Factor out TargetABIInfo stuff into separate file. No functionality change.

git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@72962 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/CodeGen/TargetABIInfo.cpp b/lib/CodeGen/TargetABIInfo.cpp
new file mode 100644
index 0000000..573ffed
--- /dev/null
+++ b/lib/CodeGen/TargetABIInfo.cpp
@@ -0,0 +1,1379 @@
+//===---- TargetABIInfo.cpp - Encapsulate target ABI details ----*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// These classes wrap the information about a call or function
+// definition used to handle ABI compliancy.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ABIInfo.h"
+#include "CodeGenFunction.h"
+#include "clang/AST/RecordLayout.h"
+#include "llvm/Type.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+ABIInfo::~ABIInfo() {}
+
+void ABIArgInfo::dump() const {
+  fprintf(stderr, "(ABIArgInfo Kind=");
+  switch (TheKind) {
+  case Direct:
+    fprintf(stderr, "Direct");
+    break;
+  case Ignore:
+    fprintf(stderr, "Ignore");
+    break;
+  case Coerce:
+    fprintf(stderr, "Coerce Type=");
+    getCoerceToType()->print(llvm::errs());
+    break;
+  case Indirect:
+    fprintf(stderr, "Indirect Align=%d", getIndirectAlign());
+    break;
+  case Expand:
+    fprintf(stderr, "Expand");
+    break;
+  }
+  fprintf(stderr, ")\n");
+}
+
+static bool isEmptyRecord(ASTContext &Context, QualType T);
+
+/// isEmptyField - Return true iff a the field is "empty", that is it
+/// is an unnamed bit-field or an (array of) empty record(s).
+static bool isEmptyField(ASTContext &Context, const FieldDecl *FD) {
+  if (FD->isUnnamedBitfield())
+    return true;
+
+  QualType FT = FD->getType();
+  // Constant arrays of empty records count as empty, strip them off.
+  while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT))
+    FT = AT->getElementType();
+
+  return isEmptyRecord(Context, FT);
+}
+
+/// isEmptyRecord - Return true iff a structure contains only empty
+/// fields. Note that a structure with a flexible array member is not
+/// considered empty.
+static bool isEmptyRecord(ASTContext &Context, QualType T) {
+  const RecordType *RT = T->getAsRecordType();
+  if (!RT)
+    return 0;
+  const RecordDecl *RD = RT->getDecl();
+  if (RD->hasFlexibleArrayMember())
+    return false;
+  for (RecordDecl::field_iterator i = RD->field_begin(Context),
+         e = RD->field_end(Context); i != e; ++i)
+    if (!isEmptyField(Context, *i))
+      return false;
+  return true;
+}
+
+/// isSingleElementStruct - Determine if a structure is a "single
+/// element struct", i.e. it has exactly one non-empty field or
+/// exactly one field which is itself a single element
+/// struct. Structures with flexible array members are never
+/// considered single element structs.
+///
+/// \return The field declaration for the single non-empty field, if
+/// it exists.
+static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
+  const RecordType *RT = T->getAsStructureType();
+  if (!RT)
+    return 0;
+
+  const RecordDecl *RD = RT->getDecl();
+  if (RD->hasFlexibleArrayMember())
+    return 0;
+
+  const Type *Found = 0;
+  for (RecordDecl::field_iterator i = RD->field_begin(Context),
+         e = RD->field_end(Context); i != e; ++i) {
+    const FieldDecl *FD = *i;
+    QualType FT = FD->getType();
+
+    // Ignore empty fields.
+    if (isEmptyField(Context, FD))
+      continue;
+
+    // If we already found an element then this isn't a single-element
+    // struct.
+    if (Found)
+      return 0;
+
+    // Treat single element arrays as the element.
+    while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
+      if (AT->getSize().getZExtValue() != 1)
+        break;
+      FT = AT->getElementType();
+    }
+
+    if (!CodeGenFunction::hasAggregateLLVMType(FT)) {
+      Found = FT.getTypePtr();
+    } else {
+      Found = isSingleElementStruct(FT, Context);
+      if (!Found)
+        return 0;
+    }
+  }
+
+  return Found;
+}
+
+static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
+  if (!Ty->getAsBuiltinType() && !Ty->isPointerType())
+    return false;
+
+  uint64_t Size = Context.getTypeSize(Ty);
+  return Size == 32 || Size == 64;
+}
+
+static bool areAllFields32Or64BitBasicType(const RecordDecl *RD,
+                                           ASTContext &Context) {
+  for (RecordDecl::field_iterator i = RD->field_begin(Context),
+         e = RD->field_end(Context); i != e; ++i) {
+    const FieldDecl *FD = *i;
+
+    if (!is32Or64BitBasicType(FD->getType(), Context))
+      return false;
+
+    // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
+    // how to expand them yet, and the predicate for telling if a bitfield still
+    // counts as "basic" is more complicated than what we were doing previously.
+    if (FD->isBitField())
+      return false;
+  }
+
+  return true;
+}
+
+namespace {
+/// DefaultABIInfo - The default implementation for ABI specific
+/// details. This implementation provides information which results in
+/// self-consistent and sensible LLVM IR generation, but does not
+/// conform to any particular ABI.
+class DefaultABIInfo : public ABIInfo {
+  ABIArgInfo classifyReturnType(QualType RetTy,
+                                ASTContext &Context) const;
+
+  ABIArgInfo classifyArgumentType(QualType RetTy,
+                                  ASTContext &Context) const;
+
+  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
+    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
+    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+         it != ie; ++it)
+      it->info = classifyArgumentType(it->type, Context);
+  }
+
+  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+                                 CodeGenFunction &CGF) const;
+};
+
+/// X86_32ABIInfo - The X86-32 ABI information.
