Move all of Sema's member-access-related checking out of SemaExpr.cpp
and into a new file, SemaExprMember.cpp, bringing SemaExpr.cpp just
under 10,000 lines of code (ugh). No functionality change, although I
intend to do some refactoring of this code to address PR8368 at some
point in the "near" future.


git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@133674 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Sema/SemaExprMember.cpp b/lib/Sema/SemaExprMember.cpp
new file mode 100644
index 0000000..082691f
--- /dev/null
+++ b/lib/Sema/SemaExprMember.cpp
@@ -0,0 +1,1582 @@
+//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//  This file implements semantic analysis member access expressions.
+//
+//===----------------------------------------------------------------------===//
+#include "clang/Sema/SemaInternal.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Scope.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/Lex/Preprocessor.h"
+
+using namespace clang;
+using namespace sema;
+
+/// Determines if the given class is provably not derived from all of
+/// the prospective base classes.
+static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
+                                     CXXRecordDecl *Record,
+                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
+  if (Bases.count(Record->getCanonicalDecl()))
+    return false;
+
+  RecordDecl *RD = Record->getDefinition();
+  if (!RD) return false;
+  Record = cast<CXXRecordDecl>(RD);
+
+  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
+         E = Record->bases_end(); I != E; ++I) {
+    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
+    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
+    if (!BaseRT) return false;
+
+    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
+    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
+      return false;
+  }
+
+  return true;
+}
+
+enum IMAKind {
+  /// The reference is definitely not an instance member access.
+  IMA_Static,
+
+  /// The reference may be an implicit instance member access.
+  IMA_Mixed,
+
+  /// The reference may be to an instance member, but it is invalid if
+  /// so, because the context is not an instance method.
+  IMA_Mixed_StaticContext,
+
+  /// The reference may be to an instance member, but it is invalid if
+  /// so, because the context is from an unrelated class.
+  IMA_Mixed_Unrelated,
+
+  /// The reference is definitely an implicit instance member access.
+  IMA_Instance,
+
+  /// The reference may be to an unresolved using declaration.
+  IMA_Unresolved,
+
+  /// The reference may be to an unresolved using declaration and the
+  /// context is not an instance method.
+  IMA_Unresolved_StaticContext,
+
+  /// All possible referrents are instance members and the current
+  /// context is not an instance method.
+  IMA_Error_StaticContext,
+
+  /// All possible referrents are instance members of an unrelated
+  /// class.
+  IMA_Error_Unrelated
+};
+
+/// The given lookup names class member(s) and is not being used for
+/// an address-of-member expression.  Classify the type of access
+/// according to whether it's possible that this reference names an
+/// instance member.  This is best-effort; it is okay to
+/// conservatively answer "yes", in which case some errors will simply
+/// not be caught until template-instantiation.
+static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
+                                            Scope *CurScope,
+                                            const LookupResult &R) {
+  assert(!R.empty() && (*R.begin())->isCXXClassMember());
+
+  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
+
+  bool isStaticContext =
+    (!isa<CXXMethodDecl>(DC) ||
+     cast<CXXMethodDecl>(DC)->isStatic());
+
+  // C++0x [expr.prim]p4:
+  //   Otherwise, if a member-declarator declares a non-static data member
+  // of a class X, the expression this is a prvalue of type "pointer to X"
+  // within the optional brace-or-equal-initializer.
+  if (CurScope->getFlags() & Scope::ThisScope)
+    isStaticContext = false;
+
+  if (R.isUnresolvableResult())
+    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
+
+  // Collect all the declaring classes of instance members we find.
+  bool hasNonInstance = false;
+  bool hasField = false;
+  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
+  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
+    NamedDecl *D = *I;
+
+    if (D->isCXXInstanceMember()) {
+      if (dyn_cast<FieldDecl>(D))
+        hasField = true;
+
+      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
+      Classes.insert(R->getCanonicalDecl());
+    }
+    else
+      hasNonInstance = true;
+  }
+
+  // If we didn't find any instance members, it can't be an implicit
+  // member reference.
+  if (Classes.empty())
+    return IMA_Static;
+
+  // If the current context is not an instance method, it can't be
+  // an implicit member reference.
+  if (isStaticContext) {
+    if (hasNonInstance)
+        return IMA_Mixed_StaticContext;
+        
+    if (SemaRef.getLangOptions().CPlusPlus0x && hasField) {
+      // C++0x [expr.prim.general]p10:
+      //   An id-expression that denotes a non-static data member or non-static
+      //   member function of a class can only be used:
+      //   (...)
+      //   - if that id-expression denotes a non-static data member and it
+      //     appears in an unevaluated operand.
+      const Sema::ExpressionEvaluationContextRecord& record
+        = SemaRef.ExprEvalContexts.back();
+      bool isUnevaluatedExpression = (record.Context == Sema::Unevaluated);
+      if (isUnevaluatedExpression)
+        return IMA_Mixed_StaticContext;
+    }
+    
+    return IMA_Error_StaticContext;
+  }
+
+  CXXRecordDecl *contextClass;
+  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
+    contextClass = MD->getParent()->getCanonicalDecl();
+  else
+    contextClass = cast<CXXRecordDecl>(DC);
+
+  // [class.mfct.non-static]p3: 
+  // ...is used in the body of a non-static member function of class X,
+  // if name lookup (3.4.1) resolves the name in the id-expression to a
+  // non-static non-type member of some class C [...]
+  // ...if C is not X or a base class of X, the class member access expression
+  // is ill-formed.
+  if (R.getNamingClass() &&
+      contextClass != R.getNamingClass()->getCanonicalDecl() &&
+      contextClass->isProvablyNotDerivedFrom(R.getNamingClass()))
+    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
+
+  // If we can prove that the current context is unrelated to all the
+  // declaring classes, it can't be an implicit member reference (in
+  // which case it's an error if any of those members are selected).
+  if (IsProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
+    return (hasNonInstance ? IMA_Mixed_Unrelated : IMA_Error_Unrelated);
+
+  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
+}
+
+/// Diagnose a reference to a field with no object available.
+static void DiagnoseInstanceReference(Sema &SemaRef,
+                                      const CXXScopeSpec &SS,
+                                      NamedDecl *rep,
+                                      const DeclarationNameInfo &nameInfo) {
+  SourceLocation Loc = nameInfo.getLoc();
+  SourceRange Range(Loc);
+  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
+  
+  if (isa<FieldDecl>(rep) || isa<IndirectFieldDecl>(rep)) {
+    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(SemaRef.CurContext)) {
+      if (MD->isStatic()) {
+        // "invalid use of member 'x' in static member function"
+        SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
+        << Range << nameInfo.getName();
+        return;
+      }
+    }
+    
+    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
+    << nameInfo.getName() << Range;
+    return;
+  }
+  
+  SemaRef.Diag(Loc, diag::err_member_call_without_object) << Range;
+}
+
+/// Builds an expression which might be an implicit member expression.
