| //===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/ |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| //===----------------------------------------------------------------------===/ |
| // |
| // This file implements C++ template instantiation for declarations. |
| // |
| //===----------------------------------------------------------------------===/ |
| #include "Sema.h" |
| #include "clang/AST/ASTConsumer.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/DeclVisitor.h" |
| #include "clang/AST/Expr.h" |
| #include "llvm/Support/Compiler.h" |
| |
| using namespace clang; |
| |
| namespace { |
| class VISIBILITY_HIDDEN TemplateDeclInstantiator |
| : public DeclVisitor<TemplateDeclInstantiator, Decl *> { |
| Sema &SemaRef; |
| DeclContext *Owner; |
| const TemplateArgumentList &TemplateArgs; |
| |
| public: |
| typedef Sema::OwningExprResult OwningExprResult; |
| |
| TemplateDeclInstantiator(Sema &SemaRef, DeclContext *Owner, |
| const TemplateArgumentList &TemplateArgs) |
| : SemaRef(SemaRef), Owner(Owner), TemplateArgs(TemplateArgs) { } |
| |
| // FIXME: Once we get closer to completion, replace these manually-written |
| // declarations with automatically-generated ones from |
| // clang/AST/DeclNodes.def. |
| Decl *VisitTranslationUnitDecl(TranslationUnitDecl *D); |
| Decl *VisitNamespaceDecl(NamespaceDecl *D); |
| Decl *VisitTypedefDecl(TypedefDecl *D); |
| Decl *VisitVarDecl(VarDecl *D); |
| Decl *VisitFieldDecl(FieldDecl *D); |
| Decl *VisitStaticAssertDecl(StaticAssertDecl *D); |
| Decl *VisitEnumDecl(EnumDecl *D); |
| Decl *VisitEnumConstantDecl(EnumConstantDecl *D); |
| Decl *VisitFunctionDecl(FunctionDecl *D); |
| Decl *VisitCXXRecordDecl(CXXRecordDecl *D); |
| Decl *VisitCXXMethodDecl(CXXMethodDecl *D); |
| Decl *VisitCXXConstructorDecl(CXXConstructorDecl *D); |
| Decl *VisitCXXDestructorDecl(CXXDestructorDecl *D); |
| Decl *VisitCXXConversionDecl(CXXConversionDecl *D); |
| ParmVarDecl *VisitParmVarDecl(ParmVarDecl *D); |
| Decl *VisitOriginalParmVarDecl(OriginalParmVarDecl *D); |
| |
| // Base case. FIXME: Remove once we can instantiate everything. |
| Decl *VisitDecl(Decl *) { |
| assert(false && "Template instantiation of unknown declaration kind!"); |
| return 0; |
| } |
| |
| // Helper functions for instantiating methods. |
| QualType InstantiateFunctionType(FunctionDecl *D, |
| llvm::SmallVectorImpl<ParmVarDecl *> &Params); |
| bool InitFunctionInstantiation(FunctionDecl *New, FunctionDecl *Tmpl); |
| bool InitMethodInstantiation(CXXMethodDecl *New, CXXMethodDecl *Tmpl); |
| }; |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) { |
| assert(false && "Translation units cannot be instantiated"); |
| return D; |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) { |
| assert(false && "Namespaces cannot be instantiated"); |
| return D; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) { |
| bool Invalid = false; |
| QualType T = D->getUnderlyingType(); |
| if (T->isDependentType()) { |
| T = SemaRef.InstantiateType(T, TemplateArgs, |
| D->getLocation(), D->getDeclName()); |
| if (T.isNull()) { |
| Invalid = true; |
| T = SemaRef.Context.IntTy; |
| } |
| } |
| |
| // Create the new typedef |
| TypedefDecl *Typedef |
| = TypedefDecl::Create(SemaRef.Context, Owner, D->getLocation(), |
| D->getIdentifier(), T); |
| if (Invalid) |
| Typedef->setInvalidDecl(); |
| |
| Owner->addDecl(Typedef); |
| |
| return Typedef; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) { |
| // Instantiate the type of the declaration |
| QualType T = SemaRef.InstantiateType(D->getType(), TemplateArgs, |
| D->getTypeSpecStartLoc(), |
| D->getDeclName()); |
| if (T.isNull()) |
| return 0; |
| |
| // Build the instantiated declaration |
| VarDecl *Var = VarDecl::Create(SemaRef.Context, Owner, |
| D->getLocation(), D->getIdentifier(), |
| T, D->getStorageClass(), |
| D->getTypeSpecStartLoc()); |
| Var->setThreadSpecified(D->isThreadSpecified()); |
| Var->setCXXDirectInitializer(D->hasCXXDirectInitializer()); |
| Var->setDeclaredInCondition(D->isDeclaredInCondition()); |
| |
| // If we are instantiating a static data member defined |
| // out-of-line, the instantiation will have the same lexical |
| // context (which will be a namespace scope) as the template. |
| if (D->isOutOfLine()) |
| Var->setLexicalDeclContext(D->getLexicalDeclContext()); |
| |
| // FIXME: In theory, we could have a previous declaration for variables that |
| // are not static data members. |
| bool Redeclaration = false; |
| SemaRef.CheckVariableDeclaration(Var, 0, Redeclaration); |
| |
| if (D->isOutOfLine()) { |
| D->getLexicalDeclContext()->addDecl(Var); |
| Owner->makeDeclVisibleInContext(Var); |
