| //===--- SemaOverload.cpp - C++ Overloading ---------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file provides Sema routines for C++ overloading. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "clang/Sema/SemaInternal.h" |
| #include "clang/Sema/Lookup.h" |
| #include "clang/Sema/Initialization.h" |
| #include "clang/Sema/Template.h" |
| #include "clang/Sema/TemplateDeduction.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Lex/Preprocessor.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/CXXInheritance.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/TypeOrdering.h" |
| #include "clang/Basic/PartialDiagnostic.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include <algorithm> |
| |
| namespace clang { |
| using namespace sema; |
| |
| /// A convenience routine for creating a decayed reference to a |
| /// function. |
| static ExprResult |
| CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates, |
| SourceLocation Loc = SourceLocation(), |
| const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){ |
| DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, Fn->getType(), |
| VK_LValue, Loc, LocInfo); |
| if (HadMultipleCandidates) |
| DRE->setHadMultipleCandidates(true); |
| ExprResult E = S.Owned(DRE); |
| E = S.DefaultFunctionArrayConversion(E.take()); |
| if (E.isInvalid()) |
| return ExprError(); |
| return move(E); |
| } |
| |
| static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, |
| bool InOverloadResolution, |
| StandardConversionSequence &SCS, |
| bool CStyle, |
| bool AllowObjCWritebackConversion); |
| |
| static bool IsTransparentUnionStandardConversion(Sema &S, Expr* From, |
| QualType &ToType, |
| bool InOverloadResolution, |
| StandardConversionSequence &SCS, |
| bool CStyle); |
| static OverloadingResult |
| IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, |
| UserDefinedConversionSequence& User, |
| OverloadCandidateSet& Conversions, |
| bool AllowExplicit); |
| |
| |
| static ImplicitConversionSequence::CompareKind |
| CompareStandardConversionSequences(Sema &S, |
| const StandardConversionSequence& SCS1, |
| const StandardConversionSequence& SCS2); |
| |
| static ImplicitConversionSequence::CompareKind |
| CompareQualificationConversions(Sema &S, |
| const StandardConversionSequence& SCS1, |
| const StandardConversionSequence& SCS2); |
| |
| static ImplicitConversionSequence::CompareKind |
| CompareDerivedToBaseConversions(Sema &S, |
| const StandardConversionSequence& SCS1, |
| const StandardConversionSequence& SCS2); |
| |
| |
| |
| /// GetConversionCategory - Retrieve the implicit conversion |
| /// category corresponding to the given implicit conversion kind. |
| ImplicitConversionCategory |
| GetConversionCategory(ImplicitConversionKind Kind) { |
| static const ImplicitConversionCategory |
| Category[(int)ICK_Num_Conversion_Kinds] = { |
| ICC_Identity, |
| ICC_Lvalue_Transformation, |
| ICC_Lvalue_Transformation, |
| ICC_Lvalue_Transformation, |
| ICC_Identity, |
| ICC_Qualification_Adjustment, |
| ICC_Promotion, |
| ICC_Promotion, |
| ICC_Promotion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion, |
| ICC_Conversion |
| }; |
| return Category[(int)Kind]; |
| } |
| |
| /// GetConversionRank - Retrieve the implicit conversion rank |
| /// corresponding to the given implicit conversion kind. |
| ImplicitConversionRank GetConversionRank(ImplicitConversionKind Kind) { |
| static const ImplicitConversionRank |
| Rank[(int)ICK_Num_Conversion_Kinds] = { |
| ICR_Exact_Match, |
| ICR_Exact_Match, |
| ICR_Exact_Match, |
| ICR_Exact_Match, |
| ICR_Exact_Match, |
| ICR_Exact_Match, |
| ICR_Promotion, |
| ICR_Promotion, |
| ICR_Promotion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Complex_Real_Conversion, |
| ICR_Conversion, |
| ICR_Conversion, |
| ICR_Writeback_Conversion |
| }; |
| return Rank[(int)Kind]; |
| } |
| |
| /// GetImplicitConversionName - Return the name of this kind of |
| /// implicit conversion. |
| const char* GetImplicitConversionName(ImplicitConversionKind Kind) { |
| static const char* const Name[(int)ICK_Num_Conversion_Kinds] = { |
| "No conversion", |
| "Lvalue-to-rvalue", |
| "Array-to-pointer", |
| "Function-to-pointer", |
| "Noreturn adjustment", |
| "Qualification", |
| "Integral promotion", |
| "Floating point promotion", |
| "Complex promotion", |
| "Integral conversion", |
| "Floating conversion", |
| "Complex conversion", |
| "Floating-integral conversion", |
| "Pointer conversion", |
| "Pointer-to-member conversion", |
| "Boolean conversion", |
| "Compatible-types conversion", |
| "Derived-to-base conversion", |
| "Vector conversion", |
| "Vector splat", |
| "Complex-real conversion", |
| "Block Pointer conversion", |
| "Transparent Union Conversion" |
| "Writeback conversion" |
| }; |
| return Name[Kind]; |
| } |
| |
| /// StandardConversionSequence - Set the standard conversion |
| /// sequence to the identity conversion. |
| void StandardConversionSequence::setAsIdentityConversion() { |
| First = ICK_Identity; |
| Second = ICK_Identity; |
| Third = ICK_Identity; |
| DeprecatedStringLiteralToCharPtr = false; |
| QualificationIncludesObjCLifetime = false; |
| ReferenceBinding = false; |
| DirectBinding = false; |
| IsLvalueReference = true; |
| BindsToFunctionLvalue = false; |
| BindsToRvalue = false; |
| BindsImplicitObjectArgumentWithoutRefQualifier = false; |
| ObjCLifetimeConversionBinding = false; |
| CopyConstructor = 0; |
| } |
| |
| /// getRank - Retrieve the rank of this standard conversion sequence |
| /// (C++ 13.3.3.1.1p3). The rank is the largest rank of each of the |
| /// implicit conversions. |
| ImplicitConversionRank StandardConversionSequence::getRank() const { |
| ImplicitConversionRank Rank = ICR_Exact_Match; |
| if (GetConversionRank(First) > Rank) |
| Rank = GetConversionRank(First); |
| if (GetConversionRank(Second) > Rank) |
| Rank = GetConversionRank(Second); |
| if (GetConversionRank(Third) > Rank) |
| Rank = GetConversionRank(Third); |
| return Rank; |
| } |
| |
| /// isPointerConversionToBool - Determines whether this conversion is |
| /// a conversion of a pointer or pointer-to-member to bool. This is |
| /// used as part of the ranking of standard conversion sequences |
| /// (C++ 13.3.3.2p4). |
| bool StandardConversionSequence::isPointerConversionToBool() const { |
| // Note that FromType has not necessarily been transformed by the |
| // array-to-pointer or function-to-pointer implicit conversions, so |
| // check for their presence as well as checking whether FromType is |
| // a pointer. |
| if (getToType(1)->isBooleanType() && |
| (getFromType()->isPointerType() || |
| getFromType()->isObjCObjectPointerType() || |
| getFromType()->isBlockPointerType() || |
| getFromType()->isNullPtrType() || |
| First == ICK_Array_To_Pointer || First == ICK_Function_To_Pointer)) |
| return true; |
| |
| return false; |
| } |
| |
| /// isPointerConversionToVoidPointer - Determines whether this |
| /// conversion is a conversion of a pointer to a void pointer. This is |
| /// used as part of the ranking of standard conversion sequences (C++ |
| /// 13.3.3.2p4). |
| bool |
| StandardConversionSequence:: |
| isPointerConversionToVoidPointer(ASTContext& Context) const { |
| QualType FromType = getFromType(); |
| QualType ToType = getToType(1); |
| |
| // Note that FromType has not necessarily been transformed by the |
| // array-to-pointer implicit conversion, so check for its presence |
| // and redo the conversion to get a pointer. |
| if (First == ICK_Array_To_Pointer) |
| FromType = Context.getArrayDecayedType(FromType); |
| |
| if (Second == ICK_Pointer_Conversion && FromType->isAnyPointerType()) |
| if (const PointerType* ToPtrType = ToType->getAs<PointerType>()) |
| return ToPtrType->getPointeeType()->isVoidType(); |
| |
| return false; |
| } |
| |
| /// Skip any implicit casts which could be either part of a narrowing conversion |
| /// or after one in an implicit conversion. |
| static const Expr *IgnoreNarrowingConversion(const Expr *Converted) { |
| while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) { |
| switch (ICE->getCastKind()) { |
| case CK_NoOp: |
| case CK_IntegralCast: |
| case CK_IntegralToBoolean: |
| case CK_IntegralToFloating: |
| case CK_FloatingToIntegral: |
| case CK_FloatingToBoolean: |
| case CK_FloatingCast: |
| Converted = ICE->getSubExpr(); |
| continue; |
| |
| default: |
| return Converted; |
| } |
| } |
| |
| return Converted; |
| } |
| |
| /// Check if this standard conversion sequence represents a narrowing |
| /// conversion, according to C++11 [dcl.init.list]p7. |
| /// |
| /// \param Ctx The AST context. |
| /// \param Converted The result of applying this standard conversion sequence. |
| /// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the |
| /// value of the expression prior to the narrowing conversion. |
| NarrowingKind |
| StandardConversionSequence::getNarrowingKind(ASTContext &Ctx, |
| const Expr *Converted, |
| APValue &ConstantValue) const { |
| assert(Ctx.getLangOptions().CPlusPlus && "narrowing check outside C++"); |
| |
| // C++11 [dcl.init.list]p7: |
| // A narrowing conversion is an implicit conversion ... |
| QualType FromType = getToType(0); |
| QualType ToType = getToType(1); |
| switch (Second) { |
| // -- from a floating-point type to an integer type, or |
| // |
| // -- from an integer type or unscoped enumeration type to a floating-point |
| // type, except where the source is a constant expression and the actual |
| // value after conversion will fit into the target type and will produce |
| // the original value when converted back to the original type, or |
| case ICK_Floating_Integral: |
| if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) { |
| return NK_Type_Narrowing; |
| } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) { |
| llvm::APSInt IntConstantValue; |
| const Expr *Initializer = IgnoreNarrowingConversion(Converted); |
| if (Initializer && |
| Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) { |
| // Convert the integer to the floating type. |
| llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType)); |
| Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(), |
| llvm::APFloat::rmNearestTiesToEven); |
| // And back. |
| llvm::APSInt ConvertedValue = IntConstantValue; |
| bool ignored; |
| Result.convertToInteger(ConvertedValue, |
| llvm::APFloat::rmTowardZero, &ignored); |
| // If the resulting value is different, this was a narrowing conversion. |
| if (IntConstantValue != ConvertedValue) { |
| ConstantValue = APValue(IntConstantValue); |
| return NK_Constant_Narrowing; |
| } |
| } else { |
| // Variables are always narrowings. |
| return NK_Variable_Narrowing; |
| } |
| } |
| return NK_Not_Narrowing; |
| |
| // -- from long double to double or float, or from double to float, except |
| // where the source is a constant expression and the actual value after |
| // conversion is within the range of values that can be represented (even |
| // if it cannot be represented exactly), or |
| case ICK_Floating_Conversion: |
| if (FromType->isRealFloatingType() && ToType->isRealFloatingType() && |
| Ctx.getFloatingTypeOrder(FromType, ToType) == 1) { |
| // FromType is larger than ToType. |
| const Expr *Initializer = IgnoreNarrowingConversion(Converted); |
| if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) { |
| // Constant! |
| assert(ConstantValue.isFloat()); |
| llvm::APFloat FloatVal = ConstantValue.getFloat(); |
| // Convert the source value into the target type. |
| bool ignored; |
| llvm::APFloat::opStatus ConvertStatus = FloatVal.convert( |
| Ctx.getFloatTypeSemantics(ToType), |
| llvm::APFloat::rmNearestTiesToEven, &ignored); |
| // If there was no overflow, the source value is within the range of |
| // values that can be represented. |
| if (ConvertStatus & llvm::APFloat::opOverflow) |
| return NK_Constant_Narrowing; |
| } else { |
| return NK_Variable_Narrowing; |
| } |
| } |
| return NK_Not_Narrowing; |
| |
| // -- from an integer type or unscoped enumeration type to an integer type |
| // that cannot represent all the values of the original type, except where |
| // the source is a constant expression and the actual value after |
| // conversion will fit into the target type and will produce the original |
| // value when converted back to the original type. |
| case ICK_Boolean_Conversion: // Bools are integers too. |
| if (!FromType->isIntegralOrUnscopedEnumerationType()) { |
| // Boolean conversions can be from pointers and pointers to members |
| // [conv.bool], and those aren't considered narrowing conversions. |
| return NK_Not_Narrowing; |
| } // Otherwise, fall through to the integral case. |
| case ICK_Integral_Conversion: { |
| assert(FromType->isIntegralOrUnscopedEnumerationType()); |
| assert(ToType->isIntegralOrUnscopedEnumerationType()); |
| const bool FromSigned = FromType->isSignedIntegerOrEnumerationType(); |
| const unsigned FromWidth = Ctx.getIntWidth(FromType); |
| const bool ToSigned = ToType->isSignedIntegerOrEnumerationType(); |
| const unsigned ToWidth = Ctx.getIntWidth(ToType); |
| |
| if (FromWidth > ToWidth || |
| (FromWidth == ToWidth && FromSigned != ToSigned)) { |
| // Not all values of FromType can be represented in ToType. |
| llvm::APSInt InitializerValue; |
| const Expr *Initializer = IgnoreNarrowingConversion(Converted); |
| if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) { |
| ConstantValue = APValue(InitializerValue); |
| |
| // Add a bit to the InitializerValue so we don't have to worry about |
| // signed vs. unsigned comparisons. |
| InitializerValue = InitializerValue.extend( |
| InitializerValue.getBitWidth() + 1); |
| // Convert the initializer to and from the target width and signed-ness. |
| llvm::APSInt ConvertedValue = InitializerValue; |
| ConvertedValue = ConvertedValue.trunc(ToWidth); |
| ConvertedValue.setIsSigned(ToSigned); |
| ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth()); |
| ConvertedValue.setIsSigned(InitializerValue.isSigned()); |
| // If the result is different, this was a narrowing conversion. |
| if (ConvertedValue != InitializerValue) |
| return NK_Constant_Narrowing; |
| } else { |
| // Variables are always narrowings. |
| return NK_Variable_Narrowing; |
| } |
| } |
| return NK_Not_Narrowing; |
| } |
| |
| default: |
| // Other kinds of conversions are not narrowings. |
| return NK_Not_Narrowing; |
| } |
| } |
| |
| /// DebugPrint - Print this standard conversion sequence to standard |
| /// error. Useful for debugging overloading issues. |
| void StandardConversionSequence::DebugPrint() const { |
| raw_ostream &OS = llvm::errs(); |
| bool PrintedSomething = false; |
| if (First != ICK_Identity) { |
| OS << GetImplicitConversionName(First); |
| PrintedSomething = true; |
| } |
| |
| if (Second != ICK_Identity) { |
| if (PrintedSomething) { |
| OS << " -> "; |
| } |
| OS << GetImplicitConversionName(Second); |
| |
| if (CopyConstructor) { |
| OS << " (by copy constructor)"; |
| } else if (DirectBinding) { |
| OS << " (direct reference binding)"; |
| } else if (ReferenceBinding) { |
| OS << " (reference binding)"; |
| } |
| PrintedSomething = true; |
| } |
| |
| if (Third != ICK_Identity) { |
| if (PrintedSomething) { |
| OS << " -> "; |
| } |
| OS << GetImplicitConversionName(Third); |
| PrintedSomething = true; |
| } |
| |
| if (!PrintedSomething) { |
| OS << "No conversions required"; |
| } |
| } |
| |
| /// DebugPrint - Print this user-defined conversion sequence to standard |
| /// error. Useful for debugging overloading issues. |
| void UserDefinedConversionSequence::DebugPrint() const { |
| raw_ostream &OS = llvm::errs(); |
| if (Before.First || Before.Second || Before.Third) { |
| Before.DebugPrint(); |
| OS << " -> "; |
| } |
| if (ConversionFunction) |
| OS << '\'' << *ConversionFunction << '\''; |
| else |
| OS << "aggregate initialization"; |
| if (After.First || After.Second || After.Third) { |
| OS << " -> "; |
| After.DebugPrint(); |
| } |
| } |
| |
| /// DebugPrint - Print this implicit conversion sequence to standard |
| /// error. Useful for debugging overloading issues. |
| void ImplicitConversionSequence::DebugPrint() const { |
| raw_ostream &OS = llvm::errs(); |
| switch (ConversionKind) { |
| case StandardConversion: |
| OS << "Standard conversion: "; |
| Standard.DebugPrint(); |
| break; |
| case UserDefinedConversion: |
| OS << "User-defined conversion: "; |
| UserDefined.DebugPrint(); |
| break; |
| case EllipsisConversion: |
| OS << "Ellipsis conversion"; |
| break; |
| case AmbiguousConversion: |
| OS << "Ambiguous conversion"; |
| break; |
| case BadConversion: |
| OS << "Bad conversion"; |
| break; |
| } |
| |
| OS << "\n"; |
| } |
| |
| void AmbiguousConversionSequence::construct() { |
| new (&conversions()) ConversionSet(); |
| } |
| |
| void AmbiguousConversionSequence::destruct() { |
| conversions().~ConversionSet(); |
| } |
| |
| void |
| AmbiguousConversionSequence::copyFrom(const AmbiguousConversionSequence &O) { |
| FromTypePtr = O.FromTypePtr; |
| ToTypePtr = O.ToTypePtr; |
| new (&conversions()) ConversionSet(O.conversions()); |
| } |
| |
| namespace { |
| // Structure used by OverloadCandidate::DeductionFailureInfo to store |
| // template parameter and template argument information. |
| struct DFIParamWithArguments { |
| TemplateParameter Param; |
| TemplateArgument FirstArg; |
| TemplateArgument SecondArg; |
| }; |
| } |
| |
| /// \brief Convert from Sema's representation of template deduction information |
| /// to the form used in overload-candidate information. |
| OverloadCandidate::DeductionFailureInfo |
| static MakeDeductionFailureInfo(ASTContext &Context, |
| Sema::TemplateDeductionResult TDK, |
| TemplateDeductionInfo &Info) { |
| OverloadCandidate::DeductionFailureInfo Result; |
| Result.Result = static_cast<unsigned>(TDK); |
| Result.Data = 0; |
| switch (TDK) { |
| case Sema::TDK_Success: |
| case Sema::TDK_InstantiationDepth: |
| case Sema::TDK_TooManyArguments: |
| case Sema::TDK_TooFewArguments: |
| break; |
| |
| case Sema::TDK_Incomplete: |
| case Sema::TDK_InvalidExplicitArguments: |
| Result.Data = Info.Param.getOpaqueValue(); |
| break; |
| |
| case Sema::TDK_Inconsistent: |
| case Sema::TDK_Underqualified: { |
| // FIXME: Should allocate from normal heap so that we can free this later. |
| DFIParamWithArguments *Saved = new (Context) DFIParamWithArguments; |
| Saved->Param = Info.Param; |
| Saved->FirstArg = Info.FirstArg; |
| Saved->SecondArg = Info.SecondArg; |
| Result.Data = Saved; |
| break; |
| } |
| |
| case Sema::TDK_SubstitutionFailure: |
| Result.Data = Info.take(); |
| break; |
| |
| case Sema::TDK_NonDeducedMismatch: |
| case Sema::TDK_FailedOverloadResolution: |
| break; |
| } |
| |
| return Result; |
| } |
| |
| void OverloadCandidate::DeductionFailureInfo::Destroy() { |
| switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
| case Sema::TDK_Success: |
| case Sema::TDK_InstantiationDepth: |
| case Sema::TDK_Incomplete: |
| case Sema::TDK_TooManyArguments: |
| case Sema::TDK_TooFewArguments: |
| case Sema::TDK_InvalidExplicitArguments: |
| break; |
| |
| case Sema::TDK_Inconsistent: |
| case Sema::TDK_Underqualified: |
| // FIXME: Destroy the data? |
| Data = 0; |
| break; |
| |
| case Sema::TDK_SubstitutionFailure: |
| // FIXME: Destroy the template arugment list? |
| Data = 0; |
| break; |
| |
| // Unhandled |
| case Sema::TDK_NonDeducedMismatch: |
| case Sema::TDK_FailedOverloadResolution: |
| break; |
| } |
| } |
| |
| TemplateParameter |
| OverloadCandidate::DeductionFailureInfo::getTemplateParameter() { |
| switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
| case Sema::TDK_Success: |
| case Sema::TDK_InstantiationDepth: |
| case Sema::TDK_TooManyArguments: |
| case Sema::TDK_TooFewArguments: |
| case Sema::TDK_SubstitutionFailure: |
| return TemplateParameter(); |
| |
| case Sema::TDK_Incomplete: |
| case Sema::TDK_InvalidExplicitArguments: |
| return TemplateParameter::getFromOpaqueValue(Data); |
| |
| case Sema::TDK_Inconsistent: |
| case Sema::TDK_Underqualified: |
| return static_cast<DFIParamWithArguments*>(Data)->Param; |
| |
| // Unhandled |
| case Sema::TDK_NonDeducedMismatch: |
| case Sema::TDK_FailedOverloadResolution: |
| break; |
| } |
| |
| return TemplateParameter(); |
| } |
| |
| TemplateArgumentList * |
| OverloadCandidate::DeductionFailureInfo::getTemplateArgumentList() { |
| switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
| case Sema::TDK_Success: |
| case Sema::TDK_InstantiationDepth: |
| case Sema::TDK_TooManyArguments: |
| case Sema::TDK_TooFewArguments: |
| case Sema::TDK_Incomplete: |
| case Sema::TDK_InvalidExplicitArguments: |
| case Sema::TDK_Inconsistent: |
| case Sema::TDK_Underqualified: |
| return 0; |
| |
| case Sema::TDK_SubstitutionFailure: |
| return static_cast<TemplateArgumentList*>(Data); |
| |
| // Unhandled |
| case Sema::TDK_NonDeducedMismatch: |
| case Sema::TDK_FailedOverloadResolution: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| const TemplateArgument *OverloadCandidate::DeductionFailureInfo::getFirstArg() { |
| switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
| case Sema::TDK_Success: |
| case Sema::TDK_InstantiationDepth: |
| case Sema::TDK_Incomplete: |
| case Sema::TDK_TooManyArguments: |
| case Sema::TDK_TooFewArguments: |
| case Sema::TDK_InvalidExplicitArguments: |
| case Sema::TDK_SubstitutionFailure: |
| return 0; |
| |
| case Sema::TDK_Inconsistent: |
| case Sema::TDK_Underqualified: |
| return &static_cast<DFIParamWithArguments*>(Data)->FirstArg; |
| |
| // Unhandled |
| case Sema::TDK_NonDeducedMismatch: |
| case Sema::TDK_FailedOverloadResolution: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| const TemplateArgument * |
| OverloadCandidate::DeductionFailureInfo::getSecondArg() { |
| switch (static_cast<Sema::TemplateDeductionResult>(Result)) { |
| case Sema::TDK_Success: |
| case Sema::TDK_InstantiationDepth: |
| case Sema::TDK_Incomplete: |
| case Sema::TDK_TooManyArguments: |
| case Sema::TDK_TooFewArguments: |
| case Sema::TDK_InvalidExplicitArguments: |
| case Sema::TDK_SubstitutionFailure: |
| return 0; |
| |
| case Sema::TDK_Inconsistent: |
| case Sema::TDK_Underqualified: |
| return &static_cast<DFIParamWithArguments*>(Data)->SecondArg; |
| |
| // Unhandled |
| case Sema::TDK_NonDeducedMismatch: |
| case Sema::TDK_FailedOverloadResolution: |
| break; |
| } |
| |
| return 0; |
| } |
| |
| void OverloadCandidateSet::clear() { |
| for (iterator i = begin(), e = end(); i != e; ++i) |
| for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii) |
| i->Conversions[ii].~ImplicitConversionSequence(); |
| NumInlineSequences = 0; |
| Candidates.clear(); |
| Functions.clear(); |
| } |
| |
| namespace { |
| class UnbridgedCastsSet { |
| struct Entry { |
| Expr **Addr; |
| Expr *Saved; |
| }; |
| SmallVector<Entry, 2> Entries; |
| |
| public: |
| void save(Sema &S, Expr *&E) { |
| assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast)); |
| Entry entry = { &E, E }; |
| Entries.push_back(entry); |
| E = S.stripARCUnbridgedCast(E); |
| } |
| |
| void restore() { |
| for (SmallVectorImpl<Entry>::iterator |
| i = Entries.begin(), e = Entries.end(); i != e; ++i) |
| *i->Addr = i->Saved; |
| } |
| }; |
| } |
| |
| /// checkPlaceholderForOverload - Do any interesting placeholder-like |
| /// preprocessing on the given expression. |
| /// |
| /// \param unbridgedCasts a collection to which to add unbridged casts; |
| /// without this, they will be immediately diagnosed as errors |
| /// |
| /// Return true on unrecoverable error. |
| static bool checkPlaceholderForOverload(Sema &S, Expr *&E, |
| UnbridgedCastsSet *unbridgedCasts = 0) { |
| if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) { |
| // We can't handle overloaded expressions here because overload |
| // resolution might reasonably tweak them. |
| if (placeholder->getKind() == BuiltinType::Overload) return false; |
| |
| // If the context potentially accepts unbridged ARC casts, strip |
| // the unbridged cast and add it to the collection for later restoration. |
| if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast && |
| unbridgedCasts) { |
| unbridgedCasts->save(S, E); |
| return false; |
| } |
| |
| // Go ahead and check everything else. |
| ExprResult result = S.CheckPlaceholderExpr(E); |
| if (result.isInvalid()) |
| return true; |
| |
| E = result.take(); |
| return false; |
| } |
| |
| // Nothing to do. |
| return false; |
| } |
| |
| /// checkArgPlaceholdersForOverload - Check a set of call operands for |
| /// placeholders. |
| static bool checkArgPlaceholdersForOverload(Sema &S, Expr **args, |
| unsigned numArgs, |
| UnbridgedCastsSet &unbridged) { |
| for (unsigned i = 0; i != numArgs; ++i) |
| if (checkPlaceholderForOverload(S, args[i], &unbridged)) |
| return true; |
| |
| return false; |
| } |
| |
| // IsOverload - Determine whether the given New declaration is an |
| // overload of the declarations in Old. This routine returns false if |
| // New and Old cannot be overloaded, e.g., if New has the same |
| // signature as some function in Old (C++ 1.3.10) or if the Old |
| // declarations aren't functions (or function templates) at all. When |
| // it does return false, MatchedDecl will point to the decl that New |
| // cannot be overloaded with. This decl may be a UsingShadowDecl on |
| // top of the underlying declaration. |
| // |
| // Example: Given the following input: |
| // |
| // void f(int, float); // #1 |
| // void f(int, int); // #2 |
| // int f(int, int); // #3 |
| // |
| // When we process #1, there is no previous declaration of "f", |
| // so IsOverload will not be used. |
| // |
| // When we process #2, Old contains only the FunctionDecl for #1. By |
| // comparing the parameter types, we see that #1 and #2 are overloaded |
| // (since they have different signatures), so this routine returns |
| // false; MatchedDecl is unchanged. |
| // |
| // When we process #3, Old is an overload set containing #1 and #2. We |
| // compare the signatures of #3 to #1 (they're overloaded, so we do |
| // nothing) and then #3 to #2. Since the signatures of #3 and #2 are |
| // identical (return types of functions are not part of the |
| // signature), IsOverload returns false and MatchedDecl will be set to |
| // point to the FunctionDecl for #2. |
| // |
| // 'NewIsUsingShadowDecl' indicates that 'New' is being introduced |
| // into a class by a using declaration. The rules for whether to hide |
| // shadow declarations ignore some properties which otherwise figure |
| // into a function template's signature. |
| Sema::OverloadKind |
| Sema::CheckOverload(Scope *S, FunctionDecl *New, const LookupResult &Old, |
| NamedDecl *&Match, bool NewIsUsingDecl) { |
| for (LookupResult::iterator I = Old.begin(), E = Old.end(); |
| I != E; ++I) { |
| NamedDecl *OldD = *I; |
| |
| bool OldIsUsingDecl = false; |
| if (isa<UsingShadowDecl>(OldD)) { |
| OldIsUsingDecl = true; |
| |
| // We can always introduce two using declarations into the same |
| // context, even if they have identical signatures. |
| if (NewIsUsingDecl) continue; |
| |
| OldD = cast<UsingShadowDecl>(OldD)->getTargetDecl(); |
| } |
| |
| // If either declaration was introduced by a using declaration, |
| // we'll need to use slightly different rules for matching. |
| // Essentially, these rules are the normal rules, except that |
| // function templates hide function templates with different |
| // return types or template parameter lists. |
| bool UseMemberUsingDeclRules = |
| (OldIsUsingDecl || NewIsUsingDecl) && CurContext->isRecord(); |
| |
| if (FunctionTemplateDecl *OldT = dyn_cast<FunctionTemplateDecl>(OldD)) { |
| if (!IsOverload(New, OldT->getTemplatedDecl(), UseMemberUsingDeclRules)) { |
| if (UseMemberUsingDeclRules && OldIsUsingDecl) { |
| HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); |
| continue; |
| } |
| |
| Match = *I; |
| return Ovl_Match; |
| } |
| } else if (FunctionDecl *OldF = dyn_cast<FunctionDecl>(OldD)) { |
| if (!IsOverload(New, OldF, UseMemberUsingDeclRules)) { |
| if (UseMemberUsingDeclRules && OldIsUsingDecl) { |
| HideUsingShadowDecl(S, cast<UsingShadowDecl>(*I)); |
| continue; |
| } |
| |
| Match = *I; |
| return Ovl_Match; |
| } |
| } else if (isa<UsingDecl>(OldD)) { |
| // We can overload with these, which can show up when doing |
| // redeclaration checks for UsingDecls. |
| assert(Old.getLookupKind() == LookupUsingDeclName); |
| } else if (isa<TagDecl>(OldD)) { |
| // We can always overload with tags by hiding them. |
| } else if (isa<UnresolvedUsingValueDecl>(OldD)) { |
| // Optimistically assume that an unresolved using decl will |
| // overload; if it doesn't, we'll have to diagnose during |
| // template instantiation. |
| } else { |
| // (C++ 13p1): |
| // Only function declarations can be overloaded; object and type |
| // declarations cannot be overloaded. |
| Match = *I; |
| return Ovl_NonFunction; |
| } |
| } |
| |
| return Ovl_Overload; |
| } |
| |
| bool Sema::IsOverload(FunctionDecl *New, FunctionDecl *Old, |
| bool UseUsingDeclRules) { |
| // If both of the functions are extern "C", then they are not |
| // overloads. |
| if (Old->isExternC() && New->isExternC()) |
| return false; |
| |
| FunctionTemplateDecl *OldTemplate = Old->getDescribedFunctionTemplate(); |
| FunctionTemplateDecl *NewTemplate = New->getDescribedFunctionTemplate(); |
| |
| // C++ [temp.fct]p2: |
| // A function template can be overloaded with other function templates |
| // and with normal (non-template) functions. |
| if ((OldTemplate == 0) != (NewTemplate == 0)) |
| return true; |
| |
| // Is the function New an overload of the function Old? |
| QualType OldQType = Context.getCanonicalType(Old->getType()); |
| QualType NewQType = Context.getCanonicalType(New->getType()); |
| |
| // Compare the signatures (C++ 1.3.10) of the two functions to |
| // determine whether they are overloads. If we find any mismatch |
| // in the signature, they are overloads. |
| |
| // If either of these functions is a K&R-style function (no |
| // prototype), then we consider them to have matching signatures. |
| if (isa<FunctionNoProtoType>(OldQType.getTypePtr()) || |
| isa<FunctionNoProtoType>(NewQType.getTypePtr())) |
| return false; |
| |
| const FunctionProtoType* OldType = cast<FunctionProtoType>(OldQType); |
| const FunctionProtoType* NewType = cast<FunctionProtoType>(NewQType); |
| |
| // The signature of a function includes the types of its |
| // parameters (C++ 1.3.10), which includes the presence or absence |
| // of the ellipsis; see C++ DR 357). |
| if (OldQType != NewQType && |
| (OldType->getNumArgs() != NewType->getNumArgs() || |
| OldType->isVariadic() != NewType->isVariadic() || |
| !FunctionArgTypesAreEqual(OldType, NewType))) |
| return true; |
| |
| // C++ [temp.over.link]p4: |
| // The signature of a function template consists of its function |
| // signature, its return type and its template parameter list. The names |
| // of the template parameters are significant only for establishing the |
| // relationship between the template parameters and the rest of the |
| // signature. |
| // |
| // We check the return type and template parameter lists for function |
| // templates first; the remaining checks follow. |
| // |
| // However, we don't consider either of these when deciding whether |
| // a member introduced by a shadow declaration is hidden. |
| if (!UseUsingDeclRules && NewTemplate && |
| (!TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), |
| OldTemplate->getTemplateParameters(), |
| false, TPL_TemplateMatch) || |
| OldType->getResultType() != NewType->getResultType())) |
| return true; |
| |
| // If the function is a class member, its signature includes the |
| // cv-qualifiers (if any) and ref-qualifier (if any) on the function itself. |
| // |
| // As part of this, also check whether one of the member functions |
| // is static, in which case they are not overloads (C++ |
| // 13.1p2). While not part of the definition of the signature, |
| // this check is important to determine whether these functions |
| // can be overloaded. |
| CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old); |
| CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New); |
| if (OldMethod && NewMethod && |
| !OldMethod->isStatic() && !NewMethod->isStatic() && |
| (OldMethod->getTypeQualifiers() != NewMethod->getTypeQualifiers() || |
| OldMethod->getRefQualifier() != NewMethod->getRefQualifier())) { |
| if (!UseUsingDeclRules && |
| OldMethod->getRefQualifier() != NewMethod->getRefQualifier() && |
| (OldMethod->getRefQualifier() == RQ_None || |
| NewMethod->getRefQualifier() == RQ_None)) { |
| // C++0x [over.load]p2: |
| // - Member function declarations with the same name and the same |
| // parameter-type-list as well as member function template |
| // declarations with the same name, the same parameter-type-list, and |
| // the same template parameter lists cannot be overloaded if any of |
| // them, but not all, have a ref-qualifier (8.3.5). |
| Diag(NewMethod->getLocation(), diag::err_ref_qualifier_overload) |
| << NewMethod->getRefQualifier() << OldMethod->getRefQualifier(); |
| Diag(OldMethod->getLocation(), diag::note_previous_declaration); |
| } |
| |
| return true; |
| } |
| |
| // The signatures match; this is not an overload. |
| return false; |
| } |
| |
| /// \brief Checks availability of the function depending on the current |
| /// function context. Inside an unavailable function, unavailability is ignored. |
| /// |
| /// \returns true if \arg FD is unavailable and current context is inside |
| /// an available function, false otherwise. |
| bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) { |
| return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable(); |
| } |
| |
| /// \brief Tries a user-defined conversion from From to ToType. |
| /// |
| /// Produces an implicit conversion sequence for when a standard conversion |
| /// is not an option. See TryImplicitConversion for more information. |
| static ImplicitConversionSequence |
| TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType, |
| bool SuppressUserConversions, |
| bool AllowExplicit, |
| bool InOverloadResolution, |
| bool CStyle, |
| bool AllowObjCWritebackConversion) { |
| ImplicitConversionSequence ICS; |
| |
| if (SuppressUserConversions) { |
| // We're not in the case above, so there is no conversion that |
| // we can perform. |
| ICS.setBad(BadConversionSequence::no_conversion, From, ToType); |
| return ICS; |
| } |
| |
| // Attempt user-defined conversion. |
| OverloadCandidateSet Conversions(From->getExprLoc()); |
| OverloadingResult UserDefResult |
| = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions, |
| AllowExplicit); |
| |
| if (UserDefResult == OR_Success) { |
| ICS.setUserDefined(); |
| // C++ [over.ics.user]p4: |
| // A conversion of an expression of class type to the same class |
| // type is given Exact Match rank, and a conversion of an |
| // expression of class type to a base class of that type is |
| // given Conversion rank, in spite of the fact that a copy |
| // constructor (i.e., a user-defined conversion function) is |
| // called for those cases. |
| if (CXXConstructorDecl *Constructor |
| = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) { |
| QualType FromCanon |
| = S.Context.getCanonicalType(From->getType().getUnqualifiedType()); |
| QualType ToCanon |
| = S.Context.getCanonicalType(ToType).getUnqualifiedType(); |
| if (Constructor->isCopyConstructor() && |
| (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) { |
| // Turn this into a "standard" conversion sequence, so that it |
| // gets ranked with standard conversion sequences. |
| ICS.setStandard(); |
| ICS.Standard.setAsIdentityConversion(); |
| ICS.Standard.setFromType(From->getType()); |
| ICS.Standard.setAllToTypes(ToType); |
| ICS.Standard.CopyConstructor = Constructor; |
| if (ToCanon != FromCanon) |
| ICS.Standard.Second = ICK_Derived_To_Base; |
| } |
| } |
| |
| // C++ [over.best.ics]p4: |
| // However, when considering the argument of a user-defined |
| // conversion function that is a candidate by 13.3.1.3 when |
| // invoked for the copying of the temporary in the second step |
| // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or |
| // 13.3.1.6 in all cases, only standard conversion sequences and |
| // ellipsis conversion sequences are allowed. |
| if (SuppressUserConversions && ICS.isUserDefined()) { |
| ICS.setBad(BadConversionSequence::suppressed_user, From, ToType); |
| } |
| } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) { |
| ICS.setAmbiguous(); |
| ICS.Ambiguous.setFromType(From->getType()); |
| ICS.Ambiguous.setToType(ToType); |
| for (OverloadCandidateSet::iterator Cand = Conversions.begin(); |
| Cand != Conversions.end(); ++Cand) |
| if (Cand->Viable) |
| ICS.Ambiguous.addConversion(Cand->Function); |
| } else { |
| ICS.setBad(BadConversionSequence::no_conversion, From, ToType); |
| } |
| |
| return ICS; |
| } |
| |
| /// TryImplicitConversion - Attempt to perform an implicit conversion |
| /// from the given expression (Expr) to the given type (ToType). This |
| /// function returns an implicit conversion sequence that can be used |
| /// to perform the initialization. Given |
| /// |
| /// void f(float f); |
| /// void g(int i) { f(i); } |
| /// |
| /// this routine would produce an implicit conversion sequence to |
| /// describe the initialization of f from i, which will be a standard |
| /// conversion sequence containing an lvalue-to-rvalue conversion (C++ |
| /// 4.1) followed by a floating-integral conversion (C++ 4.9). |
| // |
| /// Note that this routine only determines how the conversion can be |
| /// performed; it does not actually perform the conversion. As such, |
| /// it will not produce any diagnostics if no conversion is available, |
| /// but will instead return an implicit conversion sequence of kind |
| /// "BadConversion". |
| /// |
| /// If @p SuppressUserConversions, then user-defined conversions are |
| /// not permitted. |
| /// If @p AllowExplicit, then explicit user-defined conversions are |
| /// permitted. |
| /// |
| /// \param AllowObjCWritebackConversion Whether we allow the Objective-C |
| /// writeback conversion, which allows __autoreleasing id* parameters to |
| /// be initialized with __strong id* or __weak id* arguments. |
| static ImplicitConversionSequence |
| TryImplicitConversion(Sema &S, Expr *From, QualType ToType, |
| bool SuppressUserConversions, |
| bool AllowExplicit, |
| bool InOverloadResolution, |
| bool CStyle, |
| bool AllowObjCWritebackConversion) { |
| ImplicitConversionSequence ICS; |
| if (IsStandardConversion(S, From, ToType, InOverloadResolution, |
| ICS.Standard, CStyle, AllowObjCWritebackConversion)){ |
| ICS.setStandard(); |
| return ICS; |
| } |
| |
| if (!S.getLangOptions().CPlusPlus) { |
| ICS.setBad(BadConversionSequence::no_conversion, From, ToType); |
| return ICS; |
| } |
| |
| // C++ [over.ics.user]p4: |
| // A conversion of an expression of class type to the same class |
| // type is given Exact Match rank, and a conversion of an |
| // expression of class type to a base class of that type is |
| // given Conversion rank, in spite of the fact that a copy/move |
| // constructor (i.e., a user-defined conversion function) is |
| // called for those cases. |
| QualType FromType = From->getType(); |
| if (ToType->getAs<RecordType>() && FromType->getAs<RecordType>() && |
| (S.Context.hasSameUnqualifiedType(FromType, ToType) || |
| S.IsDerivedFrom(FromType, ToType))) { |
| ICS.setStandard(); |
| ICS.Standard.setAsIdentityConversion(); |
| ICS.Standard.setFromType(FromType); |
| ICS.Standard.setAllToTypes(ToType); |
| |
| // We don't actually check at this point whether there is a valid |
| // copy/move constructor, since overloading just assumes that it |
| // exists. When we actually perform initialization, we'll find the |
| // appropriate constructor to copy the returned object, if needed. |
| ICS.Standard.CopyConstructor = 0; |
| |
| // Determine whether this is considered a derived-to-base conversion. |
| if (!S.Context.hasSameUnqualifiedType(FromType, ToType)) |
| ICS.Standard.Second = ICK_Derived_To_Base; |
| |
| return ICS; |
| } |
| |
| return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, |
| AllowExplicit, InOverloadResolution, CStyle, |
| AllowObjCWritebackConversion); |
| } |
| |
| ImplicitConversionSequence |
| Sema::TryImplicitConversion(Expr *From, QualType ToType, |
| bool SuppressUserConversions, |
| bool AllowExplicit, |
| bool InOverloadResolution, |
| bool CStyle, |
| bool AllowObjCWritebackConversion) { |
| return clang::TryImplicitConversion(*this, From, ToType, |
| SuppressUserConversions, AllowExplicit, |
| InOverloadResolution, CStyle, |
| AllowObjCWritebackConversion); |
| } |
| |
| /// PerformImplicitConversion - Perform an implicit conversion of the |
| /// expression From to the type ToType. Returns the |
| /// converted expression. Flavor is the kind of conversion we're |
| /// performing, used in the error message. If @p AllowExplicit, |
| /// explicit user-defined conversions are permitted. |
| ExprResult |
| Sema::PerformImplicitConversion(Expr *From, QualType ToType, |
| AssignmentAction Action, bool AllowExplicit) { |
| ImplicitConversionSequence ICS; |
| return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS); |
| } |
| |
| ExprResult |
| Sema::PerformImplicitConversion(Expr *From, QualType ToType, |
| AssignmentAction Action, bool AllowExplicit, |
| ImplicitConversionSequence& ICS) { |
| if (checkPlaceholderForOverload(*this, From)) |
| return ExprError(); |
| |
| // Objective-C ARC: Determine whether we will allow the writeback conversion. |
| bool AllowObjCWritebackConversion |
| = getLangOptions().ObjCAutoRefCount && |
| (Action == AA_Passing || Action == AA_Sending); |
| |
| ICS = clang::TryImplicitConversion(*this, From, ToType, |
| /*SuppressUserConversions=*/false, |
| AllowExplicit, |
| /*InOverloadResolution=*/false, |
| /*CStyle=*/false, |
| AllowObjCWritebackConversion); |
| return PerformImplicitConversion(From, ToType, ICS, Action); |
| } |
| |
| /// \brief Determine whether the conversion from FromType to ToType is a valid |
| /// conversion that strips "noreturn" off the nested function type. |
| bool Sema::IsNoReturnConversion(QualType FromType, QualType ToType, |
| QualType &ResultTy) { |
| if (Context.hasSameUnqualifiedType(FromType, ToType)) |
| return false; |
| |
| // Permit the conversion F(t __attribute__((noreturn))) -> F(t) |
| // where F adds one of the following at most once: |
| // - a pointer |
| // - a member pointer |
| // - a block pointer |
| CanQualType CanTo = Context.getCanonicalType(ToType); |
| CanQualType CanFrom = Context.getCanonicalType(FromType); |
| Type::TypeClass TyClass = CanTo->getTypeClass(); |
| if (TyClass != CanFrom->getTypeClass()) return false; |
| if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) { |
| if (TyClass == Type::Pointer) { |
| CanTo = CanTo.getAs<PointerType>()->getPointeeType(); |
| CanFrom = CanFrom.getAs<PointerType>()->getPointeeType(); |
| } else if (TyClass == Type::BlockPointer) { |
| CanTo = CanTo.getAs<BlockPointerType>()->getPointeeType(); |
| CanFrom = CanFrom.getAs<BlockPointerType>()->getPointeeType(); |
| } else if (TyClass == Type::MemberPointer) { |
| CanTo = CanTo.getAs<MemberPointerType>()->getPointeeType(); |
| CanFrom = CanFrom.getAs<MemberPointerType>()->getPointeeType(); |
| } else { |
| return false; |
| } |
| |
| TyClass = CanTo->getTypeClass(); |
| if (TyClass != CanFrom->getTypeClass()) return false; |
| if (TyClass != Type::FunctionProto && TyClass != Type::FunctionNoProto) |
| return false; |
| } |
| |
| const FunctionType *FromFn = cast<FunctionType>(CanFrom); |
| FunctionType::ExtInfo EInfo = FromFn->getExtInfo(); |
| if (!EInfo.getNoReturn()) return false; |
| |
| FromFn = Context.adjustFunctionType(FromFn, EInfo.withNoReturn(false)); |
| assert(QualType(FromFn, 0).isCanonical()); |
| if (QualType(FromFn, 0) != CanTo) return false; |
| |
| ResultTy = ToType; |
| return true; |
| } |
| |
| /// \brief Determine whether the conversion from FromType to ToType is a valid |
| /// vector conversion. |
| /// |
| /// \param ICK Will be set to the vector conversion kind, if this is a vector |
| /// conversion. |
| static bool IsVectorConversion(ASTContext &Context, QualType FromType, |
| QualType ToType, ImplicitConversionKind &ICK) { |
| // We need at least one of these types to be a vector type to have a vector |
| // conversion. |
| if (!ToType->isVectorType() && !FromType->isVectorType()) |
| return false; |
| |
| // Identical types require no conversions. |
| if (Context.hasSameUnqualifiedType(FromType, ToType)) |
| return false; |
| |
| // There are no conversions between extended vector types, only identity. |
| if (ToType->isExtVectorType()) { |
| // There are no conversions between extended vector types other than the |
| // identity conversion. |
| if (FromType->isExtVectorType()) |
| return false; |
| |
| // Vector splat from any arithmetic type to a vector. |
| if (FromType->isArithmeticType()) { |
| ICK = ICK_Vector_Splat; |
| return true; |
| } |
| } |
| |
| // We can perform the conversion between vector types in the following cases: |
| // 1)vector types are equivalent AltiVec and GCC vector types |
| // 2)lax vector conversions are permitted and the vector types are of the |
| // same size |
| if (ToType->isVectorType() && FromType->isVectorType()) { |
| if (Context.areCompatibleVectorTypes(FromType, ToType) || |
| (Context.getLangOptions().LaxVectorConversions && |
| (Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) { |
| ICK = ICK_Vector_Conversion; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// IsStandardConversion - Determines whether there is a standard |
| /// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the |
| /// expression From to the type ToType. Standard conversion sequences |
| /// only consider non-class types; for conversions that involve class |
| /// types, use TryImplicitConversion. If a conversion exists, SCS will |
| /// contain the standard conversion sequence required to perform this |
| /// conversion and this routine will return true. Otherwise, this |
| /// routine will return false and the value of SCS is unspecified. |
| static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType, |
| bool InOverloadResolution, |
| StandardConversionSequence &SCS, |
| bool CStyle, |
| bool AllowObjCWritebackConversion) { |
| QualType FromType = From->getType(); |
| |
| // Standard conversions (C++ [conv]) |
| SCS.setAsIdentityConversion(); |
| SCS.DeprecatedStringLiteralToCharPtr = false; |
| SCS.IncompatibleObjC = false; |
| SCS.setFromType(FromType); |
| SCS.CopyConstructor = 0; |
| |
| // There are no standard conversions for class types in C++, so |
| // abort early. When overloading in C, however, we do permit |
| if (FromType->isRecordType() || ToType->isRecordType()) { |
| if (S.getLangOptions().CPlusPlus) |
| return false; |
| |
| // When we're overloading in C, we allow, as standard conversions, |
| } |
| |
| // The first conversion can be an lvalue-to-rvalue conversion, |
| // array-to-pointer conversion, or function-to-pointer conversion |
| // (C++ 4p1). |
| |
| if (FromType == S.Context.OverloadTy) { |
| DeclAccessPair AccessPair; |
| if (FunctionDecl *Fn |
| = S.ResolveAddressOfOverloadedFunction(From, ToType, false, |
| AccessPair)) { |
| // We were able to resolve the address of the overloaded function, |
| // so we can convert to the type of that function. |
| FromType = Fn->getType(); |
| |
| // we can sometimes resolve &foo<int> regardless of ToType, so check |
| // if the type matches (identity) or we are converting to bool |
| if (!S.Context.hasSameUnqualifiedType( |
| S.ExtractUnqualifiedFunctionType(ToType), FromType)) { |
| QualType resultTy; |
| // if the function type matches except for [[noreturn]], it's ok |
| if (!S.IsNoReturnConversion(FromType, |
| S.ExtractUnqualifiedFunctionType(ToType), resultTy)) |
| // otherwise, only a boolean conversion is standard |
| if (!ToType->isBooleanType()) |
| return false; |
| } |
| |
| // Check if the "from" expression is taking the address of an overloaded |
| // function and recompute the FromType accordingly. Take advantage of the |
| // fact that non-static member functions *must* have such an address-of |
| // expression. |
| CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn); |
| if (Method && !Method->isStatic()) { |
| assert(isa<UnaryOperator>(From->IgnoreParens()) && |
| "Non-unary operator on non-static member address"); |
| assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() |
| == UO_AddrOf && |
| "Non-address-of operator on non-static member address"); |
| const Type *ClassType |
| = S.Context.getTypeDeclType(Method->getParent()).getTypePtr(); |
| FromType = S.Context.getMemberPointerType(FromType, ClassType); |
| } else if (isa<UnaryOperator>(From->IgnoreParens())) { |
| assert(cast<UnaryOperator>(From->IgnoreParens())->getOpcode() == |
| UO_AddrOf && |
| "Non-address-of operator for overloaded function expression"); |
| FromType = S.Context.getPointerType(FromType); |
| } |
| |
| // Check that we've computed the proper type after overload resolution. |
| assert(S.Context.hasSameType( |
| FromType, |
| S.FixOverloadedFunctionReference(From, AccessPair, Fn)->getType())); |
| } else { |
| return false; |
| } |
| } |
| // Lvalue-to-rvalue conversion (C++11 4.1): |
| // A glvalue (3.10) of a non-function, non-array type T can |
| // be converted to a prvalue. |
| bool argIsLValue = From->isGLValue(); |
| if (argIsLValue && |
| !FromType->isFunctionType() && !FromType->isArrayType() && |
| S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) { |
| SCS.First = ICK_Lvalue_To_Rvalue; |
| |
| // If T is a non-class type, the type of the rvalue is the |
| // cv-unqualified version of T. Otherwise, the type of the rvalue |
| // is T (C++ 4.1p1). C++ can't get here with class types; in C, we |
| // just strip the qualifiers because they don't matter. |
| FromType = FromType.getUnqualifiedType(); |
| } else if (FromType->isArrayType()) { |
| // Array-to-pointer conversion (C++ 4.2) |
| SCS.First = ICK_Array_To_Pointer; |
| |
| // An lvalue or rvalue of type "array of N T" or "array of unknown |
| // bound of T" can be converted to an rvalue of type "pointer to |
| // T" (C++ 4.2p1). |
| FromType = S.Context.getArrayDecayedType(FromType); |
| |
| if (S.IsStringLiteralToNonConstPointerConversion(From, ToType)) { |
| // This conversion is deprecated. (C++ D.4). |
| SCS.DeprecatedStringLiteralToCharPtr = true; |
| |
| // For the purpose of ranking in overload resolution |
| // (13.3.3.1.1), this conversion is considered an |
| // array-to-pointer conversion followed by a qualification |
| // conversion (4.4). (C++ 4.2p2) |
| SCS.Second = ICK_Identity; |
| SCS.Third = ICK_Qualification; |
| SCS.QualificationIncludesObjCLifetime = false; |
| SCS.setAllToTypes(FromType); |
| return true; |
| } |