+class X86_32ABIInfo : public ABIInfo {
+  ASTContext &Context;
+  bool IsDarwin;
+
+  static bool isRegisterSize(unsigned Size) {
+    return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
+  }
+
+  static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context);
+
+public:
+  ABIArgInfo classifyReturnType(QualType RetTy,
+                                ASTContext &Context) const;
+
+  ABIArgInfo classifyArgumentType(QualType RetTy,
+                                  ASTContext &Context) const;
+
+  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
+    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
+    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+         it != ie; ++it)
+      it->info = classifyArgumentType(it->type, Context);
+  }
+
+  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+                                 CodeGenFunction &CGF) const;
+
+  X86_32ABIInfo(ASTContext &Context, bool d)
+    : ABIInfo(), Context(Context), IsDarwin(d) {}
+};
+}
+
+
+/// shouldReturnTypeInRegister - Determine if the given type should be
+/// passed in a register (for the Darwin ABI).
+bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
+                                               ASTContext &Context) {
+  uint64_t Size = Context.getTypeSize(Ty);
+
+  // Type must be register sized.
+  if (!isRegisterSize(Size))
+    return false;
+
+  if (Ty->isVectorType()) {
+    // 64- and 128- bit vectors inside structures are not returned in
+    // registers.
+    if (Size == 64 || Size == 128)
+      return false;
+
+    return true;
+  }
+
+  // If this is a builtin, pointer, or complex type, it is ok.
+  if (Ty->getAsBuiltinType() || Ty->isPointerType() || Ty->isAnyComplexType())
+    return true;
+
+  // Arrays are treated like records.
+  if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
+    return shouldReturnTypeInRegister(AT->getElementType(), Context);
+
+  // Otherwise, it must be a record type.
+  const RecordType *RT = Ty->getAsRecordType();
+  if (!RT) return false;
+
+  // Structure types are passed in register if all fields would be
+  // passed in a register.
+  for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(Context),
+         e = RT->getDecl()->field_end(Context); i != e; ++i) {
+    const FieldDecl *FD = *i;
+
+    // Empty fields are ignored.
+    if (isEmptyField(Context, FD))
+      continue;
+
+    // Check fields recursively.
+    if (!shouldReturnTypeInRegister(FD->getType(), Context))
+      return false;
+  }
+
+  return true;
+}
+
+ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
+                                            ASTContext &Context) const {
+  if (RetTy->isVoidType()) {
+    return ABIArgInfo::getIgnore();
+  } else if (const VectorType *VT = RetTy->getAsVectorType()) {
+    // On Darwin, some vectors are returned in registers.
+    if (IsDarwin) {
+      uint64_t Size = Context.getTypeSize(RetTy);
+
+      // 128-bit vectors are a special case; they are returned in
+      // registers and we need to make sure to pick a type the LLVM
+      // backend will like.
+      if (Size == 128)
+        return ABIArgInfo::getCoerce(llvm::VectorType::get(llvm::Type::Int64Ty,
+                                                           2));
+
+      // Always return in register if it fits in a general purpose
+      // register, or if it is 64 bits and has a single element.
+      if ((Size == 8 || Size == 16 || Size == 32) ||
+          (Size == 64 && VT->getNumElements() == 1))
+        return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size));
+
+      return ABIArgInfo::getIndirect(0);
+    }
+
+    return ABIArgInfo::getDirect();
+  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
+    // Structures with flexible arrays are always indirect.
+    if (const RecordType *RT = RetTy->getAsStructureType())
+      if (RT->getDecl()->hasFlexibleArrayMember())
+        return ABIArgInfo::getIndirect(0);
+
+    // Outside of Darwin, structs and unions are always indirect.
+    if (!IsDarwin && !RetTy->isAnyComplexType())
+      return ABIArgInfo::getIndirect(0);
+
+    // Classify "single element" structs as their element type.
+    if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) {
+      if (const BuiltinType *BT = SeltTy->getAsBuiltinType()) {
+        if (BT->isIntegerType()) {
+          // We need to use the size of the structure, padding
+          // bit-fields can adjust that to be larger than the single
+          // element type.
+          uint64_t Size = Context.getTypeSize(RetTy);
+          return ABIArgInfo::getCoerce(llvm::IntegerType::get((unsigned) Size));
+        } else if (BT->getKind() == BuiltinType::Float) {
+          assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
+                 "Unexpect single element structure size!");
+          return ABIArgInfo::getCoerce(llvm::Type::FloatTy);
+        } else if (BT->getKind() == BuiltinType::Double) {
+          assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) &&
+                 "Unexpect single element structure size!");
+          return ABIArgInfo::getCoerce(llvm::Type::DoubleTy);
+        }
+      } else if (SeltTy->isPointerType()) {
+        // FIXME: It would be really nice if this could come out as the proper
+        // pointer type.
+        llvm::Type *PtrTy =
+          llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+        return ABIArgInfo::getCoerce(PtrTy);
+      } else if (SeltTy->isVectorType()) {
+        // 64- and 128-bit vectors are never returned in a
+        // register when inside a structure.
+        uint64_t Size = Context.getTypeSize(RetTy);
+        if (Size == 64 || Size == 128)
+          return ABIArgInfo::getIndirect(0);
+
+        return classifyReturnType(QualType(SeltTy, 0), Context);
+      }
+    }
+
+    // Small structures which are register sized are generally returned
+    // in a register.