| } else { |
| Owner->addDecl(Var); |
| } |
| |
| if (D->getInit()) { |
| OwningExprResult Init |
| = SemaRef.InstantiateExpr(D->getInit(), TemplateArgs); |
| if (Init.isInvalid()) |
| Var->setInvalidDecl(); |
| else |
| SemaRef.AddInitializerToDecl(Sema::DeclPtrTy::make(Var), move(Init), |
| D->hasCXXDirectInitializer()); |
| } else if (!Var->isStaticDataMember() || Var->isOutOfLine()) |
| SemaRef.ActOnUninitializedDecl(Sema::DeclPtrTy::make(Var), false); |
| |
| // Link instantiations of static data members back to the template from |
| // which they were instantiated. |
| if (Var->isStaticDataMember()) |
| SemaRef.Context.setInstantiatedFromStaticDataMember(Var, D); |
| |
| return Var; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) { |
| bool Invalid = false; |
| QualType T = D->getType(); |
| if (T->isDependentType()) { |
| T = SemaRef.InstantiateType(T, TemplateArgs, |
| D->getLocation(), D->getDeclName()); |
| if (!T.isNull() && T->isFunctionType()) { |
| // C++ [temp.arg.type]p3: |
| // If a declaration acquires a function type through a type |
| // dependent on a template-parameter and this causes a |
| // declaration that does not use the syntactic form of a |
| // function declarator to have function type, the program is |
| // ill-formed. |
| SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function) |
| << T; |
| T = QualType(); |
| Invalid = true; |
| } |
| } |
| |
| Expr *BitWidth = D->getBitWidth(); |
| if (Invalid) |
| BitWidth = 0; |
| else if (BitWidth) { |
| // The bit-width expression is not potentially evaluated. |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated); |
| |
| OwningExprResult InstantiatedBitWidth |
| = SemaRef.InstantiateExpr(BitWidth, TemplateArgs); |
| if (InstantiatedBitWidth.isInvalid()) { |
| Invalid = true; |
| BitWidth = 0; |
| } else |
| BitWidth = InstantiatedBitWidth.takeAs<Expr>(); |
| } |
| |
| FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(), T, |
| cast<RecordDecl>(Owner), |
| D->getLocation(), |
| D->isMutable(), |
| BitWidth, |
| D->getTypeSpecStartLoc(), |
| D->getAccess(), |
| 0); |
| if (Field) { |
| if (Invalid) |
| Field->setInvalidDecl(); |
| |
| Owner->addDecl(Field); |
| } |
| |
| return Field; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) { |
| Expr *AssertExpr = D->getAssertExpr(); |
| |
| // The expression in a static assertion is not potentially evaluated. |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, Action::Unevaluated); |
| |
| OwningExprResult InstantiatedAssertExpr |
| = SemaRef.InstantiateExpr(AssertExpr, TemplateArgs); |
| if (InstantiatedAssertExpr.isInvalid()) |
| return 0; |
| |
| OwningExprResult Message = SemaRef.Clone(D->getMessage()); |
| Decl *StaticAssert |
| = SemaRef.ActOnStaticAssertDeclaration(D->getLocation(), |
| move(InstantiatedAssertExpr), |
| move(Message)).getAs<Decl>(); |
| return StaticAssert; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) { |
| EnumDecl *Enum = EnumDecl::Create(SemaRef.Context, Owner, |
| D->getLocation(), D->getIdentifier(), |
| D->getTagKeywordLoc(), |
| /*PrevDecl=*/0); |
| Enum->setInstantiationOfMemberEnum(D); |
| Enum->setAccess(D->getAccess()); |
| Owner->addDecl(Enum); |
| Enum->startDefinition(); |
| |
| llvm::SmallVector<Sema::DeclPtrTy, 4> Enumerators; |
| |
| EnumConstantDecl *LastEnumConst = 0; |
| for (EnumDecl::enumerator_iterator EC = D->enumerator_begin(), |
| ECEnd = D->enumerator_end(); |
| EC != ECEnd; ++EC) { |
| // The specified value for the enumerator. |
| OwningExprResult Value = SemaRef.Owned((Expr *)0); |
| if (Expr *UninstValue = EC->getInitExpr()) { |
| // The enumerator's value expression is not potentially evaluated. |
| EnterExpressionEvaluationContext Unevaluated(SemaRef, |
| Action::Unevaluated); |
| |
| Value = SemaRef.InstantiateExpr(UninstValue, TemplateArgs); |
| } |
| |
| // Drop the initial value and continue. |
| bool isInvalid = false; |
| if (Value.isInvalid()) { |
| Value = SemaRef.Owned((Expr *)0); |
| isInvalid = true; |
| } |
| |
| EnumConstantDecl *EnumConst |
| = SemaRef.CheckEnumConstant(Enum, LastEnumConst, |
| EC->getLocation(), EC->getIdentifier(), |
| move(Value)); |
| |
| if (isInvalid) { |
| if (EnumConst) |
| EnumConst->setInvalidDecl(); |
| Enum->setInvalidDecl(); |
| } |
| |
| if (EnumConst) { |
| Enum->addDecl(EnumConst); |
| Enumerators.push_back(Sema::DeclPtrTy::make(EnumConst)); |
| LastEnumConst = EnumConst; |
| } |
| } |
| |
| // FIXME: Fixup LBraceLoc and RBraceLoc |
| SemaRef.ActOnEnumBody(Enum->getLocation(), SourceLocation(), SourceLocation(), |
| Sema::DeclPtrTy::make(Enum), |
| &Enumerators[0], Enumerators.size()); |
| |