| } else if (FromType->isFunctionType() && argIsLValue) { |
| // Function-to-pointer conversion (C++ 4.3). |
| SCS.First = ICK_Function_To_Pointer; |
| |
| // An lvalue of function type T can be converted to an rvalue of |
| // type "pointer to T." The result is a pointer to the |
| // function. (C++ 4.3p1). |
| FromType = S.Context.getPointerType(FromType); |
| } else { |
| // We don't require any conversions for the first step. |
| SCS.First = ICK_Identity; |
| } |
| SCS.setToType(0, FromType); |
| |
| // The second conversion can be an integral promotion, floating |
| // point promotion, integral conversion, floating point conversion, |
| // floating-integral conversion, pointer conversion, |
| // pointer-to-member conversion, or boolean conversion (C++ 4p1). |
| // For overloading in C, this can also be a "compatible-type" |
| // conversion. |
| bool IncompatibleObjC = false; |
| ImplicitConversionKind SecondICK = ICK_Identity; |
| if (S.Context.hasSameUnqualifiedType(FromType, ToType)) { |
| // The unqualified versions of the types are the same: there's no |
| // conversion to do. |
| SCS.Second = ICK_Identity; |
| } else if (S.IsIntegralPromotion(From, FromType, ToType)) { |
| // Integral promotion (C++ 4.5). |
| SCS.Second = ICK_Integral_Promotion; |
| FromType = ToType.getUnqualifiedType(); |
| } else if (S.IsFloatingPointPromotion(FromType, ToType)) { |
| // Floating point promotion (C++ 4.6). |
| SCS.Second = ICK_Floating_Promotion; |
| FromType = ToType.getUnqualifiedType(); |
| } else if (S.IsComplexPromotion(FromType, ToType)) { |
| // Complex promotion (Clang extension) |
| SCS.Second = ICK_Complex_Promotion; |
| FromType = ToType.getUnqualifiedType(); |
| } else if (ToType->isBooleanType() && |
| (FromType->isArithmeticType() || |
| FromType->isAnyPointerType() || |
| FromType->isBlockPointerType() || |
| FromType->isMemberPointerType() || |
| FromType->isNullPtrType())) { |
| // Boolean conversions (C++ 4.12). |
| SCS.Second = ICK_Boolean_Conversion; |
| FromType = S.Context.BoolTy; |
| } else if (FromType->isIntegralOrUnscopedEnumerationType() && |
| ToType->isIntegralType(S.Context)) { |
| // Integral conversions (C++ 4.7). |
| SCS.Second = ICK_Integral_Conversion; |
| FromType = ToType.getUnqualifiedType(); |
| } else if (FromType->isAnyComplexType() && ToType->isComplexType()) { |
| // Complex conversions (C99 6.3.1.6) |
| SCS.Second = ICK_Complex_Conversion; |
| FromType = ToType.getUnqualifiedType(); |
| } else if ((FromType->isAnyComplexType() && ToType->isArithmeticType()) || |
| (ToType->isAnyComplexType() && FromType->isArithmeticType())) { |
| // Complex-real conversions (C99 6.3.1.7) |
| SCS.Second = ICK_Complex_Real; |
| FromType = ToType.getUnqualifiedType(); |
| } else if (FromType->isRealFloatingType() && ToType->isRealFloatingType()) { |
| // Floating point conversions (C++ 4.8). |
| SCS.Second = ICK_Floating_Conversion; |
| FromType = ToType.getUnqualifiedType(); |
| } else if ((FromType->isRealFloatingType() && |
| ToType->isIntegralType(S.Context)) || |
| (FromType->isIntegralOrUnscopedEnumerationType() && |
| ToType->isRealFloatingType())) { |
| // Floating-integral conversions (C++ 4.9). |
| SCS.Second = ICK_Floating_Integral; |
| FromType = ToType.getUnqualifiedType(); |
| } else if (S.IsBlockPointerConversion(FromType, ToType, FromType)) { |
| SCS.Second = ICK_Block_Pointer_Conversion; |
| } else if (AllowObjCWritebackConversion && |
| S.isObjCWritebackConversion(FromType, ToType, FromType)) { |
| SCS.Second = ICK_Writeback_Conversion; |
| } else if (S.IsPointerConversion(From, FromType, ToType, InOverloadResolution, |
| FromType, IncompatibleObjC)) { |
| // Pointer conversions (C++ 4.10). |
| SCS.Second = ICK_Pointer_Conversion; |
| SCS.IncompatibleObjC = IncompatibleObjC; |
| FromType = FromType.getUnqualifiedType(); |
| } else if (S.IsMemberPointerConversion(From, FromType, ToType, |
| InOverloadResolution, FromType)) { |
| // Pointer to member conversions (4.11). |
| SCS.Second = ICK_Pointer_Member; |
| } else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) { |
| SCS.Second = SecondICK; |
| FromType = ToType.getUnqualifiedType(); |
| } else if (!S.getLangOptions().CPlusPlus && |
| S.Context.typesAreCompatible(ToType, FromType)) { |
| // Compatible conversions (Clang extension for C function overloading) |
| SCS.Second = ICK_Compatible_Conversion; |
| FromType = ToType.getUnqualifiedType(); |
| } else if (S.IsNoReturnConversion(FromType, ToType, FromType)) { |
| // Treat a conversion that strips "noreturn" as an identity conversion. |
| SCS.Second = ICK_NoReturn_Adjustment; |
| } else if (IsTransparentUnionStandardConversion(S, From, ToType, |
| InOverloadResolution, |
| SCS, CStyle)) { |
| SCS.Second = ICK_TransparentUnionConversion; |
| FromType = ToType; |
| } else { |
| // No second conversion required. |
| SCS.Second = ICK_Identity; |
| } |
| SCS.setToType(1, FromType); |
| |
| QualType CanonFrom; |
| QualType CanonTo; |
| // The third conversion can be a qualification conversion (C++ 4p1). |
| bool ObjCLifetimeConversion; |
| if (S.IsQualificationConversion(FromType, ToType, CStyle, |
| ObjCLifetimeConversion)) { |
| SCS.Third = ICK_Qualification; |
| SCS.QualificationIncludesObjCLifetime = ObjCLifetimeConversion; |
| FromType = ToType; |
| CanonFrom = S.Context.getCanonicalType(FromType); |
| CanonTo = S.Context.getCanonicalType(ToType); |
| } else { |
| // No conversion required |
| SCS.Third = ICK_Identity; |
| |
| // C++ [over.best.ics]p6: |
| // [...] Any difference in top-level cv-qualification is |
| // subsumed by the initialization itself and does not constitute |
| // a conversion. [...] |
| CanonFrom = S.Context.getCanonicalType(FromType); |
| CanonTo = S.Context.getCanonicalType(ToType); |
| if (CanonFrom.getLocalUnqualifiedType() |
| == CanonTo.getLocalUnqualifiedType() && |
| (CanonFrom.getLocalCVRQualifiers() != CanonTo.getLocalCVRQualifiers() |
| || CanonFrom.getObjCGCAttr() != CanonTo.getObjCGCAttr() |
| || CanonFrom.getObjCLifetime() != CanonTo.getObjCLifetime())) { |
| FromType = ToType; |
| CanonFrom = CanonTo; |
| } |
| } |
| SCS.setToType(2, FromType); |
| |
| // If we have not converted the argument type to the parameter type, |
| // this is a bad conversion sequence. |
| if (CanonFrom != CanonTo) |
| return false; |
| |
| return true; |
| } |
| |
| static bool |
| IsTransparentUnionStandardConversion(Sema &S, Expr* From, |
| QualType &ToType, |
| bool InOverloadResolution, |
| StandardConversionSequence &SCS, |
| bool CStyle) { |
| |
| const RecordType *UT = ToType->getAsUnionType(); |
| if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>()) |
| return false; |
| // The field to initialize within the transparent union. |
| RecordDecl *UD = UT->getDecl(); |
| // It's compatible if the expression matches any of the fields. |
| for (RecordDecl::field_iterator it = UD->field_begin(), |
| itend = UD->field_end(); |
| it != itend; ++it) { |
| if (IsStandardConversion(S, From, it->getType(), InOverloadResolution, SCS, |
| CStyle, /*ObjCWritebackConversion=*/false)) { |
| ToType = it->getType(); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// IsIntegralPromotion - Determines whether the conversion from the |
| /// expression From (whose potentially-adjusted type is FromType) to |
| /// ToType is an integral promotion (C++ 4.5). If so, returns true and |
| /// sets PromotedType to the promoted type. |
| bool Sema::IsIntegralPromotion(Expr *From, QualType FromType, QualType ToType) { |
| const BuiltinType *To = ToType->getAs<BuiltinType>(); |
| // All integers are built-in. |
| if (!To) { |
| return false; |
| } |
| |
| // An rvalue of type char, signed char, unsigned char, short int, or |
| // unsigned short int can be converted to an rvalue of type int if |
| // int can represent all the values of the source type; otherwise, |
| // the source rvalue can be converted to an rvalue of type unsigned |
| // int (C++ 4.5p1). |
| if (FromType->isPromotableIntegerType() && !FromType->isBooleanType() && |
| !FromType->isEnumeralType()) { |
| if (// We can promote any signed, promotable integer type to an int |
| (FromType->isSignedIntegerType() || |
| // We can promote any unsigned integer type whose size is |
| // less than int to an int. |
| (!FromType->isSignedIntegerType() && |
| Context.getTypeSize(FromType) < Context.getTypeSize(ToType)))) { |
| return To->getKind() == BuiltinType::Int; |
| } |
| |
| return To->getKind() == BuiltinType::UInt; |
| } |
| |
| // C++0x [conv.prom]p3: |
| // A prvalue of an unscoped enumeration type whose underlying type is not |
| // fixed (7.2) can be converted to an rvalue a prvalue of the first of the |
| // following types that can represent all the values of the enumeration |
| // (i.e., the values in the range bmin to bmax as described in 7.2): int, |
| // unsigned int, long int, unsigned long int, long long int, or unsigned |
| // long long int. If none of the types in that list can represent all the |
| // values of the enumeration, an rvalue a prvalue of an unscoped enumeration |
| // type can be converted to an rvalue a prvalue of the extended integer type |
| // with lowest integer conversion rank (4.13) greater than the rank of long |
| // long in which all the values of the enumeration can be represented. If |
| // there are two such extended types, the signed one is chosen. |
| if (const EnumType *FromEnumType = FromType->getAs<EnumType>()) { |
| // C++0x 7.2p9: Note that this implicit enum to int conversion is not |
| // provided for a scoped enumeration. |
| if (FromEnumType->getDecl()->isScoped()) |
| return false; |
| |
| // We have already pre-calculated the promotion type, so this is trivial. |
| if (ToType->isIntegerType() && |
| !RequireCompleteType(From->getLocStart(), FromType, PDiag())) |
| return Context.hasSameUnqualifiedType(ToType, |
| FromEnumType->getDecl()->getPromotionType()); |
| } |
| |
| // C++0x [conv.prom]p2: |
| // A prvalue of type char16_t, char32_t, or wchar_t (3.9.1) can be converted |
| // to an rvalue a prvalue of the first of the following types that can |
| // represent all the values of its underlying type: int, unsigned int, |
| // long int, unsigned long int, long long int, or unsigned long long int. |
| // If none of the types in that list can represent all the values of its |
| // underlying type, an rvalue a prvalue of type char16_t, char32_t, |
| // or wchar_t can be converted to an rvalue a prvalue of its underlying |
| // type. |
| if (FromType->isAnyCharacterType() && !FromType->isCharType() && |
| ToType->isIntegerType()) { |
| // Determine whether the type we're converting from is signed or |
| // unsigned. |
| bool FromIsSigned = FromType->isSignedIntegerType(); |
| uint64_t FromSize = Context.getTypeSize(FromType); |
| |
| // The types we'll try to promote to, in the appropriate |
| // order. Try each of these types. |
| QualType PromoteTypes[6] = { |
| Context.IntTy, Context.UnsignedIntTy, |
| Context.LongTy, Context.UnsignedLongTy , |
| Context.LongLongTy, Context.UnsignedLongLongTy |
| }; |
| for (int Idx = 0; Idx < 6; ++Idx) { |
| uint64_t ToSize = Context.getTypeSize(PromoteTypes[Idx]); |
| if (FromSize < ToSize || |
| (FromSize == ToSize && |
| FromIsSigned == PromoteTypes[Idx]->isSignedIntegerType())) { |
| // We found the type that we can promote to. If this is the |
| // type we wanted, we have a promotion. Otherwise, no |
| // promotion. |
| return Context.hasSameUnqualifiedType(ToType, PromoteTypes[Idx]); |
| } |
| } |
| } |
| |
| // An rvalue for an integral bit-field (9.6) can be converted to an |
| // rvalue of type int if int can represent all the values of the |
| // bit-field; otherwise, it can be converted to unsigned int if |
| // unsigned int can represent all the values of the bit-field. If |
| // the bit-field is larger yet, no integral promotion applies to |
| // it. If the bit-field has an enumerated type, it is treated as any |
| // other value of that type for promotion purposes (C++ 4.5p3). |
| // FIXME: We should delay checking of bit-fields until we actually perform the |
| // conversion. |
| using llvm::APSInt; |
| if (From) |
| if (FieldDecl *MemberDecl = From->getBitField()) { |
| APSInt BitWidth; |
| if (FromType->isIntegralType(Context) && |
| MemberDecl->getBitWidth()->isIntegerConstantExpr(BitWidth, Context)) { |
| APSInt ToSize(BitWidth.getBitWidth(), BitWidth.isUnsigned()); |
| ToSize = Context.getTypeSize(ToType); |
| |
| // Are we promoting to an int from a bitfield that fits in an int? |
| if (BitWidth < ToSize || |
| (FromType->isSignedIntegerType() && BitWidth <= ToSize)) { |
| return To->getKind() == BuiltinType::Int; |
| } |
| |
| // Are we promoting to an unsigned int from an unsigned bitfield |
| // that fits into an unsigned int? |
| if (FromType->isUnsignedIntegerType() && BitWidth <= ToSize) { |
| return To->getKind() == BuiltinType::UInt; |
| } |
| |
| return false; |
| } |
| } |
| |
| // An rvalue of type bool can be converted to an rvalue of type int, |
| // with false becoming zero and true becoming one (C++ 4.5p4). |
| if (FromType->isBooleanType() && To->getKind() == BuiltinType::Int) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// IsFloatingPointPromotion - Determines whether the conversion from |
| /// FromType to ToType is a floating point promotion (C++ 4.6). If so, |
| /// returns true and sets PromotedType to the promoted type. |
| bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) { |
| if (const BuiltinType *FromBuiltin = FromType->getAs<BuiltinType>()) |
| if (const BuiltinType *ToBuiltin = ToType->getAs<BuiltinType>()) { |
| /// An rvalue of type float can be converted to an rvalue of type |
| /// double. (C++ 4.6p1). |
| if (FromBuiltin->getKind() == BuiltinType::Float && |
| ToBuiltin->getKind() == BuiltinType::Double) |
| return true; |
| |
| // C99 6.3.1.5p1: |
| // When a float is promoted to double or long double, or a |
| // double is promoted to long double [...]. |
| if (!getLangOptions().CPlusPlus && |
| (FromBuiltin->getKind() == BuiltinType::Float || |
| FromBuiltin->getKind() == BuiltinType::Double) && |
| (ToBuiltin->getKind() == BuiltinType::LongDouble)) |
| return true; |
| |
| // Half can be promoted to float. |
| if (FromBuiltin->getKind() == BuiltinType::Half && |
| ToBuiltin->getKind() == BuiltinType::Float) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// \brief Determine if a conversion is a complex promotion. |
| /// |
| /// A complex promotion is defined as a complex -> complex conversion |
| /// where the conversion between the underlying real types is a |
| /// floating-point or integral promotion. |
| bool Sema::IsComplexPromotion(QualType FromType, QualType ToType) { |
| const ComplexType *FromComplex = FromType->getAs<ComplexType>(); |
| if (!FromComplex) |
| return false; |
| |
| const ComplexType *ToComplex = ToType->getAs<ComplexType>(); |
| if (!ToComplex) |
| return false; |
| |
| return IsFloatingPointPromotion(FromComplex->getElementType(), |
| ToComplex->getElementType()) || |
| IsIntegralPromotion(0, FromComplex->getElementType(), |
| ToComplex->getElementType()); |
| } |
| |
| /// BuildSimilarlyQualifiedPointerType - In a pointer conversion from |
| /// the pointer type FromPtr to a pointer to type ToPointee, with the |
| /// same type qualifiers as FromPtr has on its pointee type. ToType, |
| /// if non-empty, will be a pointer to ToType that may or may not have |
| /// the right set of qualifiers on its pointee. |
| /// |
| static QualType |
| BuildSimilarlyQualifiedPointerType(const Type *FromPtr, |
| QualType ToPointee, QualType ToType, |
| ASTContext &Context, |
| bool StripObjCLifetime = false) { |
| assert((FromPtr->getTypeClass() == Type::Pointer || |
| FromPtr->getTypeClass() == Type::ObjCObjectPointer) && |
| "Invalid similarly-qualified pointer type"); |
| |
| /// Conversions to 'id' subsume cv-qualifier conversions. |
| if (ToType->isObjCIdType() || ToType->isObjCQualifiedIdType()) |
| return ToType.getUnqualifiedType(); |
| |
| QualType CanonFromPointee |
| = Context.getCanonicalType(FromPtr->getPointeeType()); |
| QualType CanonToPointee = Context.getCanonicalType(ToPointee); |
| Qualifiers Quals = CanonFromPointee.getQualifiers(); |
| |
| if (StripObjCLifetime) |
| Quals.removeObjCLifetime(); |
| |
| // Exact qualifier match -> return the pointer type we're converting to. |
| if (CanonToPointee.getLocalQualifiers() == Quals) { |
| // ToType is exactly what we need. Return it. |
| if (!ToType.isNull()) |
| return ToType.getUnqualifiedType(); |
| |
| // Build a pointer to ToPointee. It has the right qualifiers |
| // already. |
| if (isa<ObjCObjectPointerType>(ToType)) |
| return Context.getObjCObjectPointerType(ToPointee); |
| return Context.getPointerType(ToPointee); |
| } |
| |
| // Just build a canonical type that has the right qualifiers. |
| QualType QualifiedCanonToPointee |
| = Context.getQualifiedType(CanonToPointee.getLocalUnqualifiedType(), Quals); |
| |
| if (isa<ObjCObjectPointerType>(ToType)) |
| return Context.getObjCObjectPointerType(QualifiedCanonToPointee); |
| return Context.getPointerType(QualifiedCanonToPointee); |
| } |
| |
| static bool isNullPointerConstantForConversion(Expr *Expr, |
| bool InOverloadResolution, |
| ASTContext &Context) { |
| // Handle value-dependent integral null pointer constants correctly. |
| // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#903 |
| if (Expr->isValueDependent() && !Expr->isTypeDependent() && |
| Expr->getType()->isIntegerType() && !Expr->getType()->isEnumeralType()) |
| return !InOverloadResolution; |
| |
| return Expr->isNullPointerConstant(Context, |
| InOverloadResolution? Expr::NPC_ValueDependentIsNotNull |
| : Expr::NPC_ValueDependentIsNull); |
| } |
| |
| /// IsPointerConversion - Determines whether the conversion of the |
| /// expression From, which has the (possibly adjusted) type FromType, |
| /// can be converted to the type ToType via a pointer conversion (C++ |
| /// 4.10). If so, returns true and places the converted type (that |
| /// might differ from ToType in its cv-qualifiers at some level) into |
| /// ConvertedType. |
| /// |
| /// This routine also supports conversions to and from block pointers |
| /// and conversions with Objective-C's 'id', 'id<protocols...>', and |
| /// pointers to interfaces. FIXME: Once we've determined the |
| /// appropriate overloading rules for Objective-C, we may want to |
| /// split the Objective-C checks into a different routine; however, |
| /// GCC seems to consider all of these conversions to be pointer |
| /// conversions, so for now they live here. IncompatibleObjC will be |
| /// set if the conversion is an allowed Objective-C conversion that |
| /// should result in a warning. |
| bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType, |
| bool InOverloadResolution, |
| QualType& ConvertedType, |
| bool &IncompatibleObjC) { |
| IncompatibleObjC = false; |
| if (isObjCPointerConversion(FromType, ToType, ConvertedType, |
| IncompatibleObjC)) |
| return true; |
| |
| // Conversion from a null pointer constant to any Objective-C pointer type. |
| if (ToType->isObjCObjectPointerType() && |
| isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
| ConvertedType = ToType; |
| return true; |
| } |
| |
| // Blocks: Block pointers can be converted to void*. |
| if (FromType->isBlockPointerType() && ToType->isPointerType() && |
| ToType->getAs<PointerType>()->getPointeeType()->isVoidType()) { |
| ConvertedType = ToType; |
| return true; |
| } |
| // Blocks: A null pointer constant can be converted to a block |
| // pointer type. |
| if (ToType->isBlockPointerType() && |
| isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
| ConvertedType = ToType; |
| return true; |
| } |
| |
| // If the left-hand-side is nullptr_t, the right side can be a null |
| // pointer constant. |
| if (ToType->isNullPtrType() && |
| isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
| ConvertedType = ToType; |
| return true; |
| } |
| |
| const PointerType* ToTypePtr = ToType->getAs<PointerType>(); |
| if (!ToTypePtr) |
| return false; |
| |
| // A null pointer constant can be converted to a pointer type (C++ 4.10p1). |
| if (isNullPointerConstantForConversion(From, InOverloadResolution, Context)) { |
| ConvertedType = ToType; |
| return true; |
| } |
| |
| // Beyond this point, both types need to be pointers |
| // , including objective-c pointers. |
| QualType ToPointeeType = ToTypePtr->getPointeeType(); |
| if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() && |
| !getLangOptions().ObjCAutoRefCount) { |
| ConvertedType = BuildSimilarlyQualifiedPointerType( |
| FromType->getAs<ObjCObjectPointerType>(), |
| ToPointeeType, |
| ToType, Context); |
| return true; |
| } |
| const PointerType *FromTypePtr = FromType->getAs<PointerType>(); |
| if (!FromTypePtr) |
| return false; |
| |
| QualType FromPointeeType = FromTypePtr->getPointeeType(); |
| |
| // If the unqualified pointee types are the same, this can't be a |
| // pointer conversion, so don't do all of the work below. |
| if (Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) |
| return false; |
| |
| // An rvalue of type "pointer to cv T," where T is an object type, |
| // can be converted to an rvalue of type "pointer to cv void" (C++ |
| // 4.10p2). |
| if (FromPointeeType->isIncompleteOrObjectType() && |
| ToPointeeType->isVoidType()) { |
| ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
| ToPointeeType, |
| ToType, Context, |
| /*StripObjCLifetime=*/true); |
| return true; |
| } |
| |
| // MSVC allows implicit function to void* type conversion. |
| if (getLangOptions().MicrosoftExt && FromPointeeType->isFunctionType() && |
| ToPointeeType->isVoidType()) { |
| ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
| ToPointeeType, |
| ToType, Context); |
| return true; |
| } |
| |
| // When we're overloading in C, we allow a special kind of pointer |
| // conversion for compatible-but-not-identical pointee types. |
| if (!getLangOptions().CPlusPlus && |
| Context.typesAreCompatible(FromPointeeType, ToPointeeType)) { |
| ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
| ToPointeeType, |
| ToType, Context); |
| return true; |
| } |
| |
| // C++ [conv.ptr]p3: |
| // |
| // An rvalue of type "pointer to cv D," where D is a class type, |
| // can be converted to an rvalue of type "pointer to cv B," where |
| // B is a base class (clause 10) of D. If B is an inaccessible |
| // (clause 11) or ambiguous (10.2) base class of D, a program that |
| // necessitates this conversion is ill-formed. The result of the |
| // conversion is a pointer to the base class sub-object of the |
| // derived class object. The null pointer value is converted to |
| // the null pointer value of the destination type. |
| // |
| // Note that we do not check for ambiguity or inaccessibility |
| // here. That is handled by CheckPointerConversion. |
| if (getLangOptions().CPlusPlus && |
| FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && |
| !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) && |
| !RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) && |
| IsDerivedFrom(FromPointeeType, ToPointeeType)) { |
| ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
| ToPointeeType, |
| ToType, Context); |
| return true; |
| } |
| |
| if (FromPointeeType->isVectorType() && ToPointeeType->isVectorType() && |
| Context.areCompatibleVectorTypes(FromPointeeType, ToPointeeType)) { |
| ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr, |
| ToPointeeType, |
| ToType, Context); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// \brief Adopt the given qualifiers for the given type. |
| static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){ |
| Qualifiers TQs = T.getQualifiers(); |
| |
| // Check whether qualifiers already match. |
| if (TQs == Qs) |
| return T; |
| |
| if (Qs.compatiblyIncludes(TQs)) |
| return Context.getQualifiedType(T, Qs); |
| |
| return Context.getQualifiedType(T.getUnqualifiedType(), Qs); |
| } |
| |
| /// isObjCPointerConversion - Determines whether this is an |
| /// Objective-C pointer conversion. Subroutine of IsPointerConversion, |
| /// with the same arguments and return values. |
| bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType, |
| QualType& ConvertedType, |
| bool &IncompatibleObjC) { |
| if (!getLangOptions().ObjC1) |
| return false; |
| |
| // The set of qualifiers on the type we're converting from. |
| Qualifiers FromQualifiers = FromType.getQualifiers(); |
| |
| // First, we handle all conversions on ObjC object pointer types. |
| const ObjCObjectPointerType* ToObjCPtr = |
| ToType->getAs<ObjCObjectPointerType>(); |
| const ObjCObjectPointerType *FromObjCPtr = |
| FromType->getAs<ObjCObjectPointerType>(); |
| |
| if (ToObjCPtr && FromObjCPtr) { |
| // If the pointee types are the same (ignoring qualifications), |
| // then this is not a pointer conversion. |
| if (Context.hasSameUnqualifiedType(ToObjCPtr->getPointeeType(), |
| FromObjCPtr->getPointeeType())) |
| return false; |
| |
| // Check for compatible |
| // Objective C++: We're able to convert between "id" or "Class" and a |
| // pointer to any interface (in both directions). |
| if (ToObjCPtr->isObjCBuiltinType() && FromObjCPtr->isObjCBuiltinType()) { |
| ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); |
| return true; |
| } |
| // Conversions with Objective-C's id<...>. |
| if ((FromObjCPtr->isObjCQualifiedIdType() || |
| ToObjCPtr->isObjCQualifiedIdType()) && |
| Context.ObjCQualifiedIdTypesAreCompatible(ToType, FromType, |
| /*compare=*/false)) { |
| ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); |
| return true; |
| } |
| // Objective C++: We're able to convert from a pointer to an |
| // interface to a pointer to a different interface. |
| if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) { |
| const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType(); |
| const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType(); |
| if (getLangOptions().CPlusPlus && LHS && RHS && |
| !ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs( |
| FromObjCPtr->getPointeeType())) |
| return false; |
| ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, |
| ToObjCPtr->getPointeeType(), |
| ToType, Context); |
| ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); |
| return true; |
| } |
| |
| if (Context.canAssignObjCInterfaces(FromObjCPtr, ToObjCPtr)) { |
| // Okay: this is some kind of implicit downcast of Objective-C |
| // interfaces, which is permitted. However, we're going to |
| // complain about it. |
| IncompatibleObjC = true; |
| ConvertedType = BuildSimilarlyQualifiedPointerType(FromObjCPtr, |
| ToObjCPtr->getPointeeType(), |
| ToType, Context); |
| ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); |
| return true; |
| } |
| } |
| // Beyond this point, both types need to be C pointers or block pointers. |
| QualType ToPointeeType; |
| if (const PointerType *ToCPtr = ToType->getAs<PointerType>()) |
| ToPointeeType = ToCPtr->getPointeeType(); |
| else if (const BlockPointerType *ToBlockPtr = |
| ToType->getAs<BlockPointerType>()) { |
| // Objective C++: We're able to convert from a pointer to any object |
| // to a block pointer type. |
| if (FromObjCPtr && FromObjCPtr->isObjCBuiltinType()) { |
| ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); |
| return true; |
| } |
| ToPointeeType = ToBlockPtr->getPointeeType(); |
| } |
| else if (FromType->getAs<BlockPointerType>() && |
| ToObjCPtr && ToObjCPtr->isObjCBuiltinType()) { |
| // Objective C++: We're able to convert from a block pointer type to a |
| // pointer to any object. |
| ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); |
| return true; |
| } |
| else |
| return false; |
| |
| QualType FromPointeeType; |
| if (const PointerType *FromCPtr = FromType->getAs<PointerType>()) |
| FromPointeeType = FromCPtr->getPointeeType(); |
| else if (const BlockPointerType *FromBlockPtr = |
| FromType->getAs<BlockPointerType>()) |
| FromPointeeType = FromBlockPtr->getPointeeType(); |
| else |
| return false; |
| |
| // If we have pointers to pointers, recursively check whether this |
| // is an Objective-C conversion. |
| if (FromPointeeType->isPointerType() && ToPointeeType->isPointerType() && |
| isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, |
| IncompatibleObjC)) { |
| // We always complain about this conversion. |
| IncompatibleObjC = true; |
| ConvertedType = Context.getPointerType(ConvertedType); |
| ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); |
| return true; |
| } |
| // Allow conversion of pointee being objective-c pointer to another one; |
| // as in I* to id. |
| if (FromPointeeType->getAs<ObjCObjectPointerType>() && |
| ToPointeeType->getAs<ObjCObjectPointerType>() && |
| isObjCPointerConversion(FromPointeeType, ToPointeeType, ConvertedType, |
| IncompatibleObjC)) { |
| |
| ConvertedType = Context.getPointerType(ConvertedType); |
| ConvertedType = AdoptQualifiers(Context, ConvertedType, FromQualifiers); |
| return true; |
| } |
| |
| // If we have pointers to functions or blocks, check whether the only |
| // differences in the argument and result types are in Objective-C |
| // pointer conversions. If so, we permit the conversion (but |
| // complain about it). |
| const FunctionProtoType *FromFunctionType |
| = FromPointeeType->getAs<FunctionProtoType>(); |
| const FunctionProtoType *ToFunctionType |
| = ToPointeeType->getAs<FunctionProtoType>(); |
| if (FromFunctionType && ToFunctionType) { |
| // If the function types are exactly the same, this isn't an |
| // Objective-C pointer conversion. |
| if (Context.getCanonicalType(FromPointeeType) |
| == Context.getCanonicalType(ToPointeeType)) |
| return false; |
| |
| // Perform the quick checks that will tell us whether these |
| // function types are obviously different. |
| if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || |
| FromFunctionType->isVariadic() != ToFunctionType->isVariadic() || |
| FromFunctionType->getTypeQuals() != ToFunctionType->getTypeQuals()) |
| return false; |
| |
| bool HasObjCConversion = false; |
| if (Context.getCanonicalType(FromFunctionType->getResultType()) |
| == Context.getCanonicalType(ToFunctionType->getResultType())) { |
| // Okay, the types match exactly. Nothing to do. |
| } else if (isObjCPointerConversion(FromFunctionType->getResultType(), |
| ToFunctionType->getResultType(), |
| ConvertedType, IncompatibleObjC)) { |
| // Okay, we have an Objective-C pointer conversion. |
| HasObjCConversion = true; |
| } else { |
| // Function types are too different. Abort. |
| return false; |
| } |
| |
| // Check argument types. |
| for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); |
| ArgIdx != NumArgs; ++ArgIdx) { |
| QualType FromArgType = FromFunctionType->getArgType(ArgIdx); |
| QualType ToArgType = ToFunctionType->getArgType(ArgIdx); |
| if (Context.getCanonicalType(FromArgType) |
| == Context.getCanonicalType(ToArgType)) { |
| // Okay, the types match exactly. Nothing to do. |
| } else if (isObjCPointerConversion(FromArgType, ToArgType, |
| ConvertedType, IncompatibleObjC)) { |
| // Okay, we have an Objective-C pointer conversion. |
| HasObjCConversion = true; |
| } else { |
| // Argument types are too different. Abort. |
| return false; |
| } |
| } |
| |
| if (HasObjCConversion) { |
| // We had an Objective-C conversion. Allow this pointer |
| // conversion, but complain about it. |
| ConvertedType = AdoptQualifiers(Context, ToType, FromQualifiers); |
| IncompatibleObjC = true; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// \brief Determine whether this is an Objective-C writeback conversion, |
| /// used for parameter passing when performing automatic reference counting. |
| /// |
| /// \param FromType The type we're converting form. |
| /// |
| /// \param ToType The type we're converting to. |
| /// |
| /// \param ConvertedType The type that will be produced after applying |
| /// this conversion. |
| bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType, |
| QualType &ConvertedType) { |
| if (!getLangOptions().ObjCAutoRefCount || |
| Context.hasSameUnqualifiedType(FromType, ToType)) |
| return false; |
| |
| // Parameter must be a pointer to __autoreleasing (with no other qualifiers). |
| QualType ToPointee; |
| if (const PointerType *ToPointer = ToType->getAs<PointerType>()) |
| ToPointee = ToPointer->getPointeeType(); |
| else |
| return false; |
| |
| Qualifiers ToQuals = ToPointee.getQualifiers(); |
| if (!ToPointee->isObjCLifetimeType() || |
| ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing || |
| !ToQuals.withoutObjCGLifetime().empty()) |
| return false; |
| |
| // Argument must be a pointer to __strong to __weak. |
| QualType FromPointee; |
| if (const PointerType *FromPointer = FromType->getAs<PointerType>()) |
| FromPointee = FromPointer->getPointeeType(); |
| else |
| return false; |
| |
| Qualifiers FromQuals = FromPointee.getQualifiers(); |
| if (!FromPointee->isObjCLifetimeType() || |
| (FromQuals.getObjCLifetime() != Qualifiers::OCL_Strong && |
| FromQuals.getObjCLifetime() != Qualifiers::OCL_Weak)) |
| return false; |
| |
| // Make sure that we have compatible qualifiers. |
| FromQuals.setObjCLifetime(Qualifiers::OCL_Autoreleasing); |
| if (!ToQuals.compatiblyIncludes(FromQuals)) |
| return false; |
| |
| // Remove qualifiers from the pointee type we're converting from; they |
| // aren't used in the compatibility check belong, and we'll be adding back |
| // qualifiers (with __autoreleasing) if the compatibility check succeeds. |
| FromPointee = FromPointee.getUnqualifiedType(); |
| |
| // The unqualified form of the pointee types must be compatible. |
| ToPointee = ToPointee.getUnqualifiedType(); |
| bool IncompatibleObjC; |
| if (Context.typesAreCompatible(FromPointee, ToPointee)) |
| FromPointee = ToPointee; |
| else if (!isObjCPointerConversion(FromPointee, ToPointee, FromPointee, |
| IncompatibleObjC)) |
| return false; |
| |
| /// \brief Construct the type we're converting to, which is a pointer to |
| /// __autoreleasing pointee. |
| FromPointee = Context.getQualifiedType(FromPointee, FromQuals); |
| ConvertedType = Context.getPointerType(FromPointee); |
| return true; |
| } |
| |
| bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType, |
| QualType& ConvertedType) { |
| QualType ToPointeeType; |
| if (const BlockPointerType *ToBlockPtr = |
| ToType->getAs<BlockPointerType>()) |
| ToPointeeType = ToBlockPtr->getPointeeType(); |
| else |
| return false; |
| |
| QualType FromPointeeType; |
| if (const BlockPointerType *FromBlockPtr = |
| FromType->getAs<BlockPointerType>()) |
| FromPointeeType = FromBlockPtr->getPointeeType(); |
| else |
| return false; |
| // We have pointer to blocks, check whether the only |
| // differences in the argument and result types are in Objective-C |
| // pointer conversions. If so, we permit the conversion. |
| |
| const FunctionProtoType *FromFunctionType |
| = FromPointeeType->getAs<FunctionProtoType>(); |
| const FunctionProtoType *ToFunctionType |
| = ToPointeeType->getAs<FunctionProtoType>(); |
| |
| if (!FromFunctionType || !ToFunctionType) |
| return false; |
| |
| if (Context.hasSameType(FromPointeeType, ToPointeeType)) |
| return true; |
| |
| // Perform the quick checks that will tell us whether these |
| // function types are obviously different. |
| if (FromFunctionType->getNumArgs() != ToFunctionType->getNumArgs() || |
| FromFunctionType->isVariadic() != ToFunctionType->isVariadic()) |
| return false; |
| |
| FunctionType::ExtInfo FromEInfo = FromFunctionType->getExtInfo(); |
| FunctionType::ExtInfo ToEInfo = ToFunctionType->getExtInfo(); |
| if (FromEInfo != ToEInfo) |
| return false; |
| |
| bool IncompatibleObjC = false; |
| if (Context.hasSameType(FromFunctionType->getResultType(), |
| ToFunctionType->getResultType())) { |
| // Okay, the types match exactly. Nothing to do. |
| } else { |
| QualType RHS = FromFunctionType->getResultType(); |
| QualType LHS = ToFunctionType->getResultType(); |
| if ((!getLangOptions().CPlusPlus || !RHS->isRecordType()) && |
| !RHS.hasQualifiers() && LHS.hasQualifiers()) |
| LHS = LHS.getUnqualifiedType(); |
| |
| if (Context.hasSameType(RHS,LHS)) { |
| // OK exact match. |
| } else if (isObjCPointerConversion(RHS, LHS, |
| ConvertedType, IncompatibleObjC)) { |
| if (IncompatibleObjC) |
| return false; |
| // Okay, we have an Objective-C pointer conversion. |
| } |
| else |
| return false; |
| } |
| |
| // Check argument types. |
| for (unsigned ArgIdx = 0, NumArgs = FromFunctionType->getNumArgs(); |
| ArgIdx != NumArgs; ++ArgIdx) { |
| IncompatibleObjC = false; |
| QualType FromArgType = FromFunctionType->getArgType(ArgIdx); |
| QualType ToArgType = ToFunctionType->getArgType(ArgIdx); |
| if (Context.hasSameType(FromArgType, ToArgType)) { |
| // Okay, the types match exactly. Nothing to do. |
| } else if (isObjCPointerConversion(ToArgType, FromArgType, |
| ConvertedType, IncompatibleObjC)) { |
| if (IncompatibleObjC) |
| return false; |
| // Okay, we have an Objective-C pointer conversion. |
| } else |
| // Argument types are too different. Abort. |
| return false; |
| } |
| if (LangOpts.ObjCAutoRefCount && |
| !Context.FunctionTypesMatchOnNSConsumedAttrs(FromFunctionType, |
| ToFunctionType)) |
| return false; |
| |
| ConvertedType = ToType; |
| return true; |
| } |
| |
| enum { |
| ft_default, |
| ft_different_class, |
| ft_parameter_arity, |
| ft_parameter_mismatch, |
| ft_return_type, |
| ft_qualifer_mismatch |
| }; |
| |
| /// HandleFunctionTypeMismatch - Gives diagnostic information for differeing |
| /// function types. Catches different number of parameter, mismatch in |
| /// parameter types, and different return types. |
| void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag, |
| QualType FromType, QualType ToType) { |
| // If either type is not valid, include no extra info. |
| if (FromType.isNull() || ToType.isNull()) { |
| PDiag << ft_default; |
| return; |
| } |
| |
| // Get the function type from the pointers. |
| if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) { |
| const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(), |
| *ToMember = ToType->getAs<MemberPointerType>(); |
| if (FromMember->getClass() != ToMember->getClass()) { |
| PDiag << ft_different_class << QualType(ToMember->getClass(), 0) |
| << QualType(FromMember->getClass(), 0); |
| return; |
| } |
| FromType = FromMember->getPointeeType(); |
| ToType = ToMember->getPointeeType(); |
| } |
| |
| if (FromType->isPointerType()) |
| FromType = FromType->getPointeeType(); |
| if (ToType->isPointerType()) |
| ToType = ToType->getPointeeType(); |
| |
| // Remove references. |
| FromType = FromType.getNonReferenceType(); |
| ToType = ToType.getNonReferenceType(); |
| |
| // Don't print extra info for non-specialized template functions. |
| if (FromType->isInstantiationDependentType() && |
| !FromType->getAs<TemplateSpecializationType>()) { |
| PDiag << ft_default; |
| return; |
| } |
| |
| // No extra info for same types. |
| if (Context.hasSameType(FromType, ToType)) { |
| PDiag << ft_default; |
| return; |
| } |
| |
| const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(), |
| *ToFunction = ToType->getAs<FunctionProtoType>(); |
| |
| // Both types need to be function types. |
| if (!FromFunction || !ToFunction) { |
| PDiag << ft_default; |
| return; |
| } |
| |
| if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) { |
| PDiag << ft_parameter_arity << ToFunction->getNumArgs() |
| << FromFunction->getNumArgs(); |
| return; |
| } |
| |
| // Handle different parameter types. |
| unsigned ArgPos; |
| if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) { |
| PDiag << ft_parameter_mismatch << ArgPos + 1 |
| << ToFunction->getArgType(ArgPos) |
| << FromFunction->getArgType(ArgPos); |
| return; |
| } |
| |
| // Handle different return type. |
| if (!Context.hasSameType(FromFunction->getResultType(), |
| ToFunction->getResultType())) { |
| PDiag << ft_return_type << ToFunction->getResultType() |
| << FromFunction->getResultType(); |
| return; |
| } |
| |
| unsigned FromQuals = FromFunction->getTypeQuals(), |
| ToQuals = ToFunction->getTypeQuals(); |
| if (FromQuals != ToQuals) { |
| PDiag << ft_qualifer_mismatch << ToQuals << FromQuals; |
| return; |
| } |
| |
| // Unable to find a difference, so add no extra info. |
| PDiag << ft_default; |
| } |
| |
| /// FunctionArgTypesAreEqual - This routine checks two function proto types |
| /// for equality of their argument types. Caller has already checked that |
| /// they have same number of arguments. This routine assumes that Objective-C |
| /// pointer types which only differ in their protocol qualifiers are equal. |
| /// If the parameters are different, ArgPos will have the the parameter index |
| /// of the first different parameter. |
| bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType, |
| const FunctionProtoType *NewType, |
| unsigned *ArgPos) { |
| if (!getLangOptions().ObjC1) { |
| for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), |
| N = NewType->arg_type_begin(), |
| E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { |
| if (!Context.hasSameType(*O, *N)) { |
| if (ArgPos) *ArgPos = O - OldType->arg_type_begin(); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(), |
| N = NewType->arg_type_begin(), |
| E = OldType->arg_type_end(); O && (O != E); ++O, ++N) { |
| QualType ToType = (*O); |
| QualType FromType = (*N); |
| if (!Context.hasSameType(ToType, FromType)) { |
| if (const PointerType *PTTo = ToType->getAs<PointerType>()) { |
| if (const PointerType *PTFr = FromType->getAs<PointerType>()) |
| if ((PTTo->getPointeeType()->isObjCQualifiedIdType() && |
| PTFr->getPointeeType()->isObjCQualifiedIdType()) || |
| (PTTo->getPointeeType()->isObjCQualifiedClassType() && |
| PTFr->getPointeeType()->isObjCQualifiedClassType())) |
| continue; |
| } |
| else if (const ObjCObjectPointerType *PTTo = |
| ToType->getAs<ObjCObjectPointerType>()) { |
| if (const ObjCObjectPointerType *PTFr = |
| FromType->getAs<ObjCObjectPointerType>()) |
| if (Context.hasSameUnqualifiedType( |
| PTTo->getObjectType()->getBaseType(), |
| PTFr->getObjectType()->getBaseType())) |
| continue; |
| } |
| if (ArgPos) *ArgPos = O - OldType->arg_type_begin(); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| /// CheckPointerConversion - Check the pointer conversion from the |
| /// expression From to the type ToType. This routine checks for |
| /// ambiguous or inaccessible derived-to-base pointer |
| /// conversions for which IsPointerConversion has already returned |
| /// true. It returns true and produces a diagnostic if there was an |
| /// error, or returns false otherwise. |
| bool Sema::CheckPointerConversion(Expr *From, QualType ToType, |
| CastKind &Kind, |
| CXXCastPath& BasePath, |
| bool IgnoreBaseAccess) { |
| QualType FromType = From->getType(); |
| bool IsCStyleOrFunctionalCast = IgnoreBaseAccess; |
| |
| Kind = CK_BitCast; |
| |
| if (!IsCStyleOrFunctionalCast && |
| Context.hasSameUnqualifiedType(From->getType(), Context.BoolTy) && |
| From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNotNull)) |
| DiagRuntimeBehavior(From->getExprLoc(), From, |
| PDiag(diag::warn_impcast_bool_to_null_pointer) |
| << ToType << From->getSourceRange()); |
| |
| if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) { |
| if (const PointerType *FromPtrType = FromType->getAs<PointerType>()) { |
| QualType FromPointeeType = FromPtrType->getPointeeType(), |
| ToPointeeType = ToPtrType->getPointeeType(); |
| |
| if (FromPointeeType->isRecordType() && ToPointeeType->isRecordType() && |
| !Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType)) { |
| // We must have a derived-to-base conversion. Check an |
| // ambiguous or inaccessible conversion. |
| if (CheckDerivedToBaseConversion(FromPointeeType, ToPointeeType, |
| From->getExprLoc(), |
| From->getSourceRange(), &BasePath, |
| IgnoreBaseAccess)) |
| return true; |
| |
| // The conversion was successful. |
| Kind = CK_DerivedToBase; |
| } |
| } |
| } else if (const ObjCObjectPointerType *ToPtrType = |
| ToType->getAs<ObjCObjectPointerType>()) { |
| if (const ObjCObjectPointerType *FromPtrType = |
| FromType->getAs<ObjCObjectPointerType>()) { |
| // Objective-C++ conversions are always okay. |
| // FIXME: We should have a different class of conversions for the |
| // Objective-C++ implicit conversions. |
| if (FromPtrType->isObjCBuiltinType() || ToPtrType->isObjCBuiltinType()) |
| return false; |
| } else if (FromType->isBlockPointerType()) { |
| Kind = CK_BlockPointerToObjCPointerCast; |
| } else { |
| Kind = CK_CPointerToObjCPointerCast; |
| } |
| } else if (ToType->isBlockPointerType()) { |
| if (!FromType->isBlockPointerType()) |
| Kind = CK_AnyPointerToBlockPointerCast; |
| } |
| |
| // We shouldn't fall into this case unless it's valid for other |
| // reasons. |
| if (From->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) |
| Kind = CK_NullToPointer; |
| |
| return false; |
| } |
| |
| /// IsMemberPointerConversion - Determines whether the conversion of the |
| /// expression From, which has the (possibly adjusted) type FromType, can be |
| /// converted to the type ToType via a member pointer conversion (C++ 4.11). |
| /// If so, returns true and places the converted type (that might differ from |
| /// ToType in its cv-qualifiers at some level) into ConvertedType. |
| bool Sema::IsMemberPointerConversion(Expr *From, QualType FromType, |
| QualType ToType, |
| bool InOverloadResolution, |
| QualType &ConvertedType) { |
| const MemberPointerType *ToTypePtr = ToType->getAs<MemberPointerType>(); |
| if (!ToTypePtr) |
| return false; |
| |
| // A null pointer constant can be converted to a member pointer (C++ 4.11p1) |
| if (From->isNullPointerConstant(Context, |
| InOverloadResolution? Expr::NPC_ValueDependentIsNotNull |
| : Expr::NPC_ValueDependentIsNull)) { |
| ConvertedType = ToType; |
| return true; |
| } |
| |
| // Otherwise, both types have to be member pointers. |
| const MemberPointerType *FromTypePtr = FromType->getAs<MemberPointerType>(); |
| if (!FromTypePtr) |
| return false; |
| |
| // A pointer to member of B can be converted to a pointer to member of D, |
| // where D is derived from B (C++ 4.11p2). |
| QualType FromClass(FromTypePtr->getClass(), 0); |
| QualType ToClass(ToTypePtr->getClass(), 0); |
| |
| if (!Context.hasSameUnqualifiedType(FromClass, ToClass) && |
| !RequireCompleteType(From->getLocStart(), ToClass, PDiag()) && |
| IsDerivedFrom(ToClass, FromClass)) { |
| ConvertedType = Context.getMemberPointerType(FromTypePtr->getPointeeType(), |
| ToClass.getTypePtr()); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// CheckMemberPointerConversion - Check the member pointer conversion from the |
| /// expression From to the type ToType. This routine checks for ambiguous or |
| /// virtual or inaccessible base-to-derived member pointer conversions |
| /// for which IsMemberPointerConversion has already returned true. It returns |
| /// true and produces a diagnostic if there was an error, or returns false |
| /// otherwise. |
| bool Sema::CheckMemberPointerConversion(Expr *From, QualType ToType, |
| CastKind &Kind, |
| CXXCastPath &BasePath, |
| bool IgnoreBaseAccess) { |
| QualType FromType = From->getType(); |
| const MemberPointerType *FromPtrType = FromType->getAs<MemberPointerType>(); |
| if (!FromPtrType) { |
| // This must be a null pointer to member pointer conversion |
| assert(From->isNullPointerConstant(Context, |
| Expr::NPC_ValueDependentIsNull) && |
| "Expr must be null pointer constant!"); |
| Kind = CK_NullToMemberPointer; |
| return false; |
| } |
| |
| const MemberPointerType *ToPtrType = ToType->getAs<MemberPointerType>(); |
| assert(ToPtrType && "No member pointer cast has a target type " |
| "that is not a member pointer."); |
| |
| QualType FromClass = QualType(FromPtrType->getClass(), 0); |
| QualType ToClass = QualType(ToPtrType->getClass(), 0); |
| |
| // FIXME: What about dependent types? |
| assert(FromClass->isRecordType() && "Pointer into non-class."); |
| assert(ToClass->isRecordType() && "Pointer into non-class."); |
| |
| CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
| /*DetectVirtual=*/true); |
| bool DerivationOkay = IsDerivedFrom(ToClass, FromClass, Paths); |
| assert(DerivationOkay && |
| "Should not have been called if derivation isn't OK."); |
| (void)DerivationOkay; |
| |
| if (Paths.isAmbiguous(Context.getCanonicalType(FromClass). |
| getUnqualifiedType())) { |
| std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); |
| Diag(From->getExprLoc(), diag::err_ambiguous_memptr_conv) |
| << 0 << FromClass << ToClass << PathDisplayStr << From->getSourceRange(); |
| return true; |
| } |
| |
| if (const RecordType *VBase = Paths.getDetectedVirtual()) { |
| Diag(From->getExprLoc(), diag::err_memptr_conv_via_virtual) |
| << FromClass << ToClass << QualType(VBase, 0) |
| << From->getSourceRange(); |
| return true; |
| } |
| |
| if (!IgnoreBaseAccess) |
| CheckBaseClassAccess(From->getExprLoc(), FromClass, ToClass, |
| Paths.front(), |
| diag::err_downcast_from_inaccessible_base); |
| |
| // Must be a base to derived member conversion. |
| BuildBasePathArray(Paths, BasePath); |
| Kind = CK_BaseToDerivedMemberPointer; |
| return false; |
| } |
| |
| /// IsQualificationConversion - Determines whether the conversion from |
| /// an rvalue of type FromType to ToType is a qualification conversion |
| /// (C++ 4.4). |
| /// |
| /// \param ObjCLifetimeConversion Output parameter that will be set to indicate |
| /// when the qualification conversion involves a change in the Objective-C |
| /// object lifetime. |
| bool |
| Sema::IsQualificationConversion(QualType FromType, QualType ToType, |
| bool CStyle, bool &ObjCLifetimeConversion) { |
| FromType = Context.getCanonicalType(FromType); |
| ToType = Context.getCanonicalType(ToType); |
| ObjCLifetimeConversion = false; |
| |
| // If FromType and ToType are the same type, this is not a |
| // qualification conversion. |
| if (FromType.getUnqualifiedType() == ToType.getUnqualifiedType()) |
| return false; |
| |
| // (C++ 4.4p4): |
| // A conversion can add cv-qualifiers at levels other than the first |
| // in multi-level pointers, subject to the following rules: [...] |
| bool PreviousToQualsIncludeConst = true; |
| bool UnwrappedAnyPointer = false; |
| while (Context.UnwrapSimilarPointerTypes(FromType, ToType)) { |
| // Within each iteration of the loop, we check the qualifiers to |
| // determine if this still looks like a qualification |
| // conversion. Then, if all is well, we unwrap one more level of |
| // pointers or pointers-to-members and do it all again |
| // until there are no more pointers or pointers-to-members left to |
| // unwrap. |
| UnwrappedAnyPointer = true; |
| |
| Qualifiers FromQuals = FromType.getQualifiers(); |
| Qualifiers ToQuals = ToType.getQualifiers(); |
| |
| // Objective-C ARC: |
| // Check Objective-C lifetime conversions. |
| if (FromQuals.getObjCLifetime() != ToQuals.getObjCLifetime() && |