+    if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) {
+      uint64_t Size = Context.getTypeSize(RetTy);
+      return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size));
+    }
+
+    return ABIArgInfo::getIndirect(0);
+  } else {
+    return ABIArgInfo::getDirect();
+  }
+}
+
+ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
+                                               ASTContext &Context) const {
+  // FIXME: Set alignment on indirect arguments.
+  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
+    // Structures with flexible arrays are always indirect.
+    if (const RecordType *RT = Ty->getAsStructureType())
+      if (RT->getDecl()->hasFlexibleArrayMember())
+        return ABIArgInfo::getIndirect(0);
+
+    // Ignore empty structs.
+    uint64_t Size = Context.getTypeSize(Ty);
+    if (Ty->isStructureType() && Size == 0)
+      return ABIArgInfo::getIgnore();
+
+    // Expand structs with size <= 128-bits which consist only of
+    // basic types (int, long long, float, double, xxx*). This is
+    // non-recursive and does not ignore empty fields.
+    if (const RecordType *RT = Ty->getAsStructureType()) {
+      if (Context.getTypeSize(Ty) <= 4*32 &&
+          areAllFields32Or64BitBasicType(RT->getDecl(), Context))
+        return ABIArgInfo::getExpand();
+    }
+
+    return ABIArgInfo::getIndirect(0);
+  } else {
+    return ABIArgInfo::getDirect();
+  }
+}
+
+llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+                                      CodeGenFunction &CGF) const {
+  const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
+
+  CGBuilderTy &Builder = CGF.Builder;
+  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
+                                                       "ap");
+  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+  llvm::Type *PTy =
+    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+  uint64_t Offset =
+    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
+  llvm::Value *NextAddr =
+    Builder.CreateGEP(Addr,
+                      llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset),
+                      "ap.next");
+  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+  return AddrTyped;
+}
+
+namespace {
+/// X86_64ABIInfo - The X86_64 ABI information.
+class X86_64ABIInfo : public ABIInfo {
+  enum Class {
+    Integer = 0,
+    SSE,
+    SSEUp,
+    X87,
+    X87Up,
+    ComplexX87,
+    NoClass,
+    Memory
+  };
+
+  /// merge - Implement the X86_64 ABI merging algorithm.
+  ///
+  /// Merge an accumulating classification \arg Accum with a field
+  /// classification \arg Field.
+  ///
+  /// \param Accum - The accumulating classification. This should
+  /// always be either NoClass or the result of a previous merge
+  /// call. In addition, this should never be Memory (the caller
+  /// should just return Memory for the aggregate).
+  Class merge(Class Accum, Class Field) const;
+
+  /// classify - Determine the x86_64 register classes in which the
+  /// given type T should be passed.
+  ///
+  /// \param Lo - The classification for the parts of the type
+  /// residing in the low word of the containing object.
+  ///
+  /// \param Hi - The classification for the parts of the type
+  /// residing in the high word of the containing object.
+  ///
+  /// \param OffsetBase - The bit offset of this type in the
+  /// containing object.  Some parameters are classified different
+  /// depending on whether they straddle an eightbyte boundary.
+  ///
+  /// If a word is unused its result will be NoClass; if a type should
+  /// be passed in Memory then at least the classification of \arg Lo
+  /// will be Memory.
+  ///
+  /// The \arg Lo class will be NoClass iff the argument is ignored.
+  ///
+  /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
+  /// also be ComplexX87.
+  void classify(QualType T, ASTContext &Context, uint64_t OffsetBase,
+                Class &Lo, Class &Hi) const;
+
+  /// getCoerceResult - Given a source type \arg Ty and an LLVM type
+  /// to coerce to, chose the best way to pass Ty in the same place
+  /// that \arg CoerceTo would be passed, but while keeping the
+  /// emitted code as simple as possible.
+  ///
+  /// FIXME: Note, this should be cleaned up to just take an enumeration of all
+  /// the ways we might want to pass things, instead of constructing an LLVM
+  /// type. This makes this code more explicit, and it makes it clearer that we
+  /// are also doing this for correctness in the case of passing scalar types.
+  ABIArgInfo getCoerceResult(QualType Ty,
+                             const llvm::Type *CoerceTo,
+                             ASTContext &Context) const;
+
+  /// getIndirectResult - Give a source type \arg Ty, return a suitable result
+  /// such that the argument will be passed in memory.
+  ABIArgInfo getIndirectResult(QualType Ty,
+                               ASTContext &Context) const;
+
+  ABIArgInfo classifyReturnType(QualType RetTy,
+                                ASTContext &Context) const;
+
+  ABIArgInfo classifyArgumentType(QualType Ty,
+                                  ASTContext &Context,
+                                  unsigned &neededInt,
+                                  unsigned &neededSSE) const;
+
+public:
+  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const;
+
+  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+                                 CodeGenFunction &CGF) const;
+};
+}
+
+X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum,
+                                          Class Field) const {
+  // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
+  // classified recursively so that always two fields are
+  // considered. The resulting class is calculated according to
+  // the classes of the fields in the eightbyte:
+  //
+  // (a) If both classes are equal, this is the resulting class.
+  //
+  // (b) If one of the classes is NO_CLASS, the resulting class is
+  // the other class.
+  //
+  // (c) If one of the classes is MEMORY, the result is the MEMORY
+  // class.
+  //
+  // (d) If one of the classes is INTEGER, the result is the
+  // INTEGER.
+  //
+  // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
+  // MEMORY is used as class.
