| //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This contains code to emit Constant Expr nodes as LLVM code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CodeGenFunction.h" |
| #include "CodeGenModule.h" |
| #include "CGObjCRuntime.h" |
| #include "clang/AST/APValue.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Target/TargetData.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| namespace { |
| class VISIBILITY_HIDDEN ConstExprEmitter : |
| public StmtVisitor<ConstExprEmitter, llvm::Constant*> { |
| CodeGenModule &CGM; |
| CodeGenFunction *CGF; |
| public: |
| ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf) |
| : CGM(cgm), CGF(cgf) { |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Visitor Methods |
| //===--------------------------------------------------------------------===// |
| |
| llvm::Constant *VisitStmt(Stmt *S) { |
| return 0; |
| } |
| |
| llvm::Constant *VisitParenExpr(ParenExpr *PE) { |
| return Visit(PE->getSubExpr()); |
| } |
| |
| llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { |
| return Visit(E->getInitializer()); |
| } |
| |
| llvm::Constant *VisitCastExpr(CastExpr* E) { |
| // GCC cast to union extension |
| if (E->getType()->isUnionType()) { |
| const llvm::Type *Ty = ConvertType(E->getType()); |
| Expr *SubExpr = E->getSubExpr(); |
| return EmitUnion(CGM.EmitConstantExpr(SubExpr, SubExpr->getType(), CGF), |
| Ty); |
| } |
| if (CGM.getContext().getCanonicalType(E->getSubExpr()->getType()) == |
| CGM.getContext().getCanonicalType(E->getType())) { |
| return Visit(E->getSubExpr()); |
| } |
| return 0; |
| } |
| |
| llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { |
| return Visit(DAE->getExpr()); |
| } |
| |
| llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) { |
| std::vector<llvm::Constant*> Elts; |
| const llvm::ArrayType *AType = |
| cast<llvm::ArrayType>(ConvertType(ILE->getType())); |
| unsigned NumInitElements = ILE->getNumInits(); |
| // FIXME: Check for wide strings |
| // FIXME: Check for NumInitElements exactly equal to 1?? |
| if (NumInitElements > 0 && |
| (isa<StringLiteral>(ILE->getInit(0)) || |
| isa<ObjCEncodeExpr>(ILE->getInit(0))) && |
| ILE->getType()->getArrayElementTypeNoTypeQual()->isCharType()) |
| return Visit(ILE->getInit(0)); |
| const llvm::Type *ElemTy = AType->getElementType(); |
| unsigned NumElements = AType->getNumElements(); |
| |
| // Initialising an array requires us to automatically |
| // initialise any elements that have not been initialised explicitly |
| unsigned NumInitableElts = std::min(NumInitElements, NumElements); |
| |
| // Copy initializer elements. |
| unsigned i = 0; |
| bool RewriteType = false; |
| for (; i < NumInitableElts; ++i) { |
| Expr *Init = ILE->getInit(i); |
| llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF); |
| if (!C) |
| return 0; |
| RewriteType |= (C->getType() != ElemTy); |
| Elts.push_back(C); |
| } |
| |
| // Initialize remaining array elements. |
| for (; i < NumElements; ++i) |
| Elts.push_back(llvm::Constant::getNullValue(ElemTy)); |
| |
| if (RewriteType) { |
| // FIXME: Try to avoid packing the array |
| std::vector<const llvm::Type*> Types; |
| for (unsigned i = 0; i < Elts.size(); ++i) |
| Types.push_back(Elts[i]->getType()); |
| const llvm::StructType *SType = llvm::StructType::get(Types, true); |
| return llvm::ConstantStruct::get(SType, Elts); |
| } |
| |