+ExprResult
+Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
+                                      LookupResult &R,
+                                const TemplateArgumentListInfo *TemplateArgs) {
+  switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
+  case IMA_Instance:
+    return BuildImplicitMemberExpr(SS, R, TemplateArgs, true);
+
+  case IMA_Mixed:
+  case IMA_Mixed_Unrelated:
+  case IMA_Unresolved:
+    return BuildImplicitMemberExpr(SS, R, TemplateArgs, false);
+
+  case IMA_Static:
+  case IMA_Mixed_StaticContext:
+  case IMA_Unresolved_StaticContext:
+    if (TemplateArgs)
+      return BuildTemplateIdExpr(SS, R, false, *TemplateArgs);
+    return BuildDeclarationNameExpr(SS, R, false);
+
+  case IMA_Error_StaticContext:
+  case IMA_Error_Unrelated:
+    DiagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
+                              R.getLookupNameInfo());
+    return ExprError();
+  }
+
+  llvm_unreachable("unexpected instance member access kind");
+  return ExprError();
+}
+
+/// Check an ext-vector component access expression.
+///
+/// VK should be set in advance to the value kind of the base
+/// expression.
+static QualType
+CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
+                        SourceLocation OpLoc, const IdentifierInfo *CompName,
+                        SourceLocation CompLoc) {
+  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
+  // see FIXME there.
+  //
+  // FIXME: This logic can be greatly simplified by splitting it along
+  // halving/not halving and reworking the component checking.
+  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
+
+  // The vector accessor can't exceed the number of elements.
+  const char *compStr = CompName->getNameStart();
+
+  // This flag determines whether or not the component is one of the four
+  // special names that indicate a subset of exactly half the elements are
+  // to be selected.
+  bool HalvingSwizzle = false;
+
+  // This flag determines whether or not CompName has an 's' char prefix,
+  // indicating that it is a string of hex values to be used as vector indices.
+  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
+
+  bool HasRepeated = false;
+  bool HasIndex[16] = {};
+
+  int Idx;
+
+  // Check that we've found one of the special components, or that the component
+  // names must come from the same set.
+  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
+      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
+    HalvingSwizzle = true;
+  } else if (!HexSwizzle &&
+             (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
+    do {
+      if (HasIndex[Idx]) HasRepeated = true;
+      HasIndex[Idx] = true;
+      compStr++;
+    } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
+  } else {
+    if (HexSwizzle) compStr++;
+    while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
+      if (HasIndex[Idx]) HasRepeated = true;
+      HasIndex[Idx] = true;
+      compStr++;
+    }
+  }
+
+  if (!HalvingSwizzle && *compStr) {
+    // We didn't get to the end of the string. This means the component names
+    // didn't come from the same set *or* we encountered an illegal name.
+    S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
+      << llvm::StringRef(compStr, 1) << SourceRange(CompLoc);
+    return QualType();
+  }
+
+  // Ensure no component accessor exceeds the width of the vector type it
+  // operates on.
+  if (!HalvingSwizzle) {
+    compStr = CompName->getNameStart();
+
+    if (HexSwizzle)
+      compStr++;
+
+    while (*compStr) {
+      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
+        S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
+          << baseType << SourceRange(CompLoc);
+        return QualType();
+      }
+    }
+  }
+
+  // The component accessor looks fine - now we need to compute the actual type.
+  // The vector type is implied by the component accessor. For example,
+  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
+  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
+  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
+  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
+                                     : CompName->getLength();
+  if (HexSwizzle)
+    CompSize--;
+
+  if (CompSize == 1)
+    return vecType->getElementType();
+
+  if (HasRepeated) VK = VK_RValue;
+
+  QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
+  // Now look up the TypeDefDecl from the vector type. Without this,
+  // diagostics look bad. We want extended vector types to appear built-in.
+  for (unsigned i = 0, E = S.ExtVectorDecls.size(); i != E; ++i) {
+    if (S.ExtVectorDecls[i]->getUnderlyingType() == VT)
+      return S.Context.getTypedefType(S.ExtVectorDecls[i]);
+  }
+  return VT; // should never get here (a typedef type should always be found).
+}
+
+static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
+                                                IdentifierInfo *Member,
+                                                const Selector &Sel,
+                                                ASTContext &Context) {
+  if (Member)
+    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
+      return PD;
+  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
+    return OMD;
+
+  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
+       E = PDecl->protocol_end(); I != E; ++I) {
+    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
+                                                           Context))
+      return D;
+  }
+  return 0;
+}
+
+static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
+                                      IdentifierInfo *Member,
+                                      const Selector &Sel,
+                                      ASTContext &Context) {
+  // Check protocols on qualified interfaces.
+  Decl *GDecl = 0;
+  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
+       E = QIdTy->qual_end(); I != E; ++I) {
+    if (Member)
+      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
+        GDecl = PD;
+        break;
+      }
+    // Also must look for a getter or setter name which uses property syntax.
+    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
+      GDecl = OMD;
+      break;
+    }
+  }
+  if (!GDecl) {
+    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
+         E = QIdTy->qual_end(); I != E; ++I) {
+      // Search in the protocol-qualifier list of current protocol.
+      GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel, 
+                                                       Context);
+      if (GDecl)
+        return GDecl;
+    }
+  }
+  return GDecl;
+}
+
+ExprResult
+Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
+                               bool IsArrow, SourceLocation OpLoc,
+                               const CXXScopeSpec &SS,
+                               NamedDecl *FirstQualifierInScope,
+                               const DeclarationNameInfo &NameInfo,
+                               const TemplateArgumentListInfo *TemplateArgs) {
+  // Even in dependent contexts, try to diagnose base expressions with
+  // obviously wrong types, e.g.:
+  //
+  // T* t;
+  // t.f;
+  //
+  // In Obj-C++, however, the above expression is valid, since it could be
+  // accessing the 'f' property if T is an Obj-C interface. The extra check
+  // allows this, while still reporting an error if T is a struct pointer.
+  if (!IsArrow) {
+    const PointerType *PT = BaseType->getAs<PointerType>();
+    if (PT && (!getLangOptions().ObjC1 ||
+               PT->getPointeeType()->isRecordType())) {
+      assert(BaseExpr && "cannot happen with implicit member accesses");
+      Diag(NameInfo.getLoc(), diag::err_typecheck_member_reference_struct_union)
+        << BaseType << BaseExpr->getSourceRange();
+      return ExprError();
+    }
+  }
+
+  assert(BaseType->isDependentType() ||
+         NameInfo.getName().isDependentName() ||
+         isDependentScopeSpecifier(SS));
+
+  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
+  // must have pointer type, and the accessed type is the pointee.