| UnwrappedAnyPointer) { |
| if (ToQuals.compatiblyIncludesObjCLifetime(FromQuals)) { |
| ObjCLifetimeConversion = true; |
| FromQuals.removeObjCLifetime(); |
| ToQuals.removeObjCLifetime(); |
| } else { |
| // Qualification conversions cannot cast between different |
| // Objective-C lifetime qualifiers. |
| return false; |
| } |
| } |
| |
| // Allow addition/removal of GC attributes but not changing GC attributes. |
| if (FromQuals.getObjCGCAttr() != ToQuals.getObjCGCAttr() && |
| (!FromQuals.hasObjCGCAttr() || !ToQuals.hasObjCGCAttr())) { |
| FromQuals.removeObjCGCAttr(); |
| ToQuals.removeObjCGCAttr(); |
| } |
| |
| // -- for every j > 0, if const is in cv 1,j then const is in cv |
| // 2,j, and similarly for volatile. |
| if (!CStyle && !ToQuals.compatiblyIncludes(FromQuals)) |
| return false; |
| |
| // -- if the cv 1,j and cv 2,j are different, then const is in |
| // every cv for 0 < k < j. |
| if (!CStyle && FromQuals.getCVRQualifiers() != ToQuals.getCVRQualifiers() |
| && !PreviousToQualsIncludeConst) |
| return false; |
| |
| // Keep track of whether all prior cv-qualifiers in the "to" type |
| // include const. |
| PreviousToQualsIncludeConst |
| = PreviousToQualsIncludeConst && ToQuals.hasConst(); |
| } |
| |
| // We are left with FromType and ToType being the pointee types |
| // after unwrapping the original FromType and ToType the same number |
| // of types. If we unwrapped any pointers, and if FromType and |
| // ToType have the same unqualified type (since we checked |
| // qualifiers above), then this is a qualification conversion. |
| return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType); |
| } |
| |
| /// Determines whether there is a user-defined conversion sequence |
| /// (C++ [over.ics.user]) that converts expression From to the type |
| /// ToType. If such a conversion exists, User will contain the |
| /// user-defined conversion sequence that performs such a conversion |
| /// and this routine will return true. Otherwise, this routine returns |
| /// false and User is unspecified. |
| /// |
| /// \param AllowExplicit true if the conversion should consider C++0x |
| /// "explicit" conversion functions as well as non-explicit conversion |
| /// functions (C++0x [class.conv.fct]p2). |
| static OverloadingResult |
| IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType, |
| UserDefinedConversionSequence& User, |
| OverloadCandidateSet& CandidateSet, |
| bool AllowExplicit) { |
| // Whether we will only visit constructors. |
| bool ConstructorsOnly = false; |
| |
| // If the type we are conversion to is a class type, enumerate its |
| // constructors. |
| if (const RecordType *ToRecordType = ToType->getAs<RecordType>()) { |
| // C++ [over.match.ctor]p1: |
| // When objects of class type are direct-initialized (8.5), or |
| // copy-initialized from an expression of the same or a |
| // derived class type (8.5), overload resolution selects the |
| // constructor. [...] For copy-initialization, the candidate |
| // functions are all the converting constructors (12.3.1) of |
| // that class. The argument list is the expression-list within |
| // the parentheses of the initializer. |
| if (S.Context.hasSameUnqualifiedType(ToType, From->getType()) || |
| (From->getType()->getAs<RecordType>() && |
| S.IsDerivedFrom(From->getType(), ToType))) |
| ConstructorsOnly = true; |
| |
| S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag()); |
| // RequireCompleteType may have returned true due to some invalid decl |
| // during template instantiation, but ToType may be complete enough now |
| // to try to recover. |
| if (ToType->isIncompleteType()) { |
| // We're not going to find any constructors. |
| } else if (CXXRecordDecl *ToRecordDecl |
| = dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) { |
| |
| Expr **Args = &From; |
| unsigned NumArgs = 1; |
| bool ListInitializing = false; |
| // If we're list-initializing, we pass the individual elements as |
| // arguments, not the entire list. |
| if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) { |
| Args = InitList->getInits(); |
| NumArgs = InitList->getNumInits(); |
| ListInitializing = true; |
| } |
| |
| DeclContext::lookup_iterator Con, ConEnd; |
| for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl); |
| Con != ConEnd; ++Con) { |
| NamedDecl *D = *Con; |
| DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess()); |
| |
| // Find the constructor (which may be a template). |
| CXXConstructorDecl *Constructor = 0; |
| FunctionTemplateDecl *ConstructorTmpl |
| = dyn_cast<FunctionTemplateDecl>(D); |
| if (ConstructorTmpl) |
| Constructor |
| = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl()); |
| else |
| Constructor = cast<CXXConstructorDecl>(D); |
| |
| bool Usable = !Constructor->isInvalidDecl(); |
| if (ListInitializing) |
| Usable = Usable && (AllowExplicit || !Constructor->isExplicit()); |
| else |
| Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit); |
| if (Usable) { |
| if (ConstructorTmpl) |
| S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, |
| /*ExplicitArgs*/ 0, |
| Args, NumArgs, CandidateSet, |
| /*SuppressUserConversions=*/ |
| !ConstructorsOnly && |
| !ListInitializing); |
| else |
| // Allow one user-defined conversion when user specifies a |
| // From->ToType conversion via an static cast (c-style, etc). |
| S.AddOverloadCandidate(Constructor, FoundDecl, |
| Args, NumArgs, CandidateSet, |
| /*SuppressUserConversions=*/ |
| !ConstructorsOnly && !ListInitializing); |
| } |
| } |
| } |
| } |
| |
| // Enumerate conversion functions, if we're allowed to. |
| if (ConstructorsOnly || isa<InitListExpr>(From)) { |
| } else if (S.RequireCompleteType(From->getLocStart(), From->getType(), |
| S.PDiag(0) << From->getSourceRange())) { |
| // No conversion functions from incomplete types. |
| } else if (const RecordType *FromRecordType |
| = From->getType()->getAs<RecordType>()) { |
| if (CXXRecordDecl *FromRecordDecl |
| = dyn_cast<CXXRecordDecl>(FromRecordType->getDecl())) { |
| // Add all of the conversion functions as candidates. |
| const UnresolvedSetImpl *Conversions |
| = FromRecordDecl->getVisibleConversionFunctions(); |
| for (UnresolvedSetImpl::iterator I = Conversions->begin(), |
| E = Conversions->end(); I != E; ++I) { |
| DeclAccessPair FoundDecl = I.getPair(); |
| NamedDecl *D = FoundDecl.getDecl(); |
| CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| CXXConversionDecl *Conv; |
| FunctionTemplateDecl *ConvTemplate; |
| if ((ConvTemplate = dyn_cast<FunctionTemplateDecl>(D))) |
| Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
| else |
| Conv = cast<CXXConversionDecl>(D); |
| |
| if (AllowExplicit || !Conv->isExplicit()) { |
| if (ConvTemplate) |
| S.AddTemplateConversionCandidate(ConvTemplate, FoundDecl, |
| ActingContext, From, ToType, |
| CandidateSet); |
| else |
| S.AddConversionCandidate(Conv, FoundDecl, ActingContext, |
| From, ToType, CandidateSet); |
| } |
| } |
| } |
| } |
| |
| bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| |
| OverloadCandidateSet::iterator Best; |
| switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) { |
| case OR_Success: |
| // Record the standard conversion we used and the conversion function. |
| if (CXXConstructorDecl *Constructor |
| = dyn_cast<CXXConstructorDecl>(Best->Function)) { |
| S.MarkDeclarationReferenced(From->getLocStart(), Constructor); |
| |
| // C++ [over.ics.user]p1: |
| // If the user-defined conversion is specified by a |
| // constructor (12.3.1), the initial standard conversion |
| // sequence converts the source type to the type required by |
| // the argument of the constructor. |
| // |
| QualType ThisType = Constructor->getThisType(S.Context); |
| if (isa<InitListExpr>(From)) { |
| // Initializer lists don't have conversions as such. |
| User.Before.setAsIdentityConversion(); |
| } else { |
| if (Best->Conversions[0].isEllipsis()) |
| User.EllipsisConversion = true; |
| else { |
| User.Before = Best->Conversions[0].Standard; |
| User.EllipsisConversion = false; |
| } |
| } |
| User.HadMultipleCandidates = HadMultipleCandidates; |
| User.ConversionFunction = Constructor; |
| User.FoundConversionFunction = Best->FoundDecl; |
| User.After.setAsIdentityConversion(); |
| User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType()); |
| User.After.setAllToTypes(ToType); |
| return OR_Success; |
| } |
| if (CXXConversionDecl *Conversion |
| = dyn_cast<CXXConversionDecl>(Best->Function)) { |
| S.MarkDeclarationReferenced(From->getLocStart(), Conversion); |
| |
| // C++ [over.ics.user]p1: |
| // |
| // [...] If the user-defined conversion is specified by a |
| // conversion function (12.3.2), the initial standard |
| // conversion sequence converts the source type to the |
| // implicit object parameter of the conversion function. |
| User.Before = Best->Conversions[0].Standard; |
| User.HadMultipleCandidates = HadMultipleCandidates; |
| User.ConversionFunction = Conversion; |
| User.FoundConversionFunction = Best->FoundDecl; |
| User.EllipsisConversion = false; |
| |
| // C++ [over.ics.user]p2: |
| // The second standard conversion sequence converts the |
| // result of the user-defined conversion to the target type |
| // for the sequence. Since an implicit conversion sequence |
| // is an initialization, the special rules for |
| // initialization by user-defined conversion apply when |
| // selecting the best user-defined conversion for a |
| // user-defined conversion sequence (see 13.3.3 and |
| // 13.3.3.1). |
| User.After = Best->FinalConversion; |
| return OR_Success; |
| } |
| llvm_unreachable("Not a constructor or conversion function?"); |
| |
| case OR_No_Viable_Function: |
| return OR_No_Viable_Function; |
| case OR_Deleted: |
| // No conversion here! We're done. |
| return OR_Deleted; |
| |
| case OR_Ambiguous: |
| return OR_Ambiguous; |
| } |
| |
| llvm_unreachable("Invalid OverloadResult!"); |
| } |
| |
| bool |
| Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) { |
| ImplicitConversionSequence ICS; |
| OverloadCandidateSet CandidateSet(From->getExprLoc()); |
| OverloadingResult OvResult = |
| IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined, |
| CandidateSet, false); |
| if (OvResult == OR_Ambiguous) |
| Diag(From->getSourceRange().getBegin(), |
| diag::err_typecheck_ambiguous_condition) |
| << From->getType() << ToType << From->getSourceRange(); |
| else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty()) |
| Diag(From->getSourceRange().getBegin(), |
| diag::err_typecheck_nonviable_condition) |
| << From->getType() << ToType << From->getSourceRange(); |
| else |
| return false; |
| CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1); |
| return true; |
| } |
| |
| /// CompareImplicitConversionSequences - Compare two implicit |
| /// conversion sequences to determine whether one is better than the |
| /// other or if they are indistinguishable (C++ 13.3.3.2). |
| static ImplicitConversionSequence::CompareKind |
| CompareImplicitConversionSequences(Sema &S, |
| const ImplicitConversionSequence& ICS1, |
| const ImplicitConversionSequence& ICS2) |
| { |
| // (C++ 13.3.3.2p2): When comparing the basic forms of implicit |
| // conversion sequences (as defined in 13.3.3.1) |
| // -- a standard conversion sequence (13.3.3.1.1) is a better |
| // conversion sequence than a user-defined conversion sequence or |
| // an ellipsis conversion sequence, and |
| // -- a user-defined conversion sequence (13.3.3.1.2) is a better |
| // conversion sequence than an ellipsis conversion sequence |
| // (13.3.3.1.3). |
| // |
| // C++0x [over.best.ics]p10: |
| // For the purpose of ranking implicit conversion sequences as |
| // described in 13.3.3.2, the ambiguous conversion sequence is |
| // treated as a user-defined sequence that is indistinguishable |
| // from any other user-defined conversion sequence. |
| if (ICS1.getKindRank() < ICS2.getKindRank()) |
| return ImplicitConversionSequence::Better; |
| if (ICS2.getKindRank() < ICS1.getKindRank()) |
| return ImplicitConversionSequence::Worse; |
| |
| // The following checks require both conversion sequences to be of |
| // the same kind. |
| if (ICS1.getKind() != ICS2.getKind()) |
| return ImplicitConversionSequence::Indistinguishable; |
| |
| ImplicitConversionSequence::CompareKind Result = |
| ImplicitConversionSequence::Indistinguishable; |
| |
| // Two implicit conversion sequences of the same form are |
| // indistinguishable conversion sequences unless one of the |
| // following rules apply: (C++ 13.3.3.2p3): |
| if (ICS1.isStandard()) |
| Result = CompareStandardConversionSequences(S, |
| ICS1.Standard, ICS2.Standard); |
| else if (ICS1.isUserDefined()) { |
| // User-defined conversion sequence U1 is a better conversion |
| // sequence than another user-defined conversion sequence U2 if |
| // they contain the same user-defined conversion function or |
| // constructor and if the second standard conversion sequence of |
| // U1 is better than the second standard conversion sequence of |
| // U2 (C++ 13.3.3.2p3). |
| if (ICS1.UserDefined.ConversionFunction == |
| ICS2.UserDefined.ConversionFunction) |
| Result = CompareStandardConversionSequences(S, |
| ICS1.UserDefined.After, |
| ICS2.UserDefined.After); |
| } |
| |
| // List-initialization sequence L1 is a better conversion sequence than |
| // list-initialization sequence L2 if L1 converts to std::initializer_list<X> |
| // for some X and L2 does not. |
| if (Result == ImplicitConversionSequence::Indistinguishable && |
| ICS1.isListInitializationSequence() && |
| ICS2.isListInitializationSequence()) { |
| // FIXME: Find out if ICS1 converts to initializer_list and ICS2 doesn't. |
| } |
| |
| return Result; |
| } |
| |
| static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) { |
| while (Context.UnwrapSimilarPointerTypes(T1, T2)) { |
| Qualifiers Quals; |
| T1 = Context.getUnqualifiedArrayType(T1, Quals); |
| T2 = Context.getUnqualifiedArrayType(T2, Quals); |
| } |
| |
| return Context.hasSameUnqualifiedType(T1, T2); |
| } |
| |
| // Per 13.3.3.2p3, compare the given standard conversion sequences to |
| // determine if one is a proper subset of the other. |
| static ImplicitConversionSequence::CompareKind |
| compareStandardConversionSubsets(ASTContext &Context, |
| const StandardConversionSequence& SCS1, |
| const StandardConversionSequence& SCS2) { |
| ImplicitConversionSequence::CompareKind Result |
| = ImplicitConversionSequence::Indistinguishable; |
| |
| // the identity conversion sequence is considered to be a subsequence of |
| // any non-identity conversion sequence |
| if (SCS1.isIdentityConversion() && !SCS2.isIdentityConversion()) |
| return ImplicitConversionSequence::Better; |
| else if (!SCS1.isIdentityConversion() && SCS2.isIdentityConversion()) |
| return ImplicitConversionSequence::Worse; |
| |
| if (SCS1.Second != SCS2.Second) { |
| if (SCS1.Second == ICK_Identity) |
| Result = ImplicitConversionSequence::Better; |
| else if (SCS2.Second == ICK_Identity) |
| Result = ImplicitConversionSequence::Worse; |
| else |
| return ImplicitConversionSequence::Indistinguishable; |
| } else if (!hasSimilarType(Context, SCS1.getToType(1), SCS2.getToType(1))) |
| return ImplicitConversionSequence::Indistinguishable; |
| |
| if (SCS1.Third == SCS2.Third) { |
| return Context.hasSameType(SCS1.getToType(2), SCS2.getToType(2))? Result |
| : ImplicitConversionSequence::Indistinguishable; |
| } |
| |
| if (SCS1.Third == ICK_Identity) |
| return Result == ImplicitConversionSequence::Worse |
| ? ImplicitConversionSequence::Indistinguishable |
| : ImplicitConversionSequence::Better; |
| |
| if (SCS2.Third == ICK_Identity) |
| return Result == ImplicitConversionSequence::Better |
| ? ImplicitConversionSequence::Indistinguishable |
| : ImplicitConversionSequence::Worse; |
| |
| return ImplicitConversionSequence::Indistinguishable; |
| } |
| |
| /// \brief Determine whether one of the given reference bindings is better |
| /// than the other based on what kind of bindings they are. |
| static bool isBetterReferenceBindingKind(const StandardConversionSequence &SCS1, |
| const StandardConversionSequence &SCS2) { |
| // C++0x [over.ics.rank]p3b4: |
| // -- S1 and S2 are reference bindings (8.5.3) and neither refers to an |
| // implicit object parameter of a non-static member function declared |
| // without a ref-qualifier, and *either* S1 binds an rvalue reference |
| // to an rvalue and S2 binds an lvalue reference *or S1 binds an |
| // lvalue reference to a function lvalue and S2 binds an rvalue |
| // reference*. |
| // |
| // FIXME: Rvalue references. We're going rogue with the above edits, |
| // because the semantics in the current C++0x working paper (N3225 at the |
| // time of this writing) break the standard definition of std::forward |
| // and std::reference_wrapper when dealing with references to functions. |
| // Proposed wording changes submitted to CWG for consideration. |
| if (SCS1.BindsImplicitObjectArgumentWithoutRefQualifier || |
| SCS2.BindsImplicitObjectArgumentWithoutRefQualifier) |
| return false; |
| |
| return (!SCS1.IsLvalueReference && SCS1.BindsToRvalue && |
| SCS2.IsLvalueReference) || |
| (SCS1.IsLvalueReference && SCS1.BindsToFunctionLvalue && |
| !SCS2.IsLvalueReference); |
| } |
| |
| /// CompareStandardConversionSequences - Compare two standard |
| /// conversion sequences to determine whether one is better than the |
| /// other or if they are indistinguishable (C++ 13.3.3.2p3). |
| static ImplicitConversionSequence::CompareKind |
| CompareStandardConversionSequences(Sema &S, |
| const StandardConversionSequence& SCS1, |
| const StandardConversionSequence& SCS2) |
| { |
| // Standard conversion sequence S1 is a better conversion sequence |
| // than standard conversion sequence S2 if (C++ 13.3.3.2p3): |
| |
| // -- S1 is a proper subsequence of S2 (comparing the conversion |
| // sequences in the canonical form defined by 13.3.3.1.1, |
| // excluding any Lvalue Transformation; the identity conversion |
| // sequence is considered to be a subsequence of any |
| // non-identity conversion sequence) or, if not that, |
| if (ImplicitConversionSequence::CompareKind CK |
| = compareStandardConversionSubsets(S.Context, SCS1, SCS2)) |
| return CK; |
| |
| // -- the rank of S1 is better than the rank of S2 (by the rules |
| // defined below), or, if not that, |
| ImplicitConversionRank Rank1 = SCS1.getRank(); |
| ImplicitConversionRank Rank2 = SCS2.getRank(); |
| if (Rank1 < Rank2) |
| return ImplicitConversionSequence::Better; |
| else if (Rank2 < Rank1) |
| return ImplicitConversionSequence::Worse; |
| |
| // (C++ 13.3.3.2p4): Two conversion sequences with the same rank |
| // are indistinguishable unless one of the following rules |
| // applies: |
| |
| // A conversion that is not a conversion of a pointer, or |
| // pointer to member, to bool is better than another conversion |
| // that is such a conversion. |
| if (SCS1.isPointerConversionToBool() != SCS2.isPointerConversionToBool()) |
| return SCS2.isPointerConversionToBool() |
| ? ImplicitConversionSequence::Better |
| : ImplicitConversionSequence::Worse; |
| |
| // C++ [over.ics.rank]p4b2: |
| // |
| // If class B is derived directly or indirectly from class A, |
| // conversion of B* to A* is better than conversion of B* to |
| // void*, and conversion of A* to void* is better than conversion |
| // of B* to void*. |
| bool SCS1ConvertsToVoid |
| = SCS1.isPointerConversionToVoidPointer(S.Context); |
| bool SCS2ConvertsToVoid |
| = SCS2.isPointerConversionToVoidPointer(S.Context); |
| if (SCS1ConvertsToVoid != SCS2ConvertsToVoid) { |
| // Exactly one of the conversion sequences is a conversion to |
| // a void pointer; it's the worse conversion. |
| return SCS2ConvertsToVoid ? ImplicitConversionSequence::Better |
| : ImplicitConversionSequence::Worse; |
| } else if (!SCS1ConvertsToVoid && !SCS2ConvertsToVoid) { |
| // Neither conversion sequence converts to a void pointer; compare |
| // their derived-to-base conversions. |
| if (ImplicitConversionSequence::CompareKind DerivedCK |
| = CompareDerivedToBaseConversions(S, SCS1, SCS2)) |
| return DerivedCK; |
| } else if (SCS1ConvertsToVoid && SCS2ConvertsToVoid && |
| !S.Context.hasSameType(SCS1.getFromType(), SCS2.getFromType())) { |
| // Both conversion sequences are conversions to void |
| // pointers. Compare the source types to determine if there's an |
| // inheritance relationship in their sources. |
| QualType FromType1 = SCS1.getFromType(); |
| QualType FromType2 = SCS2.getFromType(); |
| |
| // Adjust the types we're converting from via the array-to-pointer |
| // conversion, if we need to. |
| if (SCS1.First == ICK_Array_To_Pointer) |
| FromType1 = S.Context.getArrayDecayedType(FromType1); |
| if (SCS2.First == ICK_Array_To_Pointer) |
| FromType2 = S.Context.getArrayDecayedType(FromType2); |
| |
| QualType FromPointee1 = FromType1->getPointeeType().getUnqualifiedType(); |
| QualType FromPointee2 = FromType2->getPointeeType().getUnqualifiedType(); |
| |
| if (S.IsDerivedFrom(FromPointee2, FromPointee1)) |
| return ImplicitConversionSequence::Better; |
| else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) |
| return ImplicitConversionSequence::Worse; |
| |
| // Objective-C++: If one interface is more specific than the |
| // other, it is the better one. |
| const ObjCObjectPointerType* FromObjCPtr1 |
| = FromType1->getAs<ObjCObjectPointerType>(); |
| const ObjCObjectPointerType* FromObjCPtr2 |
| = FromType2->getAs<ObjCObjectPointerType>(); |
| if (FromObjCPtr1 && FromObjCPtr2) { |
| bool AssignLeft = S.Context.canAssignObjCInterfaces(FromObjCPtr1, |
| FromObjCPtr2); |
| bool AssignRight = S.Context.canAssignObjCInterfaces(FromObjCPtr2, |
| FromObjCPtr1); |
| if (AssignLeft != AssignRight) { |
| return AssignLeft? ImplicitConversionSequence::Better |
| : ImplicitConversionSequence::Worse; |
| } |
| } |
| } |
| |
| // Compare based on qualification conversions (C++ 13.3.3.2p3, |
| // bullet 3). |
| if (ImplicitConversionSequence::CompareKind QualCK |
| = CompareQualificationConversions(S, SCS1, SCS2)) |
| return QualCK; |
| |
| if (SCS1.ReferenceBinding && SCS2.ReferenceBinding) { |
| // Check for a better reference binding based on the kind of bindings. |
| if (isBetterReferenceBindingKind(SCS1, SCS2)) |
| return ImplicitConversionSequence::Better; |
| else if (isBetterReferenceBindingKind(SCS2, SCS1)) |
| return ImplicitConversionSequence::Worse; |
| |
| // C++ [over.ics.rank]p3b4: |
| // -- S1 and S2 are reference bindings (8.5.3), and the types to |
| // which the references refer are the same type except for |
| // top-level cv-qualifiers, and the type to which the reference |
| // initialized by S2 refers is more cv-qualified than the type |
| // to which the reference initialized by S1 refers. |
| QualType T1 = SCS1.getToType(2); |
| QualType T2 = SCS2.getToType(2); |
| T1 = S.Context.getCanonicalType(T1); |
| T2 = S.Context.getCanonicalType(T2); |
| Qualifiers T1Quals, T2Quals; |
| QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); |
| QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); |
| if (UnqualT1 == UnqualT2) { |
| // Objective-C++ ARC: If the references refer to objects with different |
| // lifetimes, prefer bindings that don't change lifetime. |
| if (SCS1.ObjCLifetimeConversionBinding != |
| SCS2.ObjCLifetimeConversionBinding) { |
| return SCS1.ObjCLifetimeConversionBinding |
| ? ImplicitConversionSequence::Worse |
| : ImplicitConversionSequence::Better; |
| } |
| |
| // If the type is an array type, promote the element qualifiers to the |
| // type for comparison. |
| if (isa<ArrayType>(T1) && T1Quals) |
| T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); |
| if (isa<ArrayType>(T2) && T2Quals) |
| T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); |
| if (T2.isMoreQualifiedThan(T1)) |
| return ImplicitConversionSequence::Better; |
| else if (T1.isMoreQualifiedThan(T2)) |
| return ImplicitConversionSequence::Worse; |
| } |
| } |
| |
| // In Microsoft mode, prefer an integral conversion to a |
| // floating-to-integral conversion if the integral conversion |
| // is between types of the same size. |
| // For example: |
| // void f(float); |
| // void f(int); |
| // int main { |
| // long a; |
| // f(a); |
| // } |
| // Here, MSVC will call f(int) instead of generating a compile error |
| // as clang will do in standard mode. |
| if (S.getLangOptions().MicrosoftMode && |
| SCS1.Second == ICK_Integral_Conversion && |
| SCS2.Second == ICK_Floating_Integral && |
| S.Context.getTypeSize(SCS1.getFromType()) == |
| S.Context.getTypeSize(SCS1.getToType(2))) |
| return ImplicitConversionSequence::Better; |
| |
| return ImplicitConversionSequence::Indistinguishable; |
| } |
| |
| /// CompareQualificationConversions - Compares two standard conversion |
| /// sequences to determine whether they can be ranked based on their |
| /// qualification conversions (C++ 13.3.3.2p3 bullet 3). |
| ImplicitConversionSequence::CompareKind |
| CompareQualificationConversions(Sema &S, |
| const StandardConversionSequence& SCS1, |
| const StandardConversionSequence& SCS2) { |
| // C++ 13.3.3.2p3: |
| // -- S1 and S2 differ only in their qualification conversion and |
| // yield similar types T1 and T2 (C++ 4.4), respectively, and the |
| // cv-qualification signature of type T1 is a proper subset of |
| // the cv-qualification signature of type T2, and S1 is not the |
| // deprecated string literal array-to-pointer conversion (4.2). |
| if (SCS1.First != SCS2.First || SCS1.Second != SCS2.Second || |
| SCS1.Third != SCS2.Third || SCS1.Third != ICK_Qualification) |
| return ImplicitConversionSequence::Indistinguishable; |
| |
| // FIXME: the example in the standard doesn't use a qualification |
| // conversion (!) |
| QualType T1 = SCS1.getToType(2); |
| QualType T2 = SCS2.getToType(2); |
| T1 = S.Context.getCanonicalType(T1); |
| T2 = S.Context.getCanonicalType(T2); |
| Qualifiers T1Quals, T2Quals; |
| QualType UnqualT1 = S.Context.getUnqualifiedArrayType(T1, T1Quals); |
| QualType UnqualT2 = S.Context.getUnqualifiedArrayType(T2, T2Quals); |
| |
| // If the types are the same, we won't learn anything by unwrapped |
| // them. |
| if (UnqualT1 == UnqualT2) |
| return ImplicitConversionSequence::Indistinguishable; |
| |
| // If the type is an array type, promote the element qualifiers to the type |
| // for comparison. |
| if (isa<ArrayType>(T1) && T1Quals) |
| T1 = S.Context.getQualifiedType(UnqualT1, T1Quals); |
| if (isa<ArrayType>(T2) && T2Quals) |
| T2 = S.Context.getQualifiedType(UnqualT2, T2Quals); |
| |
| ImplicitConversionSequence::CompareKind Result |
| = ImplicitConversionSequence::Indistinguishable; |
| |
| // Objective-C++ ARC: |
| // Prefer qualification conversions not involving a change in lifetime |
| // to qualification conversions that do not change lifetime. |
| if (SCS1.QualificationIncludesObjCLifetime != |
| SCS2.QualificationIncludesObjCLifetime) { |
| Result = SCS1.QualificationIncludesObjCLifetime |
| ? ImplicitConversionSequence::Worse |
| : ImplicitConversionSequence::Better; |
| } |
| |
| while (S.Context.UnwrapSimilarPointerTypes(T1, T2)) { |
| // Within each iteration of the loop, we check the qualifiers to |
| // determine if this still looks like a qualification |
| // conversion. Then, if all is well, we unwrap one more level of |
| // pointers or pointers-to-members and do it all again |
| // until there are no more pointers or pointers-to-members left |
| // to unwrap. This essentially mimics what |
| // IsQualificationConversion does, but here we're checking for a |
| // strict subset of qualifiers. |
| if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) |
| // The qualifiers are the same, so this doesn't tell us anything |
| // about how the sequences rank. |
| ; |
| else if (T2.isMoreQualifiedThan(T1)) { |
| // T1 has fewer qualifiers, so it could be the better sequence. |
| if (Result == ImplicitConversionSequence::Worse) |
| // Neither has qualifiers that are a subset of the other's |
| // qualifiers. |
| return ImplicitConversionSequence::Indistinguishable; |
| |
| Result = ImplicitConversionSequence::Better; |
| } else if (T1.isMoreQualifiedThan(T2)) { |
| // T2 has fewer qualifiers, so it could be the better sequence. |
| if (Result == ImplicitConversionSequence::Better) |
| // Neither has qualifiers that are a subset of the other's |
| // qualifiers. |
| return ImplicitConversionSequence::Indistinguishable; |
| |
| Result = ImplicitConversionSequence::Worse; |
| } else { |
| // Qualifiers are disjoint. |
| return ImplicitConversionSequence::Indistinguishable; |
| } |
| |
| // If the types after this point are equivalent, we're done. |
| if (S.Context.hasSameUnqualifiedType(T1, T2)) |
| break; |
| } |
| |
| // Check that the winning standard conversion sequence isn't using |
| // the deprecated string literal array to pointer conversion. |
| switch (Result) { |
| case ImplicitConversionSequence::Better: |
| if (SCS1.DeprecatedStringLiteralToCharPtr) |
| Result = ImplicitConversionSequence::Indistinguishable; |
| break; |
| |
| case ImplicitConversionSequence::Indistinguishable: |
| break; |
| |
| case ImplicitConversionSequence::Worse: |
| if (SCS2.DeprecatedStringLiteralToCharPtr) |
| Result = ImplicitConversionSequence::Indistinguishable; |
| break; |
| } |
| |
| return Result; |
| } |
| |
| /// CompareDerivedToBaseConversions - Compares two standard conversion |
| /// sequences to determine whether they can be ranked based on their |
| /// various kinds of derived-to-base conversions (C++ |
| /// [over.ics.rank]p4b3). As part of these checks, we also look at |
| /// conversions between Objective-C interface types. |
| ImplicitConversionSequence::CompareKind |
| CompareDerivedToBaseConversions(Sema &S, |
| const StandardConversionSequence& SCS1, |
| const StandardConversionSequence& SCS2) { |
| QualType FromType1 = SCS1.getFromType(); |
| QualType ToType1 = SCS1.getToType(1); |
| QualType FromType2 = SCS2.getFromType(); |
| QualType ToType2 = SCS2.getToType(1); |
| |
| // Adjust the types we're converting from via the array-to-pointer |
| // conversion, if we need to. |
| if (SCS1.First == ICK_Array_To_Pointer) |
| FromType1 = S.Context.getArrayDecayedType(FromType1); |
| if (SCS2.First == ICK_Array_To_Pointer) |
| FromType2 = S.Context.getArrayDecayedType(FromType2); |
| |
| // Canonicalize all of the types. |
| FromType1 = S.Context.getCanonicalType(FromType1); |
| ToType1 = S.Context.getCanonicalType(ToType1); |
| FromType2 = S.Context.getCanonicalType(FromType2); |
| ToType2 = S.Context.getCanonicalType(ToType2); |
| |
| // C++ [over.ics.rank]p4b3: |
| // |
| // If class B is derived directly or indirectly from class A and |
| // class C is derived directly or indirectly from B, |
| // |
| // Compare based on pointer conversions. |
| if (SCS1.Second == ICK_Pointer_Conversion && |
| SCS2.Second == ICK_Pointer_Conversion && |
| /*FIXME: Remove if Objective-C id conversions get their own rank*/ |
| FromType1->isPointerType() && FromType2->isPointerType() && |
| ToType1->isPointerType() && ToType2->isPointerType()) { |
| QualType FromPointee1 |
| = FromType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
| QualType ToPointee1 |
| = ToType1->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
| QualType FromPointee2 |
| = FromType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
| QualType ToPointee2 |
| = ToType2->getAs<PointerType>()->getPointeeType().getUnqualifiedType(); |
| |
| // -- conversion of C* to B* is better than conversion of C* to A*, |
| if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { |
| if (S.IsDerivedFrom(ToPointee1, ToPointee2)) |
| return ImplicitConversionSequence::Better; |
| else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) |
| return ImplicitConversionSequence::Worse; |
| } |
| |
| // -- conversion of B* to A* is better than conversion of C* to A*, |
| if (FromPointee1 != FromPointee2 && ToPointee1 == ToPointee2) { |
| if (S.IsDerivedFrom(FromPointee2, FromPointee1)) |
| return ImplicitConversionSequence::Better; |
| else if (S.IsDerivedFrom(FromPointee1, FromPointee2)) |
| return ImplicitConversionSequence::Worse; |
| } |
| } else if (SCS1.Second == ICK_Pointer_Conversion && |
| SCS2.Second == ICK_Pointer_Conversion) { |
| const ObjCObjectPointerType *FromPtr1 |
| = FromType1->getAs<ObjCObjectPointerType>(); |
| const ObjCObjectPointerType *FromPtr2 |
| = FromType2->getAs<ObjCObjectPointerType>(); |
| const ObjCObjectPointerType *ToPtr1 |
| = ToType1->getAs<ObjCObjectPointerType>(); |
| const ObjCObjectPointerType *ToPtr2 |
| = ToType2->getAs<ObjCObjectPointerType>(); |
| |
| if (FromPtr1 && FromPtr2 && ToPtr1 && ToPtr2) { |
| // Apply the same conversion ranking rules for Objective-C pointer types |
| // that we do for C++ pointers to class types. However, we employ the |
| // Objective-C pseudo-subtyping relationship used for assignment of |
| // Objective-C pointer types. |
| bool FromAssignLeft |
| = S.Context.canAssignObjCInterfaces(FromPtr1, FromPtr2); |
| bool FromAssignRight |
| = S.Context.canAssignObjCInterfaces(FromPtr2, FromPtr1); |
| bool ToAssignLeft |
| = S.Context.canAssignObjCInterfaces(ToPtr1, ToPtr2); |
| bool ToAssignRight |
| = S.Context.canAssignObjCInterfaces(ToPtr2, ToPtr1); |
| |
| // A conversion to an a non-id object pointer type or qualified 'id' |
| // type is better than a conversion to 'id'. |
| if (ToPtr1->isObjCIdType() && |
| (ToPtr2->isObjCQualifiedIdType() || ToPtr2->getInterfaceDecl())) |
| return ImplicitConversionSequence::Worse; |
| if (ToPtr2->isObjCIdType() && |
| (ToPtr1->isObjCQualifiedIdType() || ToPtr1->getInterfaceDecl())) |
| return ImplicitConversionSequence::Better; |
| |
| // A conversion to a non-id object pointer type is better than a |
| // conversion to a qualified 'id' type |
| if (ToPtr1->isObjCQualifiedIdType() && ToPtr2->getInterfaceDecl()) |
| return ImplicitConversionSequence::Worse; |
| if (ToPtr2->isObjCQualifiedIdType() && ToPtr1->getInterfaceDecl()) |
| return ImplicitConversionSequence::Better; |
| |
| // A conversion to an a non-Class object pointer type or qualified 'Class' |
| // type is better than a conversion to 'Class'. |
| if (ToPtr1->isObjCClassType() && |
| (ToPtr2->isObjCQualifiedClassType() || ToPtr2->getInterfaceDecl())) |
| return ImplicitConversionSequence::Worse; |
| if (ToPtr2->isObjCClassType() && |
| (ToPtr1->isObjCQualifiedClassType() || ToPtr1->getInterfaceDecl())) |
| return ImplicitConversionSequence::Better; |
| |
| // A conversion to a non-Class object pointer type is better than a |
| // conversion to a qualified 'Class' type. |
| if (ToPtr1->isObjCQualifiedClassType() && ToPtr2->getInterfaceDecl()) |
| return ImplicitConversionSequence::Worse; |
| if (ToPtr2->isObjCQualifiedClassType() && ToPtr1->getInterfaceDecl()) |
| return ImplicitConversionSequence::Better; |
| |
| // -- "conversion of C* to B* is better than conversion of C* to A*," |
| if (S.Context.hasSameType(FromType1, FromType2) && |
| !FromPtr1->isObjCIdType() && !FromPtr1->isObjCClassType() && |
| (ToAssignLeft != ToAssignRight)) |
| return ToAssignLeft? ImplicitConversionSequence::Worse |
| : ImplicitConversionSequence::Better; |
| |
| // -- "conversion of B* to A* is better than conversion of C* to A*," |
| if (S.Context.hasSameUnqualifiedType(ToType1, ToType2) && |
| (FromAssignLeft != FromAssignRight)) |
| return FromAssignLeft? ImplicitConversionSequence::Better |
| : ImplicitConversionSequence::Worse; |
| } |
| } |
| |
| // Ranking of member-pointer types. |
| if (SCS1.Second == ICK_Pointer_Member && SCS2.Second == ICK_Pointer_Member && |
| FromType1->isMemberPointerType() && FromType2->isMemberPointerType() && |
| ToType1->isMemberPointerType() && ToType2->isMemberPointerType()) { |
| const MemberPointerType * FromMemPointer1 = |
| FromType1->getAs<MemberPointerType>(); |
| const MemberPointerType * ToMemPointer1 = |
| ToType1->getAs<MemberPointerType>(); |
| const MemberPointerType * FromMemPointer2 = |
| FromType2->getAs<MemberPointerType>(); |
| const MemberPointerType * ToMemPointer2 = |
| ToType2->getAs<MemberPointerType>(); |
| const Type *FromPointeeType1 = FromMemPointer1->getClass(); |
| const Type *ToPointeeType1 = ToMemPointer1->getClass(); |
| const Type *FromPointeeType2 = FromMemPointer2->getClass(); |
| const Type *ToPointeeType2 = ToMemPointer2->getClass(); |
| QualType FromPointee1 = QualType(FromPointeeType1, 0).getUnqualifiedType(); |
| QualType ToPointee1 = QualType(ToPointeeType1, 0).getUnqualifiedType(); |
| QualType FromPointee2 = QualType(FromPointeeType2, 0).getUnqualifiedType(); |
| QualType ToPointee2 = QualType(ToPointeeType2, 0).getUnqualifiedType(); |
| // conversion of A::* to B::* is better than conversion of A::* to C::*, |
| if (FromPointee1 == FromPointee2 && ToPointee1 != ToPointee2) { |
| if (S.IsDerivedFrom(ToPointee1, ToPointee2)) |
| return ImplicitConversionSequence::Worse; |
| else if (S.IsDerivedFrom(ToPointee2, ToPointee1)) |
| return ImplicitConversionSequence::Better; |
| } |
| // conversion of B::* to C::* is better than conversion of A::* to C::* |
| if (ToPointee1 == ToPointee2 && FromPointee1 != FromPointee2) { |
| if (S.IsDerivedFrom(FromPointee1, FromPointee2)) |
| return ImplicitConversionSequence::Better; |
| else if (S.IsDerivedFrom(FromPointee2, FromPointee1)) |
| return ImplicitConversionSequence::Worse; |
| } |
| } |
| |
| if (SCS1.Second == ICK_Derived_To_Base) { |
| // -- conversion of C to B is better than conversion of C to A, |
| // -- binding of an expression of type C to a reference of type |
| // B& is better than binding an expression of type C to a |
| // reference of type A&, |
| if (S.Context.hasSameUnqualifiedType(FromType1, FromType2) && |
| !S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { |
| if (S.IsDerivedFrom(ToType1, ToType2)) |
| return ImplicitConversionSequence::Better; |
| else if (S.IsDerivedFrom(ToType2, ToType1)) |
| return ImplicitConversionSequence::Worse; |
| } |
| |
| // -- conversion of B to A is better than conversion of C to A. |
| // -- binding of an expression of type B to a reference of type |
| // A& is better than binding an expression of type C to a |
| // reference of type A&, |
| if (!S.Context.hasSameUnqualifiedType(FromType1, FromType2) && |
| S.Context.hasSameUnqualifiedType(ToType1, ToType2)) { |
| if (S.IsDerivedFrom(FromType2, FromType1)) |
| return ImplicitConversionSequence::Better; |
| else if (S.IsDerivedFrom(FromType1, FromType2)) |
| return ImplicitConversionSequence::Worse; |
| } |
| } |
| |
| return ImplicitConversionSequence::Indistinguishable; |
| } |
| |
| /// CompareReferenceRelationship - Compare the two types T1 and T2 to |
| /// determine whether they are reference-related, |
| /// reference-compatible, reference-compatible with added |
| /// qualification, or incompatible, for use in C++ initialization by |
| /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference |
| /// type, and the first type (T1) is the pointee type of the reference |
| /// type being initialized. |
| Sema::ReferenceCompareResult |
| Sema::CompareReferenceRelationship(SourceLocation Loc, |
| QualType OrigT1, QualType OrigT2, |
| bool &DerivedToBase, |
| bool &ObjCConversion, |
| bool &ObjCLifetimeConversion) { |
| assert(!OrigT1->isReferenceType() && |
| "T1 must be the pointee type of the reference type"); |
| assert(!OrigT2->isReferenceType() && "T2 cannot be a reference type"); |
| |
| QualType T1 = Context.getCanonicalType(OrigT1); |
| QualType T2 = Context.getCanonicalType(OrigT2); |
| Qualifiers T1Quals, T2Quals; |
| QualType UnqualT1 = Context.getUnqualifiedArrayType(T1, T1Quals); |
| QualType UnqualT2 = Context.getUnqualifiedArrayType(T2, T2Quals); |
| |
| // C++ [dcl.init.ref]p4: |
| // Given types "cv1 T1" and "cv2 T2," "cv1 T1" is |
| // reference-related to "cv2 T2" if T1 is the same type as T2, or |
| // T1 is a base class of T2. |
| DerivedToBase = false; |
| ObjCConversion = false; |
| ObjCLifetimeConversion = false; |
| if (UnqualT1 == UnqualT2) { |
| // Nothing to do. |
| } else if (!RequireCompleteType(Loc, OrigT2, PDiag()) && |
| IsDerivedFrom(UnqualT2, UnqualT1)) |
| DerivedToBase = true; |
| else if (UnqualT1->isObjCObjectOrInterfaceType() && |
| UnqualT2->isObjCObjectOrInterfaceType() && |
| Context.canBindObjCObjectType(UnqualT1, UnqualT2)) |
| ObjCConversion = true; |
| else |
| return Ref_Incompatible; |
| |
| // At this point, we know that T1 and T2 are reference-related (at |
| // least). |
| |
| // If the type is an array type, promote the element qualifiers to the type |
| // for comparison. |
| if (isa<ArrayType>(T1) && T1Quals) |
| T1 = Context.getQualifiedType(UnqualT1, T1Quals); |
| if (isa<ArrayType>(T2) && T2Quals) |
| T2 = Context.getQualifiedType(UnqualT2, T2Quals); |
| |
| // C++ [dcl.init.ref]p4: |
| // "cv1 T1" is reference-compatible with "cv2 T2" if T1 is |
| // reference-related to T2 and cv1 is the same cv-qualification |
| // as, or greater cv-qualification than, cv2. For purposes of |
| // overload resolution, cases for which cv1 is greater |
| // cv-qualification than cv2 are identified as |
| // reference-compatible with added qualification (see 13.3.3.2). |
| // |
| // Note that we also require equivalence of Objective-C GC and address-space |
| // qualifiers when performing these computations, so that e.g., an int in |
| // address space 1 is not reference-compatible with an int in address |
| // space 2. |
| if (T1Quals.getObjCLifetime() != T2Quals.getObjCLifetime() && |
| T1Quals.compatiblyIncludesObjCLifetime(T2Quals)) { |
| T1Quals.removeObjCLifetime(); |
| T2Quals.removeObjCLifetime(); |
| ObjCLifetimeConversion = true; |
| } |
| |
| if (T1Quals == T2Quals) |
| return Ref_Compatible; |
| else if (T1Quals.compatiblyIncludes(T2Quals)) |
| return Ref_Compatible_With_Added_Qualification; |
| else |
| return Ref_Related; |
| } |
| |
| /// \brief Look for a user-defined conversion to an value reference-compatible |
| /// with DeclType. Return true if something definite is found. |
| static bool |
| FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS, |
| QualType DeclType, SourceLocation DeclLoc, |
| Expr *Init, QualType T2, bool AllowRvalues, |
| bool AllowExplicit) { |
| assert(T2->isRecordType() && "Can only find conversions of record types."); |
| CXXRecordDecl *T2RecordDecl |
| = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl()); |
| |
| OverloadCandidateSet CandidateSet(DeclLoc); |
| const UnresolvedSetImpl *Conversions |
| = T2RecordDecl->getVisibleConversionFunctions(); |
| for (UnresolvedSetImpl::iterator I = Conversions->begin(), |
| E = Conversions->end(); I != E; ++I) { |
| NamedDecl *D = *I; |
| CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| FunctionTemplateDecl *ConvTemplate |
| = dyn_cast<FunctionTemplateDecl>(D); |
| CXXConversionDecl *Conv; |
| if (ConvTemplate) |
| Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
| else |
| Conv = cast<CXXConversionDecl>(D); |
| |
| // If this is an explicit conversion, and we're not allowed to consider |
| // explicit conversions, skip it. |
| if (!AllowExplicit && Conv->isExplicit()) |
| continue; |
| |
| if (AllowRvalues) { |
| bool DerivedToBase = false; |
| bool ObjCConversion = false; |
| bool ObjCLifetimeConversion = false; |
| |
| // If we are initializing an rvalue reference, don't permit conversion |
| // functions that return lvalues. |
| if (!ConvTemplate && DeclType->isRValueReferenceType()) { |
| const ReferenceType *RefType |
| = Conv->getConversionType()->getAs<LValueReferenceType>(); |
| if (RefType && !RefType->getPointeeType()->isFunctionType()) |
| continue; |
| } |
| |
| if (!ConvTemplate && |
| S.CompareReferenceRelationship( |
| DeclLoc, |
| Conv->getConversionType().getNonReferenceType() |
| .getUnqualifiedType(), |
| DeclType.getNonReferenceType().getUnqualifiedType(), |
| DerivedToBase, ObjCConversion, ObjCLifetimeConversion) == |
| Sema::Ref_Incompatible) |
| continue; |
| } else { |
| // If the conversion function doesn't return a reference type, |
| // it can't be considered for this conversion. An rvalue reference |
| // is only acceptable if its referencee is a function type. |
| |
| const ReferenceType *RefType = |
| Conv->getConversionType()->getAs<ReferenceType>(); |
| if (!RefType || |
| (!RefType->isLValueReferenceType() && |
| !RefType->getPointeeType()->isFunctionType())) |
| continue; |
| } |
| |
| if (ConvTemplate) |
| S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(), ActingDC, |
| Init, DeclType, CandidateSet); |
| else |
| S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Init, |
| DeclType, CandidateSet); |
| } |
| |
| bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| |
| OverloadCandidateSet::iterator Best; |
| switch (CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) { |
| case OR_Success: |
| // C++ [over.ics.ref]p1: |
| // |
| // [...] If the parameter binds directly to the result of |
| // applying a conversion function to the argument |
| // expression, the implicit conversion sequence is a |
| // user-defined conversion sequence (13.3.3.1.2), with the |
| // second standard conversion sequence either an identity |
| // conversion or, if the conversion function returns an |
| // entity of a type that is a derived class of the parameter |
| // type, a derived-to-base Conversion. |
| if (!Best->FinalConversion.DirectBinding) |
| return false; |
| |
| if (Best->Function) |
| S.MarkDeclarationReferenced(DeclLoc, Best->Function); |
| ICS.setUserDefined(); |
| ICS.UserDefined.Before = Best->Conversions[0].Standard; |
| ICS.UserDefined.After = Best->FinalConversion; |
| ICS.UserDefined.HadMultipleCandidates = HadMultipleCandidates; |
| ICS.UserDefined.ConversionFunction = Best->Function; |
| ICS.UserDefined.FoundConversionFunction = Best->FoundDecl; |
| ICS.UserDefined.EllipsisConversion = false; |
| assert(ICS.UserDefined.After.ReferenceBinding && |
| ICS.UserDefined.After.DirectBinding && |
| "Expected a direct reference binding!"); |
| return true; |
| |
| case OR_Ambiguous: |
| ICS.setAmbiguous(); |
| for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(); |
| Cand != CandidateSet.end(); ++Cand) |
| if (Cand->Viable) |
| ICS.Ambiguous.addConversion(Cand->Function); |
| return true; |
| |
| case OR_No_Viable_Function: |
| case OR_Deleted: |
| // There was no suitable conversion, or we found a deleted |
| // conversion; continue with other checks. |
| return false; |
| } |
| |
| llvm_unreachable("Invalid OverloadResult!"); |
| } |
| |
| /// \brief Compute an implicit conversion sequence for reference |
| /// initialization. |
| static ImplicitConversionSequence |
| TryReferenceInit(Sema &S, Expr *Init, QualType DeclType, |
| SourceLocation DeclLoc, |
| bool SuppressUserConversions, |
| bool AllowExplicit) { |
| assert(DeclType->isReferenceType() && "Reference init needs a reference"); |
| |
| // Most paths end in a failed conversion. |
| ImplicitConversionSequence ICS; |
| ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); |
| |
| QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType(); |
| QualType T2 = Init->getType(); |
| |
| // If the initializer is the address of an overloaded function, try |
| // to resolve the overloaded function. If all goes well, T2 is the |
| // type of the resulting function. |
| if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { |
| DeclAccessPair Found; |
| if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(Init, DeclType, |
| false, Found)) |
| T2 = Fn->getType(); |
| } |
| |
| // Compute some basic properties of the types and the initializer. |
| bool isRValRef = DeclType->isRValueReferenceType(); |
| bool DerivedToBase = false; |
| bool ObjCConversion = false; |
| bool ObjCLifetimeConversion = false; |
| Expr::Classification InitCategory = Init->Classify(S.Context); |
| Sema::ReferenceCompareResult RefRelationship |
| = S.CompareReferenceRelationship(DeclLoc, T1, T2, DerivedToBase, |
| ObjCConversion, ObjCLifetimeConversion); |
| |
| |
| // C++0x [dcl.init.ref]p5: |
| // A reference to type "cv1 T1" is initialized by an expression |
| // of type "cv2 T2" as follows: |
| |
| // -- If reference is an lvalue reference and the initializer expression |
| if (!isRValRef) { |
| // -- is an lvalue (but is not a bit-field), and "cv1 T1" is |
| // reference-compatible with "cv2 T2," or |
| // |
| // Per C++ [over.ics.ref]p4, we don't check the bit-field property here. |
| if (InitCategory.isLValue() && |
| RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification) { |
| // C++ [over.ics.ref]p1: |
| // When a parameter of reference type binds directly (8.5.3) |
| // to an argument expression, the implicit conversion sequence |
| // is the identity conversion, unless the argument expression |
| // has a type that is a derived class of the parameter type, |
| // in which case the implicit conversion sequence is a |
| // derived-to-base Conversion (13.3.3.1). |
| ICS.setStandard(); |
| ICS.Standard.First = ICK_Identity; |
| ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base |
| : ObjCConversion? ICK_Compatible_Conversion |
| : ICK_Identity; |
| ICS.Standard.Third = ICK_Identity; |
| ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); |
| ICS.Standard.setToType(0, T2); |
| ICS.Standard.setToType(1, T1); |
| ICS.Standard.setToType(2, T1); |
| ICS.Standard.ReferenceBinding = true; |
| ICS.Standard.DirectBinding = true; |
| ICS.Standard.IsLvalueReference = !isRValRef; |
| ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); |
| ICS.Standard.BindsToRvalue = false; |
| ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
| ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; |
| ICS.Standard.CopyConstructor = 0; |
| |
| // Nothing more to do: the inaccessibility/ambiguity check for |
| // derived-to-base conversions is suppressed when we're |
| // computing the implicit conversion sequence (C++ |
| // [over.best.ics]p2). |
| return ICS; |
| } |
| |
| // -- has a class type (i.e., T2 is a class type), where T1 is |
| // not reference-related to T2, and can be implicitly |
| // converted to an lvalue of type "cv3 T3," where "cv1 T1" |
| // is reference-compatible with "cv3 T3" 92) (this |
| // conversion is selected by enumerating the applicable |
| // conversion functions (13.3.1.6) and choosing the best |
| // one through overload resolution (13.3)), |
| if (!SuppressUserConversions && T2->isRecordType() && |
| !S.RequireCompleteType(DeclLoc, T2, 0) && |
| RefRelationship == Sema::Ref_Incompatible) { |
| if (FindConversionForRefInit(S, ICS, DeclType, DeclLoc, |
| Init, T2, /*AllowRvalues=*/false, |
| AllowExplicit)) |
| return ICS; |
| } |
| } |
| |
| // -- Otherwise, the reference shall be an lvalue reference to a |
| // non-volatile const type (i.e., cv1 shall be const), or the reference |
| // shall be an rvalue reference. |
| // |
| // We actually handle one oddity of C++ [over.ics.ref] at this |
| // point, which is that, due to p2 (which short-circuits reference |