+  //
+  // (f) Otherwise class SSE is used.
+
+  // Accum should never be memory (we should have returned) or
+  // ComplexX87 (because this cannot be passed in a structure).
+  assert((Accum != Memory && Accum != ComplexX87) &&
+         "Invalid accumulated classification during merge.");
+  if (Accum == Field || Field == NoClass)
+    return Accum;
+  else if (Field == Memory)
+    return Memory;
+  else if (Accum == NoClass)
+    return Field;
+  else if (Accum == Integer || Field == Integer)
+    return Integer;
+  else if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
+           Accum == X87 || Accum == X87Up)
+    return Memory;
+  else
+    return SSE;
+}
+
+void X86_64ABIInfo::classify(QualType Ty,
+                             ASTContext &Context,
+                             uint64_t OffsetBase,
+                             Class &Lo, Class &Hi) const {
+  // FIXME: This code can be simplified by introducing a simple value class for
+  // Class pairs with appropriate constructor methods for the various
+  // situations.
+
+  // FIXME: Some of the split computations are wrong; unaligned vectors
+  // shouldn't be passed in registers for example, so there is no chance they
+  // can straddle an eightbyte. Verify & simplify.
+
+  Lo = Hi = NoClass;
+
+  Class &Current = OffsetBase < 64 ? Lo : Hi;
+  Current = Memory;
+
+  if (const BuiltinType *BT = Ty->getAsBuiltinType()) {
+    BuiltinType::Kind k = BT->getKind();
+
+    if (k == BuiltinType::Void) {
+      Current = NoClass;
+    } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
+      Lo = Integer;
+      Hi = Integer;
+    } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
+      Current = Integer;
+    } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
+      Current = SSE;
+    } else if (k == BuiltinType::LongDouble) {
+      Lo = X87;
+      Hi = X87Up;
+    }
+    // FIXME: _Decimal32 and _Decimal64 are SSE.
+    // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
+  } else if (const EnumType *ET = Ty->getAsEnumType()) {
+    // Classify the underlying integer type.
+    classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi);
+  } else if (Ty->hasPointerRepresentation()) {
+    Current = Integer;
+  } else if (const VectorType *VT = Ty->getAsVectorType()) {
+    uint64_t Size = Context.getTypeSize(VT);
+    if (Size == 32) {
+      // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x
+      // float> as integer.
+      Current = Integer;
+
+      // If this type crosses an eightbyte boundary, it should be
+      // split.
+      uint64_t EB_Real = (OffsetBase) / 64;
+      uint64_t EB_Imag = (OffsetBase + Size - 1) / 64;
+      if (EB_Real != EB_Imag)
+        Hi = Lo;
+    } else if (Size == 64) {
+      // gcc passes <1 x double> in memory. :(
+      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double))
+        return;
+
+      // gcc passes <1 x long long> as INTEGER.
+      if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong))
+        Current = Integer;
+      else
+        Current = SSE;
+
+      // If this type crosses an eightbyte boundary, it should be
+      // split.
+      if (OffsetBase && OffsetBase != 64)
+        Hi = Lo;
+    } else if (Size == 128) {
+      Lo = SSE;
+      Hi = SSEUp;
+    }
+  } else if (const ComplexType *CT = Ty->getAsComplexType()) {
+    QualType ET = Context.getCanonicalType(CT->getElementType());
+
+    uint64_t Size = Context.getTypeSize(Ty);
+    if (ET->isIntegralType()) {
+      if (Size <= 64)
+        Current = Integer;
+      else if (Size <= 128)
+        Lo = Hi = Integer;
+    } else if (ET == Context.FloatTy)
+      Current = SSE;
+    else if (ET == Context.DoubleTy)
+      Lo = Hi = SSE;
+    else if (ET == Context.LongDoubleTy)
+      Current = ComplexX87;
+
+    // If this complex type crosses an eightbyte boundary then it
+    // should be split.
+    uint64_t EB_Real = (OffsetBase) / 64;
+    uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64;
+    if (Hi == NoClass && EB_Real != EB_Imag)
+      Hi = Lo;
+  } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
+    // Arrays are treated like structures.
+
+    uint64_t Size = Context.getTypeSize(Ty);
+
+    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
+    // than two eightbytes, ..., it has class MEMORY.
+    if (Size > 128)
+      return;
+
+    // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
+    // fields, it has class MEMORY.
+    //
+    // Only need to check alignment of array base.
+    if (OffsetBase % Context.getTypeAlign(AT->getElementType()))
+      return;
+
+    // Otherwise implement simplified merge. We could be smarter about
+    // this, but it isn't worth it and would be harder to verify.
+    Current = NoClass;
+    uint64_t EltSize = Context.getTypeSize(AT->getElementType());
+    uint64_t ArraySize = AT->getSize().getZExtValue();
+    for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
+      Class FieldLo, FieldHi;
+      classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi);
+      Lo = merge(Lo, FieldLo);
+      Hi = merge(Hi, FieldHi);
+      if (Lo == Memory || Hi == Memory)
+        break;
+    }
+
+    // Do post merger cleanup (see below). Only case we worry about is Memory.
+    if (Hi == Memory)
+      Lo = Memory;
+    assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
+  } else if (const RecordType *RT = Ty->getAsRecordType()) {
+    uint64_t Size = Context.getTypeSize(Ty);
+
+    // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
+    // than two eightbytes, ..., it has class MEMORY.
+    if (Size > 128)
+      return;
+
+    const RecordDecl *RD = RT->getDecl();
+
+    // Assume variable sized types are passed in memory.