+  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
+                                                   IsArrow, OpLoc,
+                                               SS.getWithLocInContext(Context),
+                                                   FirstQualifierInScope,
+                                                   NameInfo, TemplateArgs));
+}
+
+/// We know that the given qualified member reference points only to
+/// declarations which do not belong to the static type of the base
+/// expression.  Diagnose the problem.
+static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
+                                             Expr *BaseExpr,
+                                             QualType BaseType,
+                                             const CXXScopeSpec &SS,
+                                             NamedDecl *rep,
+                                       const DeclarationNameInfo &nameInfo) {
+  // If this is an implicit member access, use a different set of
+  // diagnostics.
+  if (!BaseExpr)
+    return DiagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
+
+  SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
+    << SS.getRange() << rep << BaseType;
+}
+
+// Check whether the declarations we found through a nested-name
+// specifier in a member expression are actually members of the base
+// type.  The restriction here is:
+//
+//   C++ [expr.ref]p2:
+//     ... In these cases, the id-expression shall name a
+//     member of the class or of one of its base classes.
+//
+// So it's perfectly legitimate for the nested-name specifier to name
+// an unrelated class, and for us to find an overload set including
+// decls from classes which are not superclasses, as long as the decl
+// we actually pick through overload resolution is from a superclass.
+bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
+                                         QualType BaseType,
+                                         const CXXScopeSpec &SS,
+                                         const LookupResult &R) {
+  const RecordType *BaseRT = BaseType->getAs<RecordType>();
+  if (!BaseRT) {
+    // We can't check this yet because the base type is still
+    // dependent.
+    assert(BaseType->isDependentType());
+    return false;
+  }
+  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
+
+  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
+    // If this is an implicit member reference and we find a
+    // non-instance member, it's not an error.
+    if (!BaseExpr && !(*I)->isCXXInstanceMember())
+      return false;
+
+    // Note that we use the DC of the decl, not the underlying decl.
+    DeclContext *DC = (*I)->getDeclContext();
+    while (DC->isTransparentContext())
+      DC = DC->getParent();
+
+    if (!DC->isRecord())
+      continue;
+    
+    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
+    MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
+
+    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
+      return false;
+  }
+
+  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
+                                   R.getRepresentativeDecl(),
+                                   R.getLookupNameInfo());
+  return true;
+}
+
+static bool
+LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
+                         SourceRange BaseRange, const RecordType *RTy,
+                         SourceLocation OpLoc, CXXScopeSpec &SS,
+                         bool HasTemplateArgs) {
+  RecordDecl *RDecl = RTy->getDecl();
+  if (SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
+                              SemaRef.PDiag(diag::err_typecheck_incomplete_tag)
+                                    << BaseRange))
+    return true;
+
+  if (HasTemplateArgs) {
+    // LookupTemplateName doesn't expect these both to exist simultaneously.
+    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
+
+    bool MOUS;
+    SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
+    return false;
+  }
+
+  DeclContext *DC = RDecl;
+  if (SS.isSet()) {
+    // If the member name was a qualified-id, look into the
+    // nested-name-specifier.
+    DC = SemaRef.computeDeclContext(SS, false);
+
+    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
+      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
+        << SS.getRange() << DC;
+      return true;
+    }
+
+    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
+
+    if (!isa<TypeDecl>(DC)) {
+      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
+        << DC << SS.getRange();
+      return true;
+    }
+  }
+
+  // The record definition is complete, now look up the member.
+  SemaRef.LookupQualifiedName(R, DC);
+
+  if (!R.empty())
+    return false;
+
+  // We didn't find anything with the given name, so try to correct
+  // for typos.
+  DeclarationName Name = R.getLookupName();
+  if (SemaRef.CorrectTypo(R, 0, &SS, DC, false, Sema::CTC_MemberLookup) &&
+      !R.empty() &&
+      (isa<ValueDecl>(*R.begin()) || isa<FunctionTemplateDecl>(*R.begin()))) {
+    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
+      << Name << DC << R.getLookupName() << SS.getRange()
+      << FixItHint::CreateReplacement(R.getNameLoc(),
+                                      R.getLookupName().getAsString());
+    if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
+      SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
+        << ND->getDeclName();
+    return false;
+  } else {
+    R.clear();
+    R.setLookupName(Name);
+  }
+
+  return false;
+}
+
+ExprResult
+Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
+                               SourceLocation OpLoc, bool IsArrow,
+                               CXXScopeSpec &SS,
+                               NamedDecl *FirstQualifierInScope,
+                               const DeclarationNameInfo &NameInfo,
+                               const TemplateArgumentListInfo *TemplateArgs) {
+  if (BaseType->isDependentType() ||
+      (SS.isSet() && isDependentScopeSpecifier(SS)))
+    return ActOnDependentMemberExpr(Base, BaseType,
+                                    IsArrow, OpLoc,
+                                    SS, FirstQualifierInScope,
+                                    NameInfo, TemplateArgs);
+
+  LookupResult R(*this, NameInfo, LookupMemberName);
+
+  // Implicit member accesses.
+  if (!Base) {
+    QualType RecordTy = BaseType;
+    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
+    if (LookupMemberExprInRecord(*this, R, SourceRange(),
+                                 RecordTy->getAs<RecordType>(),
+                                 OpLoc, SS, TemplateArgs != 0))
+      return ExprError();
+
+  // Explicit member accesses.
+  } else {
+    ExprResult BaseResult = Owned(Base);
+    ExprResult Result =
+      LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
+                       SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
+
+    if (BaseResult.isInvalid())
+      return ExprError();
+    Base = BaseResult.take();
+
+    if (Result.isInvalid()) {
+      Owned(Base);
+      return ExprError();
+    }
+
+    if (Result.get())
+      return move(Result);
+
+    // LookupMemberExpr can modify Base, and thus change BaseType
+    BaseType = Base->getType();
+  }
+
+  return BuildMemberReferenceExpr(Base, BaseType,
+                                  OpLoc, IsArrow, SS, FirstQualifierInScope,
+                                  R, TemplateArgs);
+}
+
+static ExprResult
+BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
+                        const CXXScopeSpec &SS, FieldDecl *Field,
+                        DeclAccessPair FoundDecl,
+                        const DeclarationNameInfo &MemberNameInfo);
+
+ExprResult
+Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
+                                               SourceLocation loc,
+                                               IndirectFieldDecl *indirectField,
+                                               Expr *baseObjectExpr,
+                                               SourceLocation opLoc) {
+  // First, build the expression that refers to the base object.
+  
+  bool baseObjectIsPointer = false;
+  Qualifiers baseQuals;
+  
+  // Case 1:  the base of the indirect field is not a field.