| // binding by only attempting a simple conversion for non-direct |
| // bindings) and p3's strange wording, we allow a const volatile |
| // reference to bind to an rvalue. Hence the check for the presence |
| // of "const" rather than checking for "const" being the only |
| // qualifier. |
| // This is also the point where rvalue references and lvalue inits no longer |
| // go together. |
| if (!isRValRef && !T1.isConstQualified()) |
| return ICS; |
| |
| // -- If the initializer expression |
| // |
| // -- is an xvalue, class prvalue, array prvalue or function |
| // lvalue and "cv1 T1" is reference-compatible with "cv2 T2", or |
| if (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification && |
| (InitCategory.isXValue() || |
| (InitCategory.isPRValue() && (T2->isRecordType() || T2->isArrayType())) || |
| (InitCategory.isLValue() && T2->isFunctionType()))) { |
| ICS.setStandard(); |
| ICS.Standard.First = ICK_Identity; |
| ICS.Standard.Second = DerivedToBase? ICK_Derived_To_Base |
| : ObjCConversion? ICK_Compatible_Conversion |
| : ICK_Identity; |
| ICS.Standard.Third = ICK_Identity; |
| ICS.Standard.FromTypePtr = T2.getAsOpaquePtr(); |
| ICS.Standard.setToType(0, T2); |
| ICS.Standard.setToType(1, T1); |
| ICS.Standard.setToType(2, T1); |
| ICS.Standard.ReferenceBinding = true; |
| // In C++0x, this is always a direct binding. In C++98/03, it's a direct |
| // binding unless we're binding to a class prvalue. |
| // Note: Although xvalues wouldn't normally show up in C++98/03 code, we |
| // allow the use of rvalue references in C++98/03 for the benefit of |
| // standard library implementors; therefore, we need the xvalue check here. |
| ICS.Standard.DirectBinding = |
| S.getLangOptions().CPlusPlus0x || |
| (InitCategory.isPRValue() && !T2->isRecordType()); |
| ICS.Standard.IsLvalueReference = !isRValRef; |
| ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); |
| ICS.Standard.BindsToRvalue = InitCategory.isRValue(); |
| ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
| ICS.Standard.ObjCLifetimeConversionBinding = ObjCLifetimeConversion; |
| ICS.Standard.CopyConstructor = 0; |
| return ICS; |
| } |
| |
| // -- has a class type (i.e., T2 is a class type), where T1 is not |
| // reference-related to T2, and can be implicitly converted to |
| // an xvalue, class prvalue, or function lvalue of type |
| // "cv3 T3", where "cv1 T1" is reference-compatible with |
| // "cv3 T3", |
| // |
| // then the reference is bound to the value of the initializer |
| // expression in the first case and to the result of the conversion |
| // in the second case (or, in either case, to an appropriate base |
| // class subobject). |
| if (!SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && |
| T2->isRecordType() && !S.RequireCompleteType(DeclLoc, T2, 0) && |
| FindConversionForRefInit(S, ICS, DeclType, DeclLoc, |
| Init, T2, /*AllowRvalues=*/true, |
| AllowExplicit)) { |
| // In the second case, if the reference is an rvalue reference |
| // and the second standard conversion sequence of the |
| // user-defined conversion sequence includes an lvalue-to-rvalue |
| // conversion, the program is ill-formed. |
| if (ICS.isUserDefined() && isRValRef && |
| ICS.UserDefined.After.First == ICK_Lvalue_To_Rvalue) |
| ICS.setBad(BadConversionSequence::no_conversion, Init, DeclType); |
| |
| return ICS; |
| } |
| |
| // -- Otherwise, a temporary of type "cv1 T1" is created and |
| // initialized from the initializer expression using the |
| // rules for a non-reference copy initialization (8.5). The |
| // reference is then bound to the temporary. If T1 is |
| // reference-related to T2, cv1 must be the same |
| // cv-qualification as, or greater cv-qualification than, |
| // cv2; otherwise, the program is ill-formed. |
| if (RefRelationship == Sema::Ref_Related) { |
| // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then |
| // we would be reference-compatible or reference-compatible with |
| // added qualification. But that wasn't the case, so the reference |
| // initialization fails. |
| // |
| // Note that we only want to check address spaces and cvr-qualifiers here. |
| // ObjC GC and lifetime qualifiers aren't important. |
| Qualifiers T1Quals = T1.getQualifiers(); |
| Qualifiers T2Quals = T2.getQualifiers(); |
| T1Quals.removeObjCGCAttr(); |
| T1Quals.removeObjCLifetime(); |
| T2Quals.removeObjCGCAttr(); |
| T2Quals.removeObjCLifetime(); |
| if (!T1Quals.compatiblyIncludes(T2Quals)) |
| return ICS; |
| } |
| |
| // If at least one of the types is a class type, the types are not |
| // related, and we aren't allowed any user conversions, the |
| // reference binding fails. This case is important for breaking |
| // recursion, since TryImplicitConversion below will attempt to |
| // create a temporary through the use of a copy constructor. |
| if (SuppressUserConversions && RefRelationship == Sema::Ref_Incompatible && |
| (T1->isRecordType() || T2->isRecordType())) |
| return ICS; |
| |
| // If T1 is reference-related to T2 and the reference is an rvalue |
| // reference, the initializer expression shall not be an lvalue. |
| if (RefRelationship >= Sema::Ref_Related && |
| isRValRef && Init->Classify(S.Context).isLValue()) |
| return ICS; |
| |
| // C++ [over.ics.ref]p2: |
| // When a parameter of reference type is not bound directly to |
| // an argument expression, the conversion sequence is the one |
| // required to convert the argument expression to the |
| // underlying type of the reference according to |
| // 13.3.3.1. Conceptually, this conversion sequence corresponds |
| // to copy-initializing a temporary of the underlying type with |
| // the argument expression. Any difference in top-level |
| // cv-qualification is subsumed by the initialization itself |
| // and does not constitute a conversion. |
| ICS = TryImplicitConversion(S, Init, T1, SuppressUserConversions, |
| /*AllowExplicit=*/false, |
| /*InOverloadResolution=*/false, |
| /*CStyle=*/false, |
| /*AllowObjCWritebackConversion=*/false); |
| |
| // Of course, that's still a reference binding. |
| if (ICS.isStandard()) { |
| ICS.Standard.ReferenceBinding = true; |
| ICS.Standard.IsLvalueReference = !isRValRef; |
| ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType(); |
| ICS.Standard.BindsToRvalue = true; |
| ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
| ICS.Standard.ObjCLifetimeConversionBinding = false; |
| } else if (ICS.isUserDefined()) { |
| // Don't allow rvalue references to bind to lvalues. |
| if (DeclType->isRValueReferenceType()) { |
| if (const ReferenceType *RefType |
| = ICS.UserDefined.ConversionFunction->getResultType() |
| ->getAs<LValueReferenceType>()) { |
| if (!RefType->getPointeeType()->isFunctionType()) { |
| ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, Init, |
| DeclType); |
| return ICS; |
| } |
| } |
| } |
| |
| ICS.UserDefined.After.ReferenceBinding = true; |
| ICS.UserDefined.After.IsLvalueReference = !isRValRef; |
| ICS.UserDefined.After.BindsToFunctionLvalue = T2->isFunctionType(); |
| ICS.UserDefined.After.BindsToRvalue = true; |
| ICS.UserDefined.After.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
| ICS.UserDefined.After.ObjCLifetimeConversionBinding = false; |
| } |
| |
| return ICS; |
| } |
| |
| static ImplicitConversionSequence |
| TryCopyInitialization(Sema &S, Expr *From, QualType ToType, |
| bool SuppressUserConversions, |
| bool InOverloadResolution, |
| bool AllowObjCWritebackConversion); |
| |
| /// TryListConversion - Try to copy-initialize a value of type ToType from the |
| /// initializer list From. |
| static ImplicitConversionSequence |
| TryListConversion(Sema &S, InitListExpr *From, QualType ToType, |
| bool SuppressUserConversions, |
| bool InOverloadResolution, |
| bool AllowObjCWritebackConversion) { |
| // C++11 [over.ics.list]p1: |
| // When an argument is an initializer list, it is not an expression and |
| // special rules apply for converting it to a parameter type. |
| |
| ImplicitConversionSequence Result; |
| Result.setBad(BadConversionSequence::no_conversion, From, ToType); |
| Result.setListInitializationSequence(); |
| |
| // We need a complete type for what follows. Incomplete types can never be |
| // initialized from init lists. |
| if (S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag())) |
| return Result; |
| |
| // C++11 [over.ics.list]p2: |
| // If the parameter type is std::initializer_list<X> or "array of X" and |
| // all the elements can be implicitly converted to X, the implicit |
| // conversion sequence is the worst conversion necessary to convert an |
| // element of the list to X. |
| QualType X; |
| if (ToType->isArrayType()) |
| X = S.Context.getBaseElementType(ToType); |
| else |
| (void)S.isStdInitializerList(ToType, &X); |
| if (!X.isNull()) { |
| for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) { |
| Expr *Init = From->getInit(i); |
| ImplicitConversionSequence ICS = |
| TryCopyInitialization(S, Init, X, SuppressUserConversions, |
| InOverloadResolution, |
| AllowObjCWritebackConversion); |
| // If a single element isn't convertible, fail. |
| if (ICS.isBad()) { |
| Result = ICS; |
| break; |
| } |
| // Otherwise, look for the worst conversion. |
| if (Result.isBad() || |
| CompareImplicitConversionSequences(S, ICS, Result) == |
| ImplicitConversionSequence::Worse) |
| Result = ICS; |
| } |
| Result.setListInitializationSequence(); |
| return Result; |
| } |
| |
| // C++11 [over.ics.list]p3: |
| // Otherwise, if the parameter is a non-aggregate class X and overload |
| // resolution chooses a single best constructor [...] the implicit |
| // conversion sequence is a user-defined conversion sequence. If multiple |
| // constructors are viable but none is better than the others, the |
| // implicit conversion sequence is a user-defined conversion sequence. |
| if (ToType->isRecordType() && !ToType->isAggregateType()) { |
| // This function can deal with initializer lists. |
| Result = TryUserDefinedConversion(S, From, ToType, SuppressUserConversions, |
| /*AllowExplicit=*/false, |
| InOverloadResolution, /*CStyle=*/false, |
| AllowObjCWritebackConversion); |
| Result.setListInitializationSequence(); |
| return Result; |
| } |
| |
| // C++11 [over.ics.list]p4: |
| // Otherwise, if the parameter has an aggregate type which can be |
| // initialized from the initializer list [...] the implicit conversion |
| // sequence is a user-defined conversion sequence. |
| if (ToType->isAggregateType()) { |
| // Type is an aggregate, argument is an init list. At this point it comes |
| // down to checking whether the initialization works. |
| // FIXME: Find out whether this parameter is consumed or not. |
| InitializedEntity Entity = |
| InitializedEntity::InitializeParameter(S.Context, ToType, |
| /*Consumed=*/false); |
| if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) { |
| Result.setUserDefined(); |
| Result.UserDefined.Before.setAsIdentityConversion(); |
| // Initializer lists don't have a type. |
| Result.UserDefined.Before.setFromType(QualType()); |
| Result.UserDefined.Before.setAllToTypes(QualType()); |
| |
| Result.UserDefined.After.setAsIdentityConversion(); |
| Result.UserDefined.After.setFromType(ToType); |
| Result.UserDefined.After.setAllToTypes(ToType); |
| } |
| return Result; |
| } |
| |
| // C++11 [over.ics.list]p5: |
| // Otherwise, if the parameter is a reference, see 13.3.3.1.4. |
| if (ToType->isReferenceType()) { |
| // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't |
| // mention initializer lists in any way. So we go by what list- |
| // initialization would do and try to extrapolate from that. |
| |
| QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType(); |
| |
| // If the initializer list has a single element that is reference-related |
| // to the parameter type, we initialize the reference from that. |
| if (From->getNumInits() == 1) { |
| Expr *Init = From->getInit(0); |
| |
| QualType T2 = Init->getType(); |
| |
| // If the initializer is the address of an overloaded function, try |
| // to resolve the overloaded function. If all goes well, T2 is the |
| // type of the resulting function. |
| if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) { |
| DeclAccessPair Found; |
| if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction( |
| Init, ToType, false, Found)) |
| T2 = Fn->getType(); |
| } |
| |
| // Compute some basic properties of the types and the initializer. |
| bool dummy1 = false; |
| bool dummy2 = false; |
| bool dummy3 = false; |
| Sema::ReferenceCompareResult RefRelationship |
| = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1, |
| dummy2, dummy3); |
| |
| if (RefRelationship >= Sema::Ref_Related) |
| return TryReferenceInit(S, Init, ToType, |
| /*FIXME:*/From->getLocStart(), |
| SuppressUserConversions, |
| /*AllowExplicit=*/false); |
| } |
| |
| // Otherwise, we bind the reference to a temporary created from the |
| // initializer list. |
| Result = TryListConversion(S, From, T1, SuppressUserConversions, |
| InOverloadResolution, |
| AllowObjCWritebackConversion); |
| if (Result.isFailure()) |
| return Result; |
| assert(!Result.isEllipsis() && |
| "Sub-initialization cannot result in ellipsis conversion."); |
| |
| // Can we even bind to a temporary? |
| if (ToType->isRValueReferenceType() || |
| (T1.isConstQualified() && !T1.isVolatileQualified())) { |
| StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard : |
| Result.UserDefined.After; |
| SCS.ReferenceBinding = true; |
| SCS.IsLvalueReference = ToType->isLValueReferenceType(); |
| SCS.BindsToRvalue = true; |
| SCS.BindsToFunctionLvalue = false; |
| SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false; |
| SCS.ObjCLifetimeConversionBinding = false; |
| } else |
| Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue, |
| From, ToType); |
| return Result; |
| } |
| |
| // C++11 [over.ics.list]p6: |
| // Otherwise, if the parameter type is not a class: |
| if (!ToType->isRecordType()) { |
| // - if the initializer list has one element, the implicit conversion |
| // sequence is the one required to convert the element to the |
| // parameter type. |
| unsigned NumInits = From->getNumInits(); |
| if (NumInits == 1) |
| Result = TryCopyInitialization(S, From->getInit(0), ToType, |
| SuppressUserConversions, |
| InOverloadResolution, |
| AllowObjCWritebackConversion); |
| // - if the initializer list has no elements, the implicit conversion |
| // sequence is the identity conversion. |
| else if (NumInits == 0) { |
| Result.setStandard(); |
| Result.Standard.setAsIdentityConversion(); |
| } |
| return Result; |
| } |
| |
| // C++11 [over.ics.list]p7: |
| // In all cases other than those enumerated above, no conversion is possible |
| return Result; |
| } |
| |
| /// TryCopyInitialization - Try to copy-initialize a value of type |
| /// ToType from the expression From. Return the implicit conversion |
| /// sequence required to pass this argument, which may be a bad |
| /// conversion sequence (meaning that the argument cannot be passed to |
| /// a parameter of this type). If @p SuppressUserConversions, then we |
| /// do not permit any user-defined conversion sequences. |
| static ImplicitConversionSequence |
| TryCopyInitialization(Sema &S, Expr *From, QualType ToType, |
| bool SuppressUserConversions, |
| bool InOverloadResolution, |
| bool AllowObjCWritebackConversion) { |
| if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From)) |
| return TryListConversion(S, FromInitList, ToType, SuppressUserConversions, |
| InOverloadResolution,AllowObjCWritebackConversion); |
| |
| if (ToType->isReferenceType()) |
| return TryReferenceInit(S, From, ToType, |
| /*FIXME:*/From->getLocStart(), |
| SuppressUserConversions, |
| /*AllowExplicit=*/false); |
| |
| return TryImplicitConversion(S, From, ToType, |
| SuppressUserConversions, |
| /*AllowExplicit=*/false, |
| InOverloadResolution, |
| /*CStyle=*/false, |
| AllowObjCWritebackConversion); |
| } |
| |
| static bool TryCopyInitialization(const CanQualType FromQTy, |
| const CanQualType ToQTy, |
| Sema &S, |
| SourceLocation Loc, |
| ExprValueKind FromVK) { |
| OpaqueValueExpr TmpExpr(Loc, FromQTy, FromVK); |
| ImplicitConversionSequence ICS = |
| TryCopyInitialization(S, &TmpExpr, ToQTy, true, true, false); |
| |
| return !ICS.isBad(); |
| } |
| |
| /// TryObjectArgumentInitialization - Try to initialize the object |
| /// parameter of the given member function (@c Method) from the |
| /// expression @p From. |
| static ImplicitConversionSequence |
| TryObjectArgumentInitialization(Sema &S, QualType OrigFromType, |
| Expr::Classification FromClassification, |
| CXXMethodDecl *Method, |
| CXXRecordDecl *ActingContext) { |
| QualType ClassType = S.Context.getTypeDeclType(ActingContext); |
| // [class.dtor]p2: A destructor can be invoked for a const, volatile or |
| // const volatile object. |
| unsigned Quals = isa<CXXDestructorDecl>(Method) ? |
| Qualifiers::Const | Qualifiers::Volatile : Method->getTypeQualifiers(); |
| QualType ImplicitParamType = S.Context.getCVRQualifiedType(ClassType, Quals); |
| |
| // Set up the conversion sequence as a "bad" conversion, to allow us |
| // to exit early. |
| ImplicitConversionSequence ICS; |
| |
| // We need to have an object of class type. |
| QualType FromType = OrigFromType; |
| if (const PointerType *PT = FromType->getAs<PointerType>()) { |
| FromType = PT->getPointeeType(); |
| |
| // When we had a pointer, it's implicitly dereferenced, so we |
| // better have an lvalue. |
| assert(FromClassification.isLValue()); |
| } |
| |
| assert(FromType->isRecordType()); |
| |
| // C++0x [over.match.funcs]p4: |
| // For non-static member functions, the type of the implicit object |
| // parameter is |
| // |
| // - "lvalue reference to cv X" for functions declared without a |
| // ref-qualifier or with the & ref-qualifier |
| // - "rvalue reference to cv X" for functions declared with the && |
| // ref-qualifier |
| // |
| // where X is the class of which the function is a member and cv is the |
| // cv-qualification on the member function declaration. |
| // |
| // However, when finding an implicit conversion sequence for the argument, we |
| // are not allowed to create temporaries or perform user-defined conversions |
| // (C++ [over.match.funcs]p5). We perform a simplified version of |
| // reference binding here, that allows class rvalues to bind to |
| // non-constant references. |
| |
| // First check the qualifiers. |
| QualType FromTypeCanon = S.Context.getCanonicalType(FromType); |
| if (ImplicitParamType.getCVRQualifiers() |
| != FromTypeCanon.getLocalCVRQualifiers() && |
| !ImplicitParamType.isAtLeastAsQualifiedAs(FromTypeCanon)) { |
| ICS.setBad(BadConversionSequence::bad_qualifiers, |
| OrigFromType, ImplicitParamType); |
| return ICS; |
| } |
| |
| // Check that we have either the same type or a derived type. It |
| // affects the conversion rank. |
| QualType ClassTypeCanon = S.Context.getCanonicalType(ClassType); |
| ImplicitConversionKind SecondKind; |
| if (ClassTypeCanon == FromTypeCanon.getLocalUnqualifiedType()) { |
| SecondKind = ICK_Identity; |
| } else if (S.IsDerivedFrom(FromType, ClassType)) |
| SecondKind = ICK_Derived_To_Base; |
| else { |
| ICS.setBad(BadConversionSequence::unrelated_class, |
| FromType, ImplicitParamType); |
| return ICS; |
| } |
| |
| // Check the ref-qualifier. |
| switch (Method->getRefQualifier()) { |
| case RQ_None: |
| // Do nothing; we don't care about lvalueness or rvalueness. |
| break; |
| |
| case RQ_LValue: |
| if (!FromClassification.isLValue() && Quals != Qualifiers::Const) { |
| // non-const lvalue reference cannot bind to an rvalue |
| ICS.setBad(BadConversionSequence::lvalue_ref_to_rvalue, FromType, |
| ImplicitParamType); |
| return ICS; |
| } |
| break; |
| |
| case RQ_RValue: |
| if (!FromClassification.isRValue()) { |
| // rvalue reference cannot bind to an lvalue |
| ICS.setBad(BadConversionSequence::rvalue_ref_to_lvalue, FromType, |
| ImplicitParamType); |
| return ICS; |
| } |
| break; |
| } |
| |
| // Success. Mark this as a reference binding. |
| ICS.setStandard(); |
| ICS.Standard.setAsIdentityConversion(); |
| ICS.Standard.Second = SecondKind; |
| ICS.Standard.setFromType(FromType); |
| ICS.Standard.setAllToTypes(ImplicitParamType); |
| ICS.Standard.ReferenceBinding = true; |
| ICS.Standard.DirectBinding = true; |
| ICS.Standard.IsLvalueReference = Method->getRefQualifier() != RQ_RValue; |
| ICS.Standard.BindsToFunctionLvalue = false; |
| ICS.Standard.BindsToRvalue = FromClassification.isRValue(); |
| ICS.Standard.BindsImplicitObjectArgumentWithoutRefQualifier |
| = (Method->getRefQualifier() == RQ_None); |
| return ICS; |
| } |
| |
| /// PerformObjectArgumentInitialization - Perform initialization of |
| /// the implicit object parameter for the given Method with the given |
| /// expression. |
| ExprResult |
| Sema::PerformObjectArgumentInitialization(Expr *From, |
| NestedNameSpecifier *Qualifier, |
| NamedDecl *FoundDecl, |
| CXXMethodDecl *Method) { |
| QualType FromRecordType, DestType; |
| QualType ImplicitParamRecordType = |
| Method->getThisType(Context)->getAs<PointerType>()->getPointeeType(); |
| |
| Expr::Classification FromClassification; |
| if (const PointerType *PT = From->getType()->getAs<PointerType>()) { |
| FromRecordType = PT->getPointeeType(); |
| DestType = Method->getThisType(Context); |
| FromClassification = Expr::Classification::makeSimpleLValue(); |
| } else { |
| FromRecordType = From->getType(); |
| DestType = ImplicitParamRecordType; |
| FromClassification = From->Classify(Context); |
| } |
| |
| // Note that we always use the true parent context when performing |
| // the actual argument initialization. |
| ImplicitConversionSequence ICS |
| = TryObjectArgumentInitialization(*this, From->getType(), FromClassification, |
| Method, Method->getParent()); |
| if (ICS.isBad()) { |
| if (ICS.Bad.Kind == BadConversionSequence::bad_qualifiers) { |
| Qualifiers FromQs = FromRecordType.getQualifiers(); |
| Qualifiers ToQs = DestType.getQualifiers(); |
| unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); |
| if (CVR) { |
| Diag(From->getSourceRange().getBegin(), |
| diag::err_member_function_call_bad_cvr) |
| << Method->getDeclName() << FromRecordType << (CVR - 1) |
| << From->getSourceRange(); |
| Diag(Method->getLocation(), diag::note_previous_decl) |
| << Method->getDeclName(); |
| return ExprError(); |
| } |
| } |
| |
| return Diag(From->getSourceRange().getBegin(), |
| diag::err_implicit_object_parameter_init) |
| << ImplicitParamRecordType << FromRecordType << From->getSourceRange(); |
| } |
| |
| if (ICS.Standard.Second == ICK_Derived_To_Base) { |
| ExprResult FromRes = |
| PerformObjectMemberConversion(From, Qualifier, FoundDecl, Method); |
| if (FromRes.isInvalid()) |
| return ExprError(); |
| From = FromRes.take(); |
| } |
| |
| if (!Context.hasSameType(From->getType(), DestType)) |
| From = ImpCastExprToType(From, DestType, CK_NoOp, |
| From->getValueKind()).take(); |
| return Owned(From); |
| } |
| |
| /// TryContextuallyConvertToBool - Attempt to contextually convert the |
| /// expression From to bool (C++0x [conv]p3). |
| static ImplicitConversionSequence |
| TryContextuallyConvertToBool(Sema &S, Expr *From) { |
| // FIXME: This is pretty broken. |
| return TryImplicitConversion(S, From, S.Context.BoolTy, |
| // FIXME: Are these flags correct? |
| /*SuppressUserConversions=*/false, |
| /*AllowExplicit=*/true, |
| /*InOverloadResolution=*/false, |
| /*CStyle=*/false, |
| /*AllowObjCWritebackConversion=*/false); |
| } |
| |
| /// PerformContextuallyConvertToBool - Perform a contextual conversion |
| /// of the expression From to bool (C++0x [conv]p3). |
| ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) { |
| if (checkPlaceholderForOverload(*this, From)) |
| return ExprError(); |
| |
| ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From); |
| if (!ICS.isBad()) |
| return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting); |
| |
| if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy)) |
| return Diag(From->getSourceRange().getBegin(), |
| diag::err_typecheck_bool_condition) |
| << From->getType() << From->getSourceRange(); |
| return ExprError(); |
| } |
| |
| /// Check that the specified conversion is permitted in a converted constant |
| /// expression, according to C++11 [expr.const]p3. Return true if the conversion |
| /// is acceptable. |
| static bool CheckConvertedConstantConversions(Sema &S, |
| StandardConversionSequence &SCS) { |
| // Since we know that the target type is an integral or unscoped enumeration |
| // type, most conversion kinds are impossible. All possible First and Third |
| // conversions are fine. |
| switch (SCS.Second) { |
| case ICK_Identity: |
| case ICK_Integral_Promotion: |
| case ICK_Integral_Conversion: |
| return true; |
| |
| case ICK_Boolean_Conversion: |
| // Conversion from an integral or unscoped enumeration type to bool is |
| // classified as ICK_Boolean_Conversion, but it's also an integral |
| // conversion, so it's permitted in a converted constant expression. |
| return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() && |
| SCS.getToType(2)->isBooleanType(); |
| |
| case ICK_Floating_Integral: |
| case ICK_Complex_Real: |
| return false; |
| |
| case ICK_Lvalue_To_Rvalue: |
| case ICK_Array_To_Pointer: |
| case ICK_Function_To_Pointer: |
| case ICK_NoReturn_Adjustment: |
| case ICK_Qualification: |
| case ICK_Compatible_Conversion: |
| case ICK_Vector_Conversion: |
| case ICK_Vector_Splat: |
| case ICK_Derived_To_Base: |
| case ICK_Pointer_Conversion: |
| case ICK_Pointer_Member: |
| case ICK_Block_Pointer_Conversion: |
| case ICK_Writeback_Conversion: |
| case ICK_Floating_Promotion: |
| case ICK_Complex_Promotion: |
| case ICK_Complex_Conversion: |
| case ICK_Floating_Conversion: |
| case ICK_TransparentUnionConversion: |
| llvm_unreachable("unexpected second conversion kind"); |
| |
| case ICK_Num_Conversion_Kinds: |
| break; |
| } |
| |
| llvm_unreachable("unknown conversion kind"); |
| } |
| |
| /// CheckConvertedConstantExpression - Check that the expression From is a |
| /// converted constant expression of type T, perform the conversion and produce |
| /// the converted expression, per C++11 [expr.const]p3. |
| ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T, |
| llvm::APSInt &Value, |
| CCEKind CCE) { |
| assert(LangOpts.CPlusPlus0x && "converted constant expression outside C++11"); |
| assert(T->isIntegralOrEnumerationType() && "unexpected converted const type"); |
| |
| if (checkPlaceholderForOverload(*this, From)) |
| return ExprError(); |
| |
| // C++11 [expr.const]p3 with proposed wording fixes: |
| // A converted constant expression of type T is a core constant expression, |
| // implicitly converted to a prvalue of type T, where the converted |
| // expression is a literal constant expression and the implicit conversion |
| // sequence contains only user-defined conversions, lvalue-to-rvalue |
| // conversions, integral promotions, and integral conversions other than |
| // narrowing conversions. |
| ImplicitConversionSequence ICS = |
| TryImplicitConversion(From, T, |
| /*SuppressUserConversions=*/false, |
| /*AllowExplicit=*/false, |
| /*InOverloadResolution=*/false, |
| /*CStyle=*/false, |
| /*AllowObjcWritebackConversion=*/false); |
| StandardConversionSequence *SCS = 0; |
| switch (ICS.getKind()) { |
| case ImplicitConversionSequence::StandardConversion: |
| if (!CheckConvertedConstantConversions(*this, ICS.Standard)) |
| return Diag(From->getSourceRange().getBegin(), |
| diag::err_typecheck_converted_constant_expression_disallowed) |
| << From->getType() << From->getSourceRange() << T; |
| SCS = &ICS.Standard; |
| break; |
| case ImplicitConversionSequence::UserDefinedConversion: |
| // We are converting from class type to an integral or enumeration type, so |
| // the Before sequence must be trivial. |
| if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After)) |
| return Diag(From->getSourceRange().getBegin(), |
| diag::err_typecheck_converted_constant_expression_disallowed) |
| << From->getType() << From->getSourceRange() << T; |
| SCS = &ICS.UserDefined.After; |
| break; |
| case ImplicitConversionSequence::AmbiguousConversion: |
| case ImplicitConversionSequence::BadConversion: |
| if (!DiagnoseMultipleUserDefinedConversion(From, T)) |
| return Diag(From->getSourceRange().getBegin(), |
| diag::err_typecheck_converted_constant_expression) |
| << From->getType() << From->getSourceRange() << T; |
| return ExprError(); |
| |
| case ImplicitConversionSequence::EllipsisConversion: |
| llvm_unreachable("ellipsis conversion in converted constant expression"); |
| } |
| |
| ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting); |
| if (Result.isInvalid()) |
| return Result; |
| |
| // Check for a narrowing implicit conversion. |
| APValue PreNarrowingValue; |
| switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue)) { |
| case NK_Variable_Narrowing: |
| // Implicit conversion to a narrower type, and the value is not a constant |
| // expression. We'll diagnose this in a moment. |
| case NK_Not_Narrowing: |
| break; |
| |
| case NK_Constant_Narrowing: |
| Diag(From->getSourceRange().getBegin(), diag::err_cce_narrowing) |
| << CCE << /*Constant*/1 |
| << PreNarrowingValue.getAsString(Context, QualType()) << T; |
| break; |
| |
| case NK_Type_Narrowing: |
| Diag(From->getSourceRange().getBegin(), diag::err_cce_narrowing) |
| << CCE << /*Constant*/0 << From->getType() << T; |
| break; |
| } |
| |
| // Check the expression is a constant expression. |
| llvm::SmallVector<PartialDiagnosticAt, 8> Notes; |
| Expr::EvalResult Eval; |
| Eval.Diag = &Notes; |
| |
| if (!Result.get()->EvaluateAsRValue(Eval, Context)) { |
| // The expression can't be folded, so we can't keep it at this position in |
| // the AST. |
| Result = ExprError(); |
| } else if (Notes.empty()) { |
| // It's a constant expression. |
| Value = Eval.Val.getInt(); |
| return Result; |
| } |
| |
| // It's not a constant expression. Produce an appropriate diagnostic. |
| if (Notes.size() == 1 && |
| Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr) |
| Diag(Notes[0].first, diag::err_expr_not_cce) << CCE; |
| else { |
| Diag(From->getSourceRange().getBegin(), diag::err_expr_not_cce) |
| << CCE << From->getSourceRange(); |
| for (unsigned I = 0; I < Notes.size(); ++I) |
| Diag(Notes[I].first, Notes[I].second); |
| } |
| return ExprError(); |
| } |
| |
| /// dropPointerConversions - If the given standard conversion sequence |
| /// involves any pointer conversions, remove them. This may change |
| /// the result type of the conversion sequence. |
| static void dropPointerConversion(StandardConversionSequence &SCS) { |
| if (SCS.Second == ICK_Pointer_Conversion) { |
| SCS.Second = ICK_Identity; |
| SCS.Third = ICK_Identity; |
| SCS.ToTypePtrs[2] = SCS.ToTypePtrs[1] = SCS.ToTypePtrs[0]; |
| } |
| } |
| |
| /// TryContextuallyConvertToObjCPointer - Attempt to contextually |
| /// convert the expression From to an Objective-C pointer type. |
| static ImplicitConversionSequence |
| TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) { |
| // Do an implicit conversion to 'id'. |
| QualType Ty = S.Context.getObjCIdType(); |
| ImplicitConversionSequence ICS |
| = TryImplicitConversion(S, From, Ty, |
| // FIXME: Are these flags correct? |
| /*SuppressUserConversions=*/false, |
| /*AllowExplicit=*/true, |
| /*InOverloadResolution=*/false, |
| /*CStyle=*/false, |
| /*AllowObjCWritebackConversion=*/false); |
| |
| // Strip off any final conversions to 'id'. |
| switch (ICS.getKind()) { |
| case ImplicitConversionSequence::BadConversion: |
| case ImplicitConversionSequence::AmbiguousConversion: |
| case ImplicitConversionSequence::EllipsisConversion: |
| break; |
| |
| case ImplicitConversionSequence::UserDefinedConversion: |
| dropPointerConversion(ICS.UserDefined.After); |
| break; |
| |
| case ImplicitConversionSequence::StandardConversion: |
| dropPointerConversion(ICS.Standard); |
| break; |
| } |
| |
| return ICS; |
| } |
| |
| /// PerformContextuallyConvertToObjCPointer - Perform a contextual |
| /// conversion of the expression From to an Objective-C pointer type. |
| ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) { |
| if (checkPlaceholderForOverload(*this, From)) |
| return ExprError(); |
| |
| QualType Ty = Context.getObjCIdType(); |
| ImplicitConversionSequence ICS = |
| TryContextuallyConvertToObjCPointer(*this, From); |
| if (!ICS.isBad()) |
| return PerformImplicitConversion(From, Ty, ICS, AA_Converting); |
| return ExprError(); |
| } |
| |
| /// \brief Attempt to convert the given expression to an integral or |
| /// enumeration type. |
| /// |
| /// This routine will attempt to convert an expression of class type to an |
| /// integral or enumeration type, if that class type only has a single |
| /// conversion to an integral or enumeration type. |
| /// |
| /// \param Loc The source location of the construct that requires the |
| /// conversion. |
| /// |
| /// \param FromE The expression we're converting from. |
| /// |
| /// \param NotIntDiag The diagnostic to be emitted if the expression does not |
| /// have integral or enumeration type. |
| /// |
| /// \param IncompleteDiag The diagnostic to be emitted if the expression has |
| /// incomplete class type. |
| /// |
| /// \param ExplicitConvDiag The diagnostic to be emitted if we're calling an |
| /// explicit conversion function (because no implicit conversion functions |
| /// were available). This is a recovery mode. |
| /// |
| /// \param ExplicitConvNote The note to be emitted with \p ExplicitConvDiag, |
| /// showing which conversion was picked. |
| /// |
| /// \param AmbigDiag The diagnostic to be emitted if there is more than one |
| /// conversion function that could convert to integral or enumeration type. |
| /// |
| /// \param AmbigNote The note to be emitted with \p AmbigDiag for each |
| /// usable conversion function. |
| /// |
| /// \param ConvDiag The diagnostic to be emitted if we are calling a conversion |
| /// function, which may be an extension in this case. |
| /// |
| /// \returns The expression, converted to an integral or enumeration type if |
| /// successful. |
| ExprResult |
| Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From, |
| const PartialDiagnostic &NotIntDiag, |
| const PartialDiagnostic &IncompleteDiag, |
| const PartialDiagnostic &ExplicitConvDiag, |
| const PartialDiagnostic &ExplicitConvNote, |
| const PartialDiagnostic &AmbigDiag, |
| const PartialDiagnostic &AmbigNote, |
| const PartialDiagnostic &ConvDiag) { |
| // We can't perform any more checking for type-dependent expressions. |
| if (From->isTypeDependent()) |
| return Owned(From); |
| |
| // If the expression already has integral or enumeration type, we're golden. |
| QualType T = From->getType(); |
| if (T->isIntegralOrEnumerationType()) |
| return Owned(From); |
| |
| // FIXME: Check for missing '()' if T is a function type? |
| |
| // If we don't have a class type in C++, there's no way we can get an |
| // expression of integral or enumeration type. |
| const RecordType *RecordTy = T->getAs<RecordType>(); |
| if (!RecordTy || !getLangOptions().CPlusPlus) { |
| Diag(Loc, NotIntDiag) |
| << T << From->getSourceRange(); |
| return Owned(From); |
| } |
| |
| // We must have a complete class type. |
| if (RequireCompleteType(Loc, T, IncompleteDiag)) |
| return Owned(From); |
| |
| // Look for a conversion to an integral or enumeration type. |
| UnresolvedSet<4> ViableConversions; |
| UnresolvedSet<4> ExplicitConversions; |
| const UnresolvedSetImpl *Conversions |
| = cast<CXXRecordDecl>(RecordTy->getDecl())->getVisibleConversionFunctions(); |
| |
| bool HadMultipleCandidates = (Conversions->size() > 1); |
| |
| for (UnresolvedSetImpl::iterator I = Conversions->begin(), |
| E = Conversions->end(); |
| I != E; |
| ++I) { |
| if (CXXConversionDecl *Conversion |
| = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) |
| if (Conversion->getConversionType().getNonReferenceType() |
| ->isIntegralOrEnumerationType()) { |
| if (Conversion->isExplicit()) |
| ExplicitConversions.addDecl(I.getDecl(), I.getAccess()); |
| else |
| ViableConversions.addDecl(I.getDecl(), I.getAccess()); |
| } |
| } |
| |
| switch (ViableConversions.size()) { |
| case 0: |
| if (ExplicitConversions.size() == 1) { |
| DeclAccessPair Found = ExplicitConversions[0]; |
| CXXConversionDecl *Conversion |
| = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); |
| |
| // The user probably meant to invoke the given explicit |
| // conversion; use it. |
| QualType ConvTy |
| = Conversion->getConversionType().getNonReferenceType(); |
| std::string TypeStr; |
| ConvTy.getAsStringInternal(TypeStr, getPrintingPolicy()); |
| |
| Diag(Loc, ExplicitConvDiag) |
| << T << ConvTy |
| << FixItHint::CreateInsertion(From->getLocStart(), |
| "static_cast<" + TypeStr + ">(") |
| << FixItHint::CreateInsertion(PP.getLocForEndOfToken(From->getLocEnd()), |
| ")"); |
| Diag(Conversion->getLocation(), ExplicitConvNote) |
| << ConvTy->isEnumeralType() << ConvTy; |
| |
| // If we aren't in a SFINAE context, build a call to the |
| // explicit conversion function. |
| if (isSFINAEContext()) |
| return ExprError(); |
| |
| CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); |
| ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion, |
| HadMultipleCandidates); |
| if (Result.isInvalid()) |
| return ExprError(); |
| // Record usage of conversion in an implicit cast. |
| From = ImplicitCastExpr::Create(Context, Result.get()->getType(), |
| CK_UserDefinedConversion, |
| Result.get(), 0, |
| Result.get()->getValueKind()); |
| } |
| |
| // We'll complain below about a non-integral condition type. |
| break; |
| |
| case 1: { |
| // Apply this conversion. |
| DeclAccessPair Found = ViableConversions[0]; |
| CheckMemberOperatorAccess(From->getExprLoc(), From, 0, Found); |
| |
| CXXConversionDecl *Conversion |
| = cast<CXXConversionDecl>(Found->getUnderlyingDecl()); |
| QualType ConvTy |
| = Conversion->getConversionType().getNonReferenceType(); |
| if (ConvDiag.getDiagID()) { |
| if (isSFINAEContext()) |
| return ExprError(); |
| |
| Diag(Loc, ConvDiag) |
| << T << ConvTy->isEnumeralType() << ConvTy << From->getSourceRange(); |
| } |
| |
| ExprResult Result = BuildCXXMemberCallExpr(From, Found, Conversion, |
| HadMultipleCandidates); |
| if (Result.isInvalid()) |
| return ExprError(); |
| // Record usage of conversion in an implicit cast. |
| From = ImplicitCastExpr::Create(Context, Result.get()->getType(), |
| CK_UserDefinedConversion, |
| Result.get(), 0, |
| Result.get()->getValueKind()); |
| break; |
| } |
| |
| default: |
| Diag(Loc, AmbigDiag) |
| << T << From->getSourceRange(); |
| for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) { |
| CXXConversionDecl *Conv |
| = cast<CXXConversionDecl>(ViableConversions[I]->getUnderlyingDecl()); |
| QualType ConvTy = Conv->getConversionType().getNonReferenceType(); |
| Diag(Conv->getLocation(), AmbigNote) |
| << ConvTy->isEnumeralType() << ConvTy; |
| } |
| return Owned(From); |
| } |
| |
| if (!From->getType()->isIntegralOrEnumerationType()) |
| Diag(Loc, NotIntDiag) |
| << From->getType() << From->getSourceRange(); |
| |
| return Owned(From); |
| } |
| |
| /// AddOverloadCandidate - Adds the given function to the set of |
| /// candidate functions, using the given function call arguments. If |
| /// @p SuppressUserConversions, then don't allow user-defined |
| /// conversions via constructors or conversion operators. |
| /// |
| /// \para PartialOverloading true if we are performing "partial" overloading |
| /// based on an incomplete set of function arguments. This feature is used by |
| /// code completion. |
| void |
| Sema::AddOverloadCandidate(FunctionDecl *Function, |
| DeclAccessPair FoundDecl, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet, |
| bool SuppressUserConversions, |
| bool PartialOverloading) { |
| const FunctionProtoType* Proto |
| = dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>()); |
| assert(Proto && "Functions without a prototype cannot be overloaded"); |
| assert(!Function->getDescribedFunctionTemplate() && |
| "Use AddTemplateOverloadCandidate for function templates"); |
| |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { |
| if (!isa<CXXConstructorDecl>(Method)) { |
| // If we get here, it's because we're calling a member function |
| // that is named without a member access expression (e.g., |
| // "this->f") that was either written explicitly or created |
| // implicitly. This can happen with a qualified call to a member |
| // function, e.g., X::f(). We use an empty type for the implied |
| // object argument (C++ [over.call.func]p3), and the acting context |
| // is irrelevant. |
| AddMethodCandidate(Method, FoundDecl, Method->getParent(), |
| QualType(), Expr::Classification::makeSimpleLValue(), |
| Args, NumArgs, CandidateSet, |
| SuppressUserConversions); |
| return; |
| } |
| // We treat a constructor like a non-member function, since its object |
| // argument doesn't participate in overload resolution. |
| } |
| |
| if (!CandidateSet.isNewCandidate(Function)) |
| return; |
| |
| // Overload resolution is always an unevaluated context. |
| EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); |
| |
| if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Function)){ |
| // C++ [class.copy]p3: |
| // A member function template is never instantiated to perform the copy |
| // of a class object to an object of its class type. |
| QualType ClassType = Context.getTypeDeclType(Constructor->getParent()); |
| if (NumArgs == 1 && |
| Constructor->isSpecializationCopyingObject() && |
| (Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) || |
| IsDerivedFrom(Args[0]->getType(), ClassType))) |
| return; |
| } |
| |
| // Add this candidate |
| OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs); |
| Candidate.FoundDecl = FoundDecl; |
| Candidate.Function = Function; |
| Candidate.Viable = true; |
| Candidate.IsSurrogate = false; |
| Candidate.IgnoreObjectArgument = false; |
| Candidate.ExplicitCallArguments = NumArgs; |
| |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| |
| // (C++ 13.3.2p2): A candidate function having fewer than m |
| // parameters is viable only if it has an ellipsis in its parameter |
| // list (8.3.5). |
| if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto && |
| !Proto->isVariadic()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_too_many_arguments; |
| return; |
| } |
| |
| // (C++ 13.3.2p2): A candidate function having more than m parameters |
| // is viable only if the (m+1)st parameter has a default argument |
| // (8.3.6). For the purposes of overload resolution, the |
| // parameter list is truncated on the right, so that there are |
| // exactly m parameters. |
| unsigned MinRequiredArgs = Function->getMinRequiredArguments(); |
| if (NumArgs < MinRequiredArgs && !PartialOverloading) { |
| // Not enough arguments. |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_too_few_arguments; |
| return; |
| } |
| |
| // (CUDA B.1): Check for invalid calls between targets. |
| if (getLangOptions().CUDA) |
| if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext)) |
| if (CheckCUDATarget(Caller, Function)) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_target; |
| return; |
| } |
| |
| // Determine the implicit conversion sequences for each of the |
| // arguments. |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { |
| if (ArgIdx < NumArgsInProto) { |
| // (C++ 13.3.2p3): for F to be a viable function, there shall |
| // exist for each argument an implicit conversion sequence |
| // (13.3.3.1) that converts that argument to the corresponding |
| // parameter of F. |
| QualType ParamType = Proto->getArgType(ArgIdx); |
| Candidate.Conversions[ArgIdx] |
| = TryCopyInitialization(*this, Args[ArgIdx], ParamType, |
| SuppressUserConversions, |
| /*InOverloadResolution=*/true, |
| /*AllowObjCWritebackConversion=*/ |
| getLangOptions().ObjCAutoRefCount); |
| if (Candidate.Conversions[ArgIdx].isBad()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_conversion; |
| break; |
| } |
| } else { |
| // (C++ 13.3.2p2): For the purposes of overload resolution, any |
| // argument for which there is no corresponding parameter is |
| // considered to ""match the ellipsis" (C+ 13.3.3.1.3). |
| Candidate.Conversions[ArgIdx].setEllipsis(); |
| } |
| } |
| } |
| |
| /// \brief Add all of the function declarations in the given function set to |
| /// the overload canddiate set. |
| void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet, |
| bool SuppressUserConversions) { |
| for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) { |
| NamedDecl *D = F.getDecl()->getUnderlyingDecl(); |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) |
| AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(), |
| cast<CXXMethodDecl>(FD)->getParent(), |
| Args[0]->getType(), Args[0]->Classify(Context), |
| Args + 1, NumArgs - 1, |
| CandidateSet, SuppressUserConversions); |
| else |
| AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet, |
| SuppressUserConversions); |
| } else { |
| FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D); |
| if (isa<CXXMethodDecl>(FunTmpl->getTemplatedDecl()) && |
| !cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic()) |
| AddMethodTemplateCandidate(FunTmpl, F.getPair(), |
| cast<CXXRecordDecl>(FunTmpl->getDeclContext()), |
| /*FIXME: explicit args */ 0, |
| Args[0]->getType(), |
| Args[0]->Classify(Context), |
| Args + 1, NumArgs - 1, |
| CandidateSet, |
| SuppressUserConversions); |
| else |
| AddTemplateOverloadCandidate(FunTmpl, F.getPair(), |
| /*FIXME: explicit args */ 0, |
| Args, NumArgs, CandidateSet, |
| SuppressUserConversions); |
| } |
| } |
| } |
| |
| /// AddMethodCandidate - Adds a named decl (which is some kind of |
| /// method) as a method candidate to the given overload set. |
| void Sema::AddMethodCandidate(DeclAccessPair FoundDecl, |
| QualType ObjectType, |
| Expr::Classification ObjectClassification, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet, |
| bool SuppressUserConversions) { |
| NamedDecl *Decl = FoundDecl.getDecl(); |
| CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(Decl->getDeclContext()); |
| |
| if (isa<UsingShadowDecl>(Decl)) |
| Decl = cast<UsingShadowDecl>(Decl)->getTargetDecl(); |
| |
| if (FunctionTemplateDecl *TD = dyn_cast<FunctionTemplateDecl>(Decl)) { |
| assert(isa<CXXMethodDecl>(TD->getTemplatedDecl()) && |
| "Expected a member function template"); |
| AddMethodTemplateCandidate(TD, FoundDecl, ActingContext, |
| /*ExplicitArgs*/ 0, |
| ObjectType, ObjectClassification, Args, NumArgs, |
| CandidateSet, |
| SuppressUserConversions); |
| } else { |
| AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext, |
| ObjectType, ObjectClassification, Args, NumArgs, |
| CandidateSet, SuppressUserConversions); |
| } |
| } |
| |
| /// AddMethodCandidate - Adds the given C++ member function to the set |
| /// of candidate functions, using the given function call arguments |
| /// and the object argument (@c Object). For example, in a call |
| /// @c o.f(a1,a2), @c Object will contain @c o and @c Args will contain |
| /// both @c a1 and @c a2. If @p SuppressUserConversions, then don't |
| /// allow user-defined conversions via constructors or conversion |
| /// operators. |
| void |
| Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl, |
| CXXRecordDecl *ActingContext, QualType ObjectType, |
| Expr::Classification ObjectClassification, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet, |
| bool SuppressUserConversions) { |
| const FunctionProtoType* Proto |
| = dyn_cast<FunctionProtoType>(Method->getType()->getAs<FunctionType>()); |
| assert(Proto && "Methods without a prototype cannot be overloaded"); |
| assert(!isa<CXXConstructorDecl>(Method) && |
| "Use AddOverloadCandidate for constructors"); |
| |
| if (!CandidateSet.isNewCandidate(Method)) |
| return; |
| |
| // Overload resolution is always an unevaluated context. |
| EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); |
| |
| // Add this candidate |
| OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs + 1); |
| Candidate.FoundDecl = FoundDecl; |
| Candidate.Function = Method; |
| Candidate.IsSurrogate = false; |
| Candidate.IgnoreObjectArgument = false; |
| Candidate.ExplicitCallArguments = NumArgs; |
| |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| |
| // (C++ 13.3.2p2): A candidate function having fewer than m |
| // parameters is viable only if it has an ellipsis in its parameter |
| // list (8.3.5). |
| if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_too_many_arguments; |
| return; |
| } |
| |
| // (C++ 13.3.2p2): A candidate function having more than m parameters |
| // is viable only if the (m+1)st parameter has a default argument |
| // (8.3.6). For the purposes of overload resolution, the |
| // parameter list is truncated on the right, so that there are |
| // exactly m parameters. |
| unsigned MinRequiredArgs = Method->getMinRequiredArguments(); |
| if (NumArgs < MinRequiredArgs) { |
| // Not enough arguments. |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_too_few_arguments; |
| return; |
| } |
| |
| Candidate.Viable = true; |
| |
| if (Method->isStatic() || ObjectType.isNull()) |
| // The implicit object argument is ignored. |
| Candidate.IgnoreObjectArgument = true; |
| else { |
| // Determine the implicit conversion sequence for the object |
| // parameter. |
| Candidate.Conversions[0] |
| = TryObjectArgumentInitialization(*this, ObjectType, ObjectClassification, |
| Method, ActingContext); |
| if (Candidate.Conversions[0].isBad()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_conversion; |
| return; |
| } |
| } |
| |
| // Determine the implicit conversion sequences for each of the |
| // arguments. |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { |
| if (ArgIdx < NumArgsInProto) { |
| // (C++ 13.3.2p3): for F to be a viable function, there shall |
| // exist for each argument an implicit conversion sequence |
| // (13.3.3.1) that converts that argument to the corresponding |
| // parameter of F. |
| QualType ParamType = Proto->getArgType(ArgIdx); |
| Candidate.Conversions[ArgIdx + 1] |
| = TryCopyInitialization(*this, Args[ArgIdx], ParamType, |
| SuppressUserConversions, |
| /*InOverloadResolution=*/true, |
| /*AllowObjCWritebackConversion=*/ |
| getLangOptions().ObjCAutoRefCount); |
| if (Candidate.Conversions[ArgIdx + 1].isBad()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_conversion; |
| break; |
| } |
| } else { |
| // (C++ 13.3.2p2): For the purposes of overload resolution, any |
| // argument for which there is no corresponding parameter is |
| // considered to ""match the ellipsis" (C+ 13.3.3.1.3). |
| Candidate.Conversions[ArgIdx + 1].setEllipsis(); |
| } |
| } |
| } |
| |
| /// \brief Add a C++ member function template as a candidate to the candidate |