| return llvm::ConstantArray::get(AType, Elts); |
| } |
| |
| void InsertBitfieldIntoStruct(std::vector<llvm::Constant*>& Elts, |
| FieldDecl* Field, Expr* E) { |
| // Calculate the value to insert |
| llvm::Constant *C = CGM.EmitConstantExpr(E, Field->getType(), CGF); |
| if (!C) |
| return; |
| |
| llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(C); |
| if (!CI) { |
| CGM.ErrorUnsupported(E, "bitfield initialization"); |
| return; |
| } |
| llvm::APInt V = CI->getValue(); |
| |
| // Calculate information about the relevant field |
| const llvm::Type* Ty = CI->getType(); |
| const llvm::TargetData &TD = CGM.getTypes().getTargetData(); |
| unsigned size = TD.getTypePaddedSizeInBits(Ty); |
| unsigned fieldOffset = CGM.getTypes().getLLVMFieldNo(Field) * size; |
| CodeGenTypes::BitFieldInfo bitFieldInfo = |
| CGM.getTypes().getBitFieldInfo(Field); |
| fieldOffset += bitFieldInfo.Begin; |
| |
| // Find where to start the insertion |
| // FIXME: This is O(n^2) in the number of bit-fields! |
| // FIXME: This won't work if the struct isn't completely packed! |
| unsigned offset = 0, i = 0; |
| while (offset < (fieldOffset & -8)) |
| offset += TD.getTypePaddedSizeInBits(Elts[i++]->getType()); |
| |
| // Advance over 0 sized elements (must terminate in bounds since |
| // the bitfield must have a size). |
| while (TD.getTypePaddedSizeInBits(Elts[i]->getType()) == 0) |
| ++i; |
| |
| // Promote the size of V if necessary |
| // FIXME: This should never occur, but currently it can because |
| // initializer constants are cast to bool, and because clang is |
| // not enforcing bitfield width limits. |
| if (bitFieldInfo.Size > V.getBitWidth()) |
| V.zext(bitFieldInfo.Size); |
| |
| // Insert the bits into the struct |
| // FIXME: This algorthm is only correct on X86! |
| // FIXME: THis algorthm assumes bit-fields only have byte-size elements! |
| unsigned bitsToInsert = bitFieldInfo.Size; |
| unsigned curBits = std::min(8 - (fieldOffset & 7), bitsToInsert); |
| unsigned byte = V.getLoBits(curBits).getZExtValue() << (fieldOffset & 7); |
| do { |
| llvm::Constant* byteC = llvm::ConstantInt::get(llvm::Type::Int8Ty, byte); |
| Elts[i] = llvm::ConstantExpr::getOr(Elts[i], byteC); |
| ++i; |
| V = V.lshr(curBits); |
| bitsToInsert -= curBits; |
| |
| if (!bitsToInsert) |
| break; |
| |
| curBits = bitsToInsert > 8 ? 8 : bitsToInsert; |
| byte = V.getLoBits(curBits).getZExtValue(); |
| } while (true); |
| } |
| |
| llvm::Constant *EmitStructInitialization(InitListExpr *ILE) { |
| const llvm::StructType *SType = |
| cast<llvm::StructType>(ConvertType(ILE->getType())); |
| RecordDecl *RD = ILE->getType()->getAsRecordType()->getDecl(); |
| std::vector<llvm::Constant*> Elts; |
| |
| // Initialize the whole structure to zero. |
| for (unsigned i = 0; i < SType->getNumElements(); ++i) { |
| const llvm::Type *FieldTy = SType->getElementType(i); |
| Elts.push_back(llvm::Constant::getNullValue(FieldTy)); |
| } |
| |
| // Copy initializer elements. Skip padding fields. |
| unsigned EltNo = 0; // Element no in ILE |
| int FieldNo = 0; // Field no in RecordDecl |
| bool RewriteType = false; |
| for (RecordDecl::field_iterator Field = RD->field_begin(CGM.getContext()), |
| FieldEnd = RD->field_end(CGM.getContext()); |
| EltNo < ILE->getNumInits() && Field != FieldEnd; ++Field) { |
| FieldNo++; |
| if (!Field->getIdentifier()) |
| continue; |
| |
| if (Field->isBitField()) { |