+  VarDecl *baseVariable = indirectField->getVarDecl();
+  CXXScopeSpec EmptySS;
+  if (baseVariable) {
+    assert(baseVariable->getType()->isRecordType());
+    
+    // In principle we could have a member access expression that
+    // accesses an anonymous struct/union that's a static member of
+    // the base object's class.  However, under the current standard,
+    // static data members cannot be anonymous structs or unions.
+    // Supporting this is as easy as building a MemberExpr here.
+    assert(!baseObjectExpr && "anonymous struct/union is static data member?");
+    
+    DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
+    
+    ExprResult result 
+      = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
+    if (result.isInvalid()) return ExprError();
+    
+    baseObjectExpr = result.take();    
+    baseObjectIsPointer = false;
+    baseQuals = baseObjectExpr->getType().getQualifiers();
+    
+    // Case 2: the base of the indirect field is a field and the user
+    // wrote a member expression.
+  } else if (baseObjectExpr) {
+    // The caller provided the base object expression. Determine
+    // whether its a pointer and whether it adds any qualifiers to the
+    // anonymous struct/union fields we're looking into.
+    QualType objectType = baseObjectExpr->getType();
+    
+    if (const PointerType *ptr = objectType->getAs<PointerType>()) {
+      baseObjectIsPointer = true;
+      objectType = ptr->getPointeeType();
+    } else {
+      baseObjectIsPointer = false;
+    }
+    baseQuals = objectType.getQualifiers();
+    
+    // Case 3: the base of the indirect field is a field and we should
+    // build an implicit member access.
+  } else {
+    // We've found a member of an anonymous struct/union that is
+    // inside a non-anonymous struct/union, so in a well-formed
+    // program our base object expression is "this".
+    QualType ThisTy = getAndCaptureCurrentThisType();
+    if (ThisTy.isNull()) {
+      Diag(loc, diag::err_invalid_member_use_in_static_method)
+        << indirectField->getDeclName();
+      return ExprError();
+    }
+    
+    // Our base object expression is "this".
+    baseObjectExpr 
+      = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
+    baseObjectIsPointer = true;
+    baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
+  }
+  
+  // Build the implicit member references to the field of the
+  // anonymous struct/union.
+  Expr *result = baseObjectExpr;
+  IndirectFieldDecl::chain_iterator
+  FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
+  
+  // Build the first member access in the chain with full information.
+  if (!baseVariable) {
+    FieldDecl *field = cast<FieldDecl>(*FI);
+    
+    // FIXME: use the real found-decl info!
+    DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
+    
+    // Make a nameInfo that properly uses the anonymous name.
+    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
+    
+    result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
+                                     EmptySS, field, foundDecl,
+                                     memberNameInfo).take();
+    baseObjectIsPointer = false;
+    
+    // FIXME: check qualified member access
+  }
+  
+  // In all cases, we should now skip the first declaration in the chain.
+  ++FI;
+  
+  while (FI != FEnd) {
+    FieldDecl *field = cast<FieldDecl>(*FI++);
+    
+    // FIXME: these are somewhat meaningless
+    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
+    DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
+    
+    result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
+                                     (FI == FEnd? SS : EmptySS), field, 
+                                     foundDecl, memberNameInfo).take();
+  }
+  
+  return Owned(result);
+}
+
+/// \brief Build a MemberExpr AST node.
+static MemberExpr *BuildMemberExpr(ASTContext &C, Expr *Base, bool isArrow,
+                                   const CXXScopeSpec &SS, ValueDecl *Member,
+                                   DeclAccessPair FoundDecl,
+                                   const DeclarationNameInfo &MemberNameInfo,
+                                   QualType Ty,
+                                   ExprValueKind VK, ExprObjectKind OK,
+                                   const TemplateArgumentListInfo *TemplateArgs = 0) {
+  return MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
+                            Member, FoundDecl, MemberNameInfo,
+                            TemplateArgs, Ty, VK, OK);
+}
+
+ExprResult
+Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
+                               SourceLocation OpLoc, bool IsArrow,
+                               const CXXScopeSpec &SS,
+                               NamedDecl *FirstQualifierInScope,
+                               LookupResult &R,
+                         const TemplateArgumentListInfo *TemplateArgs,
+                               bool SuppressQualifierCheck) {
+  QualType BaseType = BaseExprType;
+  if (IsArrow) {
+    assert(BaseType->isPointerType());
+    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
+  }
+  R.setBaseObjectType(BaseType);
+
+  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
+  DeclarationName MemberName = MemberNameInfo.getName();
+  SourceLocation MemberLoc = MemberNameInfo.getLoc();
+
+  if (R.isAmbiguous())
+    return ExprError();
+
+  if (R.empty()) {
+    // Rederive where we looked up.
+    DeclContext *DC = (SS.isSet()
+                       ? computeDeclContext(SS, false)
+                       : BaseType->getAs<RecordType>()->getDecl());
+
+    Diag(R.getNameLoc(), diag::err_no_member)
+      << MemberName << DC
+      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
+    return ExprError();
+  }
+
+  // Diagnose lookups that find only declarations from a non-base
+  // type.  This is possible for either qualified lookups (which may
+  // have been qualified with an unrelated type) or implicit member
+  // expressions (which were found with unqualified lookup and thus
+  // may have come from an enclosing scope).  Note that it's okay for
+  // lookup to find declarations from a non-base type as long as those
+  // aren't the ones picked by overload resolution.
+  if ((SS.isSet() || !BaseExpr ||
+       (isa<CXXThisExpr>(BaseExpr) &&
+        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
+      !SuppressQualifierCheck &&
+      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
+    return ExprError();
+
+  // Construct an unresolved result if we in fact got an unresolved
+  // result.
+  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
+    // Suppress any lookup-related diagnostics; we'll do these when we
+    // pick a member.
+    R.suppressDiagnostics();
+
+    UnresolvedMemberExpr *MemExpr
+      = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
+                                     BaseExpr, BaseExprType,
+                                     IsArrow, OpLoc,
+                                     SS.getWithLocInContext(Context),
+                                     MemberNameInfo,
+                                     TemplateArgs, R.begin(), R.end());
+
+    return Owned(MemExpr);
+  }
+
+  assert(R.isSingleResult());
+  DeclAccessPair FoundDecl = R.begin().getPair();
+  NamedDecl *MemberDecl = R.getFoundDecl();
+
+  // FIXME: diagnose the presence of template arguments now.
+
+  // If the decl being referenced had an error, return an error for this
+  // sub-expr without emitting another error, in order to avoid cascading
+  // error cases.
+  if (MemberDecl->isInvalidDecl())
+    return ExprError();
+
+  // Handle the implicit-member-access case.
+  if (!BaseExpr) {
+    // If this is not an instance member, convert to a non-member access.