| return Enum; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) { |
| assert(false && "EnumConstantDecls can only occur within EnumDecls."); |
| return 0; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) { |
| CXXRecordDecl *PrevDecl = 0; |
| if (D->isInjectedClassName()) |
| PrevDecl = cast<CXXRecordDecl>(Owner); |
| |
| CXXRecordDecl *Record |
| = CXXRecordDecl::Create(SemaRef.Context, D->getTagKind(), Owner, |
| D->getLocation(), D->getIdentifier(), |
| D->getTagKeywordLoc(), PrevDecl); |
| Record->setImplicit(D->isImplicit()); |
| Record->setAccess(D->getAccess()); |
| if (!D->isInjectedClassName()) |
| Record->setInstantiationOfMemberClass(D); |
| |
| Owner->addDecl(Record); |
| return Record; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) { |
| // Check whether there is already a function template specialization for |
| // this declaration. |
| FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate(); |
| void *InsertPos = 0; |
| if (FunctionTemplate) { |
| llvm::FoldingSetNodeID ID; |
| FunctionTemplateSpecializationInfo::Profile(ID, |
| TemplateArgs.getFlatArgumentList(), |
| TemplateArgs.flat_size(), |
| SemaRef.Context); |
| |
| FunctionTemplateSpecializationInfo *Info |
| = FunctionTemplate->getSpecializations().FindNodeOrInsertPos(ID, |
| InsertPos); |
| |
| // If we already have a function template specialization, return it. |
| if (Info) |
| return Info->Function; |
| } |
| |
| Sema::LocalInstantiationScope Scope(SemaRef); |
| |
| llvm::SmallVector<ParmVarDecl *, 4> Params; |
| QualType T = InstantiateFunctionType(D, Params); |
| if (T.isNull()) |
| return 0; |
| |
| // Build the instantiated method declaration. |
| FunctionDecl *Function |
| = FunctionDecl::Create(SemaRef.Context, Owner, D->getLocation(), |
| D->getDeclName(), T, D->getStorageClass(), |
| D->isInline(), D->hasWrittenPrototype(), |
| D->getTypeSpecStartLoc()); |
| |
| // FIXME: friend functions |
| |
| // Attach the parameters |
| for (unsigned P = 0; P < Params.size(); ++P) |
| Params[P]->setOwningFunction(Function); |
| Function->setParams(SemaRef.Context, Params.data(), Params.size()); |
| |
| if (InitFunctionInstantiation(Function, D)) |
| Function->setInvalidDecl(); |
| |
| bool Redeclaration = false; |
| bool OverloadableAttrRequired = false; |
| NamedDecl *PrevDecl = 0; |
| SemaRef.CheckFunctionDeclaration(Function, PrevDecl, Redeclaration, |
| /*FIXME:*/OverloadableAttrRequired); |
| |
| if (FunctionTemplate) { |
| // Record this function template specialization. |
| Function->setFunctionTemplateSpecialization(SemaRef.Context, |
| FunctionTemplate, |
| &TemplateArgs, |
| InsertPos); |
| } |
| |
| return Function; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) { |
| // FIXME: Look for existing, explicit specializations. |
| Sema::LocalInstantiationScope Scope(SemaRef); |
| |
| llvm::SmallVector<ParmVarDecl *, 4> Params; |
| QualType T = InstantiateFunctionType(D, Params); |
| if (T.isNull()) |
| return 0; |
| |
| // Build the instantiated method declaration. |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(Owner); |
| CXXMethodDecl *Method |
| = CXXMethodDecl::Create(SemaRef.Context, Record, D->getLocation(), |
| D->getDeclName(), T, D->isStatic(), |
| D->isInline()); |
| Method->setInstantiationOfMemberFunction(D); |
| |
| // If we are instantiating a member function defined |
| // out-of-line, the instantiation will have the same lexical |
| // context (which will be a namespace scope) as the template. |
| if (D->isOutOfLine()) |
| Method->setLexicalDeclContext(D->getLexicalDeclContext()); |
| |
| // Attach the parameters |
| for (unsigned P = 0; P < Params.size(); ++P) |
| Params[P]->setOwningFunction(Method); |
| Method->setParams(SemaRef.Context, Params.data(), Params.size()); |
| |
| if (InitMethodInstantiation(Method, D)) |
| Method->setInvalidDecl(); |
| |
| NamedDecl *PrevDecl |
| = SemaRef.LookupQualifiedName(Owner, Method->getDeclName(), |
| Sema::LookupOrdinaryName, true); |
| // In C++, the previous declaration we find might be a tag type |
| // (class or enum). In this case, the new declaration will hide the |
| // tag type. Note that this does does not apply if we're declaring a |
| // typedef (C++ [dcl.typedef]p4). |
| if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag) |
| PrevDecl = 0; |
| bool Redeclaration = false; |
| bool OverloadableAttrRequired = false; |
| SemaRef.CheckFunctionDeclaration(Method, PrevDecl, Redeclaration, |
| /*FIXME:*/OverloadableAttrRequired); |
| |
| if (!Method->isInvalidDecl() || !PrevDecl) |
| Owner->addDecl(Method); |
| return Method; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) { |
| // FIXME: Look for existing, explicit specializations. |