| /// set, using template argument deduction to produce an appropriate member |
| /// function template specialization. |
| void |
| Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl, |
| DeclAccessPair FoundDecl, |
| CXXRecordDecl *ActingContext, |
| TemplateArgumentListInfo *ExplicitTemplateArgs, |
| QualType ObjectType, |
| Expr::Classification ObjectClassification, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet, |
| bool SuppressUserConversions) { |
| if (!CandidateSet.isNewCandidate(MethodTmpl)) |
| return; |
| |
| // C++ [over.match.funcs]p7: |
| // In each case where a candidate is a function template, candidate |
| // function template specializations are generated using template argument |
| // deduction (14.8.3, 14.8.2). Those candidates are then handled as |
| // candidate functions in the usual way.113) A given name can refer to one |
| // or more function templates and also to a set of overloaded non-template |
| // functions. In such a case, the candidate functions generated from each |
| // function template are combined with the set of non-template candidate |
| // functions. |
| TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); |
| FunctionDecl *Specialization = 0; |
| if (TemplateDeductionResult Result |
| = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, |
| Args, NumArgs, Specialization, Info)) { |
| OverloadCandidate &Candidate = CandidateSet.addCandidate(); |
| Candidate.FoundDecl = FoundDecl; |
| Candidate.Function = MethodTmpl->getTemplatedDecl(); |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_deduction; |
| Candidate.IsSurrogate = false; |
| Candidate.IgnoreObjectArgument = false; |
| Candidate.ExplicitCallArguments = NumArgs; |
| Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, |
| Info); |
| return; |
| } |
| |
| // Add the function template specialization produced by template argument |
| // deduction as a candidate. |
| assert(Specialization && "Missing member function template specialization?"); |
| assert(isa<CXXMethodDecl>(Specialization) && |
| "Specialization is not a member function?"); |
| AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl, |
| ActingContext, ObjectType, ObjectClassification, |
| Args, NumArgs, CandidateSet, SuppressUserConversions); |
| } |
| |
| /// \brief Add a C++ function template specialization as a candidate |
| /// in the candidate set, using template argument deduction to produce |
| /// an appropriate function template specialization. |
| void |
| Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate, |
| DeclAccessPair FoundDecl, |
| TemplateArgumentListInfo *ExplicitTemplateArgs, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet, |
| bool SuppressUserConversions) { |
| if (!CandidateSet.isNewCandidate(FunctionTemplate)) |
| return; |
| |
| // C++ [over.match.funcs]p7: |
| // In each case where a candidate is a function template, candidate |
| // function template specializations are generated using template argument |
| // deduction (14.8.3, 14.8.2). Those candidates are then handled as |
| // candidate functions in the usual way.113) A given name can refer to one |
| // or more function templates and also to a set of overloaded non-template |
| // functions. In such a case, the candidate functions generated from each |
| // function template are combined with the set of non-template candidate |
| // functions. |
| TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); |
| FunctionDecl *Specialization = 0; |
| if (TemplateDeductionResult Result |
| = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, |
| Args, NumArgs, Specialization, Info)) { |
| OverloadCandidate &Candidate = CandidateSet.addCandidate(); |
| Candidate.FoundDecl = FoundDecl; |
| Candidate.Function = FunctionTemplate->getTemplatedDecl(); |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_deduction; |
| Candidate.IsSurrogate = false; |
| Candidate.IgnoreObjectArgument = false; |
| Candidate.ExplicitCallArguments = NumArgs; |
| Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, |
| Info); |
| return; |
| } |
| |
| // Add the function template specialization produced by template argument |
| // deduction as a candidate. |
| assert(Specialization && "Missing function template specialization?"); |
| AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet, |
| SuppressUserConversions); |
| } |
| |
| /// AddConversionCandidate - Add a C++ conversion function as a |
| /// candidate in the candidate set (C++ [over.match.conv], |
| /// C++ [over.match.copy]). From is the expression we're converting from, |
| /// and ToType is the type that we're eventually trying to convert to |
| /// (which may or may not be the same type as the type that the |
| /// conversion function produces). |
| void |
| Sema::AddConversionCandidate(CXXConversionDecl *Conversion, |
| DeclAccessPair FoundDecl, |
| CXXRecordDecl *ActingContext, |
| Expr *From, QualType ToType, |
| OverloadCandidateSet& CandidateSet) { |
| assert(!Conversion->getDescribedFunctionTemplate() && |
| "Conversion function templates use AddTemplateConversionCandidate"); |
| QualType ConvType = Conversion->getConversionType().getNonReferenceType(); |
| if (!CandidateSet.isNewCandidate(Conversion)) |
| return; |
| |
| // Overload resolution is always an unevaluated context. |
| EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); |
| |
| // Add this candidate |
| OverloadCandidate &Candidate = CandidateSet.addCandidate(1); |
| Candidate.FoundDecl = FoundDecl; |
| Candidate.Function = Conversion; |
| Candidate.IsSurrogate = false; |
| Candidate.IgnoreObjectArgument = false; |
| Candidate.FinalConversion.setAsIdentityConversion(); |
| Candidate.FinalConversion.setFromType(ConvType); |
| Candidate.FinalConversion.setAllToTypes(ToType); |
| Candidate.Viable = true; |
| Candidate.ExplicitCallArguments = 1; |
| |
| // C++ [over.match.funcs]p4: |
| // For conversion functions, the function is considered to be a member of |
| // the class of the implicit implied object argument for the purpose of |
| // defining the type of the implicit object parameter. |
| // |
| // Determine the implicit conversion sequence for the implicit |
| // object parameter. |
| QualType ImplicitParamType = From->getType(); |
| if (const PointerType *FromPtrType = ImplicitParamType->getAs<PointerType>()) |
| ImplicitParamType = FromPtrType->getPointeeType(); |
| CXXRecordDecl *ConversionContext |
| = cast<CXXRecordDecl>(ImplicitParamType->getAs<RecordType>()->getDecl()); |
| |
| Candidate.Conversions[0] |
| = TryObjectArgumentInitialization(*this, From->getType(), |
| From->Classify(Context), |
| Conversion, ConversionContext); |
| |
| if (Candidate.Conversions[0].isBad()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_conversion; |
| return; |
| } |
| |
| // We won't go through a user-define type conversion function to convert a |
| // derived to base as such conversions are given Conversion Rank. They only |
| // go through a copy constructor. 13.3.3.1.2-p4 [over.ics.user] |
| QualType FromCanon |
| = Context.getCanonicalType(From->getType().getUnqualifiedType()); |
| QualType ToCanon = Context.getCanonicalType(ToType).getUnqualifiedType(); |
| if (FromCanon == ToCanon || IsDerivedFrom(FromCanon, ToCanon)) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_trivial_conversion; |
| return; |
| } |
| |
| // To determine what the conversion from the result of calling the |
| // conversion function to the type we're eventually trying to |
| // convert to (ToType), we need to synthesize a call to the |
| // conversion function and attempt copy initialization from it. This |
| // makes sure that we get the right semantics with respect to |
| // lvalues/rvalues and the type. Fortunately, we can allocate this |
| // call on the stack and we don't need its arguments to be |
| // well-formed. |
| DeclRefExpr ConversionRef(Conversion, Conversion->getType(), |
| VK_LValue, From->getLocStart()); |
| ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack, |
| Context.getPointerType(Conversion->getType()), |
| CK_FunctionToPointerDecay, |
| &ConversionRef, VK_RValue); |
| |
| QualType ConversionType = Conversion->getConversionType(); |
| if (RequireCompleteType(From->getLocStart(), ConversionType, 0)) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_final_conversion; |
| return; |
| } |
| |
| ExprValueKind VK = Expr::getValueKindForType(ConversionType); |
| |
| // Note that it is safe to allocate CallExpr on the stack here because |
| // there are 0 arguments (i.e., nothing is allocated using ASTContext's |
| // allocator). |
| QualType CallResultType = ConversionType.getNonLValueExprType(Context); |
| CallExpr Call(Context, &ConversionFn, 0, 0, CallResultType, VK, |
| From->getLocStart()); |
| ImplicitConversionSequence ICS = |
| TryCopyInitialization(*this, &Call, ToType, |
| /*SuppressUserConversions=*/true, |
| /*InOverloadResolution=*/false, |
| /*AllowObjCWritebackConversion=*/false); |
| |
| switch (ICS.getKind()) { |
| case ImplicitConversionSequence::StandardConversion: |
| Candidate.FinalConversion = ICS.Standard; |
| |
| // C++ [over.ics.user]p3: |
| // If the user-defined conversion is specified by a specialization of a |
| // conversion function template, the second standard conversion sequence |
| // shall have exact match rank. |
| if (Conversion->getPrimaryTemplate() && |
| GetConversionRank(ICS.Standard.Second) != ICR_Exact_Match) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_final_conversion_not_exact; |
| } |
| |
| // C++0x [dcl.init.ref]p5: |
| // In the second case, if the reference is an rvalue reference and |
| // the second standard conversion sequence of the user-defined |
| // conversion sequence includes an lvalue-to-rvalue conversion, the |
| // program is ill-formed. |
| if (ToType->isRValueReferenceType() && |
| ICS.Standard.First == ICK_Lvalue_To_Rvalue) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_final_conversion; |
| } |
| break; |
| |
| case ImplicitConversionSequence::BadConversion: |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_final_conversion; |
| break; |
| |
| default: |
| llvm_unreachable( |
| "Can only end up with a standard conversion sequence or failure"); |
| } |
| } |
| |
| /// \brief Adds a conversion function template specialization |
| /// candidate to the overload set, using template argument deduction |
| /// to deduce the template arguments of the conversion function |
| /// template from the type that we are converting to (C++ |
| /// [temp.deduct.conv]). |
| void |
| Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate, |
| DeclAccessPair FoundDecl, |
| CXXRecordDecl *ActingDC, |
| Expr *From, QualType ToType, |
| OverloadCandidateSet &CandidateSet) { |
| assert(isa<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl()) && |
| "Only conversion function templates permitted here"); |
| |
| if (!CandidateSet.isNewCandidate(FunctionTemplate)) |
| return; |
| |
| TemplateDeductionInfo Info(Context, CandidateSet.getLocation()); |
| CXXConversionDecl *Specialization = 0; |
| if (TemplateDeductionResult Result |
| = DeduceTemplateArguments(FunctionTemplate, ToType, |
| Specialization, Info)) { |
| OverloadCandidate &Candidate = CandidateSet.addCandidate(); |
| Candidate.FoundDecl = FoundDecl; |
| Candidate.Function = FunctionTemplate->getTemplatedDecl(); |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_deduction; |
| Candidate.IsSurrogate = false; |
| Candidate.IgnoreObjectArgument = false; |
| Candidate.ExplicitCallArguments = 1; |
| Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result, |
| Info); |
| return; |
| } |
| |
| // Add the conversion function template specialization produced by |
| // template argument deduction as a candidate. |
| assert(Specialization && "Missing function template specialization?"); |
| AddConversionCandidate(Specialization, FoundDecl, ActingDC, From, ToType, |
| CandidateSet); |
| } |
| |
| /// AddSurrogateCandidate - Adds a "surrogate" candidate function that |
| /// converts the given @c Object to a function pointer via the |
| /// conversion function @c Conversion, and then attempts to call it |
| /// with the given arguments (C++ [over.call.object]p2-4). Proto is |
| /// the type of function that we'll eventually be calling. |
| void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion, |
| DeclAccessPair FoundDecl, |
| CXXRecordDecl *ActingContext, |
| const FunctionProtoType *Proto, |
| Expr *Object, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet) { |
| if (!CandidateSet.isNewCandidate(Conversion)) |
| return; |
| |
| // Overload resolution is always an unevaluated context. |
| EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); |
| |
| OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs + 1); |
| Candidate.FoundDecl = FoundDecl; |
| Candidate.Function = 0; |
| Candidate.Surrogate = Conversion; |
| Candidate.Viable = true; |
| Candidate.IsSurrogate = true; |
| Candidate.IgnoreObjectArgument = false; |
| Candidate.ExplicitCallArguments = NumArgs; |
| |
| // Determine the implicit conversion sequence for the implicit |
| // object parameter. |
| ImplicitConversionSequence ObjectInit |
| = TryObjectArgumentInitialization(*this, Object->getType(), |
| Object->Classify(Context), |
| Conversion, ActingContext); |
| if (ObjectInit.isBad()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_conversion; |
| Candidate.Conversions[0] = ObjectInit; |
| return; |
| } |
| |
| // The first conversion is actually a user-defined conversion whose |
| // first conversion is ObjectInit's standard conversion (which is |
| // effectively a reference binding). Record it as such. |
| Candidate.Conversions[0].setUserDefined(); |
| Candidate.Conversions[0].UserDefined.Before = ObjectInit.Standard; |
| Candidate.Conversions[0].UserDefined.EllipsisConversion = false; |
| Candidate.Conversions[0].UserDefined.HadMultipleCandidates = false; |
| Candidate.Conversions[0].UserDefined.ConversionFunction = Conversion; |
| Candidate.Conversions[0].UserDefined.FoundConversionFunction = FoundDecl; |
| Candidate.Conversions[0].UserDefined.After |
| = Candidate.Conversions[0].UserDefined.Before; |
| Candidate.Conversions[0].UserDefined.After.setAsIdentityConversion(); |
| |
| // Find the |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| |
| // (C++ 13.3.2p2): A candidate function having fewer than m |
| // parameters is viable only if it has an ellipsis in its parameter |
| // list (8.3.5). |
| if (NumArgs > NumArgsInProto && !Proto->isVariadic()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_too_many_arguments; |
| return; |
| } |
| |
| // Function types don't have any default arguments, so just check if |
| // we have enough arguments. |
| if (NumArgs < NumArgsInProto) { |
| // Not enough arguments. |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_too_few_arguments; |
| return; |
| } |
| |
| // Determine the implicit conversion sequences for each of the |
| // arguments. |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { |
| if (ArgIdx < NumArgsInProto) { |
| // (C++ 13.3.2p3): for F to be a viable function, there shall |
| // exist for each argument an implicit conversion sequence |
| // (13.3.3.1) that converts that argument to the corresponding |
| // parameter of F. |
| QualType ParamType = Proto->getArgType(ArgIdx); |
| Candidate.Conversions[ArgIdx + 1] |
| = TryCopyInitialization(*this, Args[ArgIdx], ParamType, |
| /*SuppressUserConversions=*/false, |
| /*InOverloadResolution=*/false, |
| /*AllowObjCWritebackConversion=*/ |
| getLangOptions().ObjCAutoRefCount); |
| if (Candidate.Conversions[ArgIdx + 1].isBad()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_conversion; |
| break; |
| } |
| } else { |
| // (C++ 13.3.2p2): For the purposes of overload resolution, any |
| // argument for which there is no corresponding parameter is |
| // considered to ""match the ellipsis" (C+ 13.3.3.1.3). |
| Candidate.Conversions[ArgIdx + 1].setEllipsis(); |
| } |
| } |
| } |
| |
| /// \brief Add overload candidates for overloaded operators that are |
| /// member functions. |
| /// |
| /// Add the overloaded operator candidates that are member functions |
| /// for the operator Op that was used in an operator expression such |
| /// as "x Op y". , Args/NumArgs provides the operator arguments, and |
| /// CandidateSet will store the added overload candidates. (C++ |
| /// [over.match.oper]). |
| void Sema::AddMemberOperatorCandidates(OverloadedOperatorKind Op, |
| SourceLocation OpLoc, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet, |
| SourceRange OpRange) { |
| DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| |
| // C++ [over.match.oper]p3: |
| // For a unary operator @ with an operand of a type whose |
| // cv-unqualified version is T1, and for a binary operator @ with |
| // a left operand of a type whose cv-unqualified version is T1 and |
| // a right operand of a type whose cv-unqualified version is T2, |
| // three sets of candidate functions, designated member |
| // candidates, non-member candidates and built-in candidates, are |
| // constructed as follows: |
| QualType T1 = Args[0]->getType(); |
| |
| // -- If T1 is a class type, the set of member candidates is the |
| // result of the qualified lookup of T1::operator@ |
| // (13.3.1.1.1); otherwise, the set of member candidates is |
| // empty. |
| if (const RecordType *T1Rec = T1->getAs<RecordType>()) { |
| // Complete the type if it can be completed. Otherwise, we're done. |
| if (RequireCompleteType(OpLoc, T1, PDiag())) |
| return; |
| |
| LookupResult Operators(*this, OpName, OpLoc, LookupOrdinaryName); |
| LookupQualifiedName(Operators, T1Rec->getDecl()); |
| Operators.suppressDiagnostics(); |
| |
| for (LookupResult::iterator Oper = Operators.begin(), |
| OperEnd = Operators.end(); |
| Oper != OperEnd; |
| ++Oper) |
| AddMethodCandidate(Oper.getPair(), Args[0]->getType(), |
| Args[0]->Classify(Context), Args + 1, NumArgs - 1, |
| CandidateSet, |
| /* SuppressUserConversions = */ false); |
| } |
| } |
| |
| /// AddBuiltinCandidate - Add a candidate for a built-in |
| /// operator. ResultTy and ParamTys are the result and parameter types |
| /// of the built-in candidate, respectively. Args and NumArgs are the |
| /// arguments being passed to the candidate. IsAssignmentOperator |
| /// should be true when this built-in candidate is an assignment |
| /// operator. NumContextualBoolArguments is the number of arguments |
| /// (at the beginning of the argument list) that will be contextually |
| /// converted to bool. |
| void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet, |
| bool IsAssignmentOperator, |
| unsigned NumContextualBoolArguments) { |
| // Overload resolution is always an unevaluated context. |
| EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); |
| |
| // Add this candidate |
| OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs); |
| Candidate.FoundDecl = DeclAccessPair::make(0, AS_none); |
| Candidate.Function = 0; |
| Candidate.IsSurrogate = false; |
| Candidate.IgnoreObjectArgument = false; |
| Candidate.BuiltinTypes.ResultTy = ResultTy; |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) |
| Candidate.BuiltinTypes.ParamTypes[ArgIdx] = ParamTys[ArgIdx]; |
| |
| // Determine the implicit conversion sequences for each of the |
| // arguments. |
| Candidate.Viable = true; |
| Candidate.ExplicitCallArguments = NumArgs; |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { |
| // C++ [over.match.oper]p4: |
| // For the built-in assignment operators, conversions of the |
| // left operand are restricted as follows: |
| // -- no temporaries are introduced to hold the left operand, and |
| // -- no user-defined conversions are applied to the left |
| // operand to achieve a type match with the left-most |
| // parameter of a built-in candidate. |
| // |
| // We block these conversions by turning off user-defined |
| // conversions, since that is the only way that initialization of |
| // a reference to a non-class type can occur from something that |
| // is not of the same type. |
| if (ArgIdx < NumContextualBoolArguments) { |
| assert(ParamTys[ArgIdx] == Context.BoolTy && |
| "Contextual conversion to bool requires bool type"); |
| Candidate.Conversions[ArgIdx] |
| = TryContextuallyConvertToBool(*this, Args[ArgIdx]); |
| } else { |
| Candidate.Conversions[ArgIdx] |
| = TryCopyInitialization(*this, Args[ArgIdx], ParamTys[ArgIdx], |
| ArgIdx == 0 && IsAssignmentOperator, |
| /*InOverloadResolution=*/false, |
| /*AllowObjCWritebackConversion=*/ |
| getLangOptions().ObjCAutoRefCount); |
| } |
| if (Candidate.Conversions[ArgIdx].isBad()) { |
| Candidate.Viable = false; |
| Candidate.FailureKind = ovl_fail_bad_conversion; |
| break; |
| } |
| } |
| } |
| |
| /// BuiltinCandidateTypeSet - A set of types that will be used for the |
| /// candidate operator functions for built-in operators (C++ |
| /// [over.built]). The types are separated into pointer types and |
| /// enumeration types. |
| class BuiltinCandidateTypeSet { |
| /// TypeSet - A set of types. |
| typedef llvm::SmallPtrSet<QualType, 8> TypeSet; |
| |
| /// PointerTypes - The set of pointer types that will be used in the |
| /// built-in candidates. |
| TypeSet PointerTypes; |
| |
| /// MemberPointerTypes - The set of member pointer types that will be |
| /// used in the built-in candidates. |
| TypeSet MemberPointerTypes; |
| |
| /// EnumerationTypes - The set of enumeration types that will be |
| /// used in the built-in candidates. |
| TypeSet EnumerationTypes; |
| |
| /// \brief The set of vector types that will be used in the built-in |
| /// candidates. |
| TypeSet VectorTypes; |
| |
| /// \brief A flag indicating non-record types are viable candidates |
| bool HasNonRecordTypes; |
| |
| /// \brief A flag indicating whether either arithmetic or enumeration types |
| /// were present in the candidate set. |
| bool HasArithmeticOrEnumeralTypes; |
| |
| /// \brief A flag indicating whether the nullptr type was present in the |
| /// candidate set. |
| bool HasNullPtrType; |
| |
| /// Sema - The semantic analysis instance where we are building the |
| /// candidate type set. |
| Sema &SemaRef; |
| |
| /// Context - The AST context in which we will build the type sets. |
| ASTContext &Context; |
| |
| bool AddPointerWithMoreQualifiedTypeVariants(QualType Ty, |
| const Qualifiers &VisibleQuals); |
| bool AddMemberPointerWithMoreQualifiedTypeVariants(QualType Ty); |
| |
| public: |
| /// iterator - Iterates through the types that are part of the set. |
| typedef TypeSet::iterator iterator; |
| |
| BuiltinCandidateTypeSet(Sema &SemaRef) |
| : HasNonRecordTypes(false), |
| HasArithmeticOrEnumeralTypes(false), |
| HasNullPtrType(false), |
| SemaRef(SemaRef), |
| Context(SemaRef.Context) { } |
| |
| void AddTypesConvertedFrom(QualType Ty, |
| SourceLocation Loc, |
| bool AllowUserConversions, |
| bool AllowExplicitConversions, |
| const Qualifiers &VisibleTypeConversionsQuals); |
| |
| /// pointer_begin - First pointer type found; |
| iterator pointer_begin() { return PointerTypes.begin(); } |
| |
| /// pointer_end - Past the last pointer type found; |
| iterator pointer_end() { return PointerTypes.end(); } |
| |
| /// member_pointer_begin - First member pointer type found; |
| iterator member_pointer_begin() { return MemberPointerTypes.begin(); } |
| |
| /// member_pointer_end - Past the last member pointer type found; |
| iterator member_pointer_end() { return MemberPointerTypes.end(); } |
| |
| /// enumeration_begin - First enumeration type found; |
| iterator enumeration_begin() { return EnumerationTypes.begin(); } |
| |
| /// enumeration_end - Past the last enumeration type found; |
| iterator enumeration_end() { return EnumerationTypes.end(); } |
| |
| iterator vector_begin() { return VectorTypes.begin(); } |
| iterator vector_end() { return VectorTypes.end(); } |
| |
| bool hasNonRecordTypes() { return HasNonRecordTypes; } |
| bool hasArithmeticOrEnumeralTypes() { return HasArithmeticOrEnumeralTypes; } |
| bool hasNullPtrType() const { return HasNullPtrType; } |
| }; |
| |
| /// AddPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty to |
| /// the set of pointer types along with any more-qualified variants of |
| /// that type. For example, if @p Ty is "int const *", this routine |
| /// will add "int const *", "int const volatile *", "int const |
| /// restrict *", and "int const volatile restrict *" to the set of |
| /// pointer types. Returns true if the add of @p Ty itself succeeded, |
| /// false otherwise. |
| /// |
| /// FIXME: what to do about extended qualifiers? |
| bool |
| BuiltinCandidateTypeSet::AddPointerWithMoreQualifiedTypeVariants(QualType Ty, |
| const Qualifiers &VisibleQuals) { |
| |
| // Insert this type. |
| if (!PointerTypes.insert(Ty)) |
| return false; |
| |
| QualType PointeeTy; |
| const PointerType *PointerTy = Ty->getAs<PointerType>(); |
| bool buildObjCPtr = false; |
| if (!PointerTy) { |
| if (const ObjCObjectPointerType *PTy = Ty->getAs<ObjCObjectPointerType>()) { |
| PointeeTy = PTy->getPointeeType(); |
| buildObjCPtr = true; |
| } |
| else |
| llvm_unreachable("type was not a pointer type!"); |
| } |
| else |
| PointeeTy = PointerTy->getPointeeType(); |
| |
| // Don't add qualified variants of arrays. For one, they're not allowed |
| // (the qualifier would sink to the element type), and for another, the |
| // only overload situation where it matters is subscript or pointer +- int, |
| // and those shouldn't have qualifier variants anyway. |
| if (PointeeTy->isArrayType()) |
| return true; |
| unsigned BaseCVR = PointeeTy.getCVRQualifiers(); |
| if (const ConstantArrayType *Array =Context.getAsConstantArrayType(PointeeTy)) |
| BaseCVR = Array->getElementType().getCVRQualifiers(); |
| bool hasVolatile = VisibleQuals.hasVolatile(); |
| bool hasRestrict = VisibleQuals.hasRestrict(); |
| |
| // Iterate through all strict supersets of BaseCVR. |
| for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { |
| if ((CVR | BaseCVR) != CVR) continue; |
| // Skip over Volatile/Restrict if no Volatile/Restrict found anywhere |
| // in the types. |
| if ((CVR & Qualifiers::Volatile) && !hasVolatile) continue; |
| if ((CVR & Qualifiers::Restrict) && !hasRestrict) continue; |
| QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); |
| if (!buildObjCPtr) |
| PointerTypes.insert(Context.getPointerType(QPointeeTy)); |
| else |
| PointerTypes.insert(Context.getObjCObjectPointerType(QPointeeTy)); |
| } |
| |
| return true; |
| } |
| |
| /// AddMemberPointerWithMoreQualifiedTypeVariants - Add the pointer type @p Ty |
| /// to the set of pointer types along with any more-qualified variants of |
| /// that type. For example, if @p Ty is "int const *", this routine |
| /// will add "int const *", "int const volatile *", "int const |
| /// restrict *", and "int const volatile restrict *" to the set of |
| /// pointer types. Returns true if the add of @p Ty itself succeeded, |
| /// false otherwise. |
| /// |
| /// FIXME: what to do about extended qualifiers? |
| bool |
| BuiltinCandidateTypeSet::AddMemberPointerWithMoreQualifiedTypeVariants( |
| QualType Ty) { |
| // Insert this type. |
| if (!MemberPointerTypes.insert(Ty)) |
| return false; |
| |
| const MemberPointerType *PointerTy = Ty->getAs<MemberPointerType>(); |
| assert(PointerTy && "type was not a member pointer type!"); |
| |
| QualType PointeeTy = PointerTy->getPointeeType(); |
| // Don't add qualified variants of arrays. For one, they're not allowed |
| // (the qualifier would sink to the element type), and for another, the |
| // only overload situation where it matters is subscript or pointer +- int, |
| // and those shouldn't have qualifier variants anyway. |
| if (PointeeTy->isArrayType()) |
| return true; |
| const Type *ClassTy = PointerTy->getClass(); |
| |
| // Iterate through all strict supersets of the pointee type's CVR |
| // qualifiers. |
| unsigned BaseCVR = PointeeTy.getCVRQualifiers(); |
| for (unsigned CVR = BaseCVR+1; CVR <= Qualifiers::CVRMask; ++CVR) { |
| if ((CVR | BaseCVR) != CVR) continue; |
| |
| QualType QPointeeTy = Context.getCVRQualifiedType(PointeeTy, CVR); |
| MemberPointerTypes.insert( |
| Context.getMemberPointerType(QPointeeTy, ClassTy)); |
| } |
| |
| return true; |
| } |
| |
| /// AddTypesConvertedFrom - Add each of the types to which the type @p |
| /// Ty can be implicit converted to the given set of @p Types. We're |
| /// primarily interested in pointer types and enumeration types. We also |
| /// take member pointer types, for the conditional operator. |
| /// AllowUserConversions is true if we should look at the conversion |
| /// functions of a class type, and AllowExplicitConversions if we |
| /// should also include the explicit conversion functions of a class |
| /// type. |
| void |
| BuiltinCandidateTypeSet::AddTypesConvertedFrom(QualType Ty, |
| SourceLocation Loc, |
| bool AllowUserConversions, |
| bool AllowExplicitConversions, |
| const Qualifiers &VisibleQuals) { |
| // Only deal with canonical types. |
| Ty = Context.getCanonicalType(Ty); |
| |
| // Look through reference types; they aren't part of the type of an |
| // expression for the purposes of conversions. |
| if (const ReferenceType *RefTy = Ty->getAs<ReferenceType>()) |
| Ty = RefTy->getPointeeType(); |
| |
| // If we're dealing with an array type, decay to the pointer. |
| if (Ty->isArrayType()) |
| Ty = SemaRef.Context.getArrayDecayedType(Ty); |
| |
| // Otherwise, we don't care about qualifiers on the type. |
| Ty = Ty.getLocalUnqualifiedType(); |
| |
| // Flag if we ever add a non-record type. |
| const RecordType *TyRec = Ty->getAs<RecordType>(); |
| HasNonRecordTypes = HasNonRecordTypes || !TyRec; |
| |
| // Flag if we encounter an arithmetic type. |
| HasArithmeticOrEnumeralTypes = |
| HasArithmeticOrEnumeralTypes || Ty->isArithmeticType(); |
| |
| if (Ty->isObjCIdType() || Ty->isObjCClassType()) |
| PointerTypes.insert(Ty); |
| else if (Ty->getAs<PointerType>() || Ty->getAs<ObjCObjectPointerType>()) { |
| // Insert our type, and its more-qualified variants, into the set |
| // of types. |
| if (!AddPointerWithMoreQualifiedTypeVariants(Ty, VisibleQuals)) |
| return; |
| } else if (Ty->isMemberPointerType()) { |
| // Member pointers are far easier, since the pointee can't be converted. |
| if (!AddMemberPointerWithMoreQualifiedTypeVariants(Ty)) |
| return; |
| } else if (Ty->isEnumeralType()) { |
| HasArithmeticOrEnumeralTypes = true; |
| EnumerationTypes.insert(Ty); |
| } else if (Ty->isVectorType()) { |
| // We treat vector types as arithmetic types in many contexts as an |
| // extension. |
| HasArithmeticOrEnumeralTypes = true; |
| VectorTypes.insert(Ty); |
| } else if (Ty->isNullPtrType()) { |
| HasNullPtrType = true; |
| } else if (AllowUserConversions && TyRec) { |
| // No conversion functions in incomplete types. |
| if (SemaRef.RequireCompleteType(Loc, Ty, 0)) |
| return; |
| |
| CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); |
| const UnresolvedSetImpl *Conversions |
| = ClassDecl->getVisibleConversionFunctions(); |
| for (UnresolvedSetImpl::iterator I = Conversions->begin(), |
| E = Conversions->end(); I != E; ++I) { |
| NamedDecl *D = I.getDecl(); |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| // Skip conversion function templates; they don't tell us anything |
| // about which builtin types we can convert to. |
| if (isa<FunctionTemplateDecl>(D)) |
| continue; |
| |
| CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); |
| if (AllowExplicitConversions || !Conv->isExplicit()) { |
| AddTypesConvertedFrom(Conv->getConversionType(), Loc, false, false, |
| VisibleQuals); |
| } |
| } |
| } |
| } |
| |
| /// \brief Helper function for AddBuiltinOperatorCandidates() that adds |
| /// the volatile- and non-volatile-qualified assignment operators for the |
| /// given type to the candidate set. |
| static void AddBuiltinAssignmentOperatorCandidates(Sema &S, |
| QualType T, |
| Expr **Args, |
| unsigned NumArgs, |
| OverloadCandidateSet &CandidateSet) { |
| QualType ParamTypes[2]; |
| |
| // T& operator=(T&, T) |
| ParamTypes[0] = S.Context.getLValueReferenceType(T); |
| ParamTypes[1] = T; |
| S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, |
| /*IsAssignmentOperator=*/true); |
| |
| if (!S.Context.getCanonicalType(T).isVolatileQualified()) { |
| // volatile T& operator=(volatile T&, T) |
| ParamTypes[0] |
| = S.Context.getLValueReferenceType(S.Context.getVolatileType(T)); |
| ParamTypes[1] = T; |
| S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, |
| /*IsAssignmentOperator=*/true); |
| } |
| } |
| |
| /// CollectVRQualifiers - This routine returns Volatile/Restrict qualifiers, |
| /// if any, found in visible type conversion functions found in ArgExpr's type. |
| static Qualifiers CollectVRQualifiers(ASTContext &Context, Expr* ArgExpr) { |
| Qualifiers VRQuals; |
| const RecordType *TyRec; |
| if (const MemberPointerType *RHSMPType = |
| ArgExpr->getType()->getAs<MemberPointerType>()) |
| TyRec = RHSMPType->getClass()->getAs<RecordType>(); |
| else |
| TyRec = ArgExpr->getType()->getAs<RecordType>(); |
| if (!TyRec) { |
| // Just to be safe, assume the worst case. |
| VRQuals.addVolatile(); |
| VRQuals.addRestrict(); |
| return VRQuals; |
| } |
| |
| CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(TyRec->getDecl()); |
| if (!ClassDecl->hasDefinition()) |
| return VRQuals; |
| |
| const UnresolvedSetImpl *Conversions = |
| ClassDecl->getVisibleConversionFunctions(); |
| |
| for (UnresolvedSetImpl::iterator I = Conversions->begin(), |
| E = Conversions->end(); I != E; ++I) { |
| NamedDecl *D = I.getDecl(); |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| if (CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(D)) { |
| QualType CanTy = Context.getCanonicalType(Conv->getConversionType()); |
| if (const ReferenceType *ResTypeRef = CanTy->getAs<ReferenceType>()) |
| CanTy = ResTypeRef->getPointeeType(); |
| // Need to go down the pointer/mempointer chain and add qualifiers |
| // as see them. |
| bool done = false; |
| while (!done) { |
| if (const PointerType *ResTypePtr = CanTy->getAs<PointerType>()) |
| CanTy = ResTypePtr->getPointeeType(); |
| else if (const MemberPointerType *ResTypeMPtr = |
| CanTy->getAs<MemberPointerType>()) |
| CanTy = ResTypeMPtr->getPointeeType(); |
| else |
| done = true; |
| if (CanTy.isVolatileQualified()) |
| VRQuals.addVolatile(); |
| if (CanTy.isRestrictQualified()) |
| VRQuals.addRestrict(); |
| if (VRQuals.hasRestrict() && VRQuals.hasVolatile()) |
| return VRQuals; |
| } |
| } |
| } |
| return VRQuals; |
| } |
| |
| namespace { |
| |
| /// \brief Helper class to manage the addition of builtin operator overload |
| /// candidates. It provides shared state and utility methods used throughout |
| /// the process, as well as a helper method to add each group of builtin |
| /// operator overloads from the standard to a candidate set. |
| class BuiltinOperatorOverloadBuilder { |
| // Common instance state available to all overload candidate addition methods. |
| Sema &S; |
| Expr **Args; |
| unsigned NumArgs; |
| Qualifiers VisibleTypeConversionsQuals; |
| bool HasArithmeticOrEnumeralCandidateType; |
| SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes; |
| OverloadCandidateSet &CandidateSet; |
| |
| // Define some constants used to index and iterate over the arithemetic types |
| // provided via the getArithmeticType() method below. |
| // The "promoted arithmetic types" are the arithmetic |
| // types are that preserved by promotion (C++ [over.built]p2). |
| static const unsigned FirstIntegralType = 3; |
| static const unsigned LastIntegralType = 18; |
| static const unsigned FirstPromotedIntegralType = 3, |
| LastPromotedIntegralType = 9; |
| static const unsigned FirstPromotedArithmeticType = 0, |
| LastPromotedArithmeticType = 9; |
| static const unsigned NumArithmeticTypes = 18; |
| |
| /// \brief Get the canonical type for a given arithmetic type index. |
| CanQualType getArithmeticType(unsigned index) { |
| assert(index < NumArithmeticTypes); |
| static CanQualType ASTContext::* const |
| ArithmeticTypes[NumArithmeticTypes] = { |
| // Start of promoted types. |
| &ASTContext::FloatTy, |
| &ASTContext::DoubleTy, |
| &ASTContext::LongDoubleTy, |
| |
| // Start of integral types. |
| &ASTContext::IntTy, |
| &ASTContext::LongTy, |
| &ASTContext::LongLongTy, |
| &ASTContext::UnsignedIntTy, |
| &ASTContext::UnsignedLongTy, |
| &ASTContext::UnsignedLongLongTy, |
| // End of promoted types. |
| |
| &ASTContext::BoolTy, |
| &ASTContext::CharTy, |
| &ASTContext::WCharTy, |
| &ASTContext::Char16Ty, |
| &ASTContext::Char32Ty, |
| &ASTContext::SignedCharTy, |
| &ASTContext::ShortTy, |
| &ASTContext::UnsignedCharTy, |
| &ASTContext::UnsignedShortTy, |
| // End of integral types. |
| // FIXME: What about complex? |
| }; |
| return S.Context.*ArithmeticTypes[index]; |
| } |
| |
| /// \brief Gets the canonical type resulting from the usual arithemetic |
| /// converions for the given arithmetic types. |
| CanQualType getUsualArithmeticConversions(unsigned L, unsigned R) { |
| // Accelerator table for performing the usual arithmetic conversions. |
| // The rules are basically: |
| // - if either is floating-point, use the wider floating-point |
| // - if same signedness, use the higher rank |
| // - if same size, use unsigned of the higher rank |
| // - use the larger type |
| // These rules, together with the axiom that higher ranks are |
| // never smaller, are sufficient to precompute all of these results |
| // *except* when dealing with signed types of higher rank. |
| // (we could precompute SLL x UI for all known platforms, but it's |
| // better not to make any assumptions). |
| enum PromotedType { |
| Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL, Dep=-1 |
| }; |
| static PromotedType ConversionsTable[LastPromotedArithmeticType] |
| [LastPromotedArithmeticType] = { |
| /* Flt*/ { Flt, Dbl, LDbl, Flt, Flt, Flt, Flt, Flt, Flt }, |
| /* Dbl*/ { Dbl, Dbl, LDbl, Dbl, Dbl, Dbl, Dbl, Dbl, Dbl }, |
| /*LDbl*/ { LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl, LDbl }, |
| /* SI*/ { Flt, Dbl, LDbl, SI, SL, SLL, UI, UL, ULL }, |
| /* SL*/ { Flt, Dbl, LDbl, SL, SL, SLL, Dep, UL, ULL }, |
| /* SLL*/ { Flt, Dbl, LDbl, SLL, SLL, SLL, Dep, Dep, ULL }, |
| /* UI*/ { Flt, Dbl, LDbl, UI, Dep, Dep, UI, UL, ULL }, |
| /* UL*/ { Flt, Dbl, LDbl, UL, UL, Dep, UL, UL, ULL }, |
| /* ULL*/ { Flt, Dbl, LDbl, ULL, ULL, ULL, ULL, ULL, ULL }, |
| }; |
| |
| assert(L < LastPromotedArithmeticType); |
| assert(R < LastPromotedArithmeticType); |
| int Idx = ConversionsTable[L][R]; |
| |
| // Fast path: the table gives us a concrete answer. |
| if (Idx != Dep) return getArithmeticType(Idx); |
| |
| // Slow path: we need to compare widths. |
| // An invariant is that the signed type has higher rank. |
| CanQualType LT = getArithmeticType(L), |
| RT = getArithmeticType(R); |
| unsigned LW = S.Context.getIntWidth(LT), |
| RW = S.Context.getIntWidth(RT); |
| |
| // If they're different widths, use the signed type. |
| if (LW > RW) return LT; |
| else if (LW < RW) return RT; |
| |
| // Otherwise, use the unsigned type of the signed type's rank. |
| if (L == SL || R == SL) return S.Context.UnsignedLongTy; |
| assert(L == SLL || R == SLL); |
| return S.Context.UnsignedLongLongTy; |
| } |
| |
| /// \brief Helper method to factor out the common pattern of adding overloads |
| /// for '++' and '--' builtin operators. |
| void addPlusPlusMinusMinusStyleOverloads(QualType CandidateTy, |
| bool HasVolatile) { |
| QualType ParamTypes[2] = { |
| S.Context.getLValueReferenceType(CandidateTy), |
| S.Context.IntTy |
| }; |
| |
| // Non-volatile version. |
| if (NumArgs == 1) |
| S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); |
| else |
| S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); |
| |
| // Use a heuristic to reduce number of builtin candidates in the set: |
| // add volatile version only if there are conversions to a volatile type. |
| if (HasVolatile) { |
| ParamTypes[0] = |
| S.Context.getLValueReferenceType( |
| S.Context.getVolatileType(CandidateTy)); |
| if (NumArgs == 1) |
| S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 1, CandidateSet); |
| else |
| S.AddBuiltinCandidate(CandidateTy, ParamTypes, Args, 2, CandidateSet); |
| } |
| } |
| |
| public: |
| BuiltinOperatorOverloadBuilder( |
| Sema &S, Expr **Args, unsigned NumArgs, |
| Qualifiers VisibleTypeConversionsQuals, |
| bool HasArithmeticOrEnumeralCandidateType, |
| SmallVectorImpl<BuiltinCandidateTypeSet> &CandidateTypes, |
| OverloadCandidateSet &CandidateSet) |
| : S(S), Args(Args), NumArgs(NumArgs), |
| VisibleTypeConversionsQuals(VisibleTypeConversionsQuals), |
| HasArithmeticOrEnumeralCandidateType( |
| HasArithmeticOrEnumeralCandidateType), |
| CandidateTypes(CandidateTypes), |
| CandidateSet(CandidateSet) { |
| // Validate some of our static helper constants in debug builds. |
| assert(getArithmeticType(FirstPromotedIntegralType) == S.Context.IntTy && |
| "Invalid first promoted integral type"); |
| assert(getArithmeticType(LastPromotedIntegralType - 1) |
| == S.Context.UnsignedLongLongTy && |
| "Invalid last promoted integral type"); |
| assert(getArithmeticType(FirstPromotedArithmeticType) |
| == S.Context.FloatTy && |
| "Invalid first promoted arithmetic type"); |
| assert(getArithmeticType(LastPromotedArithmeticType - 1) |
| == S.Context.UnsignedLongLongTy && |
| "Invalid last promoted arithmetic type"); |
| } |
| |
| // C++ [over.built]p3: |
| // |
| // For every pair (T, VQ), where T is an arithmetic type, and VQ |
| // is either volatile or empty, there exist candidate operator |
| // functions of the form |
| // |
| // VQ T& operator++(VQ T&); |
| // T operator++(VQ T&, int); |
| // |
| // C++ [over.built]p4: |
| // |
| // For every pair (T, VQ), where T is an arithmetic type other |
| // than bool, and VQ is either volatile or empty, there exist |
| // candidate operator functions of the form |
| // |
| // VQ T& operator--(VQ T&); |
| // T operator--(VQ T&, int); |
| void addPlusPlusMinusMinusArithmeticOverloads(OverloadedOperatorKind Op) { |
| if (!HasArithmeticOrEnumeralCandidateType) |
| return; |
| |
| for (unsigned Arith = (Op == OO_PlusPlus? 0 : 1); |
| Arith < NumArithmeticTypes; ++Arith) { |
| addPlusPlusMinusMinusStyleOverloads( |
| getArithmeticType(Arith), |
| VisibleTypeConversionsQuals.hasVolatile()); |
| } |
| } |
| |
| // C++ [over.built]p5: |
| // |
| // For every pair (T, VQ), where T is a cv-qualified or |
| // cv-unqualified object type, and VQ is either volatile or |
| // empty, there exist candidate operator functions of the form |
| // |
| // T*VQ& operator++(T*VQ&); |
| // T*VQ& operator--(T*VQ&); |
| // T* operator++(T*VQ&, int); |
| // T* operator--(T*VQ&, int); |
| void addPlusPlusMinusMinusPointerOverloads() { |
| for (BuiltinCandidateTypeSet::iterator |
| Ptr = CandidateTypes[0].pointer_begin(), |
| PtrEnd = CandidateTypes[0].pointer_end(); |
| Ptr != PtrEnd; ++Ptr) { |
| // Skip pointer types that aren't pointers to object types. |
| if (!(*Ptr)->getPointeeType()->isObjectType()) |
| continue; |
| |
| addPlusPlusMinusMinusStyleOverloads(*Ptr, |
| (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && |
| VisibleTypeConversionsQuals.hasVolatile())); |
| } |
| } |
| |
| // C++ [over.built]p6: |
| // For every cv-qualified or cv-unqualified object type T, there |
| // exist candidate operator functions of the form |
| // |
| // T& operator*(T*); |
| // |
| // C++ [over.built]p7: |
| // For every function type T that does not have cv-qualifiers or a |
| // ref-qualifier, there exist candidate operator functions of the form |
| // T& operator*(T*); |
| void addUnaryStarPointerOverloads() { |
| for (BuiltinCandidateTypeSet::iterator |
| Ptr = CandidateTypes[0].pointer_begin(), |
| PtrEnd = CandidateTypes[0].pointer_end(); |
| Ptr != PtrEnd; ++Ptr) { |
| QualType ParamTy = *Ptr; |
| QualType PointeeTy = ParamTy->getPointeeType(); |
| if (!PointeeTy->isObjectType() && !PointeeTy->isFunctionType()) |
| continue; |
| |
| if (const FunctionProtoType *Proto =PointeeTy->getAs<FunctionProtoType>()) |
| if (Proto->getTypeQuals() || Proto->getRefQualifier()) |
| continue; |
| |
| S.AddBuiltinCandidate(S.Context.getLValueReferenceType(PointeeTy), |
| &ParamTy, Args, 1, CandidateSet); |
| } |
| } |
| |
| // C++ [over.built]p9: |
| // For every promoted arithmetic type T, there exist candidate |
| // operator functions of the form |
| // |
| // T operator+(T); |
| // T operator-(T); |
| void addUnaryPlusOrMinusArithmeticOverloads() { |
| if (!HasArithmeticOrEnumeralCandidateType) |
| return; |
| |
| for (unsigned Arith = FirstPromotedArithmeticType; |
| Arith < LastPromotedArithmeticType; ++Arith) { |
| QualType ArithTy = getArithmeticType(Arith); |
| S.AddBuiltinCandidate(ArithTy, &ArithTy, Args, 1, CandidateSet); |
| } |
| |
| // Extension: We also add these operators for vector types. |
| for (BuiltinCandidateTypeSet::iterator |
| Vec = CandidateTypes[0].vector_begin(), |
| VecEnd = CandidateTypes[0].vector_end(); |
| Vec != VecEnd; ++Vec) { |
| QualType VecTy = *Vec; |
| S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); |
| } |
| } |
| |
| // C++ [over.built]p8: |
| // For every type T, there exist candidate operator functions of |
| // the form |
| // |
| // T* operator+(T*); |
| void addUnaryPlusPointerOverloads() { |
| for (BuiltinCandidateTypeSet::iterator |
| Ptr = CandidateTypes[0].pointer_begin(), |
| PtrEnd = CandidateTypes[0].pointer_end(); |
| Ptr != PtrEnd; ++Ptr) { |
| QualType ParamTy = *Ptr; |
| S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet); |
| } |
| } |
| |
| // C++ [over.built]p10: |
| // For every promoted integral type T, there exist candidate |
| // operator functions of the form |
| // |
| // T operator~(T); |
| void addUnaryTildePromotedIntegralOverloads() { |
| if (!HasArithmeticOrEnumeralCandidateType) |
| return; |
| |
| for (unsigned Int = FirstPromotedIntegralType; |
| Int < LastPromotedIntegralType; ++Int) { |
| QualType IntTy = getArithmeticType(Int); |
| S.AddBuiltinCandidate(IntTy, &IntTy, Args, 1, CandidateSet); |
| } |
| |
| // Extension: We also add this operator for vector types. |
| for (BuiltinCandidateTypeSet::iterator |
| Vec = CandidateTypes[0].vector_begin(), |
| VecEnd = CandidateTypes[0].vector_end(); |
| Vec != VecEnd; ++Vec) { |
| QualType VecTy = *Vec; |
| S.AddBuiltinCandidate(VecTy, &VecTy, Args, 1, CandidateSet); |
| } |
| } |
| |
| // C++ [over.match.oper]p16: |
| // For every pointer to member type T, there exist candidate operator |
| // functions of the form |
| // |
| // bool operator==(T,T); |
| // bool operator!=(T,T); |
| void addEqualEqualOrNotEqualMemberPointerOverloads() { |
| /// Set of (canonical) types that we've already handled. |
| llvm::SmallPtrSet<QualType, 8> AddedTypes; |
| |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { |
| for (BuiltinCandidateTypeSet::iterator |
| MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), |
| MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); |
| MemPtr != MemPtrEnd; |
| ++MemPtr) { |
| // Don't add the same builtin candidate twice. |
| if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) |
| continue; |
| |
| QualType ParamTypes[2] = { *MemPtr, *MemPtr }; |
| S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, |
| CandidateSet); |
| } |
| } |
| } |
| |
| // C++ [over.built]p15: |
| // |
| // For every T, where T is an enumeration type, a pointer type, or |
| // std::nullptr_t, there exist candidate operator functions of the form |
| // |
| // bool operator<(T, T); |
| // bool operator>(T, T); |
| // bool operator<=(T, T); |
| // bool operator>=(T, T); |
| // bool operator==(T, T); |
| // bool operator!=(T, T); |
| void addRelationalPointerOrEnumeralOverloads() { |
| // C++ [over.built]p1: |
| // If there is a user-written candidate with the same name and parameter |
| // types as a built-in candidate operator function, the built-in operator |
| // function is hidden and is not included in the set of candidate |
| // functions. |
| // |
| // The text is actually in a note, but if we don't implement it then we end |
| // up with ambiguities when the user provides an overloaded operator for |
| // an enumeration type. Note that only enumeration types have this problem, |
| // so we track which enumeration types we've seen operators for. Also, the |
| // only other overloaded operator with enumeration argumenst, operator=, |
| // cannot be overloaded for enumeration types, so this is the only place |
| // where we must suppress candidates like this. |
| llvm::DenseSet<std::pair<CanQualType, CanQualType> > |
| UserDefinedBinaryOperators; |
| |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { |
| if (CandidateTypes[ArgIdx].enumeration_begin() != |
| CandidateTypes[ArgIdx].enumeration_end()) { |
| for (OverloadCandidateSet::iterator C = CandidateSet.begin(), |
| CEnd = CandidateSet.end(); |
| C != CEnd; ++C) { |
| if (!C->Viable || !C->Function || C->Function->getNumParams() != 2) |
| continue; |
| |
| QualType FirstParamType = |
| C->Function->getParamDecl(0)->getType().getUnqualifiedType(); |
| QualType SecondParamType = |
| C->Function->getParamDecl(1)->getType().getUnqualifiedType(); |
| |
| // Skip if either parameter isn't of enumeral type. |
| if (!FirstParamType->isEnumeralType() || |
| !SecondParamType->isEnumeralType()) |
| continue; |
| |
| // Add this operator to the set of known user-defined operators. |
| UserDefinedBinaryOperators.insert( |
| std::make_pair(S.Context.getCanonicalType(FirstParamType), |
| S.Context.getCanonicalType(SecondParamType))); |
| } |
| } |
| } |
| |
| /// Set of (canonical) types that we've already handled. |
| llvm::SmallPtrSet<QualType, 8> AddedTypes; |
| |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { |
| for (BuiltinCandidateTypeSet::iterator |
| Ptr = CandidateTypes[ArgIdx].pointer_begin(), |
| PtrEnd = CandidateTypes[ArgIdx].pointer_end(); |
| Ptr != PtrEnd; ++Ptr) { |
| // Don't add the same builtin candidate twice. |
| if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) |
| continue; |
| |
| QualType ParamTypes[2] = { *Ptr, *Ptr }; |
| S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, |
| CandidateSet); |
| } |
| for (BuiltinCandidateTypeSet::iterator |
| Enum = CandidateTypes[ArgIdx].enumeration_begin(), |
| EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); |
| Enum != EnumEnd; ++Enum) { |
| CanQualType CanonType = S.Context.getCanonicalType(*Enum); |
| |
| // Don't add the same builtin candidate twice, or if a user defined |
| // candidate exists. |
| if (!AddedTypes.insert(CanonType) || |
| UserDefinedBinaryOperators.count(std::make_pair(CanonType, |
| CanonType))) |
| continue; |
| |
| QualType ParamTypes[2] = { *Enum, *Enum }; |
| S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, |
| CandidateSet); |
| } |
| |
| if (CandidateTypes[ArgIdx].hasNullPtrType()) { |
| CanQualType NullPtrTy = S.Context.getCanonicalType(S.Context.NullPtrTy); |
| if (AddedTypes.insert(NullPtrTy) && |