+    if (!MemberDecl->isCXXInstanceMember())
+      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
+
+    SourceLocation Loc = R.getNameLoc();
+    if (SS.getRange().isValid())
+      Loc = SS.getRange().getBegin();
+    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
+  }
+
+  bool ShouldCheckUse = true;
+  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
+    // Don't diagnose the use of a virtual member function unless it's
+    // explicitly qualified.
+    if (MD->isVirtual() && !SS.isSet())
+      ShouldCheckUse = false;
+  }
+
+  // Check the use of this member.
+  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
+    Owned(BaseExpr);
+    return ExprError();
+  }
+
+  // Perform a property load on the base regardless of whether we
+  // actually need it for the declaration.
+  if (BaseExpr->getObjectKind() == OK_ObjCProperty) {
+    ExprResult Result = ConvertPropertyForRValue(BaseExpr);
+    if (Result.isInvalid())
+      return ExprError();
+    BaseExpr = Result.take();
+  }
+
+  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
+    return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
+                                   SS, FD, FoundDecl, MemberNameInfo);
+
+  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
+    // We may have found a field within an anonymous union or struct
+    // (C++ [class.union]).
+    return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
+                                                    BaseExpr, OpLoc);
+
+  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
+    MarkDeclarationReferenced(MemberLoc, Var);
+    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
+                                 Var, FoundDecl, MemberNameInfo,
+                                 Var->getType().getNonReferenceType(),
+                                 VK_LValue, OK_Ordinary));
+  }
+
+  if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
+    ExprValueKind valueKind;
+    QualType type;
+    if (MemberFn->isInstance()) {
+      valueKind = VK_RValue;
+      type = Context.BoundMemberTy;
+    } else {
+      valueKind = VK_LValue;
+      type = MemberFn->getType();
+    }
+
+    MarkDeclarationReferenced(MemberLoc, MemberDecl);
+    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
+                                 MemberFn, FoundDecl, MemberNameInfo,
+                                 type, valueKind, OK_Ordinary));
+  }
+  assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
+
+  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
+    MarkDeclarationReferenced(MemberLoc, MemberDecl);
+    return Owned(BuildMemberExpr(Context, BaseExpr, IsArrow, SS,
+                                 Enum, FoundDecl, MemberNameInfo,
+                                 Enum->getType(), VK_RValue, OK_Ordinary));
+  }
+
+  Owned(BaseExpr);
+
+  // We found something that we didn't expect. Complain.
+  if (isa<TypeDecl>(MemberDecl))
+    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
+      << MemberName << BaseType << int(IsArrow);
+  else
+    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
+      << MemberName << BaseType << int(IsArrow);
+
+  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
+    << MemberName;
+  R.suppressDiagnostics();
+  return ExprError();
+}
+
+/// Given that normal member access failed on the given expression,
+/// and given that the expression's type involves builtin-id or
+/// builtin-Class, decide whether substituting in the redefinition
+/// types would be profitable.  The redefinition type is whatever
+/// this translation unit tried to typedef to id/Class;  we store
+/// it to the side and then re-use it in places like this.
+static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
+  const ObjCObjectPointerType *opty
+    = base.get()->getType()->getAs<ObjCObjectPointerType>();
+  if (!opty) return false;
+
+  const ObjCObjectType *ty = opty->getObjectType();
+
+  QualType redef;
+  if (ty->isObjCId()) {
+    redef = S.Context.ObjCIdRedefinitionType;
+  } else if (ty->isObjCClass()) {
+    redef = S.Context.ObjCClassRedefinitionType;
+  } else {
+    return false;
+  }
+
+  // Do the substitution as long as the redefinition type isn't just a
+  // possibly-qualified pointer to builtin-id or builtin-Class again.
+  opty = redef->getAs<ObjCObjectPointerType>();
+  if (opty && !opty->getObjectType()->getInterface() != 0)
+    return false;
+
+  base = S.ImpCastExprToType(base.take(), redef, CK_BitCast);
+  return true;
+}
+
+/// Look up the given member of the given non-type-dependent
+/// expression.  This can return in one of two ways:
+///  * If it returns a sentinel null-but-valid result, the caller will
+///    assume that lookup was performed and the results written into
+///    the provided structure.  It will take over from there.
+///  * Otherwise, the returned expression will be produced in place of
+///    an ordinary member expression.
+///
+/// The ObjCImpDecl bit is a gross hack that will need to be properly
+/// fixed for ObjC++.
+ExprResult
+Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr,
+                       bool &IsArrow, SourceLocation OpLoc,
+                       CXXScopeSpec &SS,
+                       Decl *ObjCImpDecl, bool HasTemplateArgs) {
+  assert(BaseExpr.get() && "no base expression");
+
+  // Perform default conversions.
+  BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
+
+  if (IsArrow) {
+    BaseExpr = DefaultLvalueConversion(BaseExpr.take());
+    if (BaseExpr.isInvalid())
+      return ExprError();
+  }
+
+  QualType BaseType = BaseExpr.get()->getType();
+  assert(!BaseType->isDependentType());
+
+  DeclarationName MemberName = R.getLookupName();
+  SourceLocation MemberLoc = R.getNameLoc();
+
+  // For later type-checking purposes, turn arrow accesses into dot
+  // accesses.  The only access type we support that doesn't follow
+  // the C equivalence "a->b === (*a).b" is ObjC property accesses,
+  // and those never use arrows, so this is unaffected.
+  if (IsArrow) {
+    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
+      BaseType = Ptr->getPointeeType();
+    else if (const ObjCObjectPointerType *Ptr
+               = BaseType->getAs<ObjCObjectPointerType>())
+      BaseType = Ptr->getPointeeType();
+    else if (BaseType->isRecordType()) {
+      // Recover from arrow accesses to records, e.g.:
+      //   struct MyRecord foo;
+      //   foo->bar
+      // This is actually well-formed in C++ if MyRecord has an
+      // overloaded operator->, but that should have been dealt with
+      // by now.
+      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
+        << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
+        << FixItHint::CreateReplacement(OpLoc, ".");
+      IsArrow = false;
+    } else if (BaseType == Context.BoundMemberTy) {
+      goto fail;
+    } else {
+      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
+        << BaseType << BaseExpr.get()->getSourceRange();
+      return ExprError();
+    }
+  }
+
+  // Handle field access to simple records.
+  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
+    if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(),
+                                 RTy, OpLoc, SS, HasTemplateArgs))
+      return ExprError();
+
+    // Returning valid-but-null is how we indicate to the caller that
+    // the lookup result was filled in.
+    return Owned((Expr*) 0);
+  }
+
+  // Handle ivar access to Objective-C objects.
