Refactor the deprecated and unavailable checks into a new
DiagnoseUseOfDeprecatedDecl method. This ensures that they
are treated consistently. This gets us 'unavailable' support
on a few new types of decls, and makes sure we consistently
silence deprecated when the caller is also deprecated.
git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@64612 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/Sema/SemaExpr.cpp b/lib/Sema/SemaExpr.cpp
index 43ed22a..3143fc7 100644
--- a/lib/Sema/SemaExpr.cpp
+++ b/lib/Sema/SemaExpr.cpp
@@ -26,6 +26,25 @@
#include "clang/Parse/Scope.h"
using namespace clang;
+
+/// DiagnoseUseOfDeprecatedDeclImpl - If the specified decl is deprecated or
+// unavailable, emit the corresponding diagnostics.
+void Sema::DiagnoseUseOfDeprecatedDeclImpl(NamedDecl *D, SourceLocation Loc) {
+ // See if the decl is deprecated.
+ if (D->getAttr<DeprecatedAttr>()) {
+ // If this reference happens *in* a deprecated function or method, don't
+ // warn. Implementing deprecated stuff requires referencing depreated
+ // stuff.
+ NamedDecl *ND = getCurFunctionOrMethodDecl();
+ if (ND == 0 || !ND->getAttr<DeprecatedAttr>())
+ Diag(Loc, diag::warn_deprecated) << D->getDeclName();
+ }
+
+ // See if hte decl is unavailable.
+ if (D->getAttr<UnavailableAttr>())
+ Diag(Loc, diag::warn_unavailable) << D->getDeclName();
+}
+
//===----------------------------------------------------------------------===//
// Standard Promotions and Conversions
//===----------------------------------------------------------------------===//
@@ -89,9 +108,7 @@
// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
// will warn if the resulting type is not a POD type.
-void Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT)
-
-{
+void Sema::DefaultVariadicArgumentPromotion(Expr *&Expr, VariadicCallType CT) {
DefaultArgumentPromotion(Expr);
if (!Expr->getType()->isPODType()) {
@@ -145,10 +162,14 @@
// lhs == rhs check. Also, for conversion purposes, we ignore any
// qualifiers. For example, "const float" and "float" are
// equivalent.
- if (lhs->isPromotableIntegerType()) lhs = Context.IntTy;
- else lhs = lhs.getUnqualifiedType();
- if (rhs->isPromotableIntegerType()) rhs = Context.IntTy;
- else rhs = rhs.getUnqualifiedType();
+ if (lhs->isPromotableIntegerType())
+ lhs = Context.IntTy;
+ else
+ lhs = lhs.getUnqualifiedType();
+ if (rhs->isPromotableIntegerType())
+ rhs = Context.IntTy;
+ else
+ rhs = rhs.getUnqualifiedType();
// If both types are identical, no conversion is needed.
if (lhs == rhs)
@@ -223,14 +244,10 @@
// We have two real floating types, float/complex combos were handled above.
// Convert the smaller operand to the bigger result.
int result = Context.getFloatingTypeOrder(lhs, rhs);
-
- if (result > 0) { // convert the rhs
+ if (result > 0) // convert the rhs
return lhs;
- }
- if (result < 0) { // convert the lhs
- return rhs;
- }
- assert(0 && "Sema::UsualArithmeticConversionsType(): illegal float comparison");
+ assert(result < 0 && "illegal float comparison");
+ return rhs; // convert the lhs
}
if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
// Handle GCC complex int extension.
@@ -239,10 +256,8 @@
if (lhsComplexInt && rhsComplexInt) {
if (Context.getIntegerTypeOrder(lhsComplexInt->getElementType(),
- rhsComplexInt->getElementType()) >= 0) {
- // convert the rhs
- return lhs;
- }
+ rhsComplexInt->getElementType()) >= 0)
+ return lhs; // convert the rhs
return rhs;
} else if (lhsComplexInt && rhs->isIntegerType()) {
// convert the rhs to the lhs complex type.
@@ -753,14 +768,7 @@
ValueDecl *VD = cast<ValueDecl>(D);
// Check if referencing an identifier with __attribute__((deprecated)).
- if (VD->getAttr<DeprecatedAttr>()) {
- // If this reference happens *in* a deprecated function or method, don't
- // warn. Implementing deprecated stuff requires referencing depreated
- // stuff.
- NamedDecl *ND = getCurFunctionOrMethodDecl();
- if (ND == 0 || !ND->getAttr<DeprecatedAttr>())
- Diag(Loc, diag::warn_deprecated) << VD->getDeclName();
- }
+ DiagnoseUseOfDeprecatedDecl(VD, Loc);
if (VarDecl *Var = dyn_cast<VarDecl>(VD)) {
if (Var->isDeclaredInCondition() && Var->getType()->isScalarType()) {
@@ -1510,6 +1518,7 @@
return VT; // should never get here (a typedef type should always be found).
}
+
/// constructSetterName - Return the setter name for the given
/// identifier, i.e. "set" + Name where the initial character of Name
/// has been capitalized.