| !UserDefinedBinaryOperators.count(std::make_pair(NullPtrTy, |
| NullPtrTy))) { |
| QualType ParamTypes[2] = { NullPtrTy, NullPtrTy }; |
| S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, |
| CandidateSet); |
| } |
| } |
| } |
| } |
| |
| // C++ [over.built]p13: |
| // |
| // For every cv-qualified or cv-unqualified object type T |
| // there exist candidate operator functions of the form |
| // |
| // T* operator+(T*, ptrdiff_t); |
| // T& operator[](T*, ptrdiff_t); [BELOW] |
| // T* operator-(T*, ptrdiff_t); |
| // T* operator+(ptrdiff_t, T*); |
| // T& operator[](ptrdiff_t, T*); [BELOW] |
| // |
| // C++ [over.built]p14: |
| // |
| // For every T, where T is a pointer to object type, there |
| // exist candidate operator functions of the form |
| // |
| // ptrdiff_t operator-(T, T); |
| void addBinaryPlusOrMinusPointerOverloads(OverloadedOperatorKind Op) { |
| /// Set of (canonical) types that we've already handled. |
| llvm::SmallPtrSet<QualType, 8> AddedTypes; |
| |
| for (int Arg = 0; Arg < 2; ++Arg) { |
| QualType AsymetricParamTypes[2] = { |
| S.Context.getPointerDiffType(), |
| S.Context.getPointerDiffType(), |
| }; |
| for (BuiltinCandidateTypeSet::iterator |
| Ptr = CandidateTypes[Arg].pointer_begin(), |
| PtrEnd = CandidateTypes[Arg].pointer_end(); |
| Ptr != PtrEnd; ++Ptr) { |
| QualType PointeeTy = (*Ptr)->getPointeeType(); |
| if (!PointeeTy->isObjectType()) |
| continue; |
| |
| AsymetricParamTypes[Arg] = *Ptr; |
| if (Arg == 0 || Op == OO_Plus) { |
| // operator+(T*, ptrdiff_t) or operator-(T*, ptrdiff_t) |
| // T* operator+(ptrdiff_t, T*); |
| S.AddBuiltinCandidate(*Ptr, AsymetricParamTypes, Args, 2, |
| CandidateSet); |
| } |
| if (Op == OO_Minus) { |
| // ptrdiff_t operator-(T, T); |
| if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) |
| continue; |
| |
| QualType ParamTypes[2] = { *Ptr, *Ptr }; |
| S.AddBuiltinCandidate(S.Context.getPointerDiffType(), ParamTypes, |
| Args, 2, CandidateSet); |
| } |
| } |
| } |
| } |
| |
| // C++ [over.built]p12: |
| // |
| // For every pair of promoted arithmetic types L and R, there |
| // exist candidate operator functions of the form |
| // |
| // LR operator*(L, R); |
| // LR operator/(L, R); |
| // LR operator+(L, R); |
| // LR operator-(L, R); |
| // bool operator<(L, R); |
| // bool operator>(L, R); |
| // bool operator<=(L, R); |
| // bool operator>=(L, R); |
| // bool operator==(L, R); |
| // bool operator!=(L, R); |
| // |
| // where LR is the result of the usual arithmetic conversions |
| // between types L and R. |
| // |
| // C++ [over.built]p24: |
| // |
| // For every pair of promoted arithmetic types L and R, there exist |
| // candidate operator functions of the form |
| // |
| // LR operator?(bool, L, R); |
| // |
| // where LR is the result of the usual arithmetic conversions |
| // between types L and R. |
| // Our candidates ignore the first parameter. |
| void addGenericBinaryArithmeticOverloads(bool isComparison) { |
| if (!HasArithmeticOrEnumeralCandidateType) |
| return; |
| |
| for (unsigned Left = FirstPromotedArithmeticType; |
| Left < LastPromotedArithmeticType; ++Left) { |
| for (unsigned Right = FirstPromotedArithmeticType; |
| Right < LastPromotedArithmeticType; ++Right) { |
| QualType LandR[2] = { getArithmeticType(Left), |
| getArithmeticType(Right) }; |
| QualType Result = |
| isComparison ? S.Context.BoolTy |
| : getUsualArithmeticConversions(Left, Right); |
| S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); |
| } |
| } |
| |
| // Extension: Add the binary operators ==, !=, <, <=, >=, >, *, /, and the |
| // conditional operator for vector types. |
| for (BuiltinCandidateTypeSet::iterator |
| Vec1 = CandidateTypes[0].vector_begin(), |
| Vec1End = CandidateTypes[0].vector_end(); |
| Vec1 != Vec1End; ++Vec1) { |
| for (BuiltinCandidateTypeSet::iterator |
| Vec2 = CandidateTypes[1].vector_begin(), |
| Vec2End = CandidateTypes[1].vector_end(); |
| Vec2 != Vec2End; ++Vec2) { |
| QualType LandR[2] = { *Vec1, *Vec2 }; |
| QualType Result = S.Context.BoolTy; |
| if (!isComparison) { |
| if ((*Vec1)->isExtVectorType() || !(*Vec2)->isExtVectorType()) |
| Result = *Vec1; |
| else |
| Result = *Vec2; |
| } |
| |
| S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); |
| } |
| } |
| } |
| |
| // C++ [over.built]p17: |
| // |
| // For every pair of promoted integral types L and R, there |
| // exist candidate operator functions of the form |
| // |
| // LR operator%(L, R); |
| // LR operator&(L, R); |
| // LR operator^(L, R); |
| // LR operator|(L, R); |
| // L operator<<(L, R); |
| // L operator>>(L, R); |
| // |
| // where LR is the result of the usual arithmetic conversions |
| // between types L and R. |
| void addBinaryBitwiseArithmeticOverloads(OverloadedOperatorKind Op) { |
| if (!HasArithmeticOrEnumeralCandidateType) |
| return; |
| |
| for (unsigned Left = FirstPromotedIntegralType; |
| Left < LastPromotedIntegralType; ++Left) { |
| for (unsigned Right = FirstPromotedIntegralType; |
| Right < LastPromotedIntegralType; ++Right) { |
| QualType LandR[2] = { getArithmeticType(Left), |
| getArithmeticType(Right) }; |
| QualType Result = (Op == OO_LessLess || Op == OO_GreaterGreater) |
| ? LandR[0] |
| : getUsualArithmeticConversions(Left, Right); |
| S.AddBuiltinCandidate(Result, LandR, Args, 2, CandidateSet); |
| } |
| } |
| } |
| |
| // C++ [over.built]p20: |
| // |
| // For every pair (T, VQ), where T is an enumeration or |
| // pointer to member type and VQ is either volatile or |
| // empty, there exist candidate operator functions of the form |
| // |
| // VQ T& operator=(VQ T&, T); |
| void addAssignmentMemberPointerOrEnumeralOverloads() { |
| /// Set of (canonical) types that we've already handled. |
| llvm::SmallPtrSet<QualType, 8> AddedTypes; |
| |
| for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { |
| for (BuiltinCandidateTypeSet::iterator |
| Enum = CandidateTypes[ArgIdx].enumeration_begin(), |
| EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); |
| Enum != EnumEnd; ++Enum) { |
| if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) |
| continue; |
| |
| AddBuiltinAssignmentOperatorCandidates(S, *Enum, Args, 2, |
| CandidateSet); |
| } |
| |
| for (BuiltinCandidateTypeSet::iterator |
| MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), |
| MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); |
| MemPtr != MemPtrEnd; ++MemPtr) { |
| if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) |
| continue; |
| |
| AddBuiltinAssignmentOperatorCandidates(S, *MemPtr, Args, 2, |
| CandidateSet); |
| } |
| } |
| } |
| |
| // C++ [over.built]p19: |
| // |
| // For every pair (T, VQ), where T is any type and VQ is either |
| // volatile or empty, there exist candidate operator functions |
| // of the form |
| // |
| // T*VQ& operator=(T*VQ&, T*); |
| // |
| // C++ [over.built]p21: |
| // |
| // For every pair (T, VQ), where T is a cv-qualified or |
| // cv-unqualified object type and VQ is either volatile or |
| // empty, there exist candidate operator functions of the form |
| // |
| // T*VQ& operator+=(T*VQ&, ptrdiff_t); |
| // T*VQ& operator-=(T*VQ&, ptrdiff_t); |
| void addAssignmentPointerOverloads(bool isEqualOp) { |
| /// Set of (canonical) types that we've already handled. |
| llvm::SmallPtrSet<QualType, 8> AddedTypes; |
| |
| for (BuiltinCandidateTypeSet::iterator |
| Ptr = CandidateTypes[0].pointer_begin(), |
| PtrEnd = CandidateTypes[0].pointer_end(); |
| Ptr != PtrEnd; ++Ptr) { |
| // If this is operator=, keep track of the builtin candidates we added. |
| if (isEqualOp) |
| AddedTypes.insert(S.Context.getCanonicalType(*Ptr)); |
| else if (!(*Ptr)->getPointeeType()->isObjectType()) |
| continue; |
| |
| // non-volatile version |
| QualType ParamTypes[2] = { |
| S.Context.getLValueReferenceType(*Ptr), |
| isEqualOp ? *Ptr : S.Context.getPointerDiffType(), |
| }; |
| S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, |
| /*IsAssigmentOperator=*/ isEqualOp); |
| |
| if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && |
| VisibleTypeConversionsQuals.hasVolatile()) { |
| // volatile version |
| ParamTypes[0] = |
| S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); |
| S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, |
| /*IsAssigmentOperator=*/isEqualOp); |
| } |
| } |
| |
| if (isEqualOp) { |
| for (BuiltinCandidateTypeSet::iterator |
| Ptr = CandidateTypes[1].pointer_begin(), |
| PtrEnd = CandidateTypes[1].pointer_end(); |
| Ptr != PtrEnd; ++Ptr) { |
| // Make sure we don't add the same candidate twice. |
| if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) |
| continue; |
| |
| QualType ParamTypes[2] = { |
| S.Context.getLValueReferenceType(*Ptr), |
| *Ptr, |
| }; |
| |
| // non-volatile version |
| S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, |
| /*IsAssigmentOperator=*/true); |
| |
| if (!S.Context.getCanonicalType(*Ptr).isVolatileQualified() && |
| VisibleTypeConversionsQuals.hasVolatile()) { |
| // volatile version |
| ParamTypes[0] = |
| S.Context.getLValueReferenceType(S.Context.getVolatileType(*Ptr)); |
| S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, |
| CandidateSet, /*IsAssigmentOperator=*/true); |
| } |
| } |
| } |
| } |
| |
| // C++ [over.built]p18: |
| // |
| // For every triple (L, VQ, R), where L is an arithmetic type, |
| // VQ is either volatile or empty, and R is a promoted |
| // arithmetic type, there exist candidate operator functions of |
| // the form |
| // |
| // VQ L& operator=(VQ L&, R); |
| // VQ L& operator*=(VQ L&, R); |
| // VQ L& operator/=(VQ L&, R); |
| // VQ L& operator+=(VQ L&, R); |
| // VQ L& operator-=(VQ L&, R); |
| void addAssignmentArithmeticOverloads(bool isEqualOp) { |
| if (!HasArithmeticOrEnumeralCandidateType) |
| return; |
| |
| for (unsigned Left = 0; Left < NumArithmeticTypes; ++Left) { |
| for (unsigned Right = FirstPromotedArithmeticType; |
| Right < LastPromotedArithmeticType; ++Right) { |
| QualType ParamTypes[2]; |
| ParamTypes[1] = getArithmeticType(Right); |
| |
| // Add this built-in operator as a candidate (VQ is empty). |
| ParamTypes[0] = |
| S.Context.getLValueReferenceType(getArithmeticType(Left)); |
| S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, |
| /*IsAssigmentOperator=*/isEqualOp); |
| |
| // Add this built-in operator as a candidate (VQ is 'volatile'). |
| if (VisibleTypeConversionsQuals.hasVolatile()) { |
| ParamTypes[0] = |
| S.Context.getVolatileType(getArithmeticType(Left)); |
| ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); |
| S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, |
| CandidateSet, |
| /*IsAssigmentOperator=*/isEqualOp); |
| } |
| } |
| } |
| |
| // Extension: Add the binary operators =, +=, -=, *=, /= for vector types. |
| for (BuiltinCandidateTypeSet::iterator |
| Vec1 = CandidateTypes[0].vector_begin(), |
| Vec1End = CandidateTypes[0].vector_end(); |
| Vec1 != Vec1End; ++Vec1) { |
| for (BuiltinCandidateTypeSet::iterator |
| Vec2 = CandidateTypes[1].vector_begin(), |
| Vec2End = CandidateTypes[1].vector_end(); |
| Vec2 != Vec2End; ++Vec2) { |
| QualType ParamTypes[2]; |
| ParamTypes[1] = *Vec2; |
| // Add this built-in operator as a candidate (VQ is empty). |
| ParamTypes[0] = S.Context.getLValueReferenceType(*Vec1); |
| S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet, |
| /*IsAssigmentOperator=*/isEqualOp); |
| |
| // Add this built-in operator as a candidate (VQ is 'volatile'). |
| if (VisibleTypeConversionsQuals.hasVolatile()) { |
| ParamTypes[0] = S.Context.getVolatileType(*Vec1); |
| ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); |
| S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, |
| CandidateSet, |
| /*IsAssigmentOperator=*/isEqualOp); |
| } |
| } |
| } |
| } |
| |
| // C++ [over.built]p22: |
| // |
| // For every triple (L, VQ, R), where L is an integral type, VQ |
| // is either volatile or empty, and R is a promoted integral |
| // type, there exist candidate operator functions of the form |
| // |
| // VQ L& operator%=(VQ L&, R); |
| // VQ L& operator<<=(VQ L&, R); |
| // VQ L& operator>>=(VQ L&, R); |
| // VQ L& operator&=(VQ L&, R); |
| // VQ L& operator^=(VQ L&, R); |
| // VQ L& operator|=(VQ L&, R); |
| void addAssignmentIntegralOverloads() { |
| if (!HasArithmeticOrEnumeralCandidateType) |
| return; |
| |
| for (unsigned Left = FirstIntegralType; Left < LastIntegralType; ++Left) { |
| for (unsigned Right = FirstPromotedIntegralType; |
| Right < LastPromotedIntegralType; ++Right) { |
| QualType ParamTypes[2]; |
| ParamTypes[1] = getArithmeticType(Right); |
| |
| // Add this built-in operator as a candidate (VQ is empty). |
| ParamTypes[0] = |
| S.Context.getLValueReferenceType(getArithmeticType(Left)); |
| S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, CandidateSet); |
| if (VisibleTypeConversionsQuals.hasVolatile()) { |
| // Add this built-in operator as a candidate (VQ is 'volatile'). |
| ParamTypes[0] = getArithmeticType(Left); |
| ParamTypes[0] = S.Context.getVolatileType(ParamTypes[0]); |
| ParamTypes[0] = S.Context.getLValueReferenceType(ParamTypes[0]); |
| S.AddBuiltinCandidate(ParamTypes[0], ParamTypes, Args, 2, |
| CandidateSet); |
| } |
| } |
| } |
| } |
| |
| // C++ [over.operator]p23: |
| // |
| // There also exist candidate operator functions of the form |
| // |
| // bool operator!(bool); |
| // bool operator&&(bool, bool); |
| // bool operator||(bool, bool); |
| void addExclaimOverload() { |
| QualType ParamTy = S.Context.BoolTy; |
| S.AddBuiltinCandidate(ParamTy, &ParamTy, Args, 1, CandidateSet, |
| /*IsAssignmentOperator=*/false, |
| /*NumContextualBoolArguments=*/1); |
| } |
| void addAmpAmpOrPipePipeOverload() { |
| QualType ParamTypes[2] = { S.Context.BoolTy, S.Context.BoolTy }; |
| S.AddBuiltinCandidate(S.Context.BoolTy, ParamTypes, Args, 2, CandidateSet, |
| /*IsAssignmentOperator=*/false, |
| /*NumContextualBoolArguments=*/2); |
| } |
| |
| // C++ [over.built]p13: |
| // |
| // For every cv-qualified or cv-unqualified object type T there |
| // exist candidate operator functions of the form |
| // |
| // T* operator+(T*, ptrdiff_t); [ABOVE] |
| // T& operator[](T*, ptrdiff_t); |
| // T* operator-(T*, ptrdiff_t); [ABOVE] |
| // T* operator+(ptrdiff_t, T*); [ABOVE] |
| // T& operator[](ptrdiff_t, T*); |
| void addSubscriptOverloads() { |
| for (BuiltinCandidateTypeSet::iterator |
| Ptr = CandidateTypes[0].pointer_begin(), |
| PtrEnd = CandidateTypes[0].pointer_end(); |
| Ptr != PtrEnd; ++Ptr) { |
| QualType ParamTypes[2] = { *Ptr, S.Context.getPointerDiffType() }; |
| QualType PointeeType = (*Ptr)->getPointeeType(); |
| if (!PointeeType->isObjectType()) |
| continue; |
| |
| QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); |
| |
| // T& operator[](T*, ptrdiff_t) |
| S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); |
| } |
| |
| for (BuiltinCandidateTypeSet::iterator |
| Ptr = CandidateTypes[1].pointer_begin(), |
| PtrEnd = CandidateTypes[1].pointer_end(); |
| Ptr != PtrEnd; ++Ptr) { |
| QualType ParamTypes[2] = { S.Context.getPointerDiffType(), *Ptr }; |
| QualType PointeeType = (*Ptr)->getPointeeType(); |
| if (!PointeeType->isObjectType()) |
| continue; |
| |
| QualType ResultTy = S.Context.getLValueReferenceType(PointeeType); |
| |
| // T& operator[](ptrdiff_t, T*) |
| S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); |
| } |
| } |
| |
| // C++ [over.built]p11: |
| // For every quintuple (C1, C2, T, CV1, CV2), where C2 is a class type, |
| // C1 is the same type as C2 or is a derived class of C2, T is an object |
| // type or a function type, and CV1 and CV2 are cv-qualifier-seqs, |
| // there exist candidate operator functions of the form |
| // |
| // CV12 T& operator->*(CV1 C1*, CV2 T C2::*); |
| // |
| // where CV12 is the union of CV1 and CV2. |
| void addArrowStarOverloads() { |
| for (BuiltinCandidateTypeSet::iterator |
| Ptr = CandidateTypes[0].pointer_begin(), |
| PtrEnd = CandidateTypes[0].pointer_end(); |
| Ptr != PtrEnd; ++Ptr) { |
| QualType C1Ty = (*Ptr); |
| QualType C1; |
| QualifierCollector Q1; |
| C1 = QualType(Q1.strip(C1Ty->getPointeeType()), 0); |
| if (!isa<RecordType>(C1)) |
| continue; |
| // heuristic to reduce number of builtin candidates in the set. |
| // Add volatile/restrict version only if there are conversions to a |
| // volatile/restrict type. |
| if (!VisibleTypeConversionsQuals.hasVolatile() && Q1.hasVolatile()) |
| continue; |
| if (!VisibleTypeConversionsQuals.hasRestrict() && Q1.hasRestrict()) |
| continue; |
| for (BuiltinCandidateTypeSet::iterator |
| MemPtr = CandidateTypes[1].member_pointer_begin(), |
| MemPtrEnd = CandidateTypes[1].member_pointer_end(); |
| MemPtr != MemPtrEnd; ++MemPtr) { |
| const MemberPointerType *mptr = cast<MemberPointerType>(*MemPtr); |
| QualType C2 = QualType(mptr->getClass(), 0); |
| C2 = C2.getUnqualifiedType(); |
| if (C1 != C2 && !S.IsDerivedFrom(C1, C2)) |
| break; |
| QualType ParamTypes[2] = { *Ptr, *MemPtr }; |
| // build CV12 T& |
| QualType T = mptr->getPointeeType(); |
| if (!VisibleTypeConversionsQuals.hasVolatile() && |
| T.isVolatileQualified()) |
| continue; |
| if (!VisibleTypeConversionsQuals.hasRestrict() && |
| T.isRestrictQualified()) |
| continue; |
| T = Q1.apply(S.Context, T); |
| QualType ResultTy = S.Context.getLValueReferenceType(T); |
| S.AddBuiltinCandidate(ResultTy, ParamTypes, Args, 2, CandidateSet); |
| } |
| } |
| } |
| |
| // Note that we don't consider the first argument, since it has been |
| // contextually converted to bool long ago. The candidates below are |
| // therefore added as binary. |
| // |
| // C++ [over.built]p25: |
| // For every type T, where T is a pointer, pointer-to-member, or scoped |
| // enumeration type, there exist candidate operator functions of the form |
| // |
| // T operator?(bool, T, T); |
| // |
| void addConditionalOperatorOverloads() { |
| /// Set of (canonical) types that we've already handled. |
| llvm::SmallPtrSet<QualType, 8> AddedTypes; |
| |
| for (unsigned ArgIdx = 0; ArgIdx < 2; ++ArgIdx) { |
| for (BuiltinCandidateTypeSet::iterator |
| Ptr = CandidateTypes[ArgIdx].pointer_begin(), |
| PtrEnd = CandidateTypes[ArgIdx].pointer_end(); |
| Ptr != PtrEnd; ++Ptr) { |
| if (!AddedTypes.insert(S.Context.getCanonicalType(*Ptr))) |
| continue; |
| |
| QualType ParamTypes[2] = { *Ptr, *Ptr }; |
| S.AddBuiltinCandidate(*Ptr, ParamTypes, Args, 2, CandidateSet); |
| } |
| |
| for (BuiltinCandidateTypeSet::iterator |
| MemPtr = CandidateTypes[ArgIdx].member_pointer_begin(), |
| MemPtrEnd = CandidateTypes[ArgIdx].member_pointer_end(); |
| MemPtr != MemPtrEnd; ++MemPtr) { |
| if (!AddedTypes.insert(S.Context.getCanonicalType(*MemPtr))) |
| continue; |
| |
| QualType ParamTypes[2] = { *MemPtr, *MemPtr }; |
| S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet); |
| } |
| |
| if (S.getLangOptions().CPlusPlus0x) { |
| for (BuiltinCandidateTypeSet::iterator |
| Enum = CandidateTypes[ArgIdx].enumeration_begin(), |
| EnumEnd = CandidateTypes[ArgIdx].enumeration_end(); |
| Enum != EnumEnd; ++Enum) { |
| if (!(*Enum)->getAs<EnumType>()->getDecl()->isScoped()) |
| continue; |
| |
| if (!AddedTypes.insert(S.Context.getCanonicalType(*Enum))) |
| continue; |
| |
| QualType ParamTypes[2] = { *Enum, *Enum }; |
| S.AddBuiltinCandidate(*Enum, ParamTypes, Args, 2, CandidateSet); |
| } |
| } |
| } |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| /// AddBuiltinOperatorCandidates - Add the appropriate built-in |
| /// operator overloads to the candidate set (C++ [over.built]), based |
| /// on the operator @p Op and the arguments given. For example, if the |
| /// operator is a binary '+', this routine might add "int |
| /// operator+(int, int)" to cover integer addition. |
| void |
| Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op, |
| SourceLocation OpLoc, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet& CandidateSet) { |
| // Find all of the types that the arguments can convert to, but only |
| // if the operator we're looking at has built-in operator candidates |
| // that make use of these types. Also record whether we encounter non-record |
| // candidate types or either arithmetic or enumeral candidate types. |
| Qualifiers VisibleTypeConversionsQuals; |
| VisibleTypeConversionsQuals.addConst(); |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) |
| VisibleTypeConversionsQuals += CollectVRQualifiers(Context, Args[ArgIdx]); |
| |
| bool HasNonRecordCandidateType = false; |
| bool HasArithmeticOrEnumeralCandidateType = false; |
| SmallVector<BuiltinCandidateTypeSet, 2> CandidateTypes; |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) { |
| CandidateTypes.push_back(BuiltinCandidateTypeSet(*this)); |
| CandidateTypes[ArgIdx].AddTypesConvertedFrom(Args[ArgIdx]->getType(), |
| OpLoc, |
| true, |
| (Op == OO_Exclaim || |
| Op == OO_AmpAmp || |
| Op == OO_PipePipe), |
| VisibleTypeConversionsQuals); |
| HasNonRecordCandidateType = HasNonRecordCandidateType || |
| CandidateTypes[ArgIdx].hasNonRecordTypes(); |
| HasArithmeticOrEnumeralCandidateType = |
| HasArithmeticOrEnumeralCandidateType || |
| CandidateTypes[ArgIdx].hasArithmeticOrEnumeralTypes(); |
| } |
| |
| // Exit early when no non-record types have been added to the candidate set |
| // for any of the arguments to the operator. |
| // |
| // We can't exit early for !, ||, or &&, since there we have always have |
| // 'bool' overloads. |
| if (!HasNonRecordCandidateType && |
| !(Op == OO_Exclaim || Op == OO_AmpAmp || Op == OO_PipePipe)) |
| return; |
| |
| // Setup an object to manage the common state for building overloads. |
| BuiltinOperatorOverloadBuilder OpBuilder(*this, Args, NumArgs, |
| VisibleTypeConversionsQuals, |
| HasArithmeticOrEnumeralCandidateType, |
| CandidateTypes, CandidateSet); |
| |
| // Dispatch over the operation to add in only those overloads which apply. |
| switch (Op) { |
| case OO_None: |
| case NUM_OVERLOADED_OPERATORS: |
| llvm_unreachable("Expected an overloaded operator"); |
| |
| case OO_New: |
| case OO_Delete: |
| case OO_Array_New: |
| case OO_Array_Delete: |
| case OO_Call: |
| llvm_unreachable( |
| "Special operators don't use AddBuiltinOperatorCandidates"); |
| |
| case OO_Comma: |
| case OO_Arrow: |
| // C++ [over.match.oper]p3: |
| // -- For the operator ',', the unary operator '&', or the |
| // operator '->', the built-in candidates set is empty. |
| break; |
| |
| case OO_Plus: // '+' is either unary or binary |
| if (NumArgs == 1) |
| OpBuilder.addUnaryPlusPointerOverloads(); |
| // Fall through. |
| |
| case OO_Minus: // '-' is either unary or binary |
| if (NumArgs == 1) { |
| OpBuilder.addUnaryPlusOrMinusArithmeticOverloads(); |
| } else { |
| OpBuilder.addBinaryPlusOrMinusPointerOverloads(Op); |
| OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); |
| } |
| break; |
| |
| case OO_Star: // '*' is either unary or binary |
| if (NumArgs == 1) |
| OpBuilder.addUnaryStarPointerOverloads(); |
| else |
| OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); |
| break; |
| |
| case OO_Slash: |
| OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); |
| break; |
| |
| case OO_PlusPlus: |
| case OO_MinusMinus: |
| OpBuilder.addPlusPlusMinusMinusArithmeticOverloads(Op); |
| OpBuilder.addPlusPlusMinusMinusPointerOverloads(); |
| break; |
| |
| case OO_EqualEqual: |
| case OO_ExclaimEqual: |
| OpBuilder.addEqualEqualOrNotEqualMemberPointerOverloads(); |
| // Fall through. |
| |
| case OO_Less: |
| case OO_Greater: |
| case OO_LessEqual: |
| case OO_GreaterEqual: |
| OpBuilder.addRelationalPointerOrEnumeralOverloads(); |
| OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/true); |
| break; |
| |
| case OO_Percent: |
| case OO_Caret: |
| case OO_Pipe: |
| case OO_LessLess: |
| case OO_GreaterGreater: |
| OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); |
| break; |
| |
| case OO_Amp: // '&' is either unary or binary |
| if (NumArgs == 1) |
| // C++ [over.match.oper]p3: |
| // -- For the operator ',', the unary operator '&', or the |
| // operator '->', the built-in candidates set is empty. |
| break; |
| |
| OpBuilder.addBinaryBitwiseArithmeticOverloads(Op); |
| break; |
| |
| case OO_Tilde: |
| OpBuilder.addUnaryTildePromotedIntegralOverloads(); |
| break; |
| |
| case OO_Equal: |
| OpBuilder.addAssignmentMemberPointerOrEnumeralOverloads(); |
| // Fall through. |
| |
| case OO_PlusEqual: |
| case OO_MinusEqual: |
| OpBuilder.addAssignmentPointerOverloads(Op == OO_Equal); |
| // Fall through. |
| |
| case OO_StarEqual: |
| case OO_SlashEqual: |
| OpBuilder.addAssignmentArithmeticOverloads(Op == OO_Equal); |
| break; |
| |
| case OO_PercentEqual: |
| case OO_LessLessEqual: |
| case OO_GreaterGreaterEqual: |
| case OO_AmpEqual: |
| case OO_CaretEqual: |
| case OO_PipeEqual: |
| OpBuilder.addAssignmentIntegralOverloads(); |
| break; |
| |
| case OO_Exclaim: |
| OpBuilder.addExclaimOverload(); |
| break; |
| |
| case OO_AmpAmp: |
| case OO_PipePipe: |
| OpBuilder.addAmpAmpOrPipePipeOverload(); |
| break; |
| |
| case OO_Subscript: |
| OpBuilder.addSubscriptOverloads(); |
| break; |
| |
| case OO_ArrowStar: |
| OpBuilder.addArrowStarOverloads(); |
| break; |
| |
| case OO_Conditional: |
| OpBuilder.addConditionalOperatorOverloads(); |
| OpBuilder.addGenericBinaryArithmeticOverloads(/*isComparison=*/false); |
| break; |
| } |
| } |
| |
| /// \brief Add function candidates found via argument-dependent lookup |
| /// to the set of overloading candidates. |
| /// |
| /// This routine performs argument-dependent name lookup based on the |
| /// given function name (which may also be an operator name) and adds |
| /// all of the overload candidates found by ADL to the overload |
| /// candidate set (C++ [basic.lookup.argdep]). |
| void |
| Sema::AddArgumentDependentLookupCandidates(DeclarationName Name, |
| bool Operator, |
| Expr **Args, unsigned NumArgs, |
| TemplateArgumentListInfo *ExplicitTemplateArgs, |
| OverloadCandidateSet& CandidateSet, |
| bool PartialOverloading, |
| bool StdNamespaceIsAssociated) { |
| ADLResult Fns; |
| |
| // FIXME: This approach for uniquing ADL results (and removing |
| // redundant candidates from the set) relies on pointer-equality, |
| // which means we need to key off the canonical decl. However, |
| // always going back to the canonical decl might not get us the |
| // right set of default arguments. What default arguments are |
| // we supposed to consider on ADL candidates, anyway? |
| |
| // FIXME: Pass in the explicit template arguments? |
| ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns, |
| StdNamespaceIsAssociated); |
| |
| // Erase all of the candidates we already knew about. |
| for (OverloadCandidateSet::iterator Cand = CandidateSet.begin(), |
| CandEnd = CandidateSet.end(); |
| Cand != CandEnd; ++Cand) |
| if (Cand->Function) { |
| Fns.erase(Cand->Function); |
| if (FunctionTemplateDecl *FunTmpl = Cand->Function->getPrimaryTemplate()) |
| Fns.erase(FunTmpl); |
| } |
| |
| // For each of the ADL candidates we found, add it to the overload |
| // set. |
| for (ADLResult::iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { |
| DeclAccessPair FoundDecl = DeclAccessPair::make(*I, AS_none); |
| if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) { |
| if (ExplicitTemplateArgs) |
| continue; |
| |
| AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet, |
| false, PartialOverloading); |
| } else |
| AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I), |
| FoundDecl, ExplicitTemplateArgs, |
| Args, NumArgs, CandidateSet); |
| } |
| } |
| |
| /// isBetterOverloadCandidate - Determines whether the first overload |
| /// candidate is a better candidate than the second (C++ 13.3.3p1). |
| bool |
| isBetterOverloadCandidate(Sema &S, |
| const OverloadCandidate &Cand1, |
| const OverloadCandidate &Cand2, |
| SourceLocation Loc, |
| bool UserDefinedConversion) { |
| // Define viable functions to be better candidates than non-viable |
| // functions. |
| if (!Cand2.Viable) |
| return Cand1.Viable; |
| else if (!Cand1.Viable) |
| return false; |
| |
| // C++ [over.match.best]p1: |
| // |
| // -- if F is a static member function, ICS1(F) is defined such |
| // that ICS1(F) is neither better nor worse than ICS1(G) for |
| // any function G, and, symmetrically, ICS1(G) is neither |
| // better nor worse than ICS1(F). |
| unsigned StartArg = 0; |
| if (Cand1.IgnoreObjectArgument || Cand2.IgnoreObjectArgument) |
| StartArg = 1; |
| |
| // C++ [over.match.best]p1: |
| // A viable function F1 is defined to be a better function than another |
| // viable function F2 if for all arguments i, ICSi(F1) is not a worse |
| // conversion sequence than ICSi(F2), and then... |
| unsigned NumArgs = Cand1.NumConversions; |
| assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch"); |
| bool HasBetterConversion = false; |
| for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) { |
| switch (CompareImplicitConversionSequences(S, |
| Cand1.Conversions[ArgIdx], |
| Cand2.Conversions[ArgIdx])) { |
| case ImplicitConversionSequence::Better: |
| // Cand1 has a better conversion sequence. |
| HasBetterConversion = true; |
| break; |
| |
| case ImplicitConversionSequence::Worse: |
| // Cand1 can't be better than Cand2. |
| return false; |
| |
| case ImplicitConversionSequence::Indistinguishable: |
| // Do nothing. |
| break; |
| } |
| } |
| |
| // -- for some argument j, ICSj(F1) is a better conversion sequence than |
| // ICSj(F2), or, if not that, |
| if (HasBetterConversion) |
| return true; |
| |
| // - F1 is a non-template function and F2 is a function template |
| // specialization, or, if not that, |
| if ((!Cand1.Function || !Cand1.Function->getPrimaryTemplate()) && |
| Cand2.Function && Cand2.Function->getPrimaryTemplate()) |
| return true; |
| |
| // -- F1 and F2 are function template specializations, and the function |
| // template for F1 is more specialized than the template for F2 |
| // according to the partial ordering rules described in 14.5.5.2, or, |
| // if not that, |
| if (Cand1.Function && Cand1.Function->getPrimaryTemplate() && |
| Cand2.Function && Cand2.Function->getPrimaryTemplate()) { |
| if (FunctionTemplateDecl *BetterTemplate |
| = S.getMoreSpecializedTemplate(Cand1.Function->getPrimaryTemplate(), |
| Cand2.Function->getPrimaryTemplate(), |
| Loc, |
| isa<CXXConversionDecl>(Cand1.Function)? TPOC_Conversion |
| : TPOC_Call, |
| Cand1.ExplicitCallArguments)) |
| return BetterTemplate == Cand1.Function->getPrimaryTemplate(); |
| } |
| |
| // -- the context is an initialization by user-defined conversion |
| // (see 8.5, 13.3.1.5) and the standard conversion sequence |
| // from the return type of F1 to the destination type (i.e., |
| // the type of the entity being initialized) is a better |
| // conversion sequence than the standard conversion sequence |
| // from the return type of F2 to the destination type. |
| if (UserDefinedConversion && Cand1.Function && Cand2.Function && |
| isa<CXXConversionDecl>(Cand1.Function) && |
| isa<CXXConversionDecl>(Cand2.Function)) { |
| switch (CompareStandardConversionSequences(S, |
| Cand1.FinalConversion, |
| Cand2.FinalConversion)) { |
| case ImplicitConversionSequence::Better: |
| // Cand1 has a better conversion sequence. |
| return true; |
| |
| case ImplicitConversionSequence::Worse: |
| // Cand1 can't be better than Cand2. |
| return false; |
| |
| case ImplicitConversionSequence::Indistinguishable: |
| // Do nothing |
| break; |
| } |
| } |
| |
| return false; |
| } |
| |
| /// \brief Computes the best viable function (C++ 13.3.3) |
| /// within an overload candidate set. |
| /// |
| /// \param CandidateSet the set of candidate functions. |
| /// |
| /// \param Loc the location of the function name (or operator symbol) for |
| /// which overload resolution occurs. |
| /// |
| /// \param Best f overload resolution was successful or found a deleted |
| /// function, Best points to the candidate function found. |
| /// |
| /// \returns The result of overload resolution. |
| OverloadingResult |
| OverloadCandidateSet::BestViableFunction(Sema &S, SourceLocation Loc, |
| iterator &Best, |
| bool UserDefinedConversion) { |
| // Find the best viable function. |
| Best = end(); |
| for (iterator Cand = begin(); Cand != end(); ++Cand) { |
| if (Cand->Viable) |
| if (Best == end() || isBetterOverloadCandidate(S, *Cand, *Best, Loc, |
| UserDefinedConversion)) |
| Best = Cand; |
| } |
| |
| // If we didn't find any viable functions, abort. |
| if (Best == end()) |
| return OR_No_Viable_Function; |
| |
| // Make sure that this function is better than every other viable |
| // function. If not, we have an ambiguity. |
| for (iterator Cand = begin(); Cand != end(); ++Cand) { |
| if (Cand->Viable && |
| Cand != Best && |
| !isBetterOverloadCandidate(S, *Best, *Cand, Loc, |
| UserDefinedConversion)) { |
| Best = end(); |
| return OR_Ambiguous; |
| } |
| } |
| |
| // Best is the best viable function. |
| if (Best->Function && |
| (Best->Function->isDeleted() || |
| S.isFunctionConsideredUnavailable(Best->Function))) |
| return OR_Deleted; |
| |
| return OR_Success; |
| } |
| |
| namespace { |
| |
| enum OverloadCandidateKind { |
| oc_function, |
| oc_method, |
| oc_constructor, |
| oc_function_template, |
| oc_method_template, |
| oc_constructor_template, |
| oc_implicit_default_constructor, |
| oc_implicit_copy_constructor, |
| oc_implicit_move_constructor, |
| oc_implicit_copy_assignment, |
| oc_implicit_move_assignment, |
| oc_implicit_inherited_constructor |
| }; |
| |
| OverloadCandidateKind ClassifyOverloadCandidate(Sema &S, |
| FunctionDecl *Fn, |
| std::string &Description) { |
| bool isTemplate = false; |
| |
| if (FunctionTemplateDecl *FunTmpl = Fn->getPrimaryTemplate()) { |
| isTemplate = true; |
| Description = S.getTemplateArgumentBindingsText( |
| FunTmpl->getTemplateParameters(), *Fn->getTemplateSpecializationArgs()); |
| } |
| |
| if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn)) { |
| if (!Ctor->isImplicit()) |
| return isTemplate ? oc_constructor_template : oc_constructor; |
| |
| if (Ctor->getInheritedConstructor()) |
| return oc_implicit_inherited_constructor; |
| |
| if (Ctor->isDefaultConstructor()) |
| return oc_implicit_default_constructor; |
| |
| if (Ctor->isMoveConstructor()) |
| return oc_implicit_move_constructor; |
| |
| assert(Ctor->isCopyConstructor() && |
| "unexpected sort of implicit constructor"); |
| return oc_implicit_copy_constructor; |
| } |
| |
| if (CXXMethodDecl *Meth = dyn_cast<CXXMethodDecl>(Fn)) { |
| // This actually gets spelled 'candidate function' for now, but |
| // it doesn't hurt to split it out. |
| if (!Meth->isImplicit()) |
| return isTemplate ? oc_method_template : oc_method; |
| |
| if (Meth->isMoveAssignmentOperator()) |
| return oc_implicit_move_assignment; |
| |
| assert(Meth->isCopyAssignmentOperator() |
| && "implicit method is not copy assignment operator?"); |
| return oc_implicit_copy_assignment; |
| } |
| |
| return isTemplate ? oc_function_template : oc_function; |
| } |
| |
| void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) { |
| const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Fn); |
| if (!Ctor) return; |
| |
| Ctor = Ctor->getInheritedConstructor(); |
| if (!Ctor) return; |
| |
| S.Diag(Ctor->getLocation(), diag::note_ovl_candidate_inherited_constructor); |
| } |
| |
| } // end anonymous namespace |
| |
| // Notes the location of an overload candidate. |
| void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) { |
| std::string FnDesc; |
| OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc); |
| PartialDiagnostic PD = PDiag(diag::note_ovl_candidate) |
| << (unsigned) K << FnDesc; |
| HandleFunctionTypeMismatch(PD, Fn->getType(), DestType); |
| Diag(Fn->getLocation(), PD); |
| MaybeEmitInheritedConstructorNote(*this, Fn); |
| } |
| |
| //Notes the location of all overload candidates designated through |
| // OverloadedExpr |
| void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) { |
| assert(OverloadedExpr->getType() == Context.OverloadTy); |
| |
| OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr); |
| OverloadExpr *OvlExpr = Ovl.Expression; |
| |
| for (UnresolvedSetIterator I = OvlExpr->decls_begin(), |
| IEnd = OvlExpr->decls_end(); |
| I != IEnd; ++I) { |
| if (FunctionTemplateDecl *FunTmpl = |
| dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) { |
| NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType); |
| } else if (FunctionDecl *Fun |
| = dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) { |
| NoteOverloadCandidate(Fun, DestType); |
| } |
| } |
| } |
| |
| /// Diagnoses an ambiguous conversion. The partial diagnostic is the |
| /// "lead" diagnostic; it will be given two arguments, the source and |
| /// target types of the conversion. |
| void ImplicitConversionSequence::DiagnoseAmbiguousConversion( |
| Sema &S, |
| SourceLocation CaretLoc, |
| const PartialDiagnostic &PDiag) const { |
| S.Diag(CaretLoc, PDiag) |
| << Ambiguous.getFromType() << Ambiguous.getToType(); |
| for (AmbiguousConversionSequence::const_iterator |
| I = Ambiguous.begin(), E = Ambiguous.end(); I != E; ++I) { |
| S.NoteOverloadCandidate(*I); |
| } |
| } |
| |
| namespace { |
| |
| void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) { |
| const ImplicitConversionSequence &Conv = Cand->Conversions[I]; |
| assert(Conv.isBad()); |
| assert(Cand->Function && "for now, candidate must be a function"); |
| FunctionDecl *Fn = Cand->Function; |
| |
| // There's a conversion slot for the object argument if this is a |
| // non-constructor method. Note that 'I' corresponds the |
| // conversion-slot index. |
| bool isObjectArgument = false; |
| if (isa<CXXMethodDecl>(Fn) && !isa<CXXConstructorDecl>(Fn)) { |
| if (I == 0) |
| isObjectArgument = true; |
| else |
| I--; |
| } |
| |
| std::string FnDesc; |
| OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); |
| |
| Expr *FromExpr = Conv.Bad.FromExpr; |
| QualType FromTy = Conv.Bad.getFromType(); |
| QualType ToTy = Conv.Bad.getToType(); |
| |
| if (FromTy == S.Context.OverloadTy) { |
| assert(FromExpr && "overload set argument came from implicit argument?"); |
| Expr *E = FromExpr->IgnoreParens(); |
| if (isa<UnaryOperator>(E)) |
| E = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens(); |
| DeclarationName Name = cast<OverloadExpr>(E)->getName(); |
| |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_overload) |
| << (unsigned) FnKind << FnDesc |
| << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| << ToTy << Name << I+1; |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| return; |
| } |
| |
| // Do some hand-waving analysis to see if the non-viability is due |
| // to a qualifier mismatch. |
| CanQualType CFromTy = S.Context.getCanonicalType(FromTy); |
| CanQualType CToTy = S.Context.getCanonicalType(ToTy); |
| if (CanQual<ReferenceType> RT = CToTy->getAs<ReferenceType>()) |
| CToTy = RT->getPointeeType(); |
| else { |
| // TODO: detect and diagnose the full richness of const mismatches. |
| if (CanQual<PointerType> FromPT = CFromTy->getAs<PointerType>()) |
| if (CanQual<PointerType> ToPT = CToTy->getAs<PointerType>()) |
| CFromTy = FromPT->getPointeeType(), CToTy = ToPT->getPointeeType(); |
| } |
| |
| if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() && |
| !CToTy.isAtLeastAsQualifiedAs(CFromTy)) { |
| // It is dumb that we have to do this here. |
| while (isa<ArrayType>(CFromTy)) |
| CFromTy = CFromTy->getAs<ArrayType>()->getElementType(); |
| while (isa<ArrayType>(CToTy)) |
| CToTy = CFromTy->getAs<ArrayType>()->getElementType(); |
| |
| Qualifiers FromQs = CFromTy.getQualifiers(); |
| Qualifiers ToQs = CToTy.getQualifiers(); |
| |
| if (FromQs.getAddressSpace() != ToQs.getAddressSpace()) { |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_addrspace) |
| << (unsigned) FnKind << FnDesc |
| << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| << FromTy |
| << FromQs.getAddressSpace() << ToQs.getAddressSpace() |
| << (unsigned) isObjectArgument << I+1; |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| return; |
| } |
| |
| if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_ownership) |
| << (unsigned) FnKind << FnDesc |
| << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| << FromTy |
| << FromQs.getObjCLifetime() << ToQs.getObjCLifetime() |
| << (unsigned) isObjectArgument << I+1; |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| return; |
| } |
| |
| if (FromQs.getObjCGCAttr() != ToQs.getObjCGCAttr()) { |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_gc) |
| << (unsigned) FnKind << FnDesc |
| << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| << FromTy |
| << FromQs.getObjCGCAttr() << ToQs.getObjCGCAttr() |
| << (unsigned) isObjectArgument << I+1; |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| return; |
| } |
| |
| unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers(); |
| assert(CVR && "unexpected qualifiers mismatch"); |
| |
| if (isObjectArgument) { |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr_this) |
| << (unsigned) FnKind << FnDesc |
| << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| << FromTy << (CVR - 1); |
| } else { |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_cvr) |
| << (unsigned) FnKind << FnDesc |
| << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| << FromTy << (CVR - 1) << I+1; |
| } |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| return; |
| } |
| |
| // Special diagnostic for failure to convert an initializer list, since |
| // telling the user that it has type void is not useful. |
| if (FromExpr && isa<InitListExpr>(FromExpr)) { |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_list_argument) |
| << (unsigned) FnKind << FnDesc |
| << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| << FromTy << ToTy << (unsigned) isObjectArgument << I+1; |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| return; |
| } |
| |
| // Diagnose references or pointers to incomplete types differently, |
| // since it's far from impossible that the incompleteness triggered |
| // the failure. |
| QualType TempFromTy = FromTy.getNonReferenceType(); |
| if (const PointerType *PTy = TempFromTy->getAs<PointerType>()) |
| TempFromTy = PTy->getPointeeType(); |
| if (TempFromTy->isIncompleteType()) { |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_conv_incomplete) |
| << (unsigned) FnKind << FnDesc |
| << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| << FromTy << ToTy << (unsigned) isObjectArgument << I+1; |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| return; |
| } |
| |
| // Diagnose base -> derived pointer conversions. |
| unsigned BaseToDerivedConversion = 0; |
| if (const PointerType *FromPtrTy = FromTy->getAs<PointerType>()) { |
| if (const PointerType *ToPtrTy = ToTy->getAs<PointerType>()) { |
| if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( |
| FromPtrTy->getPointeeType()) && |
| !FromPtrTy->getPointeeType()->isIncompleteType() && |
| !ToPtrTy->getPointeeType()->isIncompleteType() && |
| S.IsDerivedFrom(ToPtrTy->getPointeeType(), |
| FromPtrTy->getPointeeType())) |
| BaseToDerivedConversion = 1; |
| } |
| } else if (const ObjCObjectPointerType *FromPtrTy |
| = FromTy->getAs<ObjCObjectPointerType>()) { |
| if (const ObjCObjectPointerType *ToPtrTy |
| = ToTy->getAs<ObjCObjectPointerType>()) |
| if (const ObjCInterfaceDecl *FromIface = FromPtrTy->getInterfaceDecl()) |
| if (const ObjCInterfaceDecl *ToIface = ToPtrTy->getInterfaceDecl()) |
| if (ToPtrTy->getPointeeType().isAtLeastAsQualifiedAs( |
| FromPtrTy->getPointeeType()) && |
| FromIface->isSuperClassOf(ToIface)) |
| BaseToDerivedConversion = 2; |
| } else if (const ReferenceType *ToRefTy = ToTy->getAs<ReferenceType>()) { |
| if (ToRefTy->getPointeeType().isAtLeastAsQualifiedAs(FromTy) && |
| !FromTy->isIncompleteType() && |
| !ToRefTy->getPointeeType()->isIncompleteType() && |
| S.IsDerivedFrom(ToRefTy->getPointeeType(), FromTy)) |
| BaseToDerivedConversion = 3; |
| } |
| |
| if (BaseToDerivedConversion) { |
| S.Diag(Fn->getLocation(), |
| diag::note_ovl_candidate_bad_base_to_derived_conv) |
| << (unsigned) FnKind << FnDesc |
| << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| << (BaseToDerivedConversion - 1) |
| << FromTy << ToTy << I+1; |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| return; |
| } |
| |
| if (isa<ObjCObjectPointerType>(CFromTy) && |
| isa<PointerType>(CToTy)) { |
| Qualifiers FromQs = CFromTy.getQualifiers(); |
| Qualifiers ToQs = CToTy.getQualifiers(); |
| if (FromQs.getObjCLifetime() != ToQs.getObjCLifetime()) { |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_arc_conv) |
| << (unsigned) FnKind << FnDesc |
| << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| << FromTy << ToTy << (unsigned) isObjectArgument << I+1; |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| return; |
| } |
| } |
| |
| // Emit the generic diagnostic and, optionally, add the hints to it. |
| PartialDiagnostic FDiag = S.PDiag(diag::note_ovl_candidate_bad_conv); |
| FDiag << (unsigned) FnKind << FnDesc |
| << (FromExpr ? FromExpr->getSourceRange() : SourceRange()) |
| << FromTy << ToTy << (unsigned) isObjectArgument << I + 1 |
| << (unsigned) (Cand->Fix.Kind); |
| |
| // If we can fix the conversion, suggest the FixIts. |
| for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(), |
| HE = Cand->Fix.Hints.end(); HI != HE; ++HI) |
| FDiag << *HI; |
| S.Diag(Fn->getLocation(), FDiag); |
| |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| } |
| |
| void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand, |
| unsigned NumFormalArgs) { |
| // TODO: treat calls to a missing default constructor as a special case |
| |
| FunctionDecl *Fn = Cand->Function; |
| const FunctionProtoType *FnTy = Fn->getType()->getAs<FunctionProtoType>(); |
| |
| unsigned MinParams = Fn->getMinRequiredArguments(); |
| |
| // With invalid overloaded operators, it's possible that we think we |
| // have an arity mismatch when it fact it looks like we have the |
| // right number of arguments, because only overloaded operators have |
| // the weird behavior of overloading member and non-member functions. |
| // Just don't report anything. |
| if (Fn->isInvalidDecl() && |
| Fn->getDeclName().getNameKind() == DeclarationName::CXXOperatorName) |
| return; |
| |
| // at least / at most / exactly |
| unsigned mode, modeCount; |
| if (NumFormalArgs < MinParams) { |
| assert((Cand->FailureKind == ovl_fail_too_few_arguments) || |
| (Cand->FailureKind == ovl_fail_bad_deduction && |
| Cand->DeductionFailure.Result == Sema::TDK_TooFewArguments)); |
| if (MinParams != FnTy->getNumArgs() || |
| FnTy->isVariadic() || FnTy->isTemplateVariadic()) |
| mode = 0; // "at least" |
| else |
| mode = 2; // "exactly" |
| modeCount = MinParams; |
| } else { |
| assert((Cand->FailureKind == ovl_fail_too_many_arguments) || |
| (Cand->FailureKind == ovl_fail_bad_deduction && |
| Cand->DeductionFailure.Result == Sema::TDK_TooManyArguments)); |
| if (MinParams != FnTy->getNumArgs()) |
| mode = 1; // "at most" |
| else |
| mode = 2; // "exactly" |
| modeCount = FnTy->getNumArgs(); |
| } |
| |
| std::string Description; |
| OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, Description); |
| |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_arity) |
| << (unsigned) FnKind << (Fn->getDescribedFunctionTemplate() != 0) << mode |
| << modeCount << NumFormalArgs; |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| } |
| |
| /// Diagnose a failed template-argument deduction. |
| void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand, |
| Expr **Args, unsigned NumArgs) { |
| FunctionDecl *Fn = Cand->Function; // pattern |
| |
| TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter(); |
| NamedDecl *ParamD; |
| (ParamD = Param.dyn_cast<TemplateTypeParmDecl*>()) || |
| (ParamD = Param.dyn_cast<NonTypeTemplateParmDecl*>()) || |
| (ParamD = Param.dyn_cast<TemplateTemplateParmDecl*>()); |
| switch (Cand->DeductionFailure.Result) { |
| case Sema::TDK_Success: |
| llvm_unreachable("TDK_success while diagnosing bad deduction"); |
| |
| case Sema::TDK_Incomplete: { |
| assert(ParamD && "no parameter found for incomplete deduction result"); |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_incomplete_deduction) |
| << ParamD->getDeclName(); |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| return; |
| } |
| |
| case Sema::TDK_Underqualified: { |
| assert(ParamD && "no parameter found for bad qualifiers deduction result"); |
| TemplateTypeParmDecl *TParam = cast<TemplateTypeParmDecl>(ParamD); |
| |
| QualType Param = Cand->DeductionFailure.getFirstArg()->getAsType(); |
| |
| // Param will have been canonicalized, but it should just be a |
| // qualified version of ParamD, so move the qualifiers to that. |
| QualifierCollector Qs; |
| Qs.strip(Param); |
| QualType NonCanonParam = Qs.apply(S.Context, TParam->getTypeForDecl()); |
| assert(S.Context.hasSameType(Param, NonCanonParam)); |
| |
| // Arg has also been canonicalized, but there's nothing we can do |
| // about that. It also doesn't matter as much, because it won't |
| // have any template parameters in it (because deduction isn't |
| // done on dependent types). |
| QualType Arg = Cand->DeductionFailure.getSecondArg()->getAsType(); |
| |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_underqualified) |
| << ParamD->getDeclName() << Arg << NonCanonParam; |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| return; |
| } |
| |
| case Sema::TDK_Inconsistent: { |
| assert(ParamD && "no parameter found for inconsistent deduction result"); |
| int which = 0; |
| if (isa<TemplateTypeParmDecl>(ParamD)) |
| which = 0; |
| else if (isa<NonTypeTemplateParmDecl>(ParamD)) |
| which = 1; |
| else { |
| which = 2; |
| } |
| |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_inconsistent_deduction) |
| << which << ParamD->getDeclName() |
| << *Cand->DeductionFailure.getFirstArg() |
| << *Cand->DeductionFailure.getSecondArg(); |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| return; |
| } |
| |
| case Sema::TDK_InvalidExplicitArguments: |
| assert(ParamD && "no parameter found for invalid explicit arguments"); |
| if (ParamD->getDeclName()) |
| S.Diag(Fn->getLocation(), |
| diag::note_ovl_candidate_explicit_arg_mismatch_named) |
| << ParamD->getDeclName(); |
| else { |
| int index = 0; |
| if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ParamD)) |
| index = TTP->getIndex(); |
| else if (NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(ParamD)) |
| index = NTTP->getIndex(); |
| else |
| index = cast<TemplateTemplateParmDecl>(ParamD)->getIndex(); |
| S.Diag(Fn->getLocation(), |
| diag::note_ovl_candidate_explicit_arg_mismatch_unnamed) |
| << (index + 1); |
| } |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| return; |
| |
| case Sema::TDK_TooManyArguments: |
| case Sema::TDK_TooFewArguments: |
| DiagnoseArityMismatch(S, Cand, NumArgs); |
| return; |
| |
| case Sema::TDK_InstantiationDepth: |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_instantiation_depth); |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| return; |
| |
| case Sema::TDK_SubstitutionFailure: { |
