
| |
| // This is the first use or definition of a mangled name. If there is a |
| // deferred decl with this name, remember that we need to emit it at the end |
| // of the file. |
| llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = |
| DeferredDecls.find(MangledName); |
| if (DDI != DeferredDecls.end()) { |
| // Move the potentially referenced deferred decl to the DeferredDeclsToEmit |
| // list, and remove it from DeferredDecls (since we don't need it anymore). |
| DeferredDeclsToEmit.push_back(DDI->second); |
| DeferredDecls.erase(DDI); |
| } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { |
| // If this the first reference to a C++ inline function in a class, queue up |
| // the deferred function body for emission. These are not seen as |
| // top-level declarations. |
| if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) |
| DeferredDeclsToEmit.push_back(D); |
| } |
| |
| // This function doesn't have a complete type (for example, the return |
| // type is an incomplete struct). Use a fake type instead, and make |
| // sure not to try to set attributes. |
| bool IsIncompleteFunction = false; |
| if (!isa<llvm::FunctionType>(Ty)) { |
| Ty = VMContext.getFunctionType(llvm::Type::VoidTy, |
| std::vector<const llvm::Type*>(), false); |
| IsIncompleteFunction = true; |
| } |
| llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), |
| llvm::Function::ExternalLinkage, |
| "", &getModule()); |
| F->setName(MangledName); |
| if (D.getDecl()) |
| SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F, |
| IsIncompleteFunction); |
| Entry = F; |
| return F; |
| } |
| |
| /// GetAddrOfFunction - Return the address of the given function. If Ty is |
| /// non-null, then this function will use the specified type if it has to |
| /// create it (this occurs when we see a definition of the function). |
| llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, |
| const llvm::Type *Ty) { |
| // If there was no specific requested type, just convert it now. |
| if (!Ty) |
| Ty = getTypes().ConvertType(GD.getDecl()->getType()); |
| return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD); |
| } |
| |
| /// CreateRuntimeFunction - Create a new runtime function with the specified |
| /// type and name. |
| llvm::Constant * |
| CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, |
| const char *Name) { |
| // Convert Name to be a uniqued string from the IdentifierInfo table. |
| Name = getContext().Idents.get(Name).getName(); |
| return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); |
| } |
| |
| /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, |
| /// create and return an llvm GlobalVariable with the specified type. If there |
| /// is something in the module with the specified name, return it potentially |
| /// bitcasted to the right type. |
| /// |
| /// If D is non-null, it specifies a decl that correspond to this. This is used |
| /// to set the attributes on the global when it is first created. |
| llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName, |
| const llvm::PointerType*Ty, |
| const VarDecl *D) { |
| // Lookup the entry, lazily creating it if necessary. |
| llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; |
| if (Entry) { |
| if (Entry->getType() == Ty) |
| return Entry; |
| |
| // Make sure the result is of the correct type. |
| return VMContext.getConstantExprBitCast(Entry, Ty); |
| } |
| |
| // This is the first use or definition of a mangled name. If there is a |
| // deferred decl with this name, remember that we need to emit it at the end |
| // of the file. |
| llvm::DenseMap<const char*, GlobalDecl>::iterator DDI = |
| DeferredDecls.find(MangledName); |
| if (DDI != DeferredDecls.end()) { |
| // Move the potentially referenced deferred decl to the DeferredDeclsToEmit |
| // list, and remove it from DeferredDecls (since we don't need it anymore). |
| DeferredDeclsToEmit.push_back(DDI->second); |
| DeferredDecls.erase(DDI); |
| } |
| |
| llvm::GlobalVariable *GV = |
| new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, |
| llvm::GlobalValue::ExternalLinkage, |
| 0, "", 0, |
| false, Ty->getAddressSpace()); |
| GV->setName(MangledName); |
| |
| // Handle things which are present even on external declarations. |
| if (D) { |
| // FIXME: This code is overly simple and should be merged with other global |
| // handling. |
| GV->setConstant(D->getType().isConstant(Context)); |
| |