| Sema::LocalInstantiationScope Scope(SemaRef); |
| |
| llvm::SmallVector<ParmVarDecl *, 4> Params; |
| QualType T = InstantiateFunctionType(D, Params); |
| if (T.isNull()) |
| return 0; |
| |
| // Build the instantiated method declaration. |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(Owner); |
| QualType ClassTy = SemaRef.Context.getTypeDeclType(Record); |
| DeclarationName Name |
| = SemaRef.Context.DeclarationNames.getCXXConstructorName( |
| SemaRef.Context.getCanonicalType(ClassTy)); |
| CXXConstructorDecl *Constructor |
| = CXXConstructorDecl::Create(SemaRef.Context, Record, D->getLocation(), |
| Name, T, D->isExplicit(), D->isInline(), |
| false); |
| Constructor->setInstantiationOfMemberFunction(D); |
| |
| // Attach the parameters |
| for (unsigned P = 0; P < Params.size(); ++P) |
| Params[P]->setOwningFunction(Constructor); |
| Constructor->setParams(SemaRef.Context, Params.data(), Params.size()); |
| |
| if (InitMethodInstantiation(Constructor, D)) |
| Constructor->setInvalidDecl(); |
| |
| NamedDecl *PrevDecl |
| = SemaRef.LookupQualifiedName(Owner, Name, Sema::LookupOrdinaryName, true); |
| |
| // In C++, the previous declaration we find might be a tag type |
| // (class or enum). In this case, the new declaration will hide the |
| // tag type. Note that this does does not apply if we're declaring a |
| // typedef (C++ [dcl.typedef]p4). |
| if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag) |
| PrevDecl = 0; |
| bool Redeclaration = false; |
| bool OverloadableAttrRequired = false; |
| SemaRef.CheckFunctionDeclaration(Constructor, PrevDecl, Redeclaration, |
| /*FIXME:*/OverloadableAttrRequired); |
| |
| Record->addedConstructor(SemaRef.Context, Constructor); |
| Owner->addDecl(Constructor); |
| return Constructor; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) { |
| // FIXME: Look for existing, explicit specializations. |
| Sema::LocalInstantiationScope Scope(SemaRef); |
| |
| llvm::SmallVector<ParmVarDecl *, 4> Params; |
| QualType T = InstantiateFunctionType(D, Params); |
| if (T.isNull()) |
| return 0; |
| assert(Params.size() == 0 && "Destructor with parameters?"); |
| |
| // Build the instantiated destructor declaration. |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(Owner); |
| QualType ClassTy = |
| SemaRef.Context.getCanonicalType(SemaRef.Context.getTypeDeclType(Record)); |
| CXXDestructorDecl *Destructor |
| = CXXDestructorDecl::Create(SemaRef.Context, Record, |
| D->getLocation(), |
| SemaRef.Context.DeclarationNames.getCXXDestructorName(ClassTy), |
| T, D->isInline(), false); |
| Destructor->setInstantiationOfMemberFunction(D); |
| if (InitMethodInstantiation(Destructor, D)) |
| Destructor->setInvalidDecl(); |
| |
| bool Redeclaration = false; |
| bool OverloadableAttrRequired = false; |
| NamedDecl *PrevDecl = 0; |
| SemaRef.CheckFunctionDeclaration(Destructor, PrevDecl, Redeclaration, |
| /*FIXME:*/OverloadableAttrRequired); |
| Owner->addDecl(Destructor); |
| return Destructor; |
| } |
| |
| Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) { |
| // FIXME: Look for existing, explicit specializations. |
| Sema::LocalInstantiationScope Scope(SemaRef); |
| |
| llvm::SmallVector<ParmVarDecl *, 4> Params; |
| QualType T = InstantiateFunctionType(D, Params); |
| if (T.isNull()) |
| return 0; |
| assert(Params.size() == 0 && "Destructor with parameters?"); |
| |
| // Build the instantiated conversion declaration. |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(Owner); |
| QualType ClassTy = SemaRef.Context.getTypeDeclType(Record); |
| QualType ConvTy |
| = SemaRef.Context.getCanonicalType(T->getAsFunctionType()->getResultType()); |
| CXXConversionDecl *Conversion |
| = CXXConversionDecl::Create(SemaRef.Context, Record, |
| D->getLocation(), |
| SemaRef.Context.DeclarationNames.getCXXConversionFunctionName(ConvTy), |
| T, D->isInline(), D->isExplicit()); |
| Conversion->setInstantiationOfMemberFunction(D); |
| if (InitMethodInstantiation(Conversion, D)) |
| Conversion->setInvalidDecl(); |
| |
| bool Redeclaration = false; |
| bool OverloadableAttrRequired = false; |
| NamedDecl *PrevDecl = 0; |
| SemaRef.CheckFunctionDeclaration(Conversion, PrevDecl, Redeclaration, |
| /*FIXME:*/OverloadableAttrRequired); |
| Owner->addDecl(Conversion); |
| return Conversion; |
| } |
| |
| ParmVarDecl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) { |
| QualType OrigT = SemaRef.InstantiateType(D->getOriginalType(), TemplateArgs, |
| D->getLocation(), D->getDeclName()); |
| if (OrigT.isNull()) |
| return 0; |
| |
| QualType T = SemaRef.adjustParameterType(OrigT); |
| |
| if (D->getDefaultArg()) { |