+  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
+    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
+
+    // There are three cases for the base type:
+    //   - builtin id (qualified or unqualified)
+    //   - builtin Class (qualified or unqualified)
+    //   - an interface
+    ObjCInterfaceDecl *IDecl = OTy->getInterface();
+    if (!IDecl) {
+      if (getLangOptions().ObjCAutoRefCount &&
+          (OTy->isObjCId() || OTy->isObjCClass()))
+        goto fail;
+      // There's an implicit 'isa' ivar on all objects.
+      // But we only actually find it this way on objects of type 'id',
+      // apparently.
+      if (OTy->isObjCId() && Member->isStr("isa"))
+        return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc,
+                                               Context.getObjCClassType()));
+
+      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
+        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+                                ObjCImpDecl, HasTemplateArgs);
+      goto fail;
+    }
+
+    ObjCInterfaceDecl *ClassDeclared;
+    ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
+
+    if (!IV) {
+      // Attempt to correct for typos in ivar names.
+      LookupResult Res(*this, R.getLookupName(), R.getNameLoc(),
+                       LookupMemberName);
+      if (CorrectTypo(Res, 0, 0, IDecl, false, 
+                      IsArrow ? CTC_ObjCIvarLookup
+                              : CTC_ObjCPropertyLookup) &&
+          (IV = Res.getAsSingle<ObjCIvarDecl>())) {
+        Diag(R.getNameLoc(),
+             diag::err_typecheck_member_reference_ivar_suggest)
+          << IDecl->getDeclName() << MemberName << IV->getDeclName()
+          << FixItHint::CreateReplacement(R.getNameLoc(),
+                                          IV->getNameAsString());
+        Diag(IV->getLocation(), diag::note_previous_decl)
+          << IV->getDeclName();
+      } else {
+        Res.clear();
+        Res.setLookupName(Member);
+
+        Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
+          << IDecl->getDeclName() << MemberName
+          << BaseExpr.get()->getSourceRange();
+        return ExprError();
+      }
+    }
+
+    // If the decl being referenced had an error, return an error for this
+    // sub-expr without emitting another error, in order to avoid cascading
+    // error cases.
+    if (IV->isInvalidDecl())
+      return ExprError();
+
+    // Check whether we can reference this field.
+    if (DiagnoseUseOfDecl(IV, MemberLoc))
+      return ExprError();
+    if (IV->getAccessControl() != ObjCIvarDecl::Public &&
+        IV->getAccessControl() != ObjCIvarDecl::Package) {
+      ObjCInterfaceDecl *ClassOfMethodDecl = 0;
+      if (ObjCMethodDecl *MD = getCurMethodDecl())
+        ClassOfMethodDecl =  MD->getClassInterface();
+      else if (ObjCImpDecl && getCurFunctionDecl()) {
+        // Case of a c-function declared inside an objc implementation.
+        // FIXME: For a c-style function nested inside an objc implementation
+        // class, there is no implementation context available, so we pass
+        // down the context as argument to this routine. Ideally, this context
+        // need be passed down in the AST node and somehow calculated from the
+        // AST for a function decl.
+        if (ObjCImplementationDecl *IMPD =
+              dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
+          ClassOfMethodDecl = IMPD->getClassInterface();
+        else if (ObjCCategoryImplDecl* CatImplClass =
+                   dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
+          ClassOfMethodDecl = CatImplClass->getClassInterface();
+      }
+
+      if (IV->getAccessControl() == ObjCIvarDecl::Private) {
+        if (ClassDeclared != IDecl ||
+            ClassOfMethodDecl != ClassDeclared)
+          Diag(MemberLoc, diag::error_private_ivar_access)
+            << IV->getDeclName();
+      } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
+        // @protected
+        Diag(MemberLoc, diag::error_protected_ivar_access)
+          << IV->getDeclName();
+    }
+    if (getLangOptions().ObjCAutoRefCount) {
+      Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
+      if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
+        if (UO->getOpcode() == UO_Deref)
+          BaseExp = UO->getSubExpr()->IgnoreParenCasts();
+      
+      if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
+        if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
+          Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
+    }
+
+    return Owned(new (Context) ObjCIvarRefExpr(IV, IV->getType(),
+                                               MemberLoc, BaseExpr.take(),
+                                               IsArrow));
+  }
+
+  // Objective-C property access.
+  const ObjCObjectPointerType *OPT;
+  if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
+    // This actually uses the base as an r-value.
+    BaseExpr = DefaultLvalueConversion(BaseExpr.take());
+    if (BaseExpr.isInvalid())
+      return ExprError();
+
+    assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType()));
+
+    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
+
+    const ObjCObjectType *OT = OPT->getObjectType();
+
+    // id, with and without qualifiers.
+    if (OT->isObjCId()) {
+      // Check protocols on qualified interfaces.
+      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
+      if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
+        if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
+          // Check the use of this declaration
+          if (DiagnoseUseOfDecl(PD, MemberLoc))
+            return ExprError();
+
+          QualType T = PD->getType();
+          if (ObjCMethodDecl *Getter = PD->getGetterMethodDecl())
+            T = getMessageSendResultType(BaseType, Getter, false, false);
+         
+          return Owned(new (Context) ObjCPropertyRefExpr(PD, T,
+                                                         VK_LValue,
+                                                         OK_ObjCProperty,
+                                                         MemberLoc, 
+                                                         BaseExpr.take()));
+        }
+
+        if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
+          // Check the use of this method.
+          if (DiagnoseUseOfDecl(OMD, MemberLoc))
+            return ExprError();
+          Selector SetterSel =
+            SelectorTable::constructSetterName(PP.getIdentifierTable(),
+                                               PP.getSelectorTable(), Member);
+          ObjCMethodDecl *SMD = 0;
+          if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0, 
+                                                     SetterSel, Context))
+            SMD = dyn_cast<ObjCMethodDecl>(SDecl);
+          QualType PType = getMessageSendResultType(BaseType, OMD, false, 
+                                                    false);
+          
+          ExprValueKind VK = VK_LValue;
+          if (!getLangOptions().CPlusPlus && PType.isCForbiddenLValueType())
+            VK = VK_RValue;
+          ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
+
+          return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD, PType,
+                                                         VK, OK,
+                                                         MemberLoc, BaseExpr.take()));
+        }
+      }
+      // Use of id.member can only be for a property reference. Do not
+      // use the 'id' redefinition in this case.
+      if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
+        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+                                ObjCImpDecl, HasTemplateArgs);
+
+      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
+                         << MemberName << BaseType);
+    }
+
+    // 'Class', unqualified only.
+    if (OT->isObjCClass()) {
+      // Only works in a method declaration (??!).
+      ObjCMethodDecl *MD = getCurMethodDecl();
+      if (!MD) {
+        if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
+          return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+                                  ObjCImpDecl, HasTemplateArgs);
+
+        goto fail;
+      }
+
+      // Also must look for a getter name which uses property syntax.