+    if (RD->hasFlexibleArrayMember())
+      return;
+
+    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
+
+    // Reset Lo class, this will be recomputed.
+    Current = NoClass;
+    unsigned idx = 0;
+    for (RecordDecl::field_iterator i = RD->field_begin(Context),
+           e = RD->field_end(Context); i != e; ++i, ++idx) {
+      uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
+      bool BitField = i->isBitField();
+
+      // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
+      // fields, it has class MEMORY.
+      //
+      // Note, skip this test for bit-fields, see below.
+      if (!BitField && Offset % Context.getTypeAlign(i->getType())) {
+        Lo = Memory;
+        return;
+      }
+
+      // Classify this field.
+      //
+      // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
+      // exceeds a single eightbyte, each is classified
+      // separately. Each eightbyte gets initialized to class
+      // NO_CLASS.
+      Class FieldLo, FieldHi;
+
+      // Bit-fields require special handling, they do not force the
+      // structure to be passed in memory even if unaligned, and
+      // therefore they can straddle an eightbyte.
+      if (BitField) {
+        // Ignore padding bit-fields.
+        if (i->isUnnamedBitfield())
+          continue;
+
+        uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
+        uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
+
+        uint64_t EB_Lo = Offset / 64;
+        uint64_t EB_Hi = (Offset + Size - 1) / 64;
+        FieldLo = FieldHi = NoClass;
+        if (EB_Lo) {
+          assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
+          FieldLo = NoClass;
+          FieldHi = Integer;
+        } else {
+          FieldLo = Integer;
+          FieldHi = EB_Hi ? Integer : NoClass;
+        }
+      } else
+        classify(i->getType(), Context, Offset, FieldLo, FieldHi);
+      Lo = merge(Lo, FieldLo);
+      Hi = merge(Hi, FieldHi);
+      if (Lo == Memory || Hi == Memory)
+        break;
+    }
+
+    // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
+    //
+    // (a) If one of the classes is MEMORY, the whole argument is
+    // passed in memory.
+    //
+    // (b) If SSEUP is not preceeded by SSE, it is converted to SSE.
+
+    // The first of these conditions is guaranteed by how we implement
+    // the merge (just bail).
+    //
+    // The second condition occurs in the case of unions; for example
+    // union { _Complex double; unsigned; }.
+    if (Hi == Memory)
+      Lo = Memory;
+    if (Hi == SSEUp && Lo != SSE)
+      Hi = SSE;
+  }
+}
+
+ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty,
+                                          const llvm::Type *CoerceTo,
+                                          ASTContext &Context) const {
+  if (CoerceTo == llvm::Type::Int64Ty) {
+    // Integer and pointer types will end up in a general purpose
+    // register.
+    if (Ty->isIntegralType() || Ty->isPointerType())
+      return ABIArgInfo::getDirect();
+
+  } else if (CoerceTo == llvm::Type::DoubleTy) {
+    // FIXME: It would probably be better to make CGFunctionInfo only map using
+    // canonical types than to canonize here.
+    QualType CTy = Context.getCanonicalType(Ty);
+
+    // Float and double end up in a single SSE reg.
+    if (CTy == Context.FloatTy || CTy == Context.DoubleTy)
+      return ABIArgInfo::getDirect();
+
+  }
+
+  return ABIArgInfo::getCoerce(CoerceTo);
+}
+
+ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
+                                            ASTContext &Context) const {
+  // If this is a scalar LLVM value then assume LLVM will pass it in the right
+  // place naturally.
+  if (!CodeGenFunction::hasAggregateLLVMType(Ty))
+    return ABIArgInfo::getDirect();
+
+  // FIXME: Set alignment correctly.
+  return ABIArgInfo::getIndirect(0);
+}
+
+ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy,
+                                            ASTContext &Context) const {
+  // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
+  // classification algorithm.
+  X86_64ABIInfo::Class Lo, Hi;
+  classify(RetTy, Context, 0, Lo, Hi);
+
+  // Check some invariants.
+  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
+  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
+  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
+
+  const llvm::Type *ResType = 0;
+  switch (Lo) {
+  case NoClass:
+    return ABIArgInfo::getIgnore();
+
+  case SSEUp:
+  case X87Up:
+    assert(0 && "Invalid classification for lo word.");
+
+    // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
+    // hidden argument.
+  case Memory:
+    return getIndirectResult(RetTy, Context);
+
+    // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
+    // available register of the sequence %rax, %rdx is used.
+  case Integer:
+    ResType = llvm::Type::Int64Ty; break;
+
+    // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
+    // available SSE register of the sequence %xmm0, %xmm1 is used.
+  case SSE:
+    ResType = llvm::Type::DoubleTy; break;
+
+    // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
+    // returned on the X87 stack in %st0 as 80-bit x87 number.
+  case X87:
+    ResType = llvm::Type::X86_FP80Ty; break;
+
+    // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
+    // part of the value is returned in %st0 and the imaginary part in
+    // %st1.
+  case ComplexX87:
+    assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
+    ResType = llvm::StructType::get(llvm::Type::X86_FP80Ty,
+                                    llvm::Type::X86_FP80Ty,
+                                    NULL);
+    break;
+  }
+
+  switch (Hi) {
+    // Memory was handled previously and X87 should
+    // never occur as a hi class.
+  case Memory:
+  case X87:
+    assert(0 && "Invalid classification for hi word.");
+
+  case ComplexX87: // Previously handled.