| InsertBitfieldIntoStruct(Elts, *Field, ILE->getInit(EltNo)); |
| } else { |
| unsigned FieldNo = CGM.getTypes().getLLVMFieldNo(*Field); |
| llvm::Constant *C = CGM.EmitConstantExpr(ILE->getInit(EltNo), |
| Field->getType(), CGF); |
| if (!C) return 0; |
| RewriteType |= (C->getType() != Elts[FieldNo]->getType()); |
| Elts[FieldNo] = C; |
| } |
| EltNo++; |
| } |
| |
| if (RewriteType) { |
| // FIXME: Make this work for non-packed structs |
| assert(SType->isPacked() && "Cannot recreate unpacked structs"); |
| std::vector<const llvm::Type*> Types; |
| for (unsigned i = 0; i < Elts.size(); ++i) |
| Types.push_back(Elts[i]->getType()); |
| SType = llvm::StructType::get(Types, true); |
| } |
| |
| return llvm::ConstantStruct::get(SType, Elts); |
| } |
| |
| llvm::Constant *EmitUnion(llvm::Constant *C, const llvm::Type *Ty) { |
| if (!C) |
| return 0; |
| |
| // Build a struct with the union sub-element as the first member, |
| // and padded to the appropriate size |
| std::vector<llvm::Constant*> Elts; |
| std::vector<const llvm::Type*> Types; |
| Elts.push_back(C); |
| Types.push_back(C->getType()); |
| unsigned CurSize = CGM.getTargetData().getTypePaddedSize(C->getType()); |
| unsigned TotalSize = CGM.getTargetData().getTypePaddedSize(Ty); |
| while (CurSize < TotalSize) { |
| Elts.push_back(llvm::Constant::getNullValue(llvm::Type::Int8Ty)); |
| Types.push_back(llvm::Type::Int8Ty); |
| CurSize++; |
| } |
| |
| // This always generates a packed struct |
| // FIXME: Try to generate an unpacked struct when we can |
| llvm::StructType* STy = llvm::StructType::get(Types, true); |
| return llvm::ConstantStruct::get(STy, Elts); |
| } |
| |
| llvm::Constant *EmitUnionInitialization(InitListExpr *ILE) { |
| const llvm::Type *Ty = ConvertType(ILE->getType()); |
| |
| // If this is an empty initializer list, we value-initialize the |
| // union. |
| if (ILE->getNumInits() == 0) |
| return llvm::Constant::getNullValue(Ty); |
| |
| FieldDecl* curField = ILE->getInitializedFieldInUnion(); |
| if (!curField) { |
| // There's no field to initialize, so value-initialize the union. |
| #ifndef NDEBUG |
| // Make sure that it's really an empty and not a failure of |
| // semantic analysis. |
| RecordDecl *RD = ILE->getType()->getAsRecordType()->getDecl(); |
| for (RecordDecl::field_iterator Field = RD->field_begin(CGM.getContext()), |
| FieldEnd = RD->field_end(CGM.getContext()); |
| Field != FieldEnd; ++Field) |
| assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed"); |
| #endif |
| return llvm::Constant::getNullValue(Ty); |
| } |
| |
| if (curField->isBitField()) { |
| // Create a dummy struct for bit-field insertion |
| unsigned NumElts = CGM.getTargetData().getTypePaddedSize(Ty) / 8; |
| llvm::Constant* NV = llvm::Constant::getNullValue(llvm::Type::Int8Ty); |
| std::vector<llvm::Constant*> Elts(NumElts, NV); |
| |
| InsertBitfieldIntoStruct(Elts, curField, ILE->getInit(0)); |
| const llvm::ArrayType *RetTy = |
| llvm::ArrayType::get(NV->getType(), NumElts); |
| return llvm::ConstantArray::get(RetTy, Elts); |
| } |
| |
| Expr *Init = ILE->getInit(0); |
| return EmitUnion(CGM.EmitConstantExpr(Init, Init->getType(), CGF), Ty); |
| } |
| |
| llvm::Constant *EmitVectorInitialization(InitListExpr *ILE) { |
| const llvm::VectorType *VType = |
| cast<llvm::VectorType>(ConvertType(ILE->getType())); |
| const llvm::Type *ElemTy = VType->getElementType(); |
| std::vector<llvm::Constant*> Elts; |