| // FIXME: Merge with other attribute handling code. |
| if (D->getStorageClass() == VarDecl::PrivateExtern) |
| GV->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| |
| if (D->hasAttr<WeakAttr>() || |
| D->hasAttr<WeakImportAttr>()) |
| GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); |
| |
| GV->setThreadLocal(D->isThreadSpecified()); |
| } |
| |
| return Entry = GV; |
| } |
| |
| |
| /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the |
| /// given global variable. If Ty is non-null and if the global doesn't exist, |
| /// then it will be greated with the specified type instead of whatever the |
| /// normal requested type would be. |
| llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, |
| const llvm::Type *Ty) { |
| assert(D->hasGlobalStorage() && "Not a global variable"); |
| QualType ASTTy = D->getType(); |
| if (Ty == 0) |
| Ty = getTypes().ConvertTypeForMem(ASTTy); |
| |
| const llvm::PointerType *PTy = |
| VMContext.getPointerType(Ty, ASTTy.getAddressSpace()); |
| return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D); |
| } |
| |
| /// CreateRuntimeVariable - Create a new runtime global variable with the |
| /// specified type and name. |
| llvm::Constant * |
| CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, |
| const char *Name) { |
| // Convert Name to be a uniqued string from the IdentifierInfo table. |
| Name = getContext().Idents.get(Name).getName(); |
| return GetOrCreateLLVMGlobal(Name, VMContext.getPointerTypeUnqual(Ty), 0); |
| } |
| |
| void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { |
| assert(!D->getInit() && "Cannot emit definite definitions here!"); |
| |
| if (MayDeferGeneration(D)) { |
| // If we have not seen a reference to this variable yet, place it |
| // into the deferred declarations table to be emitted if needed |
| // later. |
| const char *MangledName = getMangledName(D); |
| if (GlobalDeclMap.count(MangledName) == 0) { |
| DeferredDecls[MangledName] = GlobalDecl(D); |
| return; |
| } |
| } |
| |
| // The tentative definition is the only definition. |
| EmitGlobalVarDefinition(D); |
| } |
| |
| void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { |
| llvm::Constant *Init = 0; |
| QualType ASTTy = D->getType(); |
| |
| if (D->getInit() == 0) { |
| // This is a tentative definition; tentative definitions are |
| // implicitly initialized with { 0 }. |
| // |
| // Note that tentative definitions are only emitted at the end of |
| // a translation unit, so they should never have incomplete |
| // type. In addition, EmitTentativeDefinition makes sure that we |
| // never attempt to emit a tentative definition if a real one |
| // exists. A use may still exists, however, so we still may need |
| // to do a RAUW. |
| assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); |
| Init = getLLVMContext().getNullValue(getTypes().ConvertTypeForMem(ASTTy)); |
| } else { |
| Init = EmitConstantExpr(D->getInit(), D->getType()); |
| if (!Init) { |
| ErrorUnsupported(D, "static initializer"); |
| QualType T = D->getInit()->getType(); |
| Init = VMContext.getUndef(getTypes().ConvertType(T)); |
| } |
| } |
| |
| const llvm::Type* InitType = Init->getType(); |
| llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); |
| |
| // Strip off a bitcast if we got one back. |
| if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { |
| assert(CE->getOpcode() == llvm::Instruction::BitCast || |
| // all zero index gep. |
| CE->getOpcode() == llvm::Instruction::GetElementPtr); |
| Entry = CE->getOperand(0); |
| } |
| |
| // Entry is now either a Function or GlobalVariable. |
| llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); |
| |
| // We have a definition after a declaration with the wrong type. |
| // We must make a new GlobalVariable* and update everything that used OldGV |
| // (a declaration or tentative definition) with the new GlobalVariable* |
| // (which will be a definition). |
| // |
| // This happens if there is a prototype for a global (e.g. |
| // "extern int x[];") and then a definition of a different type (e.g. |
| // "int x[10];"). This also happens when an initializer has a different type |
| // from the type of the global (this happens with unions). |
| if (GV == 0 || |
| GV->getType()->getElementType() != InitType || |
| GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { |
| |
| // Remove the old entry from GlobalDeclMap so that we'll create a new one. |