| // FIXME: Leave a marker for "uninstantiated" default |
| // arguments. They only get instantiated on demand at the call |
| // site. |
| unsigned DiagID = SemaRef.Diags.getCustomDiagID(Diagnostic::Warning, |
| "sorry, dropping default argument during template instantiation"); |
| SemaRef.Diag(D->getDefaultArg()->getSourceRange().getBegin(), DiagID) |
| << D->getDefaultArg()->getSourceRange(); |
| } |
| |
| // Allocate the parameter |
| ParmVarDecl *Param = 0; |
| if (T == OrigT) |
| Param = ParmVarDecl::Create(SemaRef.Context, Owner, D->getLocation(), |
| D->getIdentifier(), T, D->getStorageClass(), |
| 0); |
| else |
| Param = OriginalParmVarDecl::Create(SemaRef.Context, Owner, |
| D->getLocation(), D->getIdentifier(), |
| T, OrigT, D->getStorageClass(), 0); |
| |
| // Note: we don't try to instantiate function parameters until after |
| // we've instantiated the function's type. Therefore, we don't have |
| // to check for 'void' parameter types here. |
| SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param); |
| return Param; |
| } |
| |
| Decl * |
| TemplateDeclInstantiator::VisitOriginalParmVarDecl(OriginalParmVarDecl *D) { |
| // Since parameter types can decay either before or after |
| // instantiation, we simply treat OriginalParmVarDecls as |
| // ParmVarDecls the same way, and create one or the other depending |
| // on what happens after template instantiation. |
| return VisitParmVarDecl(D); |
| } |
| |
| Decl *Sema::InstantiateDecl(Decl *D, DeclContext *Owner, |
| const TemplateArgumentList &TemplateArgs) { |
| TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs); |
| return Instantiator.Visit(D); |
| } |
| |
| /// \brief Instantiates the type of the given function, including |
| /// instantiating all of the function parameters. |
| /// |
| /// \param D The function that we will be instantiated |
| /// |
| /// \param Params the instantiated parameter declarations |
| |
| /// \returns the instantiated function's type if successfull, a NULL |
| /// type if there was an error. |
| QualType |
| TemplateDeclInstantiator::InstantiateFunctionType(FunctionDecl *D, |
| llvm::SmallVectorImpl<ParmVarDecl *> &Params) { |
| bool InvalidDecl = false; |
| |
| // Instantiate the function parameters |
| TemplateDeclInstantiator ParamInstantiator(SemaRef, 0, TemplateArgs); |
| llvm::SmallVector<QualType, 4> ParamTys; |
| for (FunctionDecl::param_iterator P = D->param_begin(), |
| PEnd = D->param_end(); |
| P != PEnd; ++P) { |
| if (ParmVarDecl *PInst = ParamInstantiator.VisitParmVarDecl(*P)) { |
| if (PInst->getType()->isVoidType()) { |
| SemaRef.Diag(PInst->getLocation(), diag::err_param_with_void_type); |
| PInst->setInvalidDecl(); |
| } |
| else if (SemaRef.RequireNonAbstractType(PInst->getLocation(), |
| PInst->getType(), |
| diag::err_abstract_type_in_decl, |
| Sema::AbstractParamType)) |
| PInst->setInvalidDecl(); |
| |
| Params.push_back(PInst); |
| ParamTys.push_back(PInst->getType()); |
| |
| if (PInst->isInvalidDecl()) |
| InvalidDecl = true; |
| } else |
| InvalidDecl = true; |
| } |
| |
| // FIXME: Deallocate dead declarations. |
| if (InvalidDecl) |
| return QualType(); |
| |
| const FunctionProtoType *Proto = D->getType()->getAsFunctionProtoType(); |
| assert(Proto && "Missing prototype?"); |
| QualType ResultType |
| = SemaRef.InstantiateType(Proto->getResultType(), TemplateArgs, |
| D->getLocation(), D->getDeclName()); |
| if (ResultType.isNull()) |
| return QualType(); |
| |
| return SemaRef.BuildFunctionType(ResultType, ParamTys.data(), ParamTys.size(), |
| Proto->isVariadic(), Proto->getTypeQuals(), |
| D->getLocation(), D->getDeclName()); |
| } |
| |
| /// \brief Initializes the common fields of an instantiation function |
| /// declaration (New) from the corresponding fields of its template (Tmpl). |
| /// |
| /// \returns true if there was an error |
| bool |
| TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New, |
| FunctionDecl *Tmpl) { |
| if (Tmpl->isDeleted()) |
| New->setDeleted(); |
| |
| // If we are performing substituting explicitly-specified template arguments |
| // or deduced template arguments into a function template and we reach this |
| // point, we are now past the point where SFINAE applies and have committed |
| // to keeping the new function template specialization. We therefore |
| // convert the active template instantiation for the function template |
| // into a template instantiation for this specific function template |
| // specialization, which is not a SFINAE context, so that we diagnose any |
| // further errors in the declaration itself. |
| typedef Sema::ActiveTemplateInstantiation ActiveInstType; |