| unsigned NumElements = VType->getNumElements(); |
| unsigned NumInitElements = ILE->getNumInits(); |
| |
| unsigned NumInitableElts = std::min(NumInitElements, NumElements); |
| |
| // Copy initializer elements. |
| unsigned i = 0; |
| for (; i < NumInitableElts; ++i) { |
| Expr *Init = ILE->getInit(i); |
| llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF); |
| if (!C) |
| return 0; |
| Elts.push_back(C); |
| } |
| |
| for (; i < NumElements; ++i) |
| Elts.push_back(llvm::Constant::getNullValue(ElemTy)); |
| |
| return llvm::ConstantVector::get(VType, Elts); |
| } |
| |
| llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) { |
| const llvm::Type* RetTy = CGM.getTypes().ConvertType(E->getType()); |
| return llvm::Constant::getNullValue(RetTy); |
| } |
| |
| llvm::Constant *VisitInitListExpr(InitListExpr *ILE) { |
| if (ILE->getType()->isScalarType()) { |
| // We have a scalar in braces. Just use the first element. |
| if (ILE->getNumInits() > 0) { |
| Expr *Init = ILE->getInit(0); |
| return CGM.EmitConstantExpr(Init, Init->getType(), CGF); |
| } |
| const llvm::Type* RetTy = CGM.getTypes().ConvertType(ILE->getType()); |
| return llvm::Constant::getNullValue(RetTy); |
| } |
| |
| if (ILE->getType()->isArrayType()) |
| return EmitArrayInitialization(ILE); |
| |
| if (ILE->getType()->isStructureType()) |
| return EmitStructInitialization(ILE); |
| |
| if (ILE->getType()->isUnionType()) |
| return EmitUnionInitialization(ILE); |
| |
| if (ILE->getType()->isVectorType()) |
| return EmitVectorInitialization(ILE); |
| |
| assert(0 && "Unable to handle InitListExpr"); |
| // Get rid of control reaches end of void function warning. |
| // Not reached. |
| return 0; |
| } |
| |
| llvm::Constant *VisitStringLiteral(StringLiteral *E) { |
| assert(!E->getType()->isPointerType() && "Strings are always arrays"); |
| |
| // This must be a string initializing an array in a static initializer. |
| // Don't emit it as the address of the string, emit the string data itself |
| // as an inline array. |
| return llvm::ConstantArray::get(CGM.GetStringForStringLiteral(E), false); |
| } |
| |
| llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) { |
| // This must be an @encode initializing an array in a static initializer. |
| // Don't emit it as the address of the string, emit the string data itself |
| // as an inline array. |
| std::string Str; |
| CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); |
| const ConstantArrayType *CAT = cast<ConstantArrayType>(E->getType()); |
| |
| // Resize the string to the right size, adding zeros at the end, or |
| // truncating as needed. |
| Str.resize(CAT->getSize().getZExtValue(), '\0'); |
| return llvm::ConstantArray::get(Str, false); |
| } |
| |
| llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) { |
| return Visit(E->getSubExpr()); |
| } |
| |
| // Utility methods |
| const llvm::Type *ConvertType(QualType T) { |
| return CGM.getTypes().ConvertType(T); |
| } |
| |
| public: |
| llvm::Constant *EmitLValue(Expr *E) { |
| switch (E->getStmtClass()) { |
| default: break; |
| case Expr::CompoundLiteralExprClass: { |
| // Note that due to the nature of compound literals, this is guaranteed |
| // to be the only use of the variable, so we just generate it here. |
| CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); |
| llvm::Constant* C = Visit(CLE->getInitializer()); |