+  case NoClass: break;
+
+  case Integer:
+    ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL);
+    break;
+  case SSE:
+    ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
+    break;
+
+    // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
+    // is passed in the upper half of the last used SSE register.
+    //
+    // SSEUP should always be preceeded by SSE, just widen.
+  case SSEUp:
+    assert(Lo == SSE && "Unexpected SSEUp classification.");
+    ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2);
+    break;
+
+    // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
+    // returned together with the previous X87 value in %st0.
+  case X87Up:
+    // If X87Up is preceeded by X87, we don't need to do
+    // anything. However, in some cases with unions it may not be
+    // preceeded by X87. In such situations we follow gcc and pass the
+    // extra bits in an SSE reg.
+    if (Lo != X87)
+      ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
+    break;
+  }
+
+  return getCoerceResult(RetTy, ResType, Context);
+}
+
+ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context,
+                                               unsigned &neededInt,
+                                               unsigned &neededSSE) const {
+  X86_64ABIInfo::Class Lo, Hi;
+  classify(Ty, Context, 0, Lo, Hi);
+
+  // Check some invariants.
+  // FIXME: Enforce these by construction.
+  assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
+  assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification.");
+  assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
+
+  neededInt = 0;
+  neededSSE = 0;
+  const llvm::Type *ResType = 0;
+  switch (Lo) {
+  case NoClass:
+    return ABIArgInfo::getIgnore();
+
+    // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
+    // on the stack.
+  case Memory:
+
+    // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
+    // COMPLEX_X87, it is passed in memory.
+  case X87:
+  case ComplexX87:
+    return getIndirectResult(Ty, Context);
+
+  case SSEUp:
+  case X87Up:
+    assert(0 && "Invalid classification for lo word.");
+
+    // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
+    // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
+    // and %r9 is used.
+  case Integer:
+    ++neededInt;
+    ResType = llvm::Type::Int64Ty;
+    break;
+
+    // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
+    // available SSE register is used, the registers are taken in the
+    // order from %xmm0 to %xmm7.
+  case SSE:
+    ++neededSSE;
+    ResType = llvm::Type::DoubleTy;
+    break;
+  }
+
+  switch (Hi) {
+    // Memory was handled previously, ComplexX87 and X87 should
+    // never occur as hi classes, and X87Up must be preceed by X87,
+    // which is passed in memory.
+  case Memory:
+  case X87:
+  case ComplexX87:
+    assert(0 && "Invalid classification for hi word.");
+    break;
+
+  case NoClass: break;
+  case Integer:
+    ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL);
+    ++neededInt;
+    break;
+
+    // X87Up generally doesn't occur here (long double is passed in
+    // memory), except in situations involving unions.
+  case X87Up:
+  case SSE:
+    ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL);
+    ++neededSSE;
+    break;
+
+    // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
+    // eightbyte is passed in the upper half of the last used SSE
+    // register.
+  case SSEUp:
+    assert(Lo == SSE && "Unexpected SSEUp classification.");
+    ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2);
+    break;
+  }
+
+  return getCoerceResult(Ty, ResType, Context);
+}
+
+void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
+  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
+
+  // Keep track of the number of assigned registers.
+  unsigned freeIntRegs = 6, freeSSERegs = 8;
+
+  // If the return value is indirect, then the hidden argument is consuming one
+  // integer register.
+  if (FI.getReturnInfo().isIndirect())
+    --freeIntRegs;
+
+  // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
+  // get assigned (in left-to-right order) for passing as follows...
+  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+       it != ie; ++it) {
+    unsigned neededInt, neededSSE;
+    it->info = classifyArgumentType(it->type, Context, neededInt, neededSSE);
+
+    // AMD64-ABI 3.2.3p3: If there are no registers available for any
+    // eightbyte of an argument, the whole argument is passed on the
+    // stack. If registers have already been assigned for some
+    // eightbytes of such an argument, the assignments get reverted.
+    if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) {
+      freeIntRegs -= neededInt;
+      freeSSERegs -= neededSSE;
+    } else {
+      it->info = getIndirectResult(it->type, Context);
+    }
+  }
+}
+
+static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr,
+                                        QualType Ty,
+                                        CodeGenFunction &CGF) {
+  llvm::Value *overflow_arg_area_p =
+    CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
+  llvm::Value *overflow_arg_area =
+    CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
+
+  // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
+  // byte boundary if alignment needed by type exceeds 8 byte boundary.
+  uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
+  if (Align > 8) {
+    // Note that we follow the ABI & gcc here, even though the type
+    // could in theory have an alignment greater than 16. This case
+    // shouldn't ever matter in practice.
+
+    // overflow_arg_area = (overflow_arg_area + 15) & ~15;
+    llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, 15);
+    overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset);
+    llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area,
+                                                    llvm::Type::Int64Ty);
+    llvm::Value *Mask = llvm::ConstantInt::get(llvm::Type::Int64Ty, ~15LL);
+    overflow_arg_area =
+      CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask),
+                                 overflow_arg_area->getType(),
+                                 "overflow_arg_area.align");
+  }
+
+  // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
+  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
+  llvm::Value *Res =
+    CGF.Builder.CreateBitCast(overflow_arg_area,
+                              llvm::PointerType::getUnqual(LTy));
+
+  // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
+  // l->overflow_arg_area + sizeof(type).
+  // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
+  // an 8 byte boundary.