| std::string ArgString; |
| if (TemplateArgumentList *Args |
| = Cand->DeductionFailure.getTemplateArgumentList()) |
| ArgString = S.getTemplateArgumentBindingsText( |
| Fn->getDescribedFunctionTemplate()->getTemplateParameters(), |
| *Args); |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_substitution_failure) |
| << ArgString; |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| return; |
| } |
| |
| // TODO: diagnose these individually, then kill off |
| // note_ovl_candidate_bad_deduction, which is uselessly vague. |
| case Sema::TDK_NonDeducedMismatch: |
| case Sema::TDK_FailedOverloadResolution: |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_bad_deduction); |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| return; |
| } |
| } |
| |
| /// CUDA: diagnose an invalid call across targets. |
| void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) { |
| FunctionDecl *Caller = cast<FunctionDecl>(S.CurContext); |
| FunctionDecl *Callee = Cand->Function; |
| |
| Sema::CUDAFunctionTarget CallerTarget = S.IdentifyCUDATarget(Caller), |
| CalleeTarget = S.IdentifyCUDATarget(Callee); |
| |
| std::string FnDesc; |
| OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Callee, FnDesc); |
| |
| S.Diag(Callee->getLocation(), diag::note_ovl_candidate_bad_target) |
| << (unsigned) FnKind << CalleeTarget << CallerTarget; |
| } |
| |
| /// Generates a 'note' diagnostic for an overload candidate. We've |
| /// already generated a primary error at the call site. |
| /// |
| /// It really does need to be a single diagnostic with its caret |
| /// pointed at the candidate declaration. Yes, this creates some |
| /// major challenges of technical writing. Yes, this makes pointing |
| /// out problems with specific arguments quite awkward. It's still |
| /// better than generating twenty screens of text for every failed |
| /// overload. |
| /// |
| /// It would be great to be able to express per-candidate problems |
| /// more richly for those diagnostic clients that cared, but we'd |
| /// still have to be just as careful with the default diagnostics. |
| void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand, |
| Expr **Args, unsigned NumArgs) { |
| FunctionDecl *Fn = Cand->Function; |
| |
| // Note deleted candidates, but only if they're viable. |
| if (Cand->Viable && (Fn->isDeleted() || |
| S.isFunctionConsideredUnavailable(Fn))) { |
| std::string FnDesc; |
| OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc); |
| |
| S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted) |
| << FnKind << FnDesc << Fn->isDeleted(); |
| MaybeEmitInheritedConstructorNote(S, Fn); |
| return; |
| } |
| |
| // We don't really have anything else to say about viable candidates. |
| if (Cand->Viable) { |
| S.NoteOverloadCandidate(Fn); |
| return; |
| } |
| |
| switch (Cand->FailureKind) { |
| case ovl_fail_too_many_arguments: |
| case ovl_fail_too_few_arguments: |
| return DiagnoseArityMismatch(S, Cand, NumArgs); |
| |
| case ovl_fail_bad_deduction: |
| return DiagnoseBadDeduction(S, Cand, Args, NumArgs); |
| |
| case ovl_fail_trivial_conversion: |
| case ovl_fail_bad_final_conversion: |
| case ovl_fail_final_conversion_not_exact: |
| return S.NoteOverloadCandidate(Fn); |
| |
| case ovl_fail_bad_conversion: { |
| unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0); |
| for (unsigned N = Cand->NumConversions; I != N; ++I) |
| if (Cand->Conversions[I].isBad()) |
| return DiagnoseBadConversion(S, Cand, I); |
| |
| // FIXME: this currently happens when we're called from SemaInit |
| // when user-conversion overload fails. Figure out how to handle |
| // those conditions and diagnose them well. |
| return S.NoteOverloadCandidate(Fn); |
| } |
| |
| case ovl_fail_bad_target: |
| return DiagnoseBadTarget(S, Cand); |
| } |
| } |
| |
| void NoteSurrogateCandidate(Sema &S, OverloadCandidate *Cand) { |
| // Desugar the type of the surrogate down to a function type, |
| // retaining as many typedefs as possible while still showing |
| // the function type (and, therefore, its parameter types). |
| QualType FnType = Cand->Surrogate->getConversionType(); |
| bool isLValueReference = false; |
| bool isRValueReference = false; |
| bool isPointer = false; |
| if (const LValueReferenceType *FnTypeRef = |
| FnType->getAs<LValueReferenceType>()) { |
| FnType = FnTypeRef->getPointeeType(); |
| isLValueReference = true; |
| } else if (const RValueReferenceType *FnTypeRef = |
| FnType->getAs<RValueReferenceType>()) { |
| FnType = FnTypeRef->getPointeeType(); |
| isRValueReference = true; |
| } |
| if (const PointerType *FnTypePtr = FnType->getAs<PointerType>()) { |
| FnType = FnTypePtr->getPointeeType(); |
| isPointer = true; |
| } |
| // Desugar down to a function type. |
| FnType = QualType(FnType->getAs<FunctionType>(), 0); |
| // Reconstruct the pointer/reference as appropriate. |
| if (isPointer) FnType = S.Context.getPointerType(FnType); |
| if (isRValueReference) FnType = S.Context.getRValueReferenceType(FnType); |
| if (isLValueReference) FnType = S.Context.getLValueReferenceType(FnType); |
| |
| S.Diag(Cand->Surrogate->getLocation(), diag::note_ovl_surrogate_cand) |
| << FnType; |
| MaybeEmitInheritedConstructorNote(S, Cand->Surrogate); |
| } |
| |
| void NoteBuiltinOperatorCandidate(Sema &S, |
| const char *Opc, |
| SourceLocation OpLoc, |
| OverloadCandidate *Cand) { |
| assert(Cand->NumConversions <= 2 && "builtin operator is not binary"); |
| std::string TypeStr("operator"); |
| TypeStr += Opc; |
| TypeStr += "("; |
| TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString(); |
| if (Cand->NumConversions == 1) { |
| TypeStr += ")"; |
| S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr; |
| } else { |
| TypeStr += ", "; |
| TypeStr += Cand->BuiltinTypes.ParamTypes[1].getAsString(); |
| TypeStr += ")"; |
| S.Diag(OpLoc, diag::note_ovl_builtin_binary_candidate) << TypeStr; |
| } |
| } |
| |
| void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc, |
| OverloadCandidate *Cand) { |
| unsigned NoOperands = Cand->NumConversions; |
| for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) { |
| const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx]; |
| if (ICS.isBad()) break; // all meaningless after first invalid |
| if (!ICS.isAmbiguous()) continue; |
| |
| ICS.DiagnoseAmbiguousConversion(S, OpLoc, |
| S.PDiag(diag::note_ambiguous_type_conversion)); |
| } |
| } |
| |
| SourceLocation GetLocationForCandidate(const OverloadCandidate *Cand) { |
| if (Cand->Function) |
| return Cand->Function->getLocation(); |
| if (Cand->IsSurrogate) |
| return Cand->Surrogate->getLocation(); |
| return SourceLocation(); |
| } |
| |
| static unsigned |
| RankDeductionFailure(const OverloadCandidate::DeductionFailureInfo &DFI) { |
| switch ((Sema::TemplateDeductionResult)DFI.Result) { |
| case Sema::TDK_Success: |
| llvm_unreachable("TDK_success while diagnosing bad deduction"); |
| |
| case Sema::TDK_Incomplete: |
| return 1; |
| |
| case Sema::TDK_Underqualified: |
| case Sema::TDK_Inconsistent: |
| return 2; |
| |
| case Sema::TDK_SubstitutionFailure: |
| case Sema::TDK_NonDeducedMismatch: |
| return 3; |
| |
| case Sema::TDK_InstantiationDepth: |
| case Sema::TDK_FailedOverloadResolution: |
| return 4; |
| |
| case Sema::TDK_InvalidExplicitArguments: |
| return 5; |
| |
| case Sema::TDK_TooManyArguments: |
| case Sema::TDK_TooFewArguments: |
| return 6; |
| } |
| llvm_unreachable("Unhandled deduction result"); |
| } |
| |
| struct CompareOverloadCandidatesForDisplay { |
| Sema &S; |
| CompareOverloadCandidatesForDisplay(Sema &S) : S(S) {} |
| |
| bool operator()(const OverloadCandidate *L, |
| const OverloadCandidate *R) { |
| // Fast-path this check. |
| if (L == R) return false; |
| |
| // Order first by viability. |
| if (L->Viable) { |
| if (!R->Viable) return true; |
| |
| // TODO: introduce a tri-valued comparison for overload |
| // candidates. Would be more worthwhile if we had a sort |
| // that could exploit it. |
| if (isBetterOverloadCandidate(S, *L, *R, SourceLocation())) return true; |
| if (isBetterOverloadCandidate(S, *R, *L, SourceLocation())) return false; |
| } else if (R->Viable) |
| return false; |
| |
| assert(L->Viable == R->Viable); |
| |
| // Criteria by which we can sort non-viable candidates: |
| if (!L->Viable) { |
| // 1. Arity mismatches come after other candidates. |
| if (L->FailureKind == ovl_fail_too_many_arguments || |
| L->FailureKind == ovl_fail_too_few_arguments) |
| return false; |
| if (R->FailureKind == ovl_fail_too_many_arguments || |
| R->FailureKind == ovl_fail_too_few_arguments) |
| return true; |
| |
| // 2. Bad conversions come first and are ordered by the number |
| // of bad conversions and quality of good conversions. |
| if (L->FailureKind == ovl_fail_bad_conversion) { |
| if (R->FailureKind != ovl_fail_bad_conversion) |
| return true; |
| |
| // The conversion that can be fixed with a smaller number of changes, |
| // comes first. |
| unsigned numLFixes = L->Fix.NumConversionsFixed; |
| unsigned numRFixes = R->Fix.NumConversionsFixed; |
| numLFixes = (numLFixes == 0) ? UINT_MAX : numLFixes; |
| numRFixes = (numRFixes == 0) ? UINT_MAX : numRFixes; |
| if (numLFixes != numRFixes) { |
| if (numLFixes < numRFixes) |
| return true; |
| else |
| return false; |
| } |
| |
| // If there's any ordering between the defined conversions... |
| // FIXME: this might not be transitive. |
| assert(L->NumConversions == R->NumConversions); |
| |
| int leftBetter = 0; |
| unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument); |
| for (unsigned E = L->NumConversions; I != E; ++I) { |
| switch (CompareImplicitConversionSequences(S, |
| L->Conversions[I], |
| R->Conversions[I])) { |
| case ImplicitConversionSequence::Better: |
| leftBetter++; |
| break; |
| |
| case ImplicitConversionSequence::Worse: |
| leftBetter--; |
| break; |
| |
| case ImplicitConversionSequence::Indistinguishable: |
| break; |
| } |
| } |
| if (leftBetter > 0) return true; |
| if (leftBetter < 0) return false; |
| |
| } else if (R->FailureKind == ovl_fail_bad_conversion) |
| return false; |
| |
| if (L->FailureKind == ovl_fail_bad_deduction) { |
| if (R->FailureKind != ovl_fail_bad_deduction) |
| return true; |
| |
| if (L->DeductionFailure.Result != R->DeductionFailure.Result) |
| return RankDeductionFailure(L->DeductionFailure) |
| < RankDeductionFailure(R->DeductionFailure); |
| } else if (R->FailureKind == ovl_fail_bad_deduction) |
| return false; |
| |
| // TODO: others? |
| } |
| |
| // Sort everything else by location. |
| SourceLocation LLoc = GetLocationForCandidate(L); |
| SourceLocation RLoc = GetLocationForCandidate(R); |
| |
| // Put candidates without locations (e.g. builtins) at the end. |
| if (LLoc.isInvalid()) return false; |
| if (RLoc.isInvalid()) return true; |
| |
| return S.SourceMgr.isBeforeInTranslationUnit(LLoc, RLoc); |
| } |
| }; |
| |
| /// CompleteNonViableCandidate - Normally, overload resolution only |
| /// computes up to the first. Produces the FixIt set if possible. |
| void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand, |
| Expr **Args, unsigned NumArgs) { |
| assert(!Cand->Viable); |
| |
| // Don't do anything on failures other than bad conversion. |
| if (Cand->FailureKind != ovl_fail_bad_conversion) return; |
| |
| // We only want the FixIts if all the arguments can be corrected. |
| bool Unfixable = false; |
| // Use a implicit copy initialization to check conversion fixes. |
| Cand->Fix.setConversionChecker(TryCopyInitialization); |
| |
| // Skip forward to the first bad conversion. |
| unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0); |
| unsigned ConvCount = Cand->NumConversions; |
| while (true) { |
| assert(ConvIdx != ConvCount && "no bad conversion in candidate"); |
| ConvIdx++; |
| if (Cand->Conversions[ConvIdx - 1].isBad()) { |
| Unfixable = !Cand->TryToFixBadConversion(ConvIdx - 1, S); |
| break; |
| } |
| } |
| |
| if (ConvIdx == ConvCount) |
| return; |
| |
| assert(!Cand->Conversions[ConvIdx].isInitialized() && |
| "remaining conversion is initialized?"); |
| |
| // FIXME: this should probably be preserved from the overload |
| // operation somehow. |
| bool SuppressUserConversions = false; |
| |
| const FunctionProtoType* Proto; |
| unsigned ArgIdx = ConvIdx; |
| |
| if (Cand->IsSurrogate) { |
| QualType ConvType |
| = Cand->Surrogate->getConversionType().getNonReferenceType(); |
| if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) |
| ConvType = ConvPtrType->getPointeeType(); |
| Proto = ConvType->getAs<FunctionProtoType>(); |
| ArgIdx--; |
| } else if (Cand->Function) { |
| Proto = Cand->Function->getType()->getAs<FunctionProtoType>(); |
| if (isa<CXXMethodDecl>(Cand->Function) && |
| !isa<CXXConstructorDecl>(Cand->Function)) |
| ArgIdx--; |
| } else { |
| // Builtin binary operator with a bad first conversion. |
| assert(ConvCount <= 3); |
| for (; ConvIdx != ConvCount; ++ConvIdx) |
| Cand->Conversions[ConvIdx] |
| = TryCopyInitialization(S, Args[ConvIdx], |
| Cand->BuiltinTypes.ParamTypes[ConvIdx], |
| SuppressUserConversions, |
| /*InOverloadResolution*/ true, |
| /*AllowObjCWritebackConversion=*/ |
| S.getLangOptions().ObjCAutoRefCount); |
| return; |
| } |
| |
| // Fill in the rest of the conversions. |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| for (; ConvIdx != ConvCount; ++ConvIdx, ++ArgIdx) { |
| if (ArgIdx < NumArgsInProto) { |
| Cand->Conversions[ConvIdx] |
| = TryCopyInitialization(S, Args[ArgIdx], Proto->getArgType(ArgIdx), |
| SuppressUserConversions, |
| /*InOverloadResolution=*/true, |
| /*AllowObjCWritebackConversion=*/ |
| S.getLangOptions().ObjCAutoRefCount); |
| // Store the FixIt in the candidate if it exists. |
| if (!Unfixable && Cand->Conversions[ConvIdx].isBad()) |
| Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S); |
| } |
| else |
| Cand->Conversions[ConvIdx].setEllipsis(); |
| } |
| } |
| |
| } // end anonymous namespace |
| |
| /// PrintOverloadCandidates - When overload resolution fails, prints |
| /// diagnostic messages containing the candidates in the candidate |
| /// set. |
| void OverloadCandidateSet::NoteCandidates(Sema &S, |
| OverloadCandidateDisplayKind OCD, |
| Expr **Args, unsigned NumArgs, |
| const char *Opc, |
| SourceLocation OpLoc) { |
| // Sort the candidates by viability and position. Sorting directly would |
| // be prohibitive, so we make a set of pointers and sort those. |
| SmallVector<OverloadCandidate*, 32> Cands; |
| if (OCD == OCD_AllCandidates) Cands.reserve(size()); |
| for (iterator Cand = begin(), LastCand = end(); Cand != LastCand; ++Cand) { |
| if (Cand->Viable) |
| Cands.push_back(Cand); |
| else if (OCD == OCD_AllCandidates) { |
| CompleteNonViableCandidate(S, Cand, Args, NumArgs); |
| if (Cand->Function || Cand->IsSurrogate) |
| Cands.push_back(Cand); |
| // Otherwise, this a non-viable builtin candidate. We do not, in general, |
| // want to list every possible builtin candidate. |
| } |
| } |
| |
| std::sort(Cands.begin(), Cands.end(), |
| CompareOverloadCandidatesForDisplay(S)); |
| |
| bool ReportedAmbiguousConversions = false; |
| |
| SmallVectorImpl<OverloadCandidate*>::iterator I, E; |
| const DiagnosticsEngine::OverloadsShown ShowOverloads = |
| S.Diags.getShowOverloads(); |
| unsigned CandsShown = 0; |
| for (I = Cands.begin(), E = Cands.end(); I != E; ++I) { |
| OverloadCandidate *Cand = *I; |
| |
| // Set an arbitrary limit on the number of candidate functions we'll spam |
| // the user with. FIXME: This limit should depend on details of the |
| // candidate list. |
| if (CandsShown >= 4 && ShowOverloads == DiagnosticsEngine::Ovl_Best) { |
| break; |
| } |
| ++CandsShown; |
| |
| if (Cand->Function) |
| NoteFunctionCandidate(S, Cand, Args, NumArgs); |
| else if (Cand->IsSurrogate) |
| NoteSurrogateCandidate(S, Cand); |
| else { |
| assert(Cand->Viable && |
| "Non-viable built-in candidates are not added to Cands."); |
| // Generally we only see ambiguities including viable builtin |
| // operators if overload resolution got screwed up by an |
| // ambiguous user-defined conversion. |
| // |
| // FIXME: It's quite possible for different conversions to see |
| // different ambiguities, though. |
| if (!ReportedAmbiguousConversions) { |
| NoteAmbiguousUserConversions(S, OpLoc, Cand); |
| ReportedAmbiguousConversions = true; |
| } |
| |
| // If this is a viable builtin, print it. |
| NoteBuiltinOperatorCandidate(S, Opc, OpLoc, Cand); |
| } |
| } |
| |
| if (I != E) |
| S.Diag(OpLoc, diag::note_ovl_too_many_candidates) << int(E - I); |
| } |
| |
| // [PossiblyAFunctionType] --> [Return] |
| // NonFunctionType --> NonFunctionType |
| // R (A) --> R(A) |
| // R (*)(A) --> R (A) |
| // R (&)(A) --> R (A) |
| // R (S::*)(A) --> R (A) |
| QualType Sema::ExtractUnqualifiedFunctionType(QualType PossiblyAFunctionType) { |
| QualType Ret = PossiblyAFunctionType; |
| if (const PointerType *ToTypePtr = |
| PossiblyAFunctionType->getAs<PointerType>()) |
| Ret = ToTypePtr->getPointeeType(); |
| else if (const ReferenceType *ToTypeRef = |
| PossiblyAFunctionType->getAs<ReferenceType>()) |
| Ret = ToTypeRef->getPointeeType(); |
| else if (const MemberPointerType *MemTypePtr = |
| PossiblyAFunctionType->getAs<MemberPointerType>()) |
| Ret = MemTypePtr->getPointeeType(); |
| Ret = |
| Context.getCanonicalType(Ret).getUnqualifiedType(); |
| return Ret; |
| } |
| |
| // A helper class to help with address of function resolution |
| // - allows us to avoid passing around all those ugly parameters |
| class AddressOfFunctionResolver |
| { |
| Sema& S; |
| Expr* SourceExpr; |
| const QualType& TargetType; |
| QualType TargetFunctionType; // Extracted function type from target type |
| |
| bool Complain; |
| //DeclAccessPair& ResultFunctionAccessPair; |
| ASTContext& Context; |
| |
| bool TargetTypeIsNonStaticMemberFunction; |
| bool FoundNonTemplateFunction; |
| |
| OverloadExpr::FindResult OvlExprInfo; |
| OverloadExpr *OvlExpr; |
| TemplateArgumentListInfo OvlExplicitTemplateArgs; |
| SmallVector<std::pair<DeclAccessPair, FunctionDecl*>, 4> Matches; |
| |
| public: |
| AddressOfFunctionResolver(Sema &S, Expr* SourceExpr, |
| const QualType& TargetType, bool Complain) |
| : S(S), SourceExpr(SourceExpr), TargetType(TargetType), |
| Complain(Complain), Context(S.getASTContext()), |
| TargetTypeIsNonStaticMemberFunction( |
| !!TargetType->getAs<MemberPointerType>()), |
| FoundNonTemplateFunction(false), |
| OvlExprInfo(OverloadExpr::find(SourceExpr)), |
| OvlExpr(OvlExprInfo.Expression) |
| { |
| ExtractUnqualifiedFunctionTypeFromTargetType(); |
| |
| if (!TargetFunctionType->isFunctionType()) { |
| if (OvlExpr->hasExplicitTemplateArgs()) { |
| DeclAccessPair dap; |
| if (FunctionDecl* Fn = S.ResolveSingleFunctionTemplateSpecialization( |
| OvlExpr, false, &dap) ) { |
| |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { |
| if (!Method->isStatic()) { |
| // If the target type is a non-function type and the function |
| // found is a non-static member function, pretend as if that was |
| // the target, it's the only possible type to end up with. |
| TargetTypeIsNonStaticMemberFunction = true; |
| |
| // And skip adding the function if its not in the proper form. |
| // We'll diagnose this due to an empty set of functions. |
| if (!OvlExprInfo.HasFormOfMemberPointer) |
| return; |
| } |
| } |
| |
| Matches.push_back(std::make_pair(dap,Fn)); |
| } |
| } |
| return; |
| } |
| |
| if (OvlExpr->hasExplicitTemplateArgs()) |
| OvlExpr->getExplicitTemplateArgs().copyInto(OvlExplicitTemplateArgs); |
| |
| if (FindAllFunctionsThatMatchTargetTypeExactly()) { |
| // C++ [over.over]p4: |
| // If more than one function is selected, [...] |
| if (Matches.size() > 1) { |
| if (FoundNonTemplateFunction) |
| EliminateAllTemplateMatches(); |
| else |
| EliminateAllExceptMostSpecializedTemplate(); |
| } |
| } |
| } |
| |
| private: |
| bool isTargetTypeAFunction() const { |
| return TargetFunctionType->isFunctionType(); |
| } |
| |
| // [ToType] [Return] |
| |
| // R (*)(A) --> R (A), IsNonStaticMemberFunction = false |
| // R (&)(A) --> R (A), IsNonStaticMemberFunction = false |
| // R (S::*)(A) --> R (A), IsNonStaticMemberFunction = true |
| void inline ExtractUnqualifiedFunctionTypeFromTargetType() { |
| TargetFunctionType = S.ExtractUnqualifiedFunctionType(TargetType); |
| } |
| |
| // return true if any matching specializations were found |
| bool AddMatchingTemplateFunction(FunctionTemplateDecl* FunctionTemplate, |
| const DeclAccessPair& CurAccessFunPair) { |
| if (CXXMethodDecl *Method |
| = dyn_cast<CXXMethodDecl>(FunctionTemplate->getTemplatedDecl())) { |
| // Skip non-static function templates when converting to pointer, and |
| // static when converting to member pointer. |
| if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) |
| return false; |
| } |
| else if (TargetTypeIsNonStaticMemberFunction) |
| return false; |
| |
| // C++ [over.over]p2: |
| // If the name is a function template, template argument deduction is |
| // done (14.8.2.2), and if the argument deduction succeeds, the |
| // resulting template argument list is used to generate a single |
| // function template specialization, which is added to the set of |
| // overloaded functions considered. |
| FunctionDecl *Specialization = 0; |
| TemplateDeductionInfo Info(Context, OvlExpr->getNameLoc()); |
| if (Sema::TemplateDeductionResult Result |
| = S.DeduceTemplateArguments(FunctionTemplate, |
| &OvlExplicitTemplateArgs, |
| TargetFunctionType, Specialization, |
| Info)) { |
| // FIXME: make a note of the failed deduction for diagnostics. |
| (void)Result; |
| return false; |
| } |
| |
| // Template argument deduction ensures that we have an exact match. |
| // This function template specicalization works. |
| Specialization = cast<FunctionDecl>(Specialization->getCanonicalDecl()); |
| assert(TargetFunctionType |
| == Context.getCanonicalType(Specialization->getType())); |
| Matches.push_back(std::make_pair(CurAccessFunPair, Specialization)); |
| return true; |
| } |
| |
| bool AddMatchingNonTemplateFunction(NamedDecl* Fn, |
| const DeclAccessPair& CurAccessFunPair) { |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { |
| // Skip non-static functions when converting to pointer, and static |
| // when converting to member pointer. |
| if (Method->isStatic() == TargetTypeIsNonStaticMemberFunction) |
| return false; |
| } |
| else if (TargetTypeIsNonStaticMemberFunction) |
| return false; |
| |
| if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) { |
| if (S.getLangOptions().CUDA) |
| if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext)) |
| if (S.CheckCUDATarget(Caller, FunDecl)) |
| return false; |
| |
| QualType ResultTy; |
| if (Context.hasSameUnqualifiedType(TargetFunctionType, |
| FunDecl->getType()) || |
| S.IsNoReturnConversion(FunDecl->getType(), TargetFunctionType, |
| ResultTy)) { |
| Matches.push_back(std::make_pair(CurAccessFunPair, |
| cast<FunctionDecl>(FunDecl->getCanonicalDecl()))); |
| FoundNonTemplateFunction = true; |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool FindAllFunctionsThatMatchTargetTypeExactly() { |
| bool Ret = false; |
| |
| // If the overload expression doesn't have the form of a pointer to |
| // member, don't try to convert it to a pointer-to-member type. |
| if (IsInvalidFormOfPointerToMemberFunction()) |
| return false; |
| |
| for (UnresolvedSetIterator I = OvlExpr->decls_begin(), |
| E = OvlExpr->decls_end(); |
| I != E; ++I) { |
| // Look through any using declarations to find the underlying function. |
| NamedDecl *Fn = (*I)->getUnderlyingDecl(); |
| |
| // C++ [over.over]p3: |
| // Non-member functions and static member functions match |
| // targets of type "pointer-to-function" or "reference-to-function." |
| // Nonstatic member functions match targets of |
| // type "pointer-to-member-function." |
| // Note that according to DR 247, the containing class does not matter. |
| if (FunctionTemplateDecl *FunctionTemplate |
| = dyn_cast<FunctionTemplateDecl>(Fn)) { |
| if (AddMatchingTemplateFunction(FunctionTemplate, I.getPair())) |
| Ret = true; |
| } |
| // If we have explicit template arguments supplied, skip non-templates. |
| else if (!OvlExpr->hasExplicitTemplateArgs() && |
| AddMatchingNonTemplateFunction(Fn, I.getPair())) |
| Ret = true; |
| } |
| assert(Ret || Matches.empty()); |
| return Ret; |
| } |
| |
| void EliminateAllExceptMostSpecializedTemplate() { |
| // [...] and any given function template specialization F1 is |
| // eliminated if the set contains a second function template |
| // specialization whose function template is more specialized |
| // than the function template of F1 according to the partial |
| // ordering rules of 14.5.5.2. |
| |
| // The algorithm specified above is quadratic. We instead use a |
| // two-pass algorithm (similar to the one used to identify the |
| // best viable function in an overload set) that identifies the |
| // best function template (if it exists). |
| |
| UnresolvedSet<4> MatchesCopy; // TODO: avoid! |
| for (unsigned I = 0, E = Matches.size(); I != E; ++I) |
| MatchesCopy.addDecl(Matches[I].second, Matches[I].first.getAccess()); |
| |
| UnresolvedSetIterator Result = |
| S.getMostSpecialized(MatchesCopy.begin(), MatchesCopy.end(), |
| TPOC_Other, 0, SourceExpr->getLocStart(), |
| S.PDiag(), |
| S.PDiag(diag::err_addr_ovl_ambiguous) |
| << Matches[0].second->getDeclName(), |
| S.PDiag(diag::note_ovl_candidate) |
| << (unsigned) oc_function_template, |
| Complain, TargetFunctionType); |
| |
| if (Result != MatchesCopy.end()) { |
| // Make it the first and only element |
| Matches[0].first = Matches[Result - MatchesCopy.begin()].first; |
| Matches[0].second = cast<FunctionDecl>(*Result); |
| Matches.resize(1); |
| } |
| } |
| |
| void EliminateAllTemplateMatches() { |
| // [...] any function template specializations in the set are |
| // eliminated if the set also contains a non-template function, [...] |
| for (unsigned I = 0, N = Matches.size(); I != N; ) { |
| if (Matches[I].second->getPrimaryTemplate() == 0) |
| ++I; |
| else { |
| Matches[I] = Matches[--N]; |
| Matches.set_size(N); |
| } |
| } |
| } |
| |
| public: |
| void ComplainNoMatchesFound() const { |
| assert(Matches.empty()); |
| S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable) |
| << OvlExpr->getName() << TargetFunctionType |
| << OvlExpr->getSourceRange(); |
| S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType); |
| } |
| |
| bool IsInvalidFormOfPointerToMemberFunction() const { |
| return TargetTypeIsNonStaticMemberFunction && |
| !OvlExprInfo.HasFormOfMemberPointer; |
| } |
| |
| void ComplainIsInvalidFormOfPointerToMemberFunction() const { |
| // TODO: Should we condition this on whether any functions might |
| // have matched, or is it more appropriate to do that in callers? |
| // TODO: a fixit wouldn't hurt. |
| S.Diag(OvlExpr->getNameLoc(), diag::err_addr_ovl_no_qualifier) |
| << TargetType << OvlExpr->getSourceRange(); |
| } |
| |
| void ComplainOfInvalidConversion() const { |
| S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_not_func_ptrref) |
| << OvlExpr->getName() << TargetType; |
| } |
| |
| void ComplainMultipleMatchesFound() const { |
| assert(Matches.size() > 1); |
| S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous) |
| << OvlExpr->getName() |
| << OvlExpr->getSourceRange(); |
| S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType); |
| } |
| |
| bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); } |
| |
| int getNumMatches() const { return Matches.size(); } |
| |
| FunctionDecl* getMatchingFunctionDecl() const { |
| if (Matches.size() != 1) return 0; |
| return Matches[0].second; |
| } |
| |
| const DeclAccessPair* getMatchingFunctionAccessPair() const { |
| if (Matches.size() != 1) return 0; |
| return &Matches[0].first; |
| } |
| }; |
| |
| /// ResolveAddressOfOverloadedFunction - Try to resolve the address of |
| /// an overloaded function (C++ [over.over]), where @p From is an |
| /// expression with overloaded function type and @p ToType is the type |
| /// we're trying to resolve to. For example: |
| /// |
| /// @code |
| /// int f(double); |
| /// int f(int); |
| /// |
| /// int (*pfd)(double) = f; // selects f(double) |
| /// @endcode |
| /// |
| /// This routine returns the resulting FunctionDecl if it could be |
| /// resolved, and NULL otherwise. When @p Complain is true, this |
| /// routine will emit diagnostics if there is an error. |
| FunctionDecl * |
| Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, |
| QualType TargetType, |
| bool Complain, |
| DeclAccessPair &FoundResult, |
| bool *pHadMultipleCandidates) { |
| assert(AddressOfExpr->getType() == Context.OverloadTy); |
| |
| AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, |
| Complain); |
| int NumMatches = Resolver.getNumMatches(); |
| FunctionDecl* Fn = 0; |
| if (NumMatches == 0 && Complain) { |
| if (Resolver.IsInvalidFormOfPointerToMemberFunction()) |
| Resolver.ComplainIsInvalidFormOfPointerToMemberFunction(); |
| else |
| Resolver.ComplainNoMatchesFound(); |
| } |
| else if (NumMatches > 1 && Complain) |
| Resolver.ComplainMultipleMatchesFound(); |
| else if (NumMatches == 1) { |
| Fn = Resolver.getMatchingFunctionDecl(); |
| assert(Fn); |
| FoundResult = *Resolver.getMatchingFunctionAccessPair(); |
| MarkDeclarationReferenced(AddressOfExpr->getLocStart(), Fn); |
| if (Complain) |
| CheckAddressOfMemberAccess(AddressOfExpr, FoundResult); |
| } |
| |
| if (pHadMultipleCandidates) |
| *pHadMultipleCandidates = Resolver.hadMultipleCandidates(); |
| return Fn; |
| } |
| |
| /// \brief Given an expression that refers to an overloaded function, try to |
| /// resolve that overloaded function expression down to a single function. |
| /// |
| /// This routine can only resolve template-ids that refer to a single function |
| /// template, where that template-id refers to a single template whose template |
| /// arguments are either provided by the template-id or have defaults, |
| /// as described in C++0x [temp.arg.explicit]p3. |
| FunctionDecl * |
| Sema::ResolveSingleFunctionTemplateSpecialization(OverloadExpr *ovl, |
| bool Complain, |
| DeclAccessPair *FoundResult) { |
| // C++ [over.over]p1: |
| // [...] [Note: any redundant set of parentheses surrounding the |
| // overloaded function name is ignored (5.1). ] |
| // C++ [over.over]p1: |
| // [...] The overloaded function name can be preceded by the & |
| // operator. |
| |
| // If we didn't actually find any template-ids, we're done. |
| if (!ovl->hasExplicitTemplateArgs()) |
| return 0; |
| |
| TemplateArgumentListInfo ExplicitTemplateArgs; |
| ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); |
| |
| // Look through all of the overloaded functions, searching for one |
| // whose type matches exactly. |
| FunctionDecl *Matched = 0; |
| for (UnresolvedSetIterator I = ovl->decls_begin(), |
| E = ovl->decls_end(); I != E; ++I) { |
| // C++0x [temp.arg.explicit]p3: |
| // [...] In contexts where deduction is done and fails, or in contexts |
| // where deduction is not done, if a template argument list is |
| // specified and it, along with any default template arguments, |
| // identifies a single function template specialization, then the |
| // template-id is an lvalue for the function template specialization. |
| FunctionTemplateDecl *FunctionTemplate |
| = cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()); |
| |
| // C++ [over.over]p2: |
| // If the name is a function template, template argument deduction is |
| // done (14.8.2.2), and if the argument deduction succeeds, the |
| // resulting template argument list is used to generate a single |
| // function template specialization, which is added to the set of |
| // overloaded functions considered. |
| FunctionDecl *Specialization = 0; |
| TemplateDeductionInfo Info(Context, ovl->getNameLoc()); |
| if (TemplateDeductionResult Result |
| = DeduceTemplateArguments(FunctionTemplate, &ExplicitTemplateArgs, |
| Specialization, Info)) { |
| // FIXME: make a note of the failed deduction for diagnostics. |
| (void)Result; |
| continue; |
| } |
| |
| assert(Specialization && "no specialization and no error?"); |
| |
| // Multiple matches; we can't resolve to a single declaration. |
| if (Matched) { |
| if (Complain) { |
| Diag(ovl->getExprLoc(), diag::err_addr_ovl_ambiguous) |
| << ovl->getName(); |
| NoteAllOverloadCandidates(ovl); |
| } |
| return 0; |
| } |
| |
| Matched = Specialization; |
| if (FoundResult) *FoundResult = I.getPair(); |
| } |
| |
| return Matched; |
| } |
| |
| |
| |
| |
| // Resolve and fix an overloaded expression that can be resolved |
| // because it identifies a single function template specialization. |
| // |
| // Last three arguments should only be supplied if Complain = true |
| // |
| // Return true if it was logically possible to so resolve the |
| // expression, regardless of whether or not it succeeded. Always |
| // returns true if 'complain' is set. |
| bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization( |
| ExprResult &SrcExpr, bool doFunctionPointerConverion, |
| bool complain, const SourceRange& OpRangeForComplaining, |
| QualType DestTypeForComplaining, |
| unsigned DiagIDForComplaining) { |
| assert(SrcExpr.get()->getType() == Context.OverloadTy); |
| |
| OverloadExpr::FindResult ovl = OverloadExpr::find(SrcExpr.get()); |
| |
| DeclAccessPair found; |
| ExprResult SingleFunctionExpression; |
| if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization( |
| ovl.Expression, /*complain*/ false, &found)) { |
| if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getSourceRange().getBegin())) { |
| SrcExpr = ExprError(); |
| return true; |
| } |
| |
| // It is only correct to resolve to an instance method if we're |
| // resolving a form that's permitted to be a pointer to member. |
| // Otherwise we'll end up making a bound member expression, which |
| // is illegal in all the contexts we resolve like this. |
| if (!ovl.HasFormOfMemberPointer && |
| isa<CXXMethodDecl>(fn) && |
| cast<CXXMethodDecl>(fn)->isInstance()) { |
| if (!complain) return false; |
| |
| Diag(ovl.Expression->getExprLoc(), |
| diag::err_bound_member_function) |
| << 0 << ovl.Expression->getSourceRange(); |
| |
| // TODO: I believe we only end up here if there's a mix of |
| // static and non-static candidates (otherwise the expression |
| // would have 'bound member' type, not 'overload' type). |
| // Ideally we would note which candidate was chosen and why |
| // the static candidates were rejected. |
| SrcExpr = ExprError(); |
| return true; |
| } |
| |
| // Fix the expresion to refer to 'fn'. |
| SingleFunctionExpression = |
| Owned(FixOverloadedFunctionReference(SrcExpr.take(), found, fn)); |
| |
| // If desired, do function-to-pointer decay. |
| if (doFunctionPointerConverion) { |
| SingleFunctionExpression = |
| DefaultFunctionArrayLvalueConversion(SingleFunctionExpression.take()); |
| if (SingleFunctionExpression.isInvalid()) { |
| SrcExpr = ExprError(); |
| return true; |
| } |
| } |
| } |
| |
| if (!SingleFunctionExpression.isUsable()) { |
| if (complain) { |
| Diag(OpRangeForComplaining.getBegin(), DiagIDForComplaining) |
| << ovl.Expression->getName() |
| << DestTypeForComplaining |
| << OpRangeForComplaining |
| << ovl.Expression->getQualifierLoc().getSourceRange(); |
| NoteAllOverloadCandidates(SrcExpr.get()); |
| |
| SrcExpr = ExprError(); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| SrcExpr = SingleFunctionExpression; |
| return true; |
| } |
| |
| /// \brief Add a single candidate to the overload set. |
| static void AddOverloadedCallCandidate(Sema &S, |
| DeclAccessPair FoundDecl, |
| TemplateArgumentListInfo *ExplicitTemplateArgs, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet &CandidateSet, |
| bool PartialOverloading, |
| bool KnownValid) { |
| NamedDecl *Callee = FoundDecl.getDecl(); |
| if (isa<UsingShadowDecl>(Callee)) |
| Callee = cast<UsingShadowDecl>(Callee)->getTargetDecl(); |
| |
| if (FunctionDecl *Func = dyn_cast<FunctionDecl>(Callee)) { |
| if (ExplicitTemplateArgs) { |
| assert(!KnownValid && "Explicit template arguments?"); |
| return; |
| } |
| S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet, |
| false, PartialOverloading); |
| return; |
| } |
| |
| if (FunctionTemplateDecl *FuncTemplate |
| = dyn_cast<FunctionTemplateDecl>(Callee)) { |
| S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl, |
| ExplicitTemplateArgs, |
| Args, NumArgs, CandidateSet); |
| return; |
| } |
| |
| assert(!KnownValid && "unhandled case in overloaded call candidate"); |
| } |
| |
| /// \brief Add the overload candidates named by callee and/or found by argument |
| /// dependent lookup to the given overload set. |
| void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE, |
| Expr **Args, unsigned NumArgs, |
| OverloadCandidateSet &CandidateSet, |
| bool PartialOverloading) { |
| |
| #ifndef NDEBUG |
| // Verify that ArgumentDependentLookup is consistent with the rules |
| // in C++0x [basic.lookup.argdep]p3: |
| // |
| // Let X be the lookup set produced by unqualified lookup (3.4.1) |
| // and let Y be the lookup set produced by argument dependent |
| // lookup (defined as follows). If X contains |
| // |
| // -- a declaration of a class member, or |
| // |
| // -- a block-scope function declaration that is not a |
| // using-declaration, or |
| // |
| // -- a declaration that is neither a function or a function |
| // template |
| // |
| // then Y is empty. |
| |
| if (ULE->requiresADL()) { |
| for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), |
| E = ULE->decls_end(); I != E; ++I) { |
| assert(!(*I)->getDeclContext()->isRecord()); |
| assert(isa<UsingShadowDecl>(*I) || |
| !(*I)->getDeclContext()->isFunctionOrMethod()); |
| assert((*I)->getUnderlyingDecl()->isFunctionOrFunctionTemplate()); |
| } |
| } |
| #endif |
| |
| // It would be nice to avoid this copy. |
| TemplateArgumentListInfo TABuffer; |
| TemplateArgumentListInfo *ExplicitTemplateArgs = 0; |
| if (ULE->hasExplicitTemplateArgs()) { |
| ULE->copyTemplateArgumentsInto(TABuffer); |
| ExplicitTemplateArgs = &TABuffer; |
| } |
| |
| for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(), |
| E = ULE->decls_end(); I != E; ++I) |
| AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, |
| Args, NumArgs, CandidateSet, |
| PartialOverloading, /*KnownValid*/ true); |
| |
| if (ULE->requiresADL()) |
| AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false, |
| Args, NumArgs, |
| ExplicitTemplateArgs, |
| CandidateSet, |
| PartialOverloading, |
| ULE->isStdAssociatedNamespace()); |
| } |
| |
| /// Attempt to recover from an ill-formed use of a non-dependent name in a |
| /// template, where the non-dependent name was declared after the template |
| /// was defined. This is common in code written for a compilers which do not |
| /// correctly implement two-stage name lookup. |
| /// |
| /// Returns true if a viable candidate was found and a diagnostic was issued. |
| static bool |
| DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc, |
| const CXXScopeSpec &SS, LookupResult &R, |
| TemplateArgumentListInfo *ExplicitTemplateArgs, |
| Expr **Args, unsigned NumArgs) { |
| if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty()) |
| return false; |
| |
| for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) { |
| SemaRef.LookupQualifiedName(R, DC); |
| |
| if (!R.empty()) { |
| R.suppressDiagnostics(); |
| |
| if (isa<CXXRecordDecl>(DC)) { |
| // Don't diagnose names we find in classes; we get much better |
| // diagnostics for these from DiagnoseEmptyLookup. |
| R.clear(); |
| return false; |
| } |
| |
| OverloadCandidateSet Candidates(FnLoc); |
| for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) |
| AddOverloadedCallCandidate(SemaRef, I.getPair(), |
| ExplicitTemplateArgs, Args, NumArgs, |
| Candidates, false, /*KnownValid*/ false); |
| |
| OverloadCandidateSet::iterator Best; |
| if (Candidates.BestViableFunction(SemaRef, FnLoc, Best) != OR_Success) { |
| // No viable functions. Don't bother the user with notes for functions |
| // which don't work and shouldn't be found anyway. |
| R.clear(); |
| return false; |
| } |
| |
| // Find the namespaces where ADL would have looked, and suggest |
| // declaring the function there instead. |
| Sema::AssociatedNamespaceSet AssociatedNamespaces; |
| Sema::AssociatedClassSet AssociatedClasses; |
| SemaRef.FindAssociatedClassesAndNamespaces(Args, NumArgs, |
| AssociatedNamespaces, |
| AssociatedClasses); |
| // Never suggest declaring a function within namespace 'std'. |
| Sema::AssociatedNamespaceSet SuggestedNamespaces; |
| if (DeclContext *Std = SemaRef.getStdNamespace()) { |
| for (Sema::AssociatedNamespaceSet::iterator |
| it = AssociatedNamespaces.begin(), |
| end = AssociatedNamespaces.end(); it != end; ++it) { |
| if (!Std->Encloses(*it)) |
| SuggestedNamespaces.insert(*it); |
| } |
| } else { |
| // Lacking the 'std::' namespace, use all of the associated namespaces. |
| SuggestedNamespaces = AssociatedNamespaces; |
| } |
| |
| SemaRef.Diag(R.getNameLoc(), diag::err_not_found_by_two_phase_lookup) |
| << R.getLookupName(); |
| if (SuggestedNamespaces.empty()) { |
| SemaRef.Diag(Best->Function->getLocation(), |
| diag::note_not_found_by_two_phase_lookup) |
| << R.getLookupName() << 0; |
| } else if (SuggestedNamespaces.size() == 1) { |
| SemaRef.Diag(Best->Function->getLocation(), |
| diag::note_not_found_by_two_phase_lookup) |
| << R.getLookupName() << 1 << *SuggestedNamespaces.begin(); |
| } else { |
| // FIXME: It would be useful to list the associated namespaces here, |
| // but the diagnostics infrastructure doesn't provide a way to produce |
| // a localized representation of a list of items. |
| SemaRef.Diag(Best->Function->getLocation(), |
| diag::note_not_found_by_two_phase_lookup) |
| << R.getLookupName() << 2; |
| } |
| |
| // Try to recover by calling this function. |
| return true; |
| } |
| |
| R.clear(); |
| } |
| |
| return false; |
| } |
| |
| /// Attempt to recover from ill-formed use of a non-dependent operator in a |
| /// template, where the non-dependent operator was declared after the template |
| /// was defined. |
| /// |
| /// Returns true if a viable candidate was found and a diagnostic was issued. |
| static bool |
| DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op, |
| SourceLocation OpLoc, |
| Expr **Args, unsigned NumArgs) { |
| DeclarationName OpName = |
| SemaRef.Context.DeclarationNames.getCXXOperatorName(Op); |
| LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName); |
| return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R, |
| /*ExplicitTemplateArgs=*/0, Args, NumArgs); |
| } |
| |
| namespace { |
| // Callback to limit the allowed keywords and to only accept typo corrections |
| // that are keywords or whose decls refer to functions (or template functions) |
| // that accept the given number of arguments. |
| class RecoveryCallCCC : public CorrectionCandidateCallback { |
| public: |
| RecoveryCallCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs) |
| : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs) { |
| WantTypeSpecifiers = SemaRef.getLangOptions().CPlusPlus; |
| WantRemainingKeywords = false; |
| } |
| |
| virtual bool ValidateCandidate(const TypoCorrection &candidate) { |
| if (!candidate.getCorrectionDecl()) |
| return candidate.isKeyword(); |
| |
| for (TypoCorrection::const_decl_iterator DI = candidate.begin(), |
| DIEnd = candidate.end(); DI != DIEnd; ++DI) { |
| FunctionDecl *FD = 0; |
| NamedDecl *ND = (*DI)->getUnderlyingDecl(); |
| if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) |
| FD = FTD->getTemplatedDecl(); |
| if (!HasExplicitTemplateArgs && !FD) { |
| if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) { |
| // If the Decl is neither a function nor a template function, |
| // determine if it is a pointer or reference to a function. If so, |
| // check against the number of arguments expected for the pointee. |
| QualType ValType = cast<ValueDecl>(ND)->getType(); |
| if (ValType->isAnyPointerType() || ValType->isReferenceType()) |
| ValType = ValType->getPointeeType(); |
| if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) |
| if (FPT->getNumArgs() == NumArgs) |
| return true; |
| } |
| } |
| if (FD && FD->getNumParams() >= NumArgs && |
| FD->getMinRequiredArguments() <= NumArgs) |
| return true; |
| } |
| return false; |
| } |
| |
| private: |
| unsigned NumArgs; |
| bool HasExplicitTemplateArgs; |
| }; |
| |
| // Callback that effectively disabled typo correction |
| class NoTypoCorrectionCCC : public CorrectionCandidateCallback { |
| public: |
| NoTypoCorrectionCCC() { |
| WantTypeSpecifiers = false; |
| WantExpressionKeywords = false; |
| WantCXXNamedCasts = false; |
| WantRemainingKeywords = false; |
| } |
| |
| virtual bool ValidateCandidate(const TypoCorrection &candidate) { |
| return false; |
| } |
| }; |
| } |
| |
| /// Attempts to recover from a call where no functions were found. |
| /// |
| /// Returns true if new candidates were found. |
| static ExprResult |
| BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn, |
| UnresolvedLookupExpr *ULE, |
| SourceLocation LParenLoc, |
| Expr **Args, unsigned NumArgs, |
| SourceLocation RParenLoc, |
| bool EmptyLookup, bool AllowTypoCorrection) { |
| |
| CXXScopeSpec SS; |
| SS.Adopt(ULE->getQualifierLoc()); |
| |
| TemplateArgumentListInfo TABuffer; |
| TemplateArgumentListInfo *ExplicitTemplateArgs = 0; |
| if (ULE->hasExplicitTemplateArgs()) { |
| ULE->copyTemplateArgumentsInto(TABuffer); |
| ExplicitTemplateArgs = &TABuffer; |
| } |
| |
| LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(), |
| Sema::LookupOrdinaryName); |
| RecoveryCallCCC Validator(SemaRef, NumArgs, ExplicitTemplateArgs != 0); |
| NoTypoCorrectionCCC RejectAll; |
| CorrectionCandidateCallback *CCC = AllowTypoCorrection ? |
| (CorrectionCandidateCallback*)&Validator : |
| (CorrectionCandidateCallback*)&RejectAll; |
| if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R, |
| ExplicitTemplateArgs, Args, NumArgs) && |
| (!EmptyLookup || |
| SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC, |
| ExplicitTemplateArgs, Args, NumArgs))) |
| return ExprError(); |
| |
| assert(!R.empty() && "lookup results empty despite recovery"); |
| |
| // Build an implicit member call if appropriate. Just drop the |
| // casts and such from the call, we don't really care. |
| ExprResult NewFn = ExprError(); |
| if ((*R.begin())->isCXXClassMember()) |
| NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R, |
| ExplicitTemplateArgs); |
| else if (ExplicitTemplateArgs) |
| NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs); |
| else |
| NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false); |
| |
| if (NewFn.isInvalid()) |
| return ExprError(); |
| |
| // This shouldn't cause an infinite loop because we're giving it |
| // an expression with viable lookup results, which should never |
| // end up here. |
| return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc, |
| MultiExprArg(Args, NumArgs), RParenLoc); |
| } |
| |
| /// ResolveOverloadedCallFn - Given the call expression that calls Fn |
| /// (which eventually refers to the declaration Func) and the call |
| /// arguments Args/NumArgs, attempt to resolve the function call down |
| /// to a specific function. If overload resolution succeeds, returns |
| /// the function declaration produced by overload |
| /// resolution. Otherwise, emits diagnostics, deletes all of the |
| /// arguments and Fn, and returns NULL. |
| ExprResult |
| Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE, |
| SourceLocation LParenLoc, |
| Expr **Args, unsigned NumArgs, |
| SourceLocation RParenLoc, |
| Expr *ExecConfig, |
| bool AllowTypoCorrection) { |
| #ifndef NDEBUG |
| if (ULE->requiresADL()) { |
| // To do ADL, we must have found an unqualified name. |
| assert(!ULE->getQualifier() && "qualified name with ADL"); |
| |
| // We don't perform ADL for implicit declarations of builtins. |
| // Verify that this was correctly set up. |
| FunctionDecl *F; |
| if (ULE->decls_begin() + 1 == ULE->decls_end() && |
| (F = dyn_cast<FunctionDecl>(*ULE->decls_begin())) && |
| F->getBuiltinID() && F->isImplicit()) |
| llvm_unreachable("performing ADL for builtin"); |
| |
| // We don't perform ADL in C. |
| assert(getLangOptions().CPlusPlus && "ADL enabled in C"); |
| } else |
| assert(!ULE->isStdAssociatedNamespace() && |
| "std is associated namespace but not doing ADL"); |
| #endif |
| |
| UnbridgedCastsSet UnbridgedCasts; |
| if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) |
| return ExprError(); |
| |
| OverloadCandidateSet CandidateSet(Fn->getExprLoc()); |
| |
| // Add the functions denoted by the callee to the set of candidate |
| // functions, including those from argument-dependent lookup. |
| AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet); |
| |
| // If we found nothing, try to recover. |
| // BuildRecoveryCallExpr diagnoses the error itself, so we just bail |
| // out if it fails. |
| if (CandidateSet.empty()) { |
| // In Microsoft mode, if we are inside a template class member function then |
| // create a type dependent CallExpr. The goal is to postpone name lookup |
| // to instantiation time to be able to search into type dependent base |
| // classes. |
| if (getLangOptions().MicrosoftMode && CurContext->isDependentContext() && |
| (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) { |
| CallExpr *CE = new (Context) CallExpr(Context, Fn, Args, NumArgs, |
| Context.DependentTy, VK_RValue, |
| RParenLoc); |
| CE->setTypeDependent(true); |
| return Owned(CE); |
| } |
| return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs, |
| RParenLoc, /*EmptyLookup=*/true, |
| AllowTypoCorrection); |
| } |
| |
| UnbridgedCasts.restore(); |
| |
| OverloadCandidateSet::iterator Best; |
| switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) { |
| case OR_Success: { |
| FunctionDecl *FDecl = Best->Function; |
| MarkDeclarationReferenced(Fn->getExprLoc(), FDecl); |
| CheckUnresolvedLookupAccess(ULE, Best->FoundDecl); |
| DiagnoseUseOfDecl(FDecl, ULE->getNameLoc()); |
| Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); |
| return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc, |
| ExecConfig); |
| } |
| |
| case OR_No_Viable_Function: { |
| // Try to recover by looking for viable functions which the user might |
| // have meant to call. |
| ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, |
| Args, NumArgs, RParenLoc, |
| /*EmptyLookup=*/false, |
| AllowTypoCorrection); |
| if (!Recovery.isInvalid()) |
| return Recovery; |
| |
| Diag(Fn->getSourceRange().getBegin(), |
| diag::err_ovl_no_viable_function_in_call) |
| << ULE->getName() << Fn->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); |
| break; |
| } |
| |
| case OR_Ambiguous: |
| Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call) |
| << ULE->getName() << Fn->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); |
| break; |
| |
| case OR_Deleted: |
| { |
| Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call) |