| // FIXME: "Leaked" on failure. |
| if (C) |
| C = new llvm::GlobalVariable(C->getType(), |
| E->getType().isConstQualified(), |
| llvm::GlobalValue::InternalLinkage, |
| C, ".compoundliteral", &CGM.getModule()); |
| return C; |
| } |
| case Expr::DeclRefExprClass: |
| case Expr::QualifiedDeclRefExprClass: { |
| NamedDecl *Decl = cast<DeclRefExpr>(E)->getDecl(); |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl)) |
| return CGM.GetAddrOfFunction(FD); |
| if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) { |
| // We can never refer to a variable with local storage. |
| if (!VD->hasLocalStorage()) { |
| if (VD->isFileVarDecl() || VD->hasExternalStorage()) |
| return CGM.GetAddrOfGlobalVar(VD); |
| else if (VD->isBlockVarDecl()) { |
| assert(CGF && "Can't access static local vars without CGF"); |
| return CGF->GetAddrOfStaticLocalVar(VD); |
| } |
| } |
| } |
| break; |
| } |
| case Expr::StringLiteralClass: |
| return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E)); |
| case Expr::ObjCEncodeExprClass: |
| return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E)); |
| case Expr::ObjCStringLiteralClass: { |
| ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E); |
| llvm::Constant *C = CGM.getObjCRuntime().GenerateConstantString(SL); |
| return llvm::ConstantExpr::getBitCast(C, ConvertType(E->getType())); |
| } |
| case Expr::PredefinedExprClass: { |
| // __func__/__FUNCTION__ -> "". __PRETTY_FUNCTION__ -> "top level". |
| std::string Str; |
| if (cast<PredefinedExpr>(E)->getIdentType() == |
| PredefinedExpr::PrettyFunction) |
| Str = "top level"; |
| |
| return CGM.GetAddrOfConstantCString(Str, ".tmp"); |
| } |
| case Expr::AddrLabelExprClass: { |
| assert(CGF && "Invalid address of label expression outside function."); |
| unsigned id = CGF->GetIDForAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel()); |
| llvm::Constant *C = llvm::ConstantInt::get(llvm::Type::Int32Ty, id); |
| return llvm::ConstantExpr::getIntToPtr(C, ConvertType(E->getType())); |
| } |
| case Expr::CallExprClass: { |
| CallExpr* CE = cast<CallExpr>(E); |
| if (CE->isBuiltinCall(CGM.getContext()) != |
| Builtin::BI__builtin___CFStringMakeConstantString) |
| break; |
| const Expr *Arg = CE->getArg(0)->IgnoreParenCasts(); |
| const StringLiteral *Literal = cast<StringLiteral>(Arg); |
| // FIXME: need to deal with UCN conversion issues. |
| return CGM.GetAddrOfConstantCFString(Literal); |
| } |
| case Expr::BlockExprClass: { |
| std::string FunctionName; |
| if (CGF) |
| FunctionName = CGF->CurFn->getName(); |
| else |
| FunctionName = "global"; |
| |
| return CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str()); |
| } |
| } |
| |
| return 0; |
| } |
| }; |
| |
| } // end anonymous namespace. |
| |
| llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E, |
| QualType DestType, |
| CodeGenFunction *CGF) { |
| Expr::EvalResult Result; |
| |
| bool Success = false; |
| |
| if (DestType->isReferenceType()) { |
| // If the destination type is a reference type, we need to evaluate it |
| // as an lvalue. |
| if (E->EvaluateAsLValue(Result, Context)) { |
| if (const Expr *LVBase = Result.Val.getLValueBase()) { |
| if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LVBase)) { |
| const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()); |
| |
| // We can only initialize a reference with an lvalue if the lvalue |
| // is not a reference itself. |