| GlobalDeclMap.erase(getMangledName(D)); |
| |
| // Make a new global with the correct type, this is now guaranteed to work. |
| GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); |
| GV->takeName(cast<llvm::GlobalValue>(Entry)); |
| |
| // Replace all uses of the old global with the new global |
| llvm::Constant *NewPtrForOldDecl = |
| VMContext.getConstantExprBitCast(GV, Entry->getType()); |
| Entry->replaceAllUsesWith(NewPtrForOldDecl); |
| |
| // Erase the old global, since it is no longer used. |
| cast<llvm::GlobalValue>(Entry)->eraseFromParent(); |
| } |
| |
| if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { |
| SourceManager &SM = Context.getSourceManager(); |
| AddAnnotation(EmitAnnotateAttr(GV, AA, |
| SM.getInstantiationLineNumber(D->getLocation()))); |
| } |
| |
| GV->setInitializer(Init); |
| GV->setConstant(D->getType().isConstant(Context)); |
| GV->setAlignment(getContext().getDeclAlignInBytes(D)); |
| |
| // Set the llvm linkage type as appropriate. |
| if (D->getStorageClass() == VarDecl::Static) |
| GV->setLinkage(llvm::Function::InternalLinkage); |
| else if (D->hasAttr<DLLImportAttr>()) |
| GV->setLinkage(llvm::Function::DLLImportLinkage); |
| else if (D->hasAttr<DLLExportAttr>()) |
| GV->setLinkage(llvm::Function::DLLExportLinkage); |
| else if (D->hasAttr<WeakAttr>()) |
| GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); |
| else if (!CompileOpts.NoCommon && |
| (!D->hasExternalStorage() && !D->getInit())) |
| GV->setLinkage(llvm::GlobalVariable::CommonLinkage); |
| else |
| GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); |
| |
| SetCommonAttributes(D, GV); |
| |
| // Emit global variable debug information. |
| if (CGDebugInfo *DI = getDebugInfo()) { |
| DI->setLocation(D->getLocation()); |
| DI->EmitGlobalVariable(GV, D); |
| } |
| } |
| |
| /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we |
| /// implement a function with no prototype, e.g. "int foo() {}". If there are |
| /// existing call uses of the old function in the module, this adjusts them to |
| /// call the new function directly. |
| /// |
| /// This is not just a cleanup: the always_inline pass requires direct calls to |
| /// functions to be able to inline them. If there is a bitcast in the way, it |
| /// won't inline them. Instcombine normally deletes these calls, but it isn't |
| /// run at -O0. |
| static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, |
| llvm::Function *NewFn) { |
| // If we're redefining a global as a function, don't transform it. |
| llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); |
| if (OldFn == 0) return; |
| |
| const llvm::Type *NewRetTy = NewFn->getReturnType(); |
| llvm::SmallVector<llvm::Value*, 4> ArgList; |
| |
| for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); |
| UI != E; ) { |
| // TODO: Do invokes ever occur in C code? If so, we should handle them too. |
| unsigned OpNo = UI.getOperandNo(); |
| llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++); |
| if (!CI || OpNo != 0) continue; |
| |
| // If the return types don't match exactly, and if the call isn't dead, then |
| // we can't transform this call. |
| if (CI->getType() != NewRetTy && !CI->use_empty()) |
| continue; |
| |
| // If the function was passed too few arguments, don't transform. If extra |
| // arguments were passed, we silently drop them. If any of the types |
| // mismatch, we don't transform. |
| unsigned ArgNo = 0; |
| bool DontTransform = false; |
| for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), |
| E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { |
| if (CI->getNumOperands()-1 == ArgNo || |
| CI->getOperand(ArgNo+1)->getType() != AI->getType()) { |
| DontTransform = true; |
| break; |
| } |
| } |
| if (DontTransform) |
| continue; |
| |
| // Okay, we can transform this. Create the new call instruction and copy |
| // over the required information. |
| ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo); |
| llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), |
| ArgList.end(), "", CI); |
| ArgList.clear(); |
| if (NewCall->getType() != llvm::Type::VoidTy) |
| NewCall->takeName(CI); |
| NewCall->setCallingConv(CI->getCallingConv()); |
| NewCall->setAttributes(CI->getAttributes()); |
| |
| // Finally, remove the old call, replacing any uses with the new one. |
| if (!CI->use_empty()) |
| CI->replaceAllUsesWith(NewCall); |
| CI->eraseFromParent(); |
| } |
| } |
| |
| |