| ActiveInstType &ActiveInst = SemaRef.ActiveTemplateInstantiations.back(); |
| if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution || |
| ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) { |
| if (FunctionTemplateDecl *FunTmpl |
| = dyn_cast<FunctionTemplateDecl>((Decl *)ActiveInst.Entity)) { |
| assert(FunTmpl->getTemplatedDecl() == Tmpl && |
| "Deduction from the wrong function template?"); |
| (void) FunTmpl; |
| ActiveInst.Kind = ActiveInstType::TemplateInstantiation; |
| ActiveInst.Entity = reinterpret_cast<uintptr_t>(New); |
| } |
| } |
| |
| return false; |
| } |
| |
| /// \brief Initializes common fields of an instantiated method |
| /// declaration (New) from the corresponding fields of its template |
| /// (Tmpl). |
| /// |
| /// \returns true if there was an error |
| bool |
| TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New, |
| CXXMethodDecl *Tmpl) { |
| if (InitFunctionInstantiation(New, Tmpl)) |
| return true; |
| |
| CXXRecordDecl *Record = cast<CXXRecordDecl>(Owner); |
| New->setAccess(Tmpl->getAccess()); |
| if (Tmpl->isVirtualAsWritten()) { |
| New->setVirtualAsWritten(true); |
| Record->setAggregate(false); |
| Record->setPOD(false); |
| Record->setPolymorphic(true); |
| } |
| if (Tmpl->isPure()) { |
| New->setPure(); |
| Record->setAbstract(true); |
| } |
| |
| // FIXME: attributes |
| // FIXME: New needs a pointer to Tmpl |
| return false; |
| } |
| |
| /// \brief Instantiate the definition of the given function from its |
| /// template. |
| /// |
| /// \param PointOfInstantiation the point at which the instantiation was |
| /// required. Note that this is not precisely a "point of instantiation" |
| /// for the function, but it's close. |
| /// |
| /// \param Function the already-instantiated declaration of a |
| /// function template specialization or member function of a class template |
| /// specialization. |
| /// |
| /// \param Recursive if true, recursively instantiates any functions that |
| /// are required by this instantiation. |
| void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation, |
| FunctionDecl *Function, |
| bool Recursive) { |
| if (Function->isInvalidDecl()) |
| return; |
| |
| assert(!Function->getBody() && "Already instantiated!"); |
| |
| // Find the function body that we'll be substituting. |
| const FunctionDecl *PatternDecl = 0; |
| if (FunctionTemplateDecl *Primary = Function->getPrimaryTemplate()) |
| PatternDecl = Primary->getTemplatedDecl(); |
| else |
| PatternDecl = Function->getInstantiatedFromMemberFunction(); |
| Stmt *Pattern = 0; |
| if (PatternDecl) |
| Pattern = PatternDecl->getBody(PatternDecl); |
| |
| if (!Pattern) |
| return; |
| |
| InstantiatingTemplate Inst(*this, PointOfInstantiation, Function); |
| if (Inst) |
| return; |
| |
| // If we're performing recursive template instantiation, create our own |
| // queue of pending implicit instantiations that we will instantiate later, |
| // while we're still within our own instantiation context. |
| std::deque<PendingImplicitInstantiation> SavedPendingImplicitInstantiations; |
| if (Recursive) |
| PendingImplicitInstantiations.swap(SavedPendingImplicitInstantiations); |
| |
| ActOnStartOfFunctionDef(0, DeclPtrTy::make(Function)); |
| |
| // Introduce a new scope where local variable instantiations will be |
| // recorded. |
| LocalInstantiationScope Scope(*this); |
| |
| // Introduce the instantiated function parameters into the local |
| // instantiation scope. |
| for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) |
| Scope.InstantiatedLocal(PatternDecl->getParamDecl(I), |
| Function->getParamDecl(I)); |
| |
| // Enter the scope of this instantiation. We don't use |
| // PushDeclContext because we don't have a scope. |
| DeclContext *PreviousContext = CurContext; |
| CurContext = Function; |
| |
| // Instantiate the function body. |
| OwningStmtResult Body |
| = InstantiateStmt(Pattern, getTemplateInstantiationArgs(Function)); |
| |
| ActOnFinishFunctionBody(DeclPtrTy::make(Function), move(Body), |
| /*IsInstantiation=*/true); |
| |
| CurContext = PreviousContext; |
| |
| DeclGroupRef DG(Function); |
| Consumer.HandleTopLevelDecl(DG); |
| |
| if (Recursive) { |
| // Instantiate any pending implicit instantiations found during the |
| // instantiation of this template. |
| PerformPendingImplicitInstantiations(); |
| |
| // Restore the set of pending implicit instantiations. |
| PendingImplicitInstantiations.swap(SavedPendingImplicitInstantiations); |
| } |
| } |
| |
| /// \brief Instantiate the definition of the given variable from its |
| /// template. |
| /// |
| /// \param PointOfInstantiation the point at which the instantiation was |