+
+  uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
+  llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
+                                               (SizeInBytes + 7)  & ~7);
+  overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
+                                            "overflow_arg_area.next");
+  CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
+
+  // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
+  return Res;
+}
+
+llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+                                      CodeGenFunction &CGF) const {
+  // Assume that va_list type is correct; should be pointer to LLVM type:
+  // struct {
+  //   i32 gp_offset;
+  //   i32 fp_offset;
+  //   i8* overflow_arg_area;
+  //   i8* reg_save_area;
+  // };
+  unsigned neededInt, neededSSE;
+  ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(),
+                                       neededInt, neededSSE);
+
+  // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
+  // in the registers. If not go to step 7.
+  if (!neededInt && !neededSSE)
+    return EmitVAArgFromMemory(VAListAddr, Ty, CGF);
+
+  // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
+  // general purpose registers needed to pass type and num_fp to hold
+  // the number of floating point registers needed.
+
+  // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
+  // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
+  // l->fp_offset > 304 - num_fp * 16 go to step 7.
+  //
+  // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
+  // register save space).
+
+  llvm::Value *InRegs = 0;
+  llvm::Value *gp_offset_p = 0, *gp_offset = 0;
+  llvm::Value *fp_offset_p = 0, *fp_offset = 0;
+  if (neededInt) {
+    gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
+    gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
+    InRegs =
+      CGF.Builder.CreateICmpULE(gp_offset,
+                                llvm::ConstantInt::get(llvm::Type::Int32Ty,
+                                                       48 - neededInt * 8),
+                                "fits_in_gp");
+  }
+
+  if (neededSSE) {
+    fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
+    fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
+    llvm::Value *FitsInFP =
+      CGF.Builder.CreateICmpULE(fp_offset,
+                                llvm::ConstantInt::get(llvm::Type::Int32Ty,
+                                                       176 - neededSSE * 16),
+                                "fits_in_fp");
+    InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
+  }
+
+  llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
+  llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
+  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
+  CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
+
+  // Emit code to load the value if it was passed in registers.
+
+  CGF.EmitBlock(InRegBlock);
+
+  // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
+  // an offset of l->gp_offset and/or l->fp_offset. This may require
+  // copying to a temporary location in case the parameter is passed
+  // in different register classes or requires an alignment greater
+  // than 8 for general purpose registers and 16 for XMM registers.
+  //
+  // FIXME: This really results in shameful code when we end up needing to
+  // collect arguments from different places; often what should result in a
+  // simple assembling of a structure from scattered addresses has many more
+  // loads than necessary. Can we clean this up?
+  const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
+  llvm::Value *RegAddr =
+    CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3),
+                           "reg_save_area");
+  if (neededInt && neededSSE) {
+    // FIXME: Cleanup.
+    assert(AI.isCoerce() && "Unexpected ABI info for mixed regs");
+    const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
+    llvm::Value *Tmp = CGF.CreateTempAlloca(ST);
+    assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
+    const llvm::Type *TyLo = ST->getElementType(0);
+    const llvm::Type *TyHi = ST->getElementType(1);
+    assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) &&
+           "Unexpected ABI info for mixed regs");
+    const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
+    const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
+    llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
+    llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
+    llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr;
+    llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr;
+    llvm::Value *V =
+      CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo));
+    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
+    V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi));
+    CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
+
+    RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy));
+  } else if (neededInt) {
+    RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset);
+    RegAddr = CGF.Builder.CreateBitCast(RegAddr,
+                                        llvm::PointerType::getUnqual(LTy));
+  } else {
+    if (neededSSE == 1) {
+      RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset);
+      RegAddr = CGF.Builder.CreateBitCast(RegAddr,
+                                          llvm::PointerType::getUnqual(LTy));
+    } else {
+      assert(neededSSE == 2 && "Invalid number of needed registers!");
+      // SSE registers are spaced 16 bytes apart in the register save
+      // area, we need to collect the two eightbytes together.
+      llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset);
+      llvm::Value *RegAddrHi =
+        CGF.Builder.CreateGEP(RegAddrLo,
+                              llvm::ConstantInt::get(llvm::Type::Int32Ty, 16));
+      const llvm::Type *DblPtrTy =
+        llvm::PointerType::getUnqual(llvm::Type::DoubleTy);
+      const llvm::StructType *ST = llvm::StructType::get(llvm::Type::DoubleTy,
+                                                         llvm::Type::DoubleTy,
+                                                         NULL);
+      llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST);
+      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo,
+                                                           DblPtrTy));
+      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
+      V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi,
+                                                           DblPtrTy));
+      CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
+      RegAddr = CGF.Builder.CreateBitCast(Tmp,
+                                          llvm::PointerType::getUnqual(LTy));
+    }
+  }
+
+  // AMD64-ABI 3.5.7p5: Step 5. Set:
+  // l->gp_offset = l->gp_offset + num_gp * 8
+  // l->fp_offset = l->fp_offset + num_fp * 16.
+  if (neededInt) {
+    llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
+                                                 neededInt * 8);
+    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
+                            gp_offset_p);
+  }
+  if (neededSSE) {
+    llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty,
+                                                 neededSSE * 16);
+    CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
+                            fp_offset_p);
+  }
+  CGF.EmitBranch(ContBlock);
+
+  // Emit code to load the value if it was passed in memory.
+
+  CGF.EmitBlock(InMemBlock);
+  llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF);
+
+  // Return the appropriate result.