| void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { |
| const llvm::FunctionType *Ty; |
| const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); |
| |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { |
| bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic(); |
| |
| Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic); |
| } else { |
| Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); |
| |
| // As a special case, make sure that definitions of K&R function |
| // "type foo()" aren't declared as varargs (which forces the backend |
| // to do unnecessary work). |
| if (D->getType()->isFunctionNoProtoType()) { |
| assert(Ty->isVarArg() && "Didn't lower type as expected"); |
| // Due to stret, the lowered function could have arguments. |
| // Just create the same type as was lowered by ConvertType |
| // but strip off the varargs bit. |
| std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end()); |
| Ty = VMContext.getFunctionType(Ty->getReturnType(), Args, false); |
| } |
| } |
| |
| // Get or create the prototype for the function. |
| llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); |
| |
| // Strip off a bitcast if we got one back. |
| if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { |
| assert(CE->getOpcode() == llvm::Instruction::BitCast); |
| Entry = CE->getOperand(0); |
| } |
| |
| |
| if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { |
| llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); |
| |
| // If the types mismatch then we have to rewrite the definition. |
| assert(OldFn->isDeclaration() && |
| "Shouldn't replace non-declaration"); |
| |
| // F is the Function* for the one with the wrong type, we must make a new |
| // Function* and update everything that used F (a declaration) with the new |
| // Function* (which will be a definition). |
| // |
| // This happens if there is a prototype for a function |
| // (e.g. "int f()") and then a definition of a different type |
| // (e.g. "int f(int x)"). Start by making a new function of the |
| // correct type, RAUW, then steal the name. |
| GlobalDeclMap.erase(getMangledName(D)); |
| llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); |
| NewFn->takeName(OldFn); |
| |
| // If this is an implementation of a function without a prototype, try to |
| // replace any existing uses of the function (which may be calls) with uses |
| // of the new function |
| if (D->getType()->isFunctionNoProtoType()) { |
| ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); |
| OldFn->removeDeadConstantUsers(); |
| } |
| |
| // Replace uses of F with the Function we will endow with a body. |
| if (!Entry->use_empty()) { |
| llvm::Constant *NewPtrForOldDecl = |
| VMContext.getConstantExprBitCast(NewFn, Entry->getType()); |
| Entry->replaceAllUsesWith(NewPtrForOldDecl); |
| } |
| |
| // Ok, delete the old function now, which is dead. |
| OldFn->eraseFromParent(); |
| |
| Entry = NewFn; |
| } |
| |
| llvm::Function *Fn = cast<llvm::Function>(Entry); |
| |
| CodeGenFunction(*this).GenerateCode(D, Fn); |
| |
| SetFunctionDefinitionAttributes(D, Fn); |
| SetLLVMFunctionAttributesForDefinition(D, Fn); |
| |
| if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) |
| AddGlobalCtor(Fn, CA->getPriority()); |
| if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) |
| AddGlobalDtor(Fn, DA->getPriority()); |
| } |
| |
| void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) { |
| const AliasAttr *AA = D->getAttr<AliasAttr>(); |
| assert(AA && "Not an alias?"); |
| |
| const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); |
| |
| // Unique the name through the identifier table. |
| const char *AliaseeName = AA->getAliasee().c_str(); |
| AliaseeName = getContext().Idents.get(AliaseeName).getName(); |
| |
| // Create a reference to the named value. This ensures that it is emitted |
| // if a deferred decl. |
| llvm::Constant *Aliasee; |
| if (isa<llvm::FunctionType>(DeclTy)) |
| Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl()); |
| else |
| Aliasee = GetOrCreateLLVMGlobal(AliaseeName, |
| VMContext.getPointerTypeUnqual(DeclTy), 0); |
| |
| // Create the new alias itself, but don't set a name yet. |
| llvm::GlobalValue *GA = |
| new llvm::GlobalAlias(Aliasee->getType(), |
| llvm::Function::ExternalLinkage, |
| "", Aliasee, &getModule()); |
| |
| // See if there is already something with the alias' name in the module. |
| const char *MangledName = getMangledName(D); |
| llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName]; |
| |
| if (Entry && !Entry->isDeclaration()) { |
| // If there is a definition in the module, then it wins over the alias. |
| // This is dubious, but allow it to be safe. Just ignore the alias. |
| GA->eraseFromParent(); |
| return; |
| } |
| |
| if (Entry) { |
| // If there is a declaration in the module, then we had an extern followed |
| // by the alias, as in: |
| // extern int test6(); |
| // ... |
| // int test6() __attribute__((alias("test7"))); |
| // |
| // Remove it and replace uses of it with the alias. |
| |
| Entry->replaceAllUsesWith(VMContext.getConstantExprBitCast(GA, |
| Entry->getType())); |
| Entry->eraseFromParent(); |
| } |
| |
| // Now we know that there is no conflict, set the name. |
| Entry = GA; |
| GA->setName(MangledName); |
| |
| // Set attributes which are particular to an alias; this is a |
| // specialization of the attributes which may be set on a global |
| // variable/function. |
| if (D->hasAttr<DLLExportAttr>()) { |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| // The dllexport attribute is ignored for undefined symbols. |
| if (FD->getBody()) |
| GA->setLinkage(llvm::Function::DLLExportLinkage); |
| } else { |
| GA->setLinkage(llvm::Function::DLLExportLinkage); |
| } |
| } else if (D->hasAttr<WeakAttr>() || |
| D->hasAttr<WeakImportAttr>()) { |
| GA->setLinkage(llvm::Function::WeakAnyLinkage); |
| } |
| |
| SetCommonAttributes(D, GA); |
| } |
| |
| /// getBuiltinLibFunction - Given a builtin id for a function like |
| /// "__builtin_fabsf", return a Function* for "fabsf". |
| llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { |
| assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || |
| Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && |
| "isn't a lib fn"); |
| |
| // Get the name, skip over the __builtin_ prefix (if necessary). |
| const char *Name = Context.BuiltinInfo.GetName(BuiltinID); |
| if (Context.BuiltinInfo.isLibFunction(BuiltinID)) |
| Name += 10; |
| |
| // Get the type for the builtin. |
| ASTContext::GetBuiltinTypeError Error; |
| QualType Type = Context.GetBuiltinType(BuiltinID, Error); |
| assert(Error == ASTContext::GE_None && "Can't get builtin type"); |
| |
| const llvm::FunctionType *Ty = |
| cast<llvm::FunctionType>(getTypes().ConvertType(Type)); |
| |
| // Unique the name through the identifier table. |
| Name = getContext().Idents.get(Name).getName(); |
| // FIXME: param attributes for sext/zext etc. |
| return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl()); |
| } |
| |
| llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, |
| unsigned NumTys) { |
| return llvm::Intrinsic::getDeclaration(&getModule(), |
| (llvm::Intrinsic::ID)IID, Tys, NumTys); |
| } |
| |
| llvm::Function *CodeGenModule::getMemCpyFn() { |
| if (MemCpyFn) return MemCpyFn; |
| const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); |
| return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); |
| } |
| |
| llvm::Function *CodeGenModule::getMemMoveFn() { |
| if (MemMoveFn) return MemMoveFn; |
| const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); |
| return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); |
| } |
| |
| llvm::Function *CodeGenModule::getMemSetFn() { |
| if (MemSetFn) return MemSetFn; |
| const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); |
| return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); |
| } |
| |
| static void appendFieldAndPadding(CodeGenModule &CGM, |
| std::vector<llvm::Constant*>& Fields, |
| FieldDecl *FieldD, FieldDecl *NextFieldD, |
| llvm::Constant* Field, |
| RecordDecl* RD, const llvm::StructType *STy) { |
| // Append the field. |
| Fields.push_back(Field); |
| |
| int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); |
| |
| int NextStructFieldNo; |
| if (!NextFieldD) { |
| NextStructFieldNo = STy->getNumElements(); |
| } else { |
| NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); |
| } |
| |
| // Append padding |
| for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { |
| llvm::Constant *C = |
| CGM.getLLVMContext().getNullValue(STy->getElementType(StructFieldNo + 1)); |
| |
| Fields.push_back(C); |
| } |
| } |
| |
| static llvm::StringMapEntry<llvm::Constant*> & |
| GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, |
| const StringLiteral *Literal, |
| bool &IsUTF16, |
| unsigned &StringLength) { |
| unsigned NumBytes = Literal->getByteLength(); |