| /// required. Note that this is not precisely a "point of instantiation" |
| /// for the function, but it's close. |
| /// |
| /// \param Var the already-instantiated declaration of a static member |
| /// variable of a class template specialization. |
| /// |
| /// \param Recursive if true, recursively instantiates any functions that |
| /// are required by this instantiation. |
| void Sema::InstantiateStaticDataMemberDefinition( |
| SourceLocation PointOfInstantiation, |
| VarDecl *Var, |
| bool Recursive) { |
| if (Var->isInvalidDecl()) |
| return; |
| |
| // Find the out-of-line definition of this static data member. |
| // FIXME: Do we have to look for specializations separately? |
| VarDecl *Def = Var->getInstantiatedFromStaticDataMember(); |
| bool FoundOutOfLineDef = false; |
| assert(Def && "This data member was not instantiated from a template?"); |
| assert(Def->isStaticDataMember() && "Not a static data member?"); |
| for (VarDecl::redecl_iterator RD = Def->redecls_begin(), |
| RDEnd = Def->redecls_end(); |
| RD != RDEnd; ++RD) { |
| if (RD->getLexicalDeclContext()->isFileContext()) { |
| Def = *RD; |
| FoundOutOfLineDef = true; |
| } |
| } |
| |
| if (!FoundOutOfLineDef) { |
| // We did not find an out-of-line definition of this static data member, |
| // so we won't perform any instantiation. Rather, we rely on the user to |
| // instantiate this definition (or provide a specialization for it) in |
| // another translation unit. |
| return; |
| } |
| |
| InstantiatingTemplate Inst(*this, PointOfInstantiation, Var); |
| if (Inst) |
| return; |
| |
| // If we're performing recursive template instantiation, create our own |
| // queue of pending implicit instantiations that we will instantiate later, |
| // while we're still within our own instantiation context. |
| std::deque<PendingImplicitInstantiation> SavedPendingImplicitInstantiations; |
| if (Recursive) |
| PendingImplicitInstantiations.swap(SavedPendingImplicitInstantiations); |
| |
| // Enter the scope of this instantiation. We don't use |
| // PushDeclContext because we don't have a scope. |
| DeclContext *PreviousContext = CurContext; |
| CurContext = Var->getDeclContext(); |
| |
| #if 0 |
| // Instantiate the initializer of this static data member. |
| OwningExprResult Init |
| = InstantiateExpr(Def->getInit(), getTemplateInstantiationArgs(Var)); |
| if (Init.isInvalid()) { |
| // If instantiation of the initializer failed, mark the declaration invalid |
| // and don't instantiate anything else that was triggered by this |
| // instantiation. |
| Var->setInvalidDecl(); |
| |
| // Restore the set of pending implicit instantiations. |
| PendingImplicitInstantiations.swap(SavedPendingImplicitInstantiations); |
| |
| return; |
| } |
| |
| // Type-check the initializer. |
| if (Init.get()) |
| AddInitializerToDecl(DeclPtrTy::make(Var), move(Init), |
| Def->hasCXXDirectInitializer()); |
| else |
| ActOnUninitializedDecl(DeclPtrTy::make(Var), false); |
| #else |
| Var = cast_or_null<VarDecl>(InstantiateDecl(Def, Var->getDeclContext(), |
| getTemplateInstantiationArgs(Var))); |
| #endif |
| |
| CurContext = PreviousContext; |
| |
| if (Var) { |
| DeclGroupRef DG(Var); |
| Consumer.HandleTopLevelDecl(DG); |
| } |
| |
| if (Recursive) { |
| // Instantiate any pending implicit instantiations found during the |
| // instantiation of this template. |
| PerformPendingImplicitInstantiations(); |
| |
| // Restore the set of pending implicit instantiations. |
| PendingImplicitInstantiations.swap(SavedPendingImplicitInstantiations); |
| } |
| } |
| |
| static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) { |
| if (D->getKind() != Other->getKind()) |
| return false; |
| |
| if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Other)) |
| return Record->getInstantiatedFromMemberClass()->getCanonicalDecl() |
| == D->getCanonicalDecl(); |
| |
| if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Other)) |
| return Function->getInstantiatedFromMemberFunction()->getCanonicalDecl() |
| == D->getCanonicalDecl(); |
| |
| if (EnumDecl *Enum = dyn_cast<EnumDecl>(Other)) |
| return Enum->getInstantiatedFromMemberEnum()->getCanonicalDecl() |
| == D->getCanonicalDecl(); |
| |
| if (VarDecl *Var = dyn_cast<VarDecl>(Other)) |
| if (Var->isStaticDataMember()) |
| return Var->getInstantiatedFromStaticDataMember()->getCanonicalDecl() |
| == D->getCanonicalDecl(); |
| |
| // FIXME: How can we find instantiations of anonymous unions? |
| |
| return D->getDeclName() && isa<NamedDecl>(Other) && |
| D->getDeclName() == cast<NamedDecl>(Other)->getDeclName(); |
| } |
| |
| template<typename ForwardIterator> |