| Success = !VD->getType()->isReferenceType(); |
| } |
| } |
| } |
| } else |
| Success = E->Evaluate(Result, Context); |
| |
| if (Success) { |
| assert(!Result.HasSideEffects && |
| "Constant expr should not have any side effects!"); |
| switch (Result.Val.getKind()) { |
| case APValue::Uninitialized: |
| assert(0 && "Constant expressions should be initialized."); |
| return 0; |
| case APValue::LValue: { |
| const llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType); |
| llvm::Constant *Offset = |
| llvm::ConstantInt::get(llvm::Type::Int64Ty, |
| Result.Val.getLValueOffset()); |
| |
| llvm::Constant *C; |
| if (const Expr *LVBase = Result.Val.getLValueBase()) { |
| C = ConstExprEmitter(*this, CGF).EmitLValue(const_cast<Expr*>(LVBase)); |
| |
| // Apply offset if necessary. |
| if (!Offset->isNullValue()) { |
| const llvm::Type *Type = |
| llvm::PointerType::getUnqual(llvm::Type::Int8Ty); |
| llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, Type); |
| Casted = llvm::ConstantExpr::getGetElementPtr(Casted, &Offset, 1); |
| C = llvm::ConstantExpr::getBitCast(Casted, C->getType()); |
| } |
| |
| // Convert to the appropriate type; this could be an lvalue for |
| // an integer. |
| if (isa<llvm::PointerType>(DestTy)) |
| return llvm::ConstantExpr::getBitCast(C, DestTy); |
| |
| return llvm::ConstantExpr::getPtrToInt(C, DestTy); |
| } else { |
| C = Offset; |
| |
| // Convert to the appropriate type; this could be an lvalue for |
| // an integer. |
| if (isa<llvm::PointerType>(DestTy)) |
| return llvm::ConstantExpr::getIntToPtr(C, DestTy); |
| |
| // If the types don't match this should only be a truncate. |
| if (C->getType() != DestTy) |
| return llvm::ConstantExpr::getTrunc(C, DestTy); |
| |
| return C; |
| } |
| } |
| case APValue::Int: { |
| llvm::Constant *C = llvm::ConstantInt::get(Result.Val.getInt()); |
| |
| if (C->getType() == llvm::Type::Int1Ty) { |
| const llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); |
| C = llvm::ConstantExpr::getZExt(C, BoolTy); |
| } |
| return C; |
| } |
| case APValue::ComplexInt: { |
| llvm::Constant *Complex[2]; |
| |
| Complex[0] = llvm::ConstantInt::get(Result.Val.getComplexIntReal()); |
| Complex[1] = llvm::ConstantInt::get(Result.Val.getComplexIntImag()); |
| |
| return llvm::ConstantStruct::get(Complex, 2); |
| } |
| case APValue::Float: |
| return llvm::ConstantFP::get(Result.Val.getFloat()); |
| case APValue::ComplexFloat: { |
| llvm::Constant *Complex[2]; |
| |
| Complex[0] = llvm::ConstantFP::get(Result.Val.getComplexFloatReal()); |
| Complex[1] = llvm::ConstantFP::get(Result.Val.getComplexFloatImag()); |
| |
| return llvm::ConstantStruct::get(Complex, 2); |
| } |
| case APValue::Vector: { |
| llvm::SmallVector<llvm::Constant *, 4> Inits; |
| unsigned NumElts = Result.Val.getVectorLength(); |
| |
| for (unsigned i = 0; i != NumElts; ++i) { |
| APValue &Elt = Result.Val.getVectorElt(i); |
| if (Elt.isInt()) |
| Inits.push_back(llvm::ConstantInt::get(Elt.getInt())); |
| else |
| Inits.push_back(llvm::ConstantFP::get(Elt.getFloat())); |
| } |
| return llvm::ConstantVector::get(&Inits[0], Inits.size()); |
| } |
| } |
| } |
| |
| llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E)); |
| if (C && C->getType() == llvm::Type::Int1Ty) { |
| const llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); |
| C = llvm::ConstantExpr::getZExt(C, BoolTy); |
| } |
| return C; |
| } |