| |
| // Check for simple case. |
| if (!Literal->containsNonAsciiOrNull()) { |
| StringLength = NumBytes; |
| return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), |
| StringLength)); |
| } |
| |
| // Otherwise, convert the UTF8 literals into a byte string. |
| llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); |
| const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); |
| UTF16 *ToPtr = &ToBuf[0]; |
| |
| ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, |
| &ToPtr, ToPtr + NumBytes, |
| strictConversion); |
| |
| // Check for conversion failure. |
| if (Result != conversionOK) { |
| // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove |
| // this duplicate code. |
| assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); |
| StringLength = NumBytes; |
| return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), |
| StringLength)); |
| } |
| |
| // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings |
| // without doing more surgery to this routine. Since we aren't explicitly |
| // checking for endianness here, it's also a bug (when generating code for |
| // a target that doesn't match the host endianness). Modeling this as an |
| // i16 array is likely the cleanest solution. |
| StringLength = ToPtr - &ToBuf[0]; |
| IsUTF16 = true; |
| return Map.GetOrCreateValue(llvm::StringRef((char *)&ToBuf[0], |
| StringLength * 2)); |
| } |
| |
| llvm::Constant * |
| CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { |
| unsigned StringLength = 0; |
| bool isUTF16 = false; |
| llvm::StringMapEntry<llvm::Constant*> &Entry = |
| GetConstantCFStringEntry(CFConstantStringMap, Literal, isUTF16, |
| StringLength); |
| |
| if (llvm::Constant *C = Entry.getValue()) |
| return C; |
| |
| llvm::Constant *Zero = getLLVMContext().getNullValue(llvm::Type::Int32Ty); |
| llvm::Constant *Zeros[] = { Zero, Zero }; |
| |
| // If we don't already have it, get __CFConstantStringClassReference. |
| if (!CFConstantStringClassRef) { |
| const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); |
| Ty = VMContext.getArrayType(Ty, 0); |
| llvm::Constant *GV = CreateRuntimeVariable(Ty, |
| "__CFConstantStringClassReference"); |
| // Decay array -> ptr |
| CFConstantStringClassRef = |
| VMContext.getConstantExprGetElementPtr(GV, Zeros, 2); |
| } |
| |
| QualType CFTy = getContext().getCFConstantStringType(); |
| RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); |
| |
| const llvm::StructType *STy = |
| cast<llvm::StructType>(getTypes().ConvertType(CFTy)); |
| |
| std::vector<llvm::Constant*> Fields; |
| RecordDecl::field_iterator Field = CFRD->field_begin(); |
| |
| // Class pointer. |
| FieldDecl *CurField = *Field++; |
| FieldDecl *NextField = *Field++; |
| appendFieldAndPadding(*this, Fields, CurField, NextField, |
| CFConstantStringClassRef, CFRD, STy); |
| |
| // Flags. |
| CurField = NextField; |
| NextField = *Field++; |
| const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); |
| appendFieldAndPadding(*this, Fields, CurField, NextField, |
| isUTF16 ? VMContext.getConstantInt(Ty, 0x07d0) |
| : VMContext.getConstantInt(Ty, 0x07C8), |
| CFRD, STy); |
| |
| // String pointer. |
| CurField = NextField; |
| NextField = *Field++; |
| llvm::Constant *C = VMContext.getConstantArray(Entry.getKey().str()); |
| |
| const char *Sect, *Prefix; |
| bool isConstant; |
| llvm::GlobalValue::LinkageTypes Linkage; |
| if (isUTF16) { |
| Prefix = getContext().Target.getUnicodeStringSymbolPrefix(); |
| Sect = getContext().Target.getUnicodeStringSection(); |
| // FIXME: why do utf strings get "l" labels instead of "L" labels? |
| Linkage = llvm::GlobalValue::InternalLinkage; |
| // FIXME: Why does GCC not set constant here? |
| isConstant = false; |
| } else { |
| Prefix = ".str"; |
| Sect = getContext().Target.getCFStringDataSection(); |
| Linkage = llvm::GlobalValue::PrivateLinkage; |
| // FIXME: -fwritable-strings should probably affect this, but we |
| // are following gcc here. |
| isConstant = true; |
| } |
| llvm::GlobalVariable *GV = |
| new llvm::GlobalVariable(getModule(), C->getType(), isConstant, |
| Linkage, C, Prefix); |
| if (Sect) |
| GV->setSection(Sect); |
| if (isUTF16) { |
| unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8; |
| GV->setAlignment(Align); |
| } |
| appendFieldAndPadding(*this, Fields, CurField, NextField, |
| VMContext.getConstantExprGetElementPtr(GV, Zeros, 2), |
| CFRD, STy); |
| |