+      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
+      ObjCInterfaceDecl *IFace = MD->getClassInterface();
+      ObjCMethodDecl *Getter;
+      if ((Getter = IFace->lookupClassMethod(Sel))) {
+        // Check the use of this method.
+        if (DiagnoseUseOfDecl(Getter, MemberLoc))
+          return ExprError();
+      } else
+        Getter = IFace->lookupPrivateMethod(Sel, false);
+      // If we found a getter then this may be a valid dot-reference, we
+      // will look for the matching setter, in case it is needed.
+      Selector SetterSel =
+        SelectorTable::constructSetterName(PP.getIdentifierTable(),
+                                           PP.getSelectorTable(), Member);
+      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
+      if (!Setter) {
+        // If this reference is in an @implementation, also check for 'private'
+        // methods.
+        Setter = IFace->lookupPrivateMethod(SetterSel, false);
+      }
+      // Look through local category implementations associated with the class.
+      if (!Setter)
+        Setter = IFace->getCategoryClassMethod(SetterSel);
+
+      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
+        return ExprError();
+
+      if (Getter || Setter) {
+        QualType PType;
+
+        ExprValueKind VK = VK_LValue;
+        if (Getter) {
+          PType = getMessageSendResultType(QualType(OT, 0), Getter, true, 
+                                           false);
+          if (!getLangOptions().CPlusPlus && PType.isCForbiddenLValueType())
+            VK = VK_RValue;
+        } else {
+          // Get the expression type from Setter's incoming parameter.
+          PType = (*(Setter->param_end() -1))->getType();
+        }
+        ExprObjectKind OK = (VK == VK_RValue ? OK_Ordinary : OK_ObjCProperty);
+
+        // FIXME: we must check that the setter has property type.
+        return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
+                                                       PType, VK, OK,
+                                                       MemberLoc, BaseExpr.take()));
+      }
+
+      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
+        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+                                ObjCImpDecl, HasTemplateArgs);
+
+      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
+                         << MemberName << BaseType);
+    }
+
+    // Normal property access.
+    return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), MemberName, MemberLoc,
+                                     SourceLocation(), QualType(), false);
+  }
+
+  // Handle 'field access' to vectors, such as 'V.xx'.
+  if (BaseType->isExtVectorType()) {
+    // FIXME: this expr should store IsArrow.
+    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
+    ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
+    QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
+                                           Member, MemberLoc);
+    if (ret.isNull())
+      return ExprError();
+
+    return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(),
+                                                    *Member, MemberLoc));
+  }
+
+  // Adjust builtin-sel to the appropriate redefinition type if that's
+  // not just a pointer to builtin-sel again.
+  if (IsArrow &&
+      BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
+      !Context.ObjCSelRedefinitionType->isObjCSelType()) {
+    BaseExpr = ImpCastExprToType(BaseExpr.take(), Context.ObjCSelRedefinitionType,
+                                 CK_BitCast);
+    return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+                            ObjCImpDecl, HasTemplateArgs);
+  }
+
+  // Failure cases.
+ fail:
+
+  // Recover from dot accesses to pointers, e.g.:
+  //   type *foo;
+  //   foo.bar
+  // This is actually well-formed in two cases:
+  //   - 'type' is an Objective C type
+  //   - 'bar' is a pseudo-destructor name which happens to refer to
+  //     the appropriate pointer type
+  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
+    if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
+        MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
+      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
+        << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
+          << FixItHint::CreateReplacement(OpLoc, "->");
+
+      // Recurse as an -> access.
+      IsArrow = true;
+      return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+                              ObjCImpDecl, HasTemplateArgs);
+    }
+  }
+
+  // If the user is trying to apply -> or . to a function name, it's probably
+  // because they forgot parentheses to call that function.
+  QualType ZeroArgCallTy;
+  UnresolvedSet<4> Overloads;
+  if (isExprCallable(*BaseExpr.get(), ZeroArgCallTy, Overloads)) {
+    if (ZeroArgCallTy.isNull()) {
+      Diag(BaseExpr.get()->getExprLoc(), diag::err_member_reference_needs_call)
+          << (Overloads.size() > 1) << 0 << BaseExpr.get()->getSourceRange();
+      UnresolvedSet<2> PlausibleOverloads;
+      for (OverloadExpr::decls_iterator It = Overloads.begin(),
+           DeclsEnd = Overloads.end(); It != DeclsEnd; ++It) {
+        const FunctionDecl *OverloadDecl = cast<FunctionDecl>(*It);
+        QualType OverloadResultTy = OverloadDecl->getResultType();
+        if ((!IsArrow && OverloadResultTy->isRecordType()) ||
+            (IsArrow && OverloadResultTy->isPointerType() &&
+             OverloadResultTy->getPointeeType()->isRecordType()))
+          PlausibleOverloads.addDecl(It.getDecl());
+      }
+      NoteOverloads(PlausibleOverloads, BaseExpr.get()->getExprLoc());
+      return ExprError();
+    }
+    if ((!IsArrow && ZeroArgCallTy->isRecordType()) ||
+        (IsArrow && ZeroArgCallTy->isPointerType() &&
+         ZeroArgCallTy->getPointeeType()->isRecordType())) {
+      // At this point, we know BaseExpr looks like it's potentially callable
+      // with 0 arguments, and that it returns something of a reasonable type,
+      // so we can emit a fixit and carry on pretending that BaseExpr was
+      // actually a CallExpr.
+      SourceLocation ParenInsertionLoc =
+          PP.getLocForEndOfToken(BaseExpr.get()->getLocEnd());
+      Diag(BaseExpr.get()->getExprLoc(), diag::err_member_reference_needs_call)
+          << (Overloads.size() > 1) << 1 << BaseExpr.get()->getSourceRange()
+          << FixItHint::CreateInsertion(ParenInsertionLoc, "()");
+      // FIXME: Try this before emitting the fixit, and suppress diagnostics
+      // while doing so.
+      ExprResult NewBase =
+          ActOnCallExpr(0, BaseExpr.take(), ParenInsertionLoc,
+                        MultiExprArg(*this, 0, 0),
+                        ParenInsertionLoc.getFileLocWithOffset(1));
+      if (NewBase.isInvalid())
+        return ExprError();
+      BaseExpr = NewBase;
+      BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
+      return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
+                              ObjCImpDecl, HasTemplateArgs);
+    }
+  }
+
+  Diag(MemberLoc, diag::err_typecheck_member_reference_struct_union)
+    << BaseType << BaseExpr.get()->getSourceRange();
+
+  return ExprError();
+}
+
+/// The main callback when the parser finds something like
+///   expression . [nested-name-specifier] identifier
+///   expression -> [nested-name-specifier] identifier
+/// where 'identifier' encompasses a fairly broad spectrum of
+/// possibilities, including destructor and operator references.