| static NamedDecl *findInstantiationOf(ASTContext &Ctx, |
| NamedDecl *D, |
| ForwardIterator first, |
| ForwardIterator last) { |
| for (; first != last; ++first) |
| if (isInstantiationOf(Ctx, D, *first)) |
| return cast<NamedDecl>(*first); |
| |
| return 0; |
| } |
| |
| /// \brief Find the instantiation of the given declaration within the |
| /// current instantiation. |
| /// |
| /// This routine is intended to be used when \p D is a declaration |
| /// referenced from within a template, that needs to mapped into the |
| /// corresponding declaration within an instantiation. For example, |
| /// given: |
| /// |
| /// \code |
| /// template<typename T> |
| /// struct X { |
| /// enum Kind { |
| /// KnownValue = sizeof(T) |
| /// }; |
| /// |
| /// bool getKind() const { return KnownValue; } |
| /// }; |
| /// |
| /// template struct X<int>; |
| /// \endcode |
| /// |
| /// In the instantiation of X<int>::getKind(), we need to map the |
| /// EnumConstantDecl for KnownValue (which refers to |
| /// X<T>::<Kind>::KnownValue) to its instantiation |
| /// (X<int>::<Kind>::KnownValue). InstantiateCurrentDeclRef() performs |
| /// this mapping from within the instantiation of X<int>. |
| NamedDecl * Sema::InstantiateCurrentDeclRef(NamedDecl *D) { |
| DeclContext *ParentDC = D->getDeclContext(); |
| if (isa<ParmVarDecl>(D) || ParentDC->isFunctionOrMethod()) { |
| // D is a local of some kind. Look into the map of local |
| // declarations to their instantiations. |
| return cast<NamedDecl>(CurrentInstantiationScope->getInstantiationOf(D)); |
| } |
| |
| if (NamedDecl *ParentDecl = dyn_cast<NamedDecl>(ParentDC)) { |
| ParentDecl = InstantiateCurrentDeclRef(ParentDecl); |
| if (!ParentDecl) |
| return 0; |
| |
| ParentDC = cast<DeclContext>(ParentDecl); |
| } |
| |
| if (ParentDC != D->getDeclContext()) { |
| // We performed some kind of instantiation in the parent context, |
| // so now we need to look into the instantiated parent context to |
| // find the instantiation of the declaration D. |
| NamedDecl *Result = 0; |
| if (D->getDeclName()) { |
| DeclContext::lookup_result Found = ParentDC->lookup(D->getDeclName()); |
| Result = findInstantiationOf(Context, D, Found.first, Found.second); |
| } else { |
| // Since we don't have a name for the entity we're looking for, |
| // our only option is to walk through all of the declarations to |
| // find that name. This will occur in a few cases: |
| // |
| // - anonymous struct/union within a template |
| // - unnamed class/struct/union/enum within a template |
| // |
| // FIXME: Find a better way to find these instantiations! |
| Result = findInstantiationOf(Context, D, |
| ParentDC->decls_begin(), |
| ParentDC->decls_end()); |
| } |
| assert(Result && "Unable to find instantiation of declaration!"); |
| D = Result; |
| } |
| |
| if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) |
| if (ClassTemplateDecl *ClassTemplate |
| = Record->getDescribedClassTemplate()) { |
| // When the declaration D was parsed, it referred to the current |
| // instantiation. Therefore, look through the current context, |
| // which contains actual instantiations, to find the |
| // instantiation of the "current instantiation" that D refers |
| // to. Alternatively, we could just instantiate the |
| // injected-class-name with the current template arguments, but |
| // such an instantiation is far more expensive. |
| for (DeclContext *DC = CurContext; !DC->isFileContext(); |
| DC = DC->getParent()) { |
| if (ClassTemplateSpecializationDecl *Spec |
| = dyn_cast<ClassTemplateSpecializationDecl>(DC)) |
| if (Spec->getSpecializedTemplate()->getCanonicalDecl() |
| == ClassTemplate->getCanonicalDecl()) |
| return Spec; |
| } |
| |
| assert(false && |
| "Unable to find declaration for the current instantiation"); |
| } |
| |
| return D; |
| } |
| |
| /// \brief Performs template instantiation for all implicit template |
| /// instantiations we have seen until this point. |
| void Sema::PerformPendingImplicitInstantiations() { |
| while (!PendingImplicitInstantiations.empty()) { |
| PendingImplicitInstantiation Inst = PendingImplicitInstantiations.front(); |
| PendingImplicitInstantiations.pop_front(); |
| |
| // Instantiate function definitions |
| if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) { |
| if (!Function->getBody()) |
| InstantiateFunctionDefinition(/*FIXME:*/Inst.second, Function, true); |
| continue; |
| } |
| |
| // Instantiate static data member definitions. |
| VarDecl *Var = cast<VarDecl>(Inst.first); |
| assert(Var->isStaticDataMember() && "Not a static data member?"); |
| InstantiateStaticDataMemberDefinition(/*FIXME:*/Inst.second, Var, true); |
| } |
| } |