| // String length. |
| CurField = NextField; |
| NextField = 0; |
| Ty = getTypes().ConvertType(getContext().LongTy); |
| appendFieldAndPadding(*this, Fields, CurField, NextField, |
| VMContext.getConstantInt(Ty, StringLength), CFRD, STy); |
| |
| // The struct. |
| C = VMContext.getConstantStruct(STy, Fields); |
| GV = new llvm::GlobalVariable(getModule(), C->getType(), true, |
| llvm::GlobalVariable::PrivateLinkage, C, |
| "_unnamed_cfstring_"); |
| if (const char *Sect = getContext().Target.getCFStringSection()) |
| GV->setSection(Sect); |
| Entry.setValue(GV); |
| |
| return GV; |
| } |
| |
| /// GetStringForStringLiteral - Return the appropriate bytes for a |
| /// string literal, properly padded to match the literal type. |
| std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { |
| const char *StrData = E->getStrData(); |
| unsigned Len = E->getByteLength(); |
| |
| const ConstantArrayType *CAT = |
| getContext().getAsConstantArrayType(E->getType()); |
| assert(CAT && "String isn't pointer or array!"); |
| |
| // Resize the string to the right size. |
| std::string Str(StrData, StrData+Len); |
| uint64_t RealLen = CAT->getSize().getZExtValue(); |
| |
| if (E->isWide()) |
| RealLen *= getContext().Target.getWCharWidth()/8; |
| |
| Str.resize(RealLen, '\0'); |
| |
| return Str; |
| } |
| |
| /// GetAddrOfConstantStringFromLiteral - Return a pointer to a |
| /// constant array for the given string literal. |
| llvm::Constant * |
| CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { |
| // FIXME: This can be more efficient. |
| return GetAddrOfConstantString(GetStringForStringLiteral(S)); |
| } |
| |
| /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant |
| /// array for the given ObjCEncodeExpr node. |
| llvm::Constant * |
| CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { |
| std::string Str; |
| getContext().getObjCEncodingForType(E->getEncodedType(), Str); |
| |
| return GetAddrOfConstantCString(Str); |
| } |
| |
| |
| /// GenerateWritableString -- Creates storage for a string literal. |
| static llvm::Constant *GenerateStringLiteral(const std::string &str, |
| bool constant, |
| CodeGenModule &CGM, |
| const char *GlobalName) { |
| // Create Constant for this string literal. Don't add a '\0'. |
| llvm::Constant *C = CGM.getLLVMContext().getConstantArray(str, false); |
| |
| // Create a global variable for this string |
| return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, |
| llvm::GlobalValue::PrivateLinkage, |
| C, GlobalName); |
| } |
| |
| /// GetAddrOfConstantString - Returns a pointer to a character array |
| /// containing the literal. This contents are exactly that of the |
| /// given string, i.e. it will not be null terminated automatically; |
| /// see GetAddrOfConstantCString. Note that whether the result is |
| /// actually a pointer to an LLVM constant depends on |
| /// Feature.WriteableStrings. |
| /// |
| /// The result has pointer to array type. |
| llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, |
| const char *GlobalName) { |
| bool IsConstant = !Features.WritableStrings; |
| |
| // Get the default prefix if a name wasn't specified. |
| if (!GlobalName) |
| GlobalName = ".str"; |
| |
| // Don't share any string literals if strings aren't constant. |
| if (!IsConstant) |
| return GenerateStringLiteral(str, false, *this, GlobalName); |
| |
| llvm::StringMapEntry<llvm::Constant *> &Entry = |
| ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); |
| |
| if (Entry.getValue()) |
| return Entry.getValue(); |
| |
| // Create a global variable for this. |
| llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); |
| Entry.setValue(C); |
| return C; |
| } |
| |
| /// GetAddrOfConstantCString - Returns a pointer to a character |
| /// array containing the literal and a terminating '\-' |
| /// character. The result has pointer to array type. |
| llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, |
| const char *GlobalName){ |
| return GetAddrOfConstantString(str + '\0', GlobalName); |
| } |
| |
| /// EmitObjCPropertyImplementations - Emit information for synthesized |
| /// properties for an implementation. |
| void CodeGenModule::EmitObjCPropertyImplementations(const |
| ObjCImplementationDecl *D) { |
| for (ObjCImplementationDecl::propimpl_iterator |
| i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { |
| ObjCPropertyImplDecl *PID = *i; |
| |
| // Dynamic is just for type-checking. |