+///
+/// \param OpKind either tok::arrow or tok::period
+/// \param HasTrailingLParen whether the next token is '(', which
+///   is used to diagnose mis-uses of special members that can
+///   only be called
+/// \param ObjCImpDecl the current ObjC @implementation decl;
+///   this is an ugly hack around the fact that ObjC @implementations
+///   aren't properly put in the context chain
+ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
+                                       SourceLocation OpLoc,
+                                       tok::TokenKind OpKind,
+                                       CXXScopeSpec &SS,
+                                       UnqualifiedId &Id,
+                                       Decl *ObjCImpDecl,
+                                       bool HasTrailingLParen) {
+  if (SS.isSet() && SS.isInvalid())
+    return ExprError();
+
+  // Warn about the explicit constructor calls Microsoft extension.
+  if (getLangOptions().Microsoft &&
+      Id.getKind() == UnqualifiedId::IK_ConstructorName)
+    Diag(Id.getSourceRange().getBegin(),
+         diag::ext_ms_explicit_constructor_call);
+
+  TemplateArgumentListInfo TemplateArgsBuffer;
+
+  // Decompose the name into its component parts.
+  DeclarationNameInfo NameInfo;
+  const TemplateArgumentListInfo *TemplateArgs;
+  DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
+                         NameInfo, TemplateArgs);
+
+  DeclarationName Name = NameInfo.getName();
+  bool IsArrow = (OpKind == tok::arrow);
+
+  NamedDecl *FirstQualifierInScope
+    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
+                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
+
+  // This is a postfix expression, so get rid of ParenListExprs.
+  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
+  if (Result.isInvalid()) return ExprError();
+  Base = Result.take();
+
+  if (Base->getType()->isDependentType() || Name.isDependentName() ||
+      isDependentScopeSpecifier(SS)) {
+    Result = ActOnDependentMemberExpr(Base, Base->getType(),
+                                      IsArrow, OpLoc,
+                                      SS, FirstQualifierInScope,
+                                      NameInfo, TemplateArgs);
+  } else {
+    LookupResult R(*this, NameInfo, LookupMemberName);
+    ExprResult BaseResult = Owned(Base);
+    Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
+                              SS, ObjCImpDecl, TemplateArgs != 0);
+    if (BaseResult.isInvalid())
+      return ExprError();
+    Base = BaseResult.take();
+
+    if (Result.isInvalid()) {
+      Owned(Base);
+      return ExprError();
+    }
+
+    if (Result.get()) {
+      // The only way a reference to a destructor can be used is to
+      // immediately call it, which falls into this case.  If the
+      // next token is not a '(', produce a diagnostic and build the
+      // call now.
+      if (!HasTrailingLParen &&
+          Id.getKind() == UnqualifiedId::IK_DestructorName)
+        return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
+
+      return move(Result);
+    }
+
+    Result = BuildMemberReferenceExpr(Base, Base->getType(),
+                                      OpLoc, IsArrow, SS, FirstQualifierInScope,
+                                      R, TemplateArgs);
+  }
+
+  return move(Result);
+}
+
+static ExprResult
+BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
+                        const CXXScopeSpec &SS, FieldDecl *Field,
+                        DeclAccessPair FoundDecl,
+                        const DeclarationNameInfo &MemberNameInfo) {
+  // x.a is an l-value if 'a' has a reference type. Otherwise:
+  // x.a is an l-value/x-value/pr-value if the base is (and note
+  //   that *x is always an l-value), except that if the base isn't
+  //   an ordinary object then we must have an rvalue.
+  ExprValueKind VK = VK_LValue;
+  ExprObjectKind OK = OK_Ordinary;
+  if (!IsArrow) {
+    if (BaseExpr->getObjectKind() == OK_Ordinary)
+      VK = BaseExpr->getValueKind();
+    else
+      VK = VK_RValue;
+  }
+  if (VK != VK_RValue && Field->isBitField())
+    OK = OK_BitField;
+  
+  // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
+  QualType MemberType = Field->getType();
+  if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
+    MemberType = Ref->getPointeeType();
+    VK = VK_LValue;
+  } else {
+    QualType BaseType = BaseExpr->getType();
+    if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
+    
+    Qualifiers BaseQuals = BaseType.getQualifiers();
+    
+    // GC attributes are never picked up by members.
+    BaseQuals.removeObjCGCAttr();
+    
+    // CVR attributes from the base are picked up by members,
+    // except that 'mutable' members don't pick up 'const'.
+    if (Field->isMutable()) BaseQuals.removeConst();
+    
+    Qualifiers MemberQuals
+    = S.Context.getCanonicalType(MemberType).getQualifiers();
+    
+    // TR 18037 does not allow fields to be declared with address spaces.
+    assert(!MemberQuals.hasAddressSpace());
+    
+    Qualifiers Combined = BaseQuals + MemberQuals;
+    if (Combined != MemberQuals)
+      MemberType = S.Context.getQualifiedType(MemberType, Combined);
+  }
+  
+  S.MarkDeclarationReferenced(MemberNameInfo.getLoc(), Field);
+  ExprResult Base =
+  S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
+                                  FoundDecl, Field);
+  if (Base.isInvalid())
+    return ExprError();
+  return S.Owned(BuildMemberExpr(S.Context, Base.take(), IsArrow, SS,
+                                 Field, FoundDecl, MemberNameInfo,
+                                 MemberType, VK, OK));
+}
+
+/// Builds an implicit member access expression.  The current context
+/// is known to be an instance method, and the given unqualified lookup
+/// set is known to contain only instance members, at least one of which
+/// is from an appropriate type.
+ExprResult
+Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
+                              LookupResult &R,
+                              const TemplateArgumentListInfo *TemplateArgs,
+                              bool IsKnownInstance) {
+  assert(!R.empty() && !R.isAmbiguous());
+  
+  SourceLocation loc = R.getNameLoc();
+  
+  // We may have found a field within an anonymous union or struct
+  // (C++ [class.union]).
+  // FIXME: template-ids inside anonymous structs?
+  if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
+    return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD);
+  
+  // If this is known to be an instance access, go ahead and build an
+  // implicit 'this' expression now.
+  // 'this' expression now.
+  QualType ThisTy = getAndCaptureCurrentThisType();
+  assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
+  
+  Expr *baseExpr = 0; // null signifies implicit access
+  if (IsKnownInstance) {
+    SourceLocation Loc = R.getNameLoc();
+    if (SS.getRange().isValid())
+      Loc = SS.getRange().getBegin();
+    baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
+  }
+  
+  return BuildMemberReferenceExpr(baseExpr, ThisTy,
+                                  /*OpLoc*/ SourceLocation(),
+                                  /*IsArrow*/ true,
+                                  SS,
+                                  /*FirstQualifierInScope*/ 0,
+                                  R, TemplateArgs);
+}