+
+  CGF.EmitBlock(ContBlock);
+  llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(),
+                                                 "vaarg.addr");
+  ResAddr->reserveOperandSpace(2);
+  ResAddr->addIncoming(RegAddr, InRegBlock);
+  ResAddr->addIncoming(MemAddr, InMemBlock);
+
+  return ResAddr;
+}
+
+// ABI Info for PIC16
+class PIC16ABIInfo : public ABIInfo {
+  ABIArgInfo classifyReturnType(QualType RetTy,
+                                ASTContext &Context) const;
+
+  ABIArgInfo classifyArgumentType(QualType RetTy,
+                                  ASTContext &Context) const;
+
+  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
+    FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
+    for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+         it != ie; ++it)
+      it->info = classifyArgumentType(it->type, Context);
+  }
+
+  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+                                 CodeGenFunction &CGF) const;
+
+};
+
+ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy,
+                                              ASTContext &Context) const {
+  if (RetTy->isVoidType()) {
+    return ABIArgInfo::getIgnore();
+  } else {
+    return ABIArgInfo::getDirect();
+  }
+}
+
+ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty,
+                                                ASTContext &Context) const {
+  return ABIArgInfo::getDirect();
+}
+
+llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+                                       CodeGenFunction &CGF) const {
+  return 0;
+}
+
+class ARMABIInfo : public ABIInfo {
+  ABIArgInfo classifyReturnType(QualType RetTy,
+                                ASTContext &Context) const;
+
+  ABIArgInfo classifyArgumentType(QualType RetTy,
+                                  ASTContext &Context) const;
+
+  virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const;
+
+  virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+                                 CodeGenFunction &CGF) const;
+};
+
+void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const {
+  FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context);
+  for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
+       it != ie; ++it) {
+    it->info = classifyArgumentType(it->type, Context);
+  }
+}
+
+ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty,
+                                            ASTContext &Context) const {
+  if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
+    return ABIArgInfo::getDirect();
+  }
+  // FIXME: This is kind of nasty... but there isn't much choice because the ARM
+  // backend doesn't support byval.
+  // FIXME: This doesn't handle alignment > 64 bits.
+  const llvm::Type* ElemTy;
+  unsigned SizeRegs;
+  if (Context.getTypeAlign(Ty) > 32) {
+    ElemTy = llvm::Type::Int64Ty;
+    SizeRegs = (Context.getTypeSize(Ty) + 63) / 64;
+  } else {
+    ElemTy = llvm::Type::Int32Ty;
+    SizeRegs = (Context.getTypeSize(Ty) + 31) / 32;
+  }
+  std::vector<const llvm::Type*> LLVMFields;
+  LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs));
+  const llvm::Type* STy = llvm::StructType::get(LLVMFields, true);
+  return ABIArgInfo::getCoerce(STy);
+}
+
+ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy,
+                                          ASTContext &Context) const {
+  if (RetTy->isVoidType()) {
+    return ABIArgInfo::getIgnore();
+  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
+    // Aggregates <= 4 bytes are returned in r0; other aggregates
+    // are returned indirectly.
+    uint64_t Size = Context.getTypeSize(RetTy);
+    if (Size <= 32)
+      return ABIArgInfo::getCoerce(llvm::Type::Int32Ty);
+    return ABIArgInfo::getIndirect(0);
+  } else {
+    return ABIArgInfo::getDirect();
+  }
+}
+
+llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+                                      CodeGenFunction &CGF) const {
+  // FIXME: Need to handle alignment
+  const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
+  const llvm::Type *BPP = llvm::PointerType::getUnqual(BP);
+
+  CGBuilderTy &Builder = CGF.Builder;
+  llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP,
+                                                       "ap");
+  llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
+  llvm::Type *PTy =
+    llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
+  llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy);
+
+  uint64_t Offset =
+    llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4);
+  llvm::Value *NextAddr =
+    Builder.CreateGEP(Addr,
+                      llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset),
+                      "ap.next");
+  Builder.CreateStore(NextAddr, VAListAddrAsBPP);
+
+  return AddrTyped;
+}
+
+ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy,
+                                              ASTContext &Context) const {
+  if (RetTy->isVoidType()) {
+    return ABIArgInfo::getIgnore();
+  } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
+    return ABIArgInfo::getIndirect(0);
+  } else {
+    return ABIArgInfo::getDirect();
+  }
+}
+
+ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty,
+                                                ASTContext &Context) const {
+  if (CodeGenFunction::hasAggregateLLVMType(Ty)) {
+    return ABIArgInfo::getIndirect(0);
+  } else {
+    return ABIArgInfo::getDirect();
+  }
+}
+
+llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty,
+                                       CodeGenFunction &CGF) const {
+  return 0;
+}
+
+const ABIInfo &CodeGenTypes::getABIInfo() const {
+  if (TheABIInfo)
+    return *TheABIInfo;
+
+  // For now we just cache this in the CodeGenTypes and don't bother
+  // to free it.
+  const char *TargetPrefix = getContext().Target.getTargetPrefix();
+  if (strcmp(TargetPrefix, "x86") == 0) {
+    bool IsDarwin = strstr(getContext().Target.getTargetTriple(), "darwin");
+    switch (getContext().Target.getPointerWidth(0)) {
+    case 32:
+      return *(TheABIInfo = new X86_32ABIInfo(Context, IsDarwin));
+    case 64:
+      return *(TheABIInfo = new X86_64ABIInfo());
+    }
+  } else if (strcmp(TargetPrefix, "arm") == 0) {
+    // FIXME: Support for OABI?
+    return *(TheABIInfo = new ARMABIInfo());
+  } else if (strcmp(TargetPrefix, "pic16") == 0) {
+    return *(TheABIInfo = new PIC16ABIInfo());
+  }
+
+  return *(TheABIInfo = new DefaultABIInfo);
+}