| if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { |
| ObjCPropertyDecl *PD = PID->getPropertyDecl(); |
| |
| // Determine which methods need to be implemented, some may have |
| // been overridden. Note that ::isSynthesized is not the method |
| // we want, that just indicates if the decl came from a |
| // property. What we want to know is if the method is defined in |
| // this implementation. |
| if (!D->getInstanceMethod(PD->getGetterName())) |
| CodeGenFunction(*this).GenerateObjCGetter( |
| const_cast<ObjCImplementationDecl *>(D), PID); |
| if (!PD->isReadOnly() && |
| !D->getInstanceMethod(PD->getSetterName())) |
| CodeGenFunction(*this).GenerateObjCSetter( |
| const_cast<ObjCImplementationDecl *>(D), PID); |
| } |
| } |
| } |
| |
| /// EmitNamespace - Emit all declarations in a namespace. |
| void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { |
| for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); |
| I != E; ++I) |
| EmitTopLevelDecl(*I); |
| } |
| |
| // EmitLinkageSpec - Emit all declarations in a linkage spec. |
| void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { |
| if (LSD->getLanguage() != LinkageSpecDecl::lang_c) { |
| ErrorUnsupported(LSD, "linkage spec"); |
| return; |
| } |
| |
| for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); |
| I != E; ++I) |
| EmitTopLevelDecl(*I); |
| } |
| |
| /// EmitTopLevelDecl - Emit code for a single top level declaration. |
| void CodeGenModule::EmitTopLevelDecl(Decl *D) { |
| // If an error has occurred, stop code generation, but continue |
| // parsing and semantic analysis (to ensure all warnings and errors |
| // are emitted). |
| if (Diags.hasErrorOccurred()) |
| return; |
| |
| // Ignore dependent declarations. |
| if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) |
| return; |
| |
| switch (D->getKind()) { |
| case Decl::CXXMethod: |
| case Decl::Function: |
| // Skip function templates |
| if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) |
| return; |
| |
| // Fall through |
| |
| case Decl::Var: |
| EmitGlobal(GlobalDecl(cast<ValueDecl>(D))); |
| break; |
| |
| // C++ Decls |
| case Decl::Namespace: |
| EmitNamespace(cast<NamespaceDecl>(D)); |
| break; |
| // No code generation needed. |
| case Decl::Using: |
| case Decl::ClassTemplate: |
| case Decl::FunctionTemplate: |
| break; |
| case Decl::CXXConstructor: |
| EmitCXXConstructors(cast<CXXConstructorDecl>(D)); |
| break; |
| case Decl::CXXDestructor: |
| EmitCXXDestructors(cast<CXXDestructorDecl>(D)); |
| break; |
| |
| case Decl::StaticAssert: |
| // Nothing to do. |
| break; |
| |
| // Objective-C Decls |
| |
| // Forward declarations, no (immediate) code generation. |
| case Decl::ObjCClass: |
| case Decl::ObjCForwardProtocol: |
| case Decl::ObjCCategory: |
| case Decl::ObjCInterface: |
| break; |
| |
| case Decl::ObjCProtocol: |
| Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); |
| break; |
| |
| case Decl::ObjCCategoryImpl: |
| // Categories have properties but don't support synthesize so we |
| // can ignore them here. |
| Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); |
| break; |
| |
| case Decl::ObjCImplementation: { |
| ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); |
| EmitObjCPropertyImplementations(OMD); |
| Runtime->GenerateClass(OMD); |
| break; |
| } |
| case Decl::ObjCMethod: { |
| ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); |
| // If this is not a prototype, emit the body. |
| if (OMD->getBody()) |
| CodeGenFunction(*this).GenerateObjCMethod(OMD); |
| break; |
| } |
| case Decl::ObjCCompatibleAlias: |
| // compatibility-alias is a directive and has no code gen. |
| break; |
| |
| case Decl::LinkageSpec: |
| EmitLinkageSpec(cast<LinkageSpecDecl>(D)); |
| break; |
| |
| case Decl::FileScopeAsm: { |
| FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); |
| std::string AsmString(AD->getAsmString()->getStrData(), |
| AD->getAsmString()->getByteLength()); |
| |
| const std::string &S = getModule().getModuleInlineAsm(); |
| if (S.empty()) |
| getModule().setModuleInlineAsm(AsmString); |
| else |
| getModule().setModuleInlineAsm(S + '\n' + AsmString); |
| break; |
| } |
| |
| default: |
| // Make sure we handled everything we should, every other kind is a |
| // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind |
| // function. Need to recode Decl::Kind to do that easily. |
| assert(isa<TypeDecl>(D) && "Unsupported decl kind"); |
| } |
| } |