Remove tabs, and whitespace cleanups.


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@81346 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Analysis/ExplodedGraph.cpp b/lib/Analysis/ExplodedGraph.cpp
index 88bb120..463b171 100644
--- a/lib/Analysis/ExplodedGraph.cpp
+++ b/lib/Analysis/ExplodedGraph.cpp
@@ -64,10 +64,10 @@
 }
 
 void ExplodedNode::NodeGroup::addNode(ExplodedNode* N) {
-  
+
   assert ((reinterpret_cast<uintptr_t>(N) & Mask) == 0x0);
   assert (!getFlag());
-  
+
   if (getKind() == Size1) {
     if (ExplodedNode* NOld = getNode()) {
       std::vector<ExplodedNode*>* V = new std::vector<ExplodedNode*>();
@@ -93,7 +93,7 @@
 unsigned ExplodedNode::NodeGroup::size() const {
   if (getFlag())
     return 0;
-  
+
   if (getKind() == Size1)
     return getNode() ? 1 : 0;
   else
@@ -103,7 +103,7 @@
 ExplodedNode** ExplodedNode::NodeGroup::begin() const {
   if (getFlag())
     return NULL;
-  
+
   if (getKind() == Size1)
     return (ExplodedNode**) (getPtr() ? &P : NULL);
   else
@@ -113,7 +113,7 @@
 ExplodedNode** ExplodedNode::NodeGroup::end() const {
   if (getFlag())
     return NULL;
-  
+
   if (getKind() == Size1)
     return (ExplodedNode**) (getPtr() ? &P+1 : NULL);
   else {
@@ -127,47 +127,47 @@
   if (getKind() == SizeOther) delete &getVector(getPtr());
 }
 
-ExplodedNode *ExplodedGraph::getNode(const ProgramPoint& L, 
+ExplodedNode *ExplodedGraph::getNode(const ProgramPoint& L,
                                      const GRState* State, bool* IsNew) {
   // Profile 'State' to determine if we already have an existing node.
-  llvm::FoldingSetNodeID profile;    
+  llvm::FoldingSetNodeID profile;
   void* InsertPos = 0;
-  
+
   NodeTy::Profile(profile, L, State);
   NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);
-  
+
   if (!V) {
     // Allocate a new node.
     V = (NodeTy*) Allocator.Allocate<NodeTy>();
     new (V) NodeTy(L, State);
-    
+
     // Insert the node into the node set and return it.
     Nodes.InsertNode(V, InsertPos);
-    
+
     ++NumNodes;
-    
+
     if (IsNew) *IsNew = true;
   }
   else
     if (IsNew) *IsNew = false;
-  
+
   return V;
 }
 
 std::pair<ExplodedGraph*, InterExplodedGraphMap*>
 ExplodedGraph::Trim(const NodeTy* const* NBeg, const NodeTy* const* NEnd,
                llvm::DenseMap<const void*, const void*> *InverseMap) const {
-  
+
   if (NBeg == NEnd)
     return std::make_pair((ExplodedGraph*) 0,
                           (InterExplodedGraphMap*) 0);
-  
+
   assert (NBeg < NEnd);
 
   llvm::OwningPtr<InterExplodedGraphMap> M(new InterExplodedGraphMap());
-  
+
   ExplodedGraph* G = TrimInternal(NBeg, NEnd, M.get(), InverseMap);
-  
+
   return std::make_pair(static_cast<ExplodedGraph*>(G), M.take());
 }
 
@@ -179,10 +179,10 @@
 
   typedef llvm::DenseSet<const ExplodedNode*> Pass1Ty;
   Pass1Ty Pass1;
-  
+
   typedef llvm::DenseMap<const ExplodedNode*, ExplodedNode*> Pass2Ty;
   Pass2Ty& Pass2 = M->M;
-  
+
   llvm::SmallVector<const ExplodedNode*, 10> WL1, WL2;
 
   // ===- Pass 1 (reverse DFS) -===
@@ -190,59 +190,59 @@
     assert(*I);
     WL1.push_back(*I);
   }
-    
+
   // Process the first worklist until it is empty.  Because it is a std::list
   // it acts like a FIFO queue.
   while (!WL1.empty()) {
     const ExplodedNode *N = WL1.back();
     WL1.pop_back();
-    
+
     // Have we already visited this node?  If so, continue to the next one.
     if (Pass1.count(N))
       continue;
 
     // Otherwise, mark this node as visited.
     Pass1.insert(N);
-    
+
     // If this is a root enqueue it to the second worklist.
     if (N->Preds.empty()) {
       WL2.push_back(N);
       continue;
     }
-      
+
     // Visit our predecessors and enqueue them.
     for (ExplodedNode** I=N->Preds.begin(), **E=N->Preds.end(); I!=E; ++I)
       WL1.push_back(*I);
   }
-  
+
   // We didn't hit a root? Return with a null pointer for the new graph.
   if (WL2.empty())
     return 0;
 
   // Create an empty graph.
   ExplodedGraph* G = MakeEmptyGraph();
-  
-  // ===- Pass 2 (forward DFS to construct the new graph) -===  
+
+  // ===- Pass 2 (forward DFS to construct the new graph) -===
   while (!WL2.empty()) {
     const ExplodedNode* N = WL2.back();
     WL2.pop_back();
-    
+
     // Skip this node if we have already processed it.
     if (Pass2.find(N) != Pass2.end())
       continue;
-    
+
     // Create the corresponding node in the new graph and record the mapping
     // from the old node to the new node.
     ExplodedNode* NewN = G->getNode(N->getLocation(), N->State, NULL);
     Pass2[N] = NewN;
-    
+
     // Also record the reverse mapping from the new node to the old node.
     if (InverseMap) (*InverseMap)[NewN] = N;
-    
+
     // If this node is a root, designate it as such in the graph.
     if (N->Preds.empty())
       G->addRoot(NewN);
-    
+
     // In the case that some of the intended predecessors of NewN have already
     // been created, we should hook them up as predecessors.
 
@@ -252,7 +252,7 @@
       Pass2Ty::iterator PI = Pass2.find(*I);
       if (PI == Pass2.end())
         continue;
-      
+
       NewN->addPredecessor(PI->second);
     }
 
@@ -261,7 +261,7 @@
     // the new nodes from the original graph that should have nodes created
     // in the new graph.
     for (ExplodedNode **I=N->Succs.begin(), **E=N->Succs.end(); I!=E; ++I) {
-      Pass2Ty::iterator PI = Pass2.find(*I);      
+      Pass2Ty::iterator PI = Pass2.find(*I);
       if (PI != Pass2.end()) {
         PI->second->addPredecessor(NewN);
         continue;
@@ -271,12 +271,12 @@
       if (Pass1.count(*I))
         WL2.push_back(*I);
     }
-    
+
     // Finally, explictly mark all nodes without any successors as sinks.
     if (N->isSink())
       NewN->markAsSink();
   }
-    
+
   return G;
 }