| << Best->Function->isDeleted() |
| << ULE->getName() |
| << getDeletedOrUnavailableSuffix(Best->Function) |
| << Fn->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); |
| |
| // We emitted an error for the unvailable/deleted function call but keep |
| // the call in the AST. |
| FunctionDecl *FDecl = Best->Function; |
| Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl); |
| return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, |
| RParenLoc, ExecConfig); |
| } |
| } |
| |
| // Overload resolution failed. |
| return ExprError(); |
| } |
| |
| static bool IsOverloaded(const UnresolvedSetImpl &Functions) { |
| return Functions.size() > 1 || |
| (Functions.size() == 1 && isa<FunctionTemplateDecl>(*Functions.begin())); |
| } |
| |
| /// \brief Create a unary operation that may resolve to an overloaded |
| /// operator. |
| /// |
| /// \param OpLoc The location of the operator itself (e.g., '*'). |
| /// |
| /// \param OpcIn The UnaryOperator::Opcode that describes this |
| /// operator. |
| /// |
| /// \param Functions The set of non-member functions that will be |
| /// considered by overload resolution. The caller needs to build this |
| /// set based on the context using, e.g., |
| /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This |
| /// set should not contain any member functions; those will be added |
| /// by CreateOverloadedUnaryOp(). |
| /// |
| /// \param input The input argument. |
| ExprResult |
| Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn, |
| const UnresolvedSetImpl &Fns, |
| Expr *Input) { |
| UnaryOperator::Opcode Opc = static_cast<UnaryOperator::Opcode>(OpcIn); |
| |
| OverloadedOperatorKind Op = UnaryOperator::getOverloadedOperator(Opc); |
| assert(Op != OO_None && "Invalid opcode for overloaded unary operator"); |
| DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| // TODO: provide better source location info. |
| DeclarationNameInfo OpNameInfo(OpName, OpLoc); |
| |
| if (checkPlaceholderForOverload(*this, Input)) |
| return ExprError(); |
| |
| Expr *Args[2] = { Input, 0 }; |
| unsigned NumArgs = 1; |
| |
| // For post-increment and post-decrement, add the implicit '0' as |
| // the second argument, so that we know this is a post-increment or |
| // post-decrement. |
| if (Opc == UO_PostInc || Opc == UO_PostDec) { |
| llvm::APSInt Zero(Context.getTypeSize(Context.IntTy), false); |
| Args[1] = IntegerLiteral::Create(Context, Zero, Context.IntTy, |
| SourceLocation()); |
| NumArgs = 2; |
| } |
| |
| if (Input->isTypeDependent()) { |
| if (Fns.empty()) |
| return Owned(new (Context) UnaryOperator(Input, |
| Opc, |
| Context.DependentTy, |
| VK_RValue, OK_Ordinary, |
| OpLoc)); |
| |
| CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators |
| UnresolvedLookupExpr *Fn |
| = UnresolvedLookupExpr::Create(Context, NamingClass, |
| NestedNameSpecifierLoc(), OpNameInfo, |
| /*ADL*/ true, IsOverloaded(Fns), |
| Fns.begin(), Fns.end()); |
| return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, |
| &Args[0], NumArgs, |
| Context.DependentTy, |
| VK_RValue, |
| OpLoc)); |
| } |
| |
| // Build an empty overload set. |
| OverloadCandidateSet CandidateSet(OpLoc); |
| |
| // Add the candidates from the given function set. |
| AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false); |
| |
| // Add operator candidates that are member functions. |
| AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); |
| |
| // Add candidates from ADL. |
| AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, |
| Args, NumArgs, |
| /*ExplicitTemplateArgs*/ 0, |
| CandidateSet); |
| |
| // Add builtin operator candidates. |
| AddBuiltinOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet); |
| |
| bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| |
| // Perform overload resolution. |
| OverloadCandidateSet::iterator Best; |
| switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { |
| case OR_Success: { |
| // We found a built-in operator or an overloaded operator. |
| FunctionDecl *FnDecl = Best->Function; |
| |
| if (FnDecl) { |
| // We matched an overloaded operator. Build a call to that |
| // operator. |
| |
| MarkDeclarationReferenced(OpLoc, FnDecl); |
| |
| // Convert the arguments. |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { |
| CheckMemberOperatorAccess(OpLoc, Args[0], 0, Best->FoundDecl); |
| |
| ExprResult InputRes = |
| PerformObjectArgumentInitialization(Input, /*Qualifier=*/0, |
| Best->FoundDecl, Method); |
| if (InputRes.isInvalid()) |
| return ExprError(); |
| Input = InputRes.take(); |
| } else { |
| // Convert the arguments. |
| ExprResult InputInit |
| = PerformCopyInitialization(InitializedEntity::InitializeParameter( |
| Context, |
| FnDecl->getParamDecl(0)), |
| SourceLocation(), |
| Input); |
| if (InputInit.isInvalid()) |
| return ExprError(); |
| Input = InputInit.take(); |
| } |
| |
| DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); |
| |
| // Determine the result type. |
| QualType ResultTy = FnDecl->getResultType(); |
| ExprValueKind VK = Expr::getValueKindForType(ResultTy); |
| ResultTy = ResultTy.getNonLValueExprType(Context); |
| |
| // Build the actual expression node. |
| ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, |
| HadMultipleCandidates); |
| if (FnExpr.isInvalid()) |
| return ExprError(); |
| |
| Args[0] = Input; |
| CallExpr *TheCall = |
| new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(), |
| Args, NumArgs, ResultTy, VK, OpLoc); |
| |
| if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, |
| FnDecl)) |
| return ExprError(); |
| |
| return MaybeBindToTemporary(TheCall); |
| } else { |
| // We matched a built-in operator. Convert the arguments, then |
| // break out so that we will build the appropriate built-in |
| // operator node. |
| ExprResult InputRes = |
| PerformImplicitConversion(Input, Best->BuiltinTypes.ParamTypes[0], |
| Best->Conversions[0], AA_Passing); |
| if (InputRes.isInvalid()) |
| return ExprError(); |
| Input = InputRes.take(); |
| break; |
| } |
| } |
| |
| case OR_No_Viable_Function: |
| // This is an erroneous use of an operator which can be overloaded by |
| // a non-member function. Check for non-member operators which were |
| // defined too late to be candidates. |
| if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, NumArgs)) |
| // FIXME: Recover by calling the found function. |
| return ExprError(); |
| |
| // No viable function; fall through to handling this as a |
| // built-in operator, which will produce an error message for us. |
| break; |
| |
| case OR_Ambiguous: |
| Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) |
| << UnaryOperator::getOpcodeStr(Opc) |
| << Input->getType() |
| << Input->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs, |
| UnaryOperator::getOpcodeStr(Opc), OpLoc); |
| return ExprError(); |
| |
| case OR_Deleted: |
| Diag(OpLoc, diag::err_ovl_deleted_oper) |
| << Best->Function->isDeleted() |
| << UnaryOperator::getOpcodeStr(Opc) |
| << getDeletedOrUnavailableSuffix(Best->Function) |
| << Input->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs, |
| UnaryOperator::getOpcodeStr(Opc), OpLoc); |
| return ExprError(); |
| } |
| |
| // Either we found no viable overloaded operator or we matched a |
| // built-in operator. In either case, fall through to trying to |
| // build a built-in operation. |
| return CreateBuiltinUnaryOp(OpLoc, Opc, Input); |
| } |
| |
| /// \brief Create a binary operation that may resolve to an overloaded |
| /// operator. |
| /// |
| /// \param OpLoc The location of the operator itself (e.g., '+'). |
| /// |
| /// \param OpcIn The BinaryOperator::Opcode that describes this |
| /// operator. |
| /// |
| /// \param Functions The set of non-member functions that will be |
| /// considered by overload resolution. The caller needs to build this |
| /// set based on the context using, e.g., |
| /// LookupOverloadedOperatorName() and ArgumentDependentLookup(). This |
| /// set should not contain any member functions; those will be added |
| /// by CreateOverloadedBinOp(). |
| /// |
| /// \param LHS Left-hand argument. |
| /// \param RHS Right-hand argument. |
| ExprResult |
| Sema::CreateOverloadedBinOp(SourceLocation OpLoc, |
| unsigned OpcIn, |
| const UnresolvedSetImpl &Fns, |
| Expr *LHS, Expr *RHS) { |
| Expr *Args[2] = { LHS, RHS }; |
| LHS=RHS=0; //Please use only Args instead of LHS/RHS couple |
| |
| BinaryOperator::Opcode Opc = static_cast<BinaryOperator::Opcode>(OpcIn); |
| OverloadedOperatorKind Op = BinaryOperator::getOverloadedOperator(Opc); |
| DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
| |
| // If either side is type-dependent, create an appropriate dependent |
| // expression. |
| if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { |
| if (Fns.empty()) { |
| // If there are no functions to store, just build a dependent |
| // BinaryOperator or CompoundAssignment. |
| if (Opc <= BO_Assign || Opc > BO_OrAssign) |
| return Owned(new (Context) BinaryOperator(Args[0], Args[1], Opc, |
| Context.DependentTy, |
| VK_RValue, OK_Ordinary, |
| OpLoc)); |
| |
| return Owned(new (Context) CompoundAssignOperator(Args[0], Args[1], Opc, |
| Context.DependentTy, |
| VK_LValue, |
| OK_Ordinary, |
| Context.DependentTy, |
| Context.DependentTy, |
| OpLoc)); |
| } |
| |
| // FIXME: save results of ADL from here? |
| CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators |
| // TODO: provide better source location info in DNLoc component. |
| DeclarationNameInfo OpNameInfo(OpName, OpLoc); |
| UnresolvedLookupExpr *Fn |
| = UnresolvedLookupExpr::Create(Context, NamingClass, |
| NestedNameSpecifierLoc(), OpNameInfo, |
| /*ADL*/ true, IsOverloaded(Fns), |
| Fns.begin(), Fns.end()); |
| return Owned(new (Context) CXXOperatorCallExpr(Context, Op, Fn, |
| Args, 2, |
| Context.DependentTy, |
| VK_RValue, |
| OpLoc)); |
| } |
| |
| // Always do placeholder-like conversions on the RHS. |
| if (checkPlaceholderForOverload(*this, Args[1])) |
| return ExprError(); |
| |
| // Do placeholder-like conversion on the LHS; note that we should |
| // not get here with a PseudoObject LHS. |
| assert(Args[0]->getObjectKind() != OK_ObjCProperty); |
| if (checkPlaceholderForOverload(*this, Args[0])) |
| return ExprError(); |
| |
| // If this is the assignment operator, we only perform overload resolution |
| // if the left-hand side is a class or enumeration type. This is actually |
| // a hack. The standard requires that we do overload resolution between the |
| // various built-in candidates, but as DR507 points out, this can lead to |
| // problems. So we do it this way, which pretty much follows what GCC does. |
| // Note that we go the traditional code path for compound assignment forms. |
| if (Opc == BO_Assign && !Args[0]->getType()->isOverloadableType()) |
| return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); |
| |
| // If this is the .* operator, which is not overloadable, just |
| // create a built-in binary operator. |
| if (Opc == BO_PtrMemD) |
| return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); |
| |
| // Build an empty overload set. |
| OverloadCandidateSet CandidateSet(OpLoc); |
| |
| // Add the candidates from the given function set. |
| AddFunctionCandidates(Fns, Args, 2, CandidateSet, false); |
| |
| // Add operator candidates that are member functions. |
| AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); |
| |
| // Add candidates from ADL. |
| AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true, |
| Args, 2, |
| /*ExplicitTemplateArgs*/ 0, |
| CandidateSet); |
| |
| // Add builtin operator candidates. |
| AddBuiltinOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet); |
| |
| bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| |
| // Perform overload resolution. |
| OverloadCandidateSet::iterator Best; |
| switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { |
| case OR_Success: { |
| // We found a built-in operator or an overloaded operator. |
| FunctionDecl *FnDecl = Best->Function; |
| |
| if (FnDecl) { |
| // We matched an overloaded operator. Build a call to that |
| // operator. |
| |
| MarkDeclarationReferenced(OpLoc, FnDecl); |
| |
| // Convert the arguments. |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) { |
| // Best->Access is only meaningful for class members. |
| CheckMemberOperatorAccess(OpLoc, Args[0], Args[1], Best->FoundDecl); |
| |
| ExprResult Arg1 = |
| PerformCopyInitialization( |
| InitializedEntity::InitializeParameter(Context, |
| FnDecl->getParamDecl(0)), |
| SourceLocation(), Owned(Args[1])); |
| if (Arg1.isInvalid()) |
| return ExprError(); |
| |
| ExprResult Arg0 = |
| PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, |
| Best->FoundDecl, Method); |
| if (Arg0.isInvalid()) |
| return ExprError(); |
| Args[0] = Arg0.takeAs<Expr>(); |
| Args[1] = RHS = Arg1.takeAs<Expr>(); |
| } else { |
| // Convert the arguments. |
| ExprResult Arg0 = PerformCopyInitialization( |
| InitializedEntity::InitializeParameter(Context, |
| FnDecl->getParamDecl(0)), |
| SourceLocation(), Owned(Args[0])); |
| if (Arg0.isInvalid()) |
| return ExprError(); |
| |
| ExprResult Arg1 = |
| PerformCopyInitialization( |
| InitializedEntity::InitializeParameter(Context, |
| FnDecl->getParamDecl(1)), |
| SourceLocation(), Owned(Args[1])); |
| if (Arg1.isInvalid()) |
| return ExprError(); |
| Args[0] = LHS = Arg0.takeAs<Expr>(); |
| Args[1] = RHS = Arg1.takeAs<Expr>(); |
| } |
| |
| DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); |
| |
| // Determine the result type. |
| QualType ResultTy = FnDecl->getResultType(); |
| ExprValueKind VK = Expr::getValueKindForType(ResultTy); |
| ResultTy = ResultTy.getNonLValueExprType(Context); |
| |
| // Build the actual expression node. |
| ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, |
| HadMultipleCandidates, OpLoc); |
| if (FnExpr.isInvalid()) |
| return ExprError(); |
| |
| CXXOperatorCallExpr *TheCall = |
| new (Context) CXXOperatorCallExpr(Context, Op, FnExpr.take(), |
| Args, 2, ResultTy, VK, OpLoc); |
| |
| if (CheckCallReturnType(FnDecl->getResultType(), OpLoc, TheCall, |
| FnDecl)) |
| return ExprError(); |
| |
| return MaybeBindToTemporary(TheCall); |
| } else { |
| // We matched a built-in operator. Convert the arguments, then |
| // break out so that we will build the appropriate built-in |
| // operator node. |
| ExprResult ArgsRes0 = |
| PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], |
| Best->Conversions[0], AA_Passing); |
| if (ArgsRes0.isInvalid()) |
| return ExprError(); |
| Args[0] = ArgsRes0.take(); |
| |
| ExprResult ArgsRes1 = |
| PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], |
| Best->Conversions[1], AA_Passing); |
| if (ArgsRes1.isInvalid()) |
| return ExprError(); |
| Args[1] = ArgsRes1.take(); |
| break; |
| } |
| } |
| |
| case OR_No_Viable_Function: { |
| // C++ [over.match.oper]p9: |
| // If the operator is the operator , [...] and there are no |
| // viable functions, then the operator is assumed to be the |
| // built-in operator and interpreted according to clause 5. |
| if (Opc == BO_Comma) |
| break; |
| |
| // For class as left operand for assignment or compound assigment |
| // operator do not fall through to handling in built-in, but report that |
| // no overloaded assignment operator found |
| ExprResult Result = ExprError(); |
| if (Args[0]->getType()->isRecordType() && |
| Opc >= BO_Assign && Opc <= BO_OrAssign) { |
| Diag(OpLoc, diag::err_ovl_no_viable_oper) |
| << BinaryOperator::getOpcodeStr(Opc) |
| << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| } else { |
| // This is an erroneous use of an operator which can be overloaded by |
| // a non-member function. Check for non-member operators which were |
| // defined too late to be candidates. |
| if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, 2)) |
| // FIXME: Recover by calling the found function. |
| return ExprError(); |
| |
| // No viable function; try to create a built-in operation, which will |
| // produce an error. Then, show the non-viable candidates. |
| Result = CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); |
| } |
| assert(Result.isInvalid() && |
| "C++ binary operator overloading is missing candidates!"); |
| if (Result.isInvalid()) |
| CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, |
| BinaryOperator::getOpcodeStr(Opc), OpLoc); |
| return move(Result); |
| } |
| |
| case OR_Ambiguous: |
| Diag(OpLoc, diag::err_ovl_ambiguous_oper_binary) |
| << BinaryOperator::getOpcodeStr(Opc) |
| << Args[0]->getType() << Args[1]->getType() |
| << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, |
| BinaryOperator::getOpcodeStr(Opc), OpLoc); |
| return ExprError(); |
| |
| case OR_Deleted: |
| Diag(OpLoc, diag::err_ovl_deleted_oper) |
| << Best->Function->isDeleted() |
| << BinaryOperator::getOpcodeStr(Opc) |
| << getDeletedOrUnavailableSuffix(Best->Function) |
| << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, |
| BinaryOperator::getOpcodeStr(Opc), OpLoc); |
| return ExprError(); |
| } |
| |
| // We matched a built-in operator; build it. |
| return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]); |
| } |
| |
| ExprResult |
| Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc, |
| SourceLocation RLoc, |
| Expr *Base, Expr *Idx) { |
| Expr *Args[2] = { Base, Idx }; |
| DeclarationName OpName = |
| Context.DeclarationNames.getCXXOperatorName(OO_Subscript); |
| |
| // If either side is type-dependent, create an appropriate dependent |
| // expression. |
| if (Args[0]->isTypeDependent() || Args[1]->isTypeDependent()) { |
| |
| CXXRecordDecl *NamingClass = 0; // because lookup ignores member operators |
| // CHECKME: no 'operator' keyword? |
| DeclarationNameInfo OpNameInfo(OpName, LLoc); |
| OpNameInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc)); |
| UnresolvedLookupExpr *Fn |
| = UnresolvedLookupExpr::Create(Context, NamingClass, |
| NestedNameSpecifierLoc(), OpNameInfo, |
| /*ADL*/ true, /*Overloaded*/ false, |
| UnresolvedSetIterator(), |
| UnresolvedSetIterator()); |
| // Can't add any actual overloads yet |
| |
| return Owned(new (Context) CXXOperatorCallExpr(Context, OO_Subscript, Fn, |
| Args, 2, |
| Context.DependentTy, |
| VK_RValue, |
| RLoc)); |
| } |
| |
| // Handle placeholders on both operands. |
| if (checkPlaceholderForOverload(*this, Args[0])) |
| return ExprError(); |
| if (checkPlaceholderForOverload(*this, Args[1])) |
| return ExprError(); |
| |
| // Build an empty overload set. |
| OverloadCandidateSet CandidateSet(LLoc); |
| |
| // Subscript can only be overloaded as a member function. |
| |
| // Add operator candidates that are member functions. |
| AddMemberOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); |
| |
| // Add builtin operator candidates. |
| AddBuiltinOperatorCandidates(OO_Subscript, LLoc, Args, 2, CandidateSet); |
| |
| bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| |
| // Perform overload resolution. |
| OverloadCandidateSet::iterator Best; |
| switch (CandidateSet.BestViableFunction(*this, LLoc, Best)) { |
| case OR_Success: { |
| // We found a built-in operator or an overloaded operator. |
| FunctionDecl *FnDecl = Best->Function; |
| |
| if (FnDecl) { |
| // We matched an overloaded operator. Build a call to that |
| // operator. |
| |
| MarkDeclarationReferenced(LLoc, FnDecl); |
| |
| CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl); |
| DiagnoseUseOfDecl(Best->FoundDecl, LLoc); |
| |
| // Convert the arguments. |
| CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); |
| ExprResult Arg0 = |
| PerformObjectArgumentInitialization(Args[0], /*Qualifier=*/0, |
| Best->FoundDecl, Method); |
| if (Arg0.isInvalid()) |
| return ExprError(); |
| Args[0] = Arg0.take(); |
| |
| // Convert the arguments. |
| ExprResult InputInit |
| = PerformCopyInitialization(InitializedEntity::InitializeParameter( |
| Context, |
| FnDecl->getParamDecl(0)), |
| SourceLocation(), |
| Owned(Args[1])); |
| if (InputInit.isInvalid()) |
| return ExprError(); |
| |
| Args[1] = InputInit.takeAs<Expr>(); |
| |
| // Determine the result type |
| QualType ResultTy = FnDecl->getResultType(); |
| ExprValueKind VK = Expr::getValueKindForType(ResultTy); |
| ResultTy = ResultTy.getNonLValueExprType(Context); |
| |
| // Build the actual expression node. |
| DeclarationNameLoc LocInfo; |
| LocInfo.CXXOperatorName.BeginOpNameLoc = LLoc.getRawEncoding(); |
| LocInfo.CXXOperatorName.EndOpNameLoc = RLoc.getRawEncoding(); |
| ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl, |
| HadMultipleCandidates, |
| LLoc, LocInfo); |
| if (FnExpr.isInvalid()) |
| return ExprError(); |
| |
| CXXOperatorCallExpr *TheCall = |
| new (Context) CXXOperatorCallExpr(Context, OO_Subscript, |
| FnExpr.take(), Args, 2, |
| ResultTy, VK, RLoc); |
| |
| if (CheckCallReturnType(FnDecl->getResultType(), LLoc, TheCall, |
| FnDecl)) |
| return ExprError(); |
| |
| return MaybeBindToTemporary(TheCall); |
| } else { |
| // We matched a built-in operator. Convert the arguments, then |
| // break out so that we will build the appropriate built-in |
| // operator node. |
| ExprResult ArgsRes0 = |
| PerformImplicitConversion(Args[0], Best->BuiltinTypes.ParamTypes[0], |
| Best->Conversions[0], AA_Passing); |
| if (ArgsRes0.isInvalid()) |
| return ExprError(); |
| Args[0] = ArgsRes0.take(); |
| |
| ExprResult ArgsRes1 = |
| PerformImplicitConversion(Args[1], Best->BuiltinTypes.ParamTypes[1], |
| Best->Conversions[1], AA_Passing); |
| if (ArgsRes1.isInvalid()) |
| return ExprError(); |
| Args[1] = ArgsRes1.take(); |
| |
| break; |
| } |
| } |
| |
| case OR_No_Viable_Function: { |
| if (CandidateSet.empty()) |
| Diag(LLoc, diag::err_ovl_no_oper) |
| << Args[0]->getType() << /*subscript*/ 0 |
| << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| else |
| Diag(LLoc, diag::err_ovl_no_viable_subscript) |
| << Args[0]->getType() |
| << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, |
| "[]", LLoc); |
| return ExprError(); |
| } |
| |
| case OR_Ambiguous: |
| Diag(LLoc, diag::err_ovl_ambiguous_oper_binary) |
| << "[]" |
| << Args[0]->getType() << Args[1]->getType() |
| << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2, |
| "[]", LLoc); |
| return ExprError(); |
| |
| case OR_Deleted: |
| Diag(LLoc, diag::err_ovl_deleted_oper) |
| << Best->Function->isDeleted() << "[]" |
| << getDeletedOrUnavailableSuffix(Best->Function) |
| << Args[0]->getSourceRange() << Args[1]->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2, |
| "[]", LLoc); |
| return ExprError(); |
| } |
| |
| // We matched a built-in operator; build it. |
| return CreateBuiltinArraySubscriptExpr(Args[0], LLoc, Args[1], RLoc); |
| } |
| |
| /// BuildCallToMemberFunction - Build a call to a member |
| /// function. MemExpr is the expression that refers to the member |
| /// function (and includes the object parameter), Args/NumArgs are the |
| /// arguments to the function call (not including the object |
| /// parameter). The caller needs to validate that the member |
| /// expression refers to a non-static member function or an overloaded |
| /// member function. |
| ExprResult |
| Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE, |
| SourceLocation LParenLoc, Expr **Args, |
| unsigned NumArgs, SourceLocation RParenLoc) { |
| assert(MemExprE->getType() == Context.BoundMemberTy || |
| MemExprE->getType() == Context.OverloadTy); |
| |
| // Dig out the member expression. This holds both the object |
| // argument and the member function we're referring to. |
| Expr *NakedMemExpr = MemExprE->IgnoreParens(); |
| |
| // Determine whether this is a call to a pointer-to-member function. |
| if (BinaryOperator *op = dyn_cast<BinaryOperator>(NakedMemExpr)) { |
| assert(op->getType() == Context.BoundMemberTy); |
| assert(op->getOpcode() == BO_PtrMemD || op->getOpcode() == BO_PtrMemI); |
| |
| QualType fnType = |
| op->getRHS()->getType()->castAs<MemberPointerType>()->getPointeeType(); |
| |
| const FunctionProtoType *proto = fnType->castAs<FunctionProtoType>(); |
| QualType resultType = proto->getCallResultType(Context); |
| ExprValueKind valueKind = Expr::getValueKindForType(proto->getResultType()); |
| |
| // Check that the object type isn't more qualified than the |
| // member function we're calling. |
| Qualifiers funcQuals = Qualifiers::fromCVRMask(proto->getTypeQuals()); |
| |
| QualType objectType = op->getLHS()->getType(); |
| if (op->getOpcode() == BO_PtrMemI) |
| objectType = objectType->castAs<PointerType>()->getPointeeType(); |
| Qualifiers objectQuals = objectType.getQualifiers(); |
| |
| Qualifiers difference = objectQuals - funcQuals; |
| difference.removeObjCGCAttr(); |
| difference.removeAddressSpace(); |
| if (difference) { |
| std::string qualsString = difference.getAsString(); |
| Diag(LParenLoc, diag::err_pointer_to_member_call_drops_quals) |
| << fnType.getUnqualifiedType() |
| << qualsString |
| << (qualsString.find(' ') == std::string::npos ? 1 : 2); |
| } |
| |
| CXXMemberCallExpr *call |
| = new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs, |
| resultType, valueKind, RParenLoc); |
| |
| if (CheckCallReturnType(proto->getResultType(), |
| op->getRHS()->getSourceRange().getBegin(), |
| call, 0)) |
| return ExprError(); |
| |
| if (ConvertArgumentsForCall(call, op, 0, proto, Args, NumArgs, RParenLoc)) |
| return ExprError(); |
| |
| return MaybeBindToTemporary(call); |
| } |
| |
| UnbridgedCastsSet UnbridgedCasts; |
| if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) |
| return ExprError(); |
| |
| MemberExpr *MemExpr; |
| CXXMethodDecl *Method = 0; |
| DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public); |
| NestedNameSpecifier *Qualifier = 0; |
| if (isa<MemberExpr>(NakedMemExpr)) { |
| MemExpr = cast<MemberExpr>(NakedMemExpr); |
| Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl()); |
| FoundDecl = MemExpr->getFoundDecl(); |
| Qualifier = MemExpr->getQualifier(); |
| UnbridgedCasts.restore(); |
| } else { |
| UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr); |
| Qualifier = UnresExpr->getQualifier(); |
| |
| QualType ObjectType = UnresExpr->getBaseType(); |
| Expr::Classification ObjectClassification |
| = UnresExpr->isArrow()? Expr::Classification::makeSimpleLValue() |
| : UnresExpr->getBase()->Classify(Context); |
| |
| // Add overload candidates |
| OverloadCandidateSet CandidateSet(UnresExpr->getMemberLoc()); |
| |
| // FIXME: avoid copy. |
| TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; |
| if (UnresExpr->hasExplicitTemplateArgs()) { |
| UnresExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); |
| TemplateArgs = &TemplateArgsBuffer; |
| } |
| |
| for (UnresolvedMemberExpr::decls_iterator I = UnresExpr->decls_begin(), |
| E = UnresExpr->decls_end(); I != E; ++I) { |
| |
| NamedDecl *Func = *I; |
| CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(Func->getDeclContext()); |
| if (isa<UsingShadowDecl>(Func)) |
| Func = cast<UsingShadowDecl>(Func)->getTargetDecl(); |
| |
| |
| // Microsoft supports direct constructor calls. |
| if (getLangOptions().MicrosoftExt && isa<CXXConstructorDecl>(Func)) { |
| AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs, |
| CandidateSet); |
| } else if ((Method = dyn_cast<CXXMethodDecl>(Func))) { |
| // If explicit template arguments were provided, we can't call a |
| // non-template member function. |
| if (TemplateArgs) |
| continue; |
| |
| AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType, |
| ObjectClassification, |
| Args, NumArgs, CandidateSet, |
| /*SuppressUserConversions=*/false); |
| } else { |
| AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func), |
| I.getPair(), ActingDC, TemplateArgs, |
| ObjectType, ObjectClassification, |
| Args, NumArgs, CandidateSet, |
| /*SuppressUsedConversions=*/false); |
| } |
| } |
| |
| DeclarationName DeclName = UnresExpr->getMemberName(); |
| |
| UnbridgedCasts.restore(); |
| |
| OverloadCandidateSet::iterator Best; |
| switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(), |
| Best)) { |
| case OR_Success: |
| Method = cast<CXXMethodDecl>(Best->Function); |
| MarkDeclarationReferenced(UnresExpr->getMemberLoc(), Method); |
| FoundDecl = Best->FoundDecl; |
| CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl); |
| DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc()); |
| break; |
| |
| case OR_No_Viable_Function: |
| Diag(UnresExpr->getMemberLoc(), |
| diag::err_ovl_no_viable_member_function_in_call) |
| << DeclName << MemExprE->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); |
| // FIXME: Leaking incoming expressions! |
| return ExprError(); |
| |
| case OR_Ambiguous: |
| Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call) |
| << DeclName << MemExprE->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); |
| // FIXME: Leaking incoming expressions! |
| return ExprError(); |
| |
| case OR_Deleted: |
| Diag(UnresExpr->getMemberLoc(), diag::err_ovl_deleted_member_call) |
| << Best->Function->isDeleted() |
| << DeclName |
| << getDeletedOrUnavailableSuffix(Best->Function) |
| << MemExprE->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); |
| // FIXME: Leaking incoming expressions! |
| return ExprError(); |
| } |
| |
| MemExprE = FixOverloadedFunctionReference(MemExprE, FoundDecl, Method); |
| |
| // If overload resolution picked a static member, build a |
| // non-member call based on that function. |
| if (Method->isStatic()) { |
| return BuildResolvedCallExpr(MemExprE, Method, LParenLoc, |
| Args, NumArgs, RParenLoc); |
| } |
| |
| MemExpr = cast<MemberExpr>(MemExprE->IgnoreParens()); |
| } |
| |
| QualType ResultType = Method->getResultType(); |
| ExprValueKind VK = Expr::getValueKindForType(ResultType); |
| ResultType = ResultType.getNonLValueExprType(Context); |
| |
| assert(Method && "Member call to something that isn't a method?"); |
| CXXMemberCallExpr *TheCall = |
| new (Context) CXXMemberCallExpr(Context, MemExprE, Args, NumArgs, |
| ResultType, VK, RParenLoc); |
| |
| // Check for a valid return type. |
| if (CheckCallReturnType(Method->getResultType(), MemExpr->getMemberLoc(), |
| TheCall, Method)) |
| return ExprError(); |
| |
| // Convert the object argument (for a non-static member function call). |
| // We only need to do this if there was actually an overload; otherwise |
| // it was done at lookup. |
| if (!Method->isStatic()) { |
| ExprResult ObjectArg = |
| PerformObjectArgumentInitialization(MemExpr->getBase(), Qualifier, |
| FoundDecl, Method); |
| if (ObjectArg.isInvalid()) |
| return ExprError(); |
| MemExpr->setBase(ObjectArg.take()); |
| } |
| |
| // Convert the rest of the arguments |
| const FunctionProtoType *Proto = |
| Method->getType()->getAs<FunctionProtoType>(); |
| if (ConvertArgumentsForCall(TheCall, MemExpr, Method, Proto, Args, NumArgs, |
| RParenLoc)) |
| return ExprError(); |
| |
| if (CheckFunctionCall(Method, TheCall)) |
| return ExprError(); |
| |
| if ((isa<CXXConstructorDecl>(CurContext) || |
| isa<CXXDestructorDecl>(CurContext)) && |
| TheCall->getMethodDecl()->isPure()) { |
| const CXXMethodDecl *MD = TheCall->getMethodDecl(); |
| |
| if (isa<CXXThisExpr>(MemExpr->getBase()->IgnoreParenCasts())) { |
| Diag(MemExpr->getLocStart(), |
| diag::warn_call_to_pure_virtual_member_function_from_ctor_dtor) |
| << MD->getDeclName() << isa<CXXDestructorDecl>(CurContext) |
| << MD->getParent()->getDeclName(); |
| |
| Diag(MD->getLocStart(), diag::note_previous_decl) << MD->getDeclName(); |
| } |
| } |
| return MaybeBindToTemporary(TheCall); |
| } |
| |
| /// BuildCallToObjectOfClassType - Build a call to an object of class |
| /// type (C++ [over.call.object]), which can end up invoking an |
| /// overloaded function call operator (@c operator()) or performing a |
| /// user-defined conversion on the object argument. |
| ExprResult |
| Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj, |
| SourceLocation LParenLoc, |
| Expr **Args, unsigned NumArgs, |
| SourceLocation RParenLoc) { |
| if (checkPlaceholderForOverload(*this, Obj)) |
| return ExprError(); |
| ExprResult Object = Owned(Obj); |
| |
| UnbridgedCastsSet UnbridgedCasts; |
| if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts)) |
| return ExprError(); |
| |
| assert(Object.get()->getType()->isRecordType() && "Requires object type argument"); |
| const RecordType *Record = Object.get()->getType()->getAs<RecordType>(); |
| |
| // C++ [over.call.object]p1: |
| // If the primary-expression E in the function call syntax |
| // evaluates to a class object of type "cv T", then the set of |
| // candidate functions includes at least the function call |
| // operators of T. The function call operators of T are obtained by |
| // ordinary lookup of the name operator() in the context of |
| // (E).operator(). |
| OverloadCandidateSet CandidateSet(LParenLoc); |
| DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(OO_Call); |
| |
| if (RequireCompleteType(LParenLoc, Object.get()->getType(), |
| PDiag(diag::err_incomplete_object_call) |
| << Object.get()->getSourceRange())) |
| return true; |
| |
| LookupResult R(*this, OpName, LParenLoc, LookupOrdinaryName); |
| LookupQualifiedName(R, Record->getDecl()); |
| R.suppressDiagnostics(); |
| |
| for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); |
| Oper != OperEnd; ++Oper) { |
| AddMethodCandidate(Oper.getPair(), Object.get()->getType(), |
| Object.get()->Classify(Context), Args, NumArgs, CandidateSet, |
| /*SuppressUserConversions=*/ false); |
| } |
| |
| // C++ [over.call.object]p2: |
| // In addition, for each (non-explicit in C++0x) conversion function |
| // declared in T of the form |
| // |
| // operator conversion-type-id () cv-qualifier; |
| // |
| // where cv-qualifier is the same cv-qualification as, or a |
| // greater cv-qualification than, cv, and where conversion-type-id |
| // denotes the type "pointer to function of (P1,...,Pn) returning |
| // R", or the type "reference to pointer to function of |
| // (P1,...,Pn) returning R", or the type "reference to function |
| // of (P1,...,Pn) returning R", a surrogate call function [...] |
| // is also considered as a candidate function. Similarly, |
| // surrogate call functions are added to the set of candidate |
| // functions for each conversion function declared in an |
| // accessible base class provided the function is not hidden |
| // within T by another intervening declaration. |
| const UnresolvedSetImpl *Conversions |
| = cast<CXXRecordDecl>(Record->getDecl())->getVisibleConversionFunctions(); |
| for (UnresolvedSetImpl::iterator I = Conversions->begin(), |
| E = Conversions->end(); I != E; ++I) { |
| NamedDecl *D = *I; |
| CXXRecordDecl *ActingContext = cast<CXXRecordDecl>(D->getDeclContext()); |
| if (isa<UsingShadowDecl>(D)) |
| D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
| |
| // Skip over templated conversion functions; they aren't |
| // surrogates. |
| if (isa<FunctionTemplateDecl>(D)) |
| continue; |
| |
| CXXConversionDecl *Conv = cast<CXXConversionDecl>(D); |
| if (!Conv->isExplicit()) { |
| // Strip the reference type (if any) and then the pointer type (if |
| // any) to get down to what might be a function type. |
| QualType ConvType = Conv->getConversionType().getNonReferenceType(); |
| if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) |
| ConvType = ConvPtrType->getPointeeType(); |
| |
| if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>()) |
| { |
| AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto, |
| Object.get(), Args, NumArgs, CandidateSet); |
| } |
| } |
| } |
| |
| bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| |
| // Perform overload resolution. |
| OverloadCandidateSet::iterator Best; |
| switch (CandidateSet.BestViableFunction(*this, Object.get()->getLocStart(), |
| Best)) { |
| case OR_Success: |
| // Overload resolution succeeded; we'll build the appropriate call |
| // below. |
| break; |
| |
| case OR_No_Viable_Function: |
| if (CandidateSet.empty()) |
| Diag(Object.get()->getSourceRange().getBegin(), diag::err_ovl_no_oper) |
| << Object.get()->getType() << /*call*/ 1 |
| << Object.get()->getSourceRange(); |
| else |
| Diag(Object.get()->getSourceRange().getBegin(), |
| diag::err_ovl_no_viable_object_call) |
| << Object.get()->getType() << Object.get()->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); |
| break; |
| |
| case OR_Ambiguous: |
| Diag(Object.get()->getSourceRange().getBegin(), |
| diag::err_ovl_ambiguous_object_call) |
| << Object.get()->getType() << Object.get()->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs); |
| break; |
| |
| case OR_Deleted: |
| Diag(Object.get()->getSourceRange().getBegin(), |
| diag::err_ovl_deleted_object_call) |
| << Best->Function->isDeleted() |
| << Object.get()->getType() |
| << getDeletedOrUnavailableSuffix(Best->Function) |
| << Object.get()->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs); |
| break; |
| } |
| |
| if (Best == CandidateSet.end()) |
| return true; |
| |
| UnbridgedCasts.restore(); |
| |
| if (Best->Function == 0) { |
| // Since there is no function declaration, this is one of the |
| // surrogate candidates. Dig out the conversion function. |
| CXXConversionDecl *Conv |
| = cast<CXXConversionDecl>( |
| Best->Conversions[0].UserDefined.ConversionFunction); |
| |
| CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl); |
| DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); |
| |
| // We selected one of the surrogate functions that converts the |
| // object parameter to a function pointer. Perform the conversion |
| // on the object argument, then let ActOnCallExpr finish the job. |
| |
| // Create an implicit member expr to refer to the conversion operator. |
| // and then call it. |
| ExprResult Call = BuildCXXMemberCallExpr(Object.get(), Best->FoundDecl, |
| Conv, HadMultipleCandidates); |
| if (Call.isInvalid()) |
| return ExprError(); |
| // Record usage of conversion in an implicit cast. |
| Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(), |
| CK_UserDefinedConversion, |
| Call.get(), 0, VK_RValue)); |
| |
| return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs), |
| RParenLoc); |
| } |
| |
| MarkDeclarationReferenced(LParenLoc, Best->Function); |
| CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl); |
| DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc); |
| |
| // We found an overloaded operator(). Build a CXXOperatorCallExpr |
| // that calls this method, using Object for the implicit object |
| // parameter and passing along the remaining arguments. |
| CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); |
| const FunctionProtoType *Proto = |
| Method->getType()->getAs<FunctionProtoType>(); |
| |
| unsigned NumArgsInProto = Proto->getNumArgs(); |
| unsigned NumArgsToCheck = NumArgs; |
| |
| // Build the full argument list for the method call (the |
| // implicit object parameter is placed at the beginning of the |
| // list). |
| Expr **MethodArgs; |
| if (NumArgs < NumArgsInProto) { |
| NumArgsToCheck = NumArgsInProto; |
| MethodArgs = new Expr*[NumArgsInProto + 1]; |
| } else { |
| MethodArgs = new Expr*[NumArgs + 1]; |
| } |
| MethodArgs[0] = Object.get(); |
| for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) |
| MethodArgs[ArgIdx + 1] = Args[ArgIdx]; |
| |
| ExprResult NewFn = CreateFunctionRefExpr(*this, Method, |
| HadMultipleCandidates); |
| if (NewFn.isInvalid()) |
| return true; |
| |
| // Once we've built TheCall, all of the expressions are properly |
| // owned. |
| QualType ResultTy = Method->getResultType(); |
| ExprValueKind VK = Expr::getValueKindForType(ResultTy); |
| ResultTy = ResultTy.getNonLValueExprType(Context); |
| |
| CXXOperatorCallExpr *TheCall = |
| new (Context) CXXOperatorCallExpr(Context, OO_Call, NewFn.take(), |
| MethodArgs, NumArgs + 1, |
| ResultTy, VK, RParenLoc); |
| delete [] MethodArgs; |
| |
| if (CheckCallReturnType(Method->getResultType(), LParenLoc, TheCall, |
| Method)) |
| return true; |
| |
| // We may have default arguments. If so, we need to allocate more |
| // slots in the call for them. |
| if (NumArgs < NumArgsInProto) |
| TheCall->setNumArgs(Context, NumArgsInProto + 1); |
| else if (NumArgs > NumArgsInProto) |
| NumArgsToCheck = NumArgsInProto; |
| |
| bool IsError = false; |
| |
| // Initialize the implicit object parameter. |
| ExprResult ObjRes = |
| PerformObjectArgumentInitialization(Object.get(), /*Qualifier=*/0, |
| Best->FoundDecl, Method); |
| if (ObjRes.isInvalid()) |
| IsError = true; |
| else |
| Object = move(ObjRes); |
| TheCall->setArg(0, Object.take()); |
| |
| // Check the argument types. |
| for (unsigned i = 0; i != NumArgsToCheck; i++) { |
| Expr *Arg; |
| if (i < NumArgs) { |
| Arg = Args[i]; |
| |
| // Pass the argument. |
| |
| ExprResult InputInit |
| = PerformCopyInitialization(InitializedEntity::InitializeParameter( |
| Context, |
| Method->getParamDecl(i)), |
| SourceLocation(), Arg); |
| |
| IsError |= InputInit.isInvalid(); |
| Arg = InputInit.takeAs<Expr>(); |
| } else { |
| ExprResult DefArg |
| = BuildCXXDefaultArgExpr(LParenLoc, Method, Method->getParamDecl(i)); |
| if (DefArg.isInvalid()) { |
| IsError = true; |
| break; |
| } |
| |
| Arg = DefArg.takeAs<Expr>(); |
| } |
| |
| TheCall->setArg(i + 1, Arg); |
| } |
| |
| // If this is a variadic call, handle args passed through "...". |
| if (Proto->isVariadic()) { |
| // Promote the arguments (C99 6.5.2.2p7). |
| for (unsigned i = NumArgsInProto; i != NumArgs; i++) { |
| ExprResult Arg = DefaultVariadicArgumentPromotion(Args[i], VariadicMethod, 0); |
| IsError |= Arg.isInvalid(); |
| TheCall->setArg(i + 1, Arg.take()); |
| } |
| } |
| |
| if (IsError) return true; |
| |
| if (CheckFunctionCall(Method, TheCall)) |
| return true; |
| |
| return MaybeBindToTemporary(TheCall); |
| } |
| |
| /// BuildOverloadedArrowExpr - Build a call to an overloaded @c operator-> |
| /// (if one exists), where @c Base is an expression of class type and |
| /// @c Member is the name of the member we're trying to find. |
| ExprResult |
| Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) { |
| assert(Base->getType()->isRecordType() && |
| "left-hand side must have class type"); |
| |
| if (checkPlaceholderForOverload(*this, Base)) |
| return ExprError(); |
| |
| SourceLocation Loc = Base->getExprLoc(); |
| |
| // C++ [over.ref]p1: |
| // |
| // [...] An expression x->m is interpreted as (x.operator->())->m |
| // for a class object x of type T if T::operator->() exists and if |
| // the operator is selected as the best match function by the |
| // overload resolution mechanism (13.3). |
| DeclarationName OpName = |
| Context.DeclarationNames.getCXXOperatorName(OO_Arrow); |
| OverloadCandidateSet CandidateSet(Loc); |
| const RecordType *BaseRecord = Base->getType()->getAs<RecordType>(); |
| |
| if (RequireCompleteType(Loc, Base->getType(), |
| PDiag(diag::err_typecheck_incomplete_tag) |
| << Base->getSourceRange())) |
| return ExprError(); |
| |
| LookupResult R(*this, OpName, OpLoc, LookupOrdinaryName); |
| LookupQualifiedName(R, BaseRecord->getDecl()); |
| R.suppressDiagnostics(); |
| |
| for (LookupResult::iterator Oper = R.begin(), OperEnd = R.end(); |
| Oper != OperEnd; ++Oper) { |
| AddMethodCandidate(Oper.getPair(), Base->getType(), Base->Classify(Context), |
| 0, 0, CandidateSet, /*SuppressUserConversions=*/false); |
| } |
| |
| bool HadMultipleCandidates = (CandidateSet.size() > 1); |
| |
| // Perform overload resolution. |
| OverloadCandidateSet::iterator Best; |
| switch (CandidateSet.BestViableFunction(*this, OpLoc, Best)) { |
| case OR_Success: |
| // Overload resolution succeeded; we'll build the call below. |
| break; |
| |
| case OR_No_Viable_Function: |
| if (CandidateSet.empty()) |
| Diag(OpLoc, diag::err_typecheck_member_reference_arrow) |
| << Base->getType() << Base->getSourceRange(); |
| else |
| Diag(OpLoc, diag::err_ovl_no_viable_oper) |
| << "operator->" << Base->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); |
| return ExprError(); |
| |
| case OR_Ambiguous: |
| Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary) |
| << "->" << Base->getType() << Base->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1); |
| return ExprError(); |
| |
| case OR_Deleted: |
| Diag(OpLoc, diag::err_ovl_deleted_oper) |
| << Best->Function->isDeleted() |
| << "->" |
| << getDeletedOrUnavailableSuffix(Best->Function) |
| << Base->getSourceRange(); |
| CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1); |
| return ExprError(); |
| } |
| |
| MarkDeclarationReferenced(OpLoc, Best->Function); |
| CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl); |
| DiagnoseUseOfDecl(Best->FoundDecl, OpLoc); |
| |
| // Convert the object parameter. |
| CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function); |
| ExprResult BaseResult = |
| PerformObjectArgumentInitialization(Base, /*Qualifier=*/0, |
| Best->FoundDecl, Method); |
| if (BaseResult.isInvalid()) |
| return ExprError(); |
| Base = BaseResult.take(); |
| |
| // Build the operator call. |
| ExprResult FnExpr = CreateFunctionRefExpr(*this, Method, |
| HadMultipleCandidates); |
| if (FnExpr.isInvalid()) |
| return ExprError(); |
| |
| QualType ResultTy = Method->getResultType(); |
| ExprValueKind VK = Expr::getValueKindForType(ResultTy); |
| ResultTy = ResultTy.getNonLValueExprType(Context); |
| CXXOperatorCallExpr *TheCall = |
| new (Context) CXXOperatorCallExpr(Context, OO_Arrow, FnExpr.take(), |
| &Base, 1, ResultTy, VK, OpLoc); |
| |
| if (CheckCallReturnType(Method->getResultType(), OpLoc, TheCall, |
| Method)) |
| return ExprError(); |
| |
| return MaybeBindToTemporary(TheCall); |
| } |
| |
| /// FixOverloadedFunctionReference - E is an expression that refers to |
| /// a C++ overloaded function (possibly with some parentheses and |
| /// perhaps a '&' around it). We have resolved the overloaded function |
| /// to the function declaration Fn, so patch up the expression E to |
| /// refer (possibly indirectly) to Fn. Returns the new expr. |
| Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found, |
| FunctionDecl *Fn) { |
| if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { |
| Expr *SubExpr = FixOverloadedFunctionReference(PE->getSubExpr(), |
| Found, Fn); |
| if (SubExpr == PE->getSubExpr()) |
| return PE; |
| |
| return new (Context) ParenExpr(PE->getLParen(), PE->getRParen(), SubExpr); |
| } |
| |
| if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) { |
| Expr *SubExpr = FixOverloadedFunctionReference(ICE->getSubExpr(), |
| Found, Fn); |
| assert(Context.hasSameType(ICE->getSubExpr()->getType(), |
| SubExpr->getType()) && |
| "Implicit cast type cannot be determined from overload"); |
| assert(ICE->path_empty() && "fixing up hierarchy conversion?"); |
| if (SubExpr == ICE->getSubExpr()) |
| return ICE; |
| |
| return ImplicitCastExpr::Create(Context, ICE->getType(), |
| ICE->getCastKind(), |
| SubExpr, 0, |
| ICE->getValueKind()); |
| } |
| |
| if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E)) { |
| assert(UnOp->getOpcode() == UO_AddrOf && |
| "Can only take the address of an overloaded function"); |
| if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) { |
| if (Method->isStatic()) { |
| // Do nothing: static member functions aren't any different |
| // from non-member functions. |
| } else { |
| // Fix the sub expression, which really has to be an |
| // UnresolvedLookupExpr holding an overloaded member function |
| // or template. |
| Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), |
| Found, Fn); |
| if (SubExpr == UnOp->getSubExpr()) |
| return UnOp; |
| |
| assert(isa<DeclRefExpr>(SubExpr) |
| && "fixed to something other than a decl ref"); |
| assert(cast<DeclRefExpr>(SubExpr)->getQualifier() |
| && "fixed to a member ref with no nested name qualifier"); |
| |
| // We have taken the address of a pointer to member |
| // function. Perform the computation here so that we get the |
| // appropriate pointer to member type. |
| QualType ClassType |
| = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); |
| QualType MemPtrType |
| = Context.getMemberPointerType(Fn->getType(), ClassType.getTypePtr()); |
| |
| return new (Context) UnaryOperator(SubExpr, UO_AddrOf, MemPtrType, |
| VK_RValue, OK_Ordinary, |
| UnOp->getOperatorLoc()); |
| } |
| } |
| Expr *SubExpr = FixOverloadedFunctionReference(UnOp->getSubExpr(), |
| Found, Fn); |
| if (SubExpr == UnOp->getSubExpr()) |
| return UnOp; |
| |
| return new (Context) UnaryOperator(SubExpr, UO_AddrOf, |
| Context.getPointerType(SubExpr->getType()), |
| VK_RValue, OK_Ordinary, |
| UnOp->getOperatorLoc()); |
| } |
| |
| if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) { |
| // FIXME: avoid copy. |
| TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; |
| if (ULE->hasExplicitTemplateArgs()) { |
| ULE->copyTemplateArgumentsInto(TemplateArgsBuffer); |
| TemplateArgs = &TemplateArgsBuffer; |
| } |
| |
| DeclRefExpr *DRE = DeclRefExpr::Create(Context, |
| ULE->getQualifierLoc(), |
| Fn, |
| ULE->getNameLoc(), |
| Fn->getType(), |
| VK_LValue, |
| Found.getDecl(), |
| TemplateArgs); |
| DRE->setHadMultipleCandidates(ULE->getNumDecls() > 1); |
| return DRE; |
| } |
| |
| if (UnresolvedMemberExpr *MemExpr = dyn_cast<UnresolvedMemberExpr>(E)) { |
| // FIXME: avoid copy. |
| TemplateArgumentListInfo TemplateArgsBuffer, *TemplateArgs = 0; |
| if (MemExpr->hasExplicitTemplateArgs()) { |
| MemExpr->copyTemplateArgumentsInto(TemplateArgsBuffer); |
| TemplateArgs = &TemplateArgsBuffer; |
| } |
| |
| Expr *Base; |
| |
| // If we're filling in a static method where we used to have an |
| // implicit member access, rewrite to a simple decl ref. |
| if (MemExpr->isImplicitAccess()) { |
| if (cast<CXXMethodDecl>(Fn)->isStatic()) { |
| DeclRefExpr *DRE = DeclRefExpr::Create(Context, |
| MemExpr->getQualifierLoc(), |
| Fn, |
| MemExpr->getMemberLoc(), |
| Fn->getType(), |
| VK_LValue, |
| Found.getDecl(), |
| TemplateArgs); |
| DRE->setHadMultipleCandidates(MemExpr->getNumDecls() > 1); |
| return DRE; |
| } else { |
| SourceLocation Loc = MemExpr->getMemberLoc(); |
| if (MemExpr->getQualifier()) |
| Loc = MemExpr->getQualifierLoc().getBeginLoc(); |
| CheckCXXThisCapture(Loc); |
| Base = new (Context) CXXThisExpr(Loc, |
| MemExpr->getBaseType(), |
| /*isImplicit=*/true); |
| } |
| } else |
| Base = MemExpr->getBase(); |
| |
| ExprValueKind valueKind; |
| QualType type; |
| if (cast<CXXMethodDecl>(Fn)->isStatic()) { |
| valueKind = VK_LValue; |
| type = Fn->getType(); |
| } else { |
| valueKind = VK_RValue; |
| type = Context.BoundMemberTy; |
| } |
| |
| MemberExpr *ME = MemberExpr::Create(Context, Base, |
| MemExpr->isArrow(), |
| MemExpr->getQualifierLoc(), |
| Fn, |
| Found, |
| MemExpr->getMemberNameInfo(), |
| TemplateArgs, |
| type, valueKind, OK_Ordinary); |
| ME->setHadMultipleCandidates(true); |
| return ME; |
| } |
| |
| llvm_unreachable("Invalid reference to overloaded function"); |
| } |
| |
| ExprResult Sema::FixOverloadedFunctionReference(ExprResult E, |
| DeclAccessPair Found, |
| FunctionDecl *Fn) { |
| return Owned(FixOverloadedFunctionReference((Expr *)E.get(), Found, Fn)); |
| } |
| |
| } // end namespace clang |