| //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This coordinates the per-module state used while generating code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGDebugInfo.h" |
| #include "CodeGenModule.h" |
| #include "CodeGenFunction.h" |
| #include "CGObjCRuntime.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Module.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Analysis/Verifier.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| |
| CodeGenModule::CodeGenModule(ASTContext &C, const LangOptions &LO, |
| llvm::Module &M, const llvm::TargetData &TD, |
| Diagnostic &diags, bool GenerateDebugInfo) |
| : Context(C), Features(LO), TheModule(M), TheTargetData(TD), Diags(diags), |
| Types(C, M, TD), Runtime(0), MemCpyFn(0), MemMoveFn(0), MemSetFn(0), |
| CFConstantStringClassRef(0) { |
| |
| if (Features.ObjC1) { |
| if (Features.NeXTRuntime) { |
| Runtime = CreateMacObjCRuntime(*this); |
| } else { |
| Runtime = CreateGNUObjCRuntime(*this); |
| } |
| } |
| |
| // If debug info generation is enabled, create the CGDebugInfo object. |
| DebugInfo = GenerateDebugInfo ? new CGDebugInfo(this) : 0; |
| } |
| |
| CodeGenModule::~CodeGenModule() { |
| delete Runtime; |
| delete DebugInfo; |
| } |
| |
| void CodeGenModule::Release() { |
| EmitStatics(); |
| if (Runtime) |
| if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) |
| AddGlobalCtor(ObjCInitFunction); |
| EmitCtorList(GlobalCtors, "llvm.global_ctors"); |
| EmitCtorList(GlobalDtors, "llvm.global_dtors"); |
| EmitAnnotations(); |
| // Run the verifier to check that the generated code is consistent. |
| assert(!verifyModule(TheModule)); |
| } |
| |
| /// WarnUnsupported - Print out a warning that codegen doesn't support the |
| /// specified stmt yet. |
| void CodeGenModule::WarnUnsupported(const Stmt *S, const char *Type) { |
| unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Warning, |
| "cannot codegen this %0 yet"); |
| SourceRange Range = S->getSourceRange(); |
| std::string Msg = Type; |
| getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID, |
| &Msg, 1, &Range, 1); |
| } |
| |
| /// WarnUnsupported - Print out a warning that codegen doesn't support the |
| /// specified decl yet. |
| void CodeGenModule::WarnUnsupported(const Decl *D, const char *Type) { |
| unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Warning, |
| "cannot codegen this %0 yet"); |
| std::string Msg = Type; |
| getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID, |
| &Msg, 1); |
| } |
| |
| /// setVisibility - Set the visibility for the given LLVM GlobalValue |
| /// according to the given clang AST visibility value. |
| void CodeGenModule::setVisibility(llvm::GlobalValue *GV, |
| VisibilityAttr::VisibilityTypes Vis) { |
| switch (Vis) { |
| default: assert(0 && "Unknown visibility!"); |
| case VisibilityAttr::DefaultVisibility: |
| GV->setVisibility(llvm::GlobalValue::DefaultVisibility); |
| break; |
| case VisibilityAttr::HiddenVisibility: |
| GV->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| break; |
| case VisibilityAttr::ProtectedVisibility: |
| GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); |
| break; |
| } |
| } |
| |
| /// AddGlobalCtor - Add a function to the list that will be called before |
| /// main() runs. |
| void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { |
| // TODO: Type coercion of void()* types. |
| GlobalCtors.push_back(std::make_pair(Ctor, Priority)); |
| } |
| |
| /// AddGlobalDtor - Add a function to the list that will be called |
| /// when the module is unloaded. |
| void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { |
| // TODO: Type coercion of void()* types. |
| GlobalDtors.push_back(std::make_pair(Dtor, Priority)); |
| } |
| |
| void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { |
| // Ctor function type is void()*. |
| llvm::FunctionType* CtorFTy = |
| llvm::FunctionType::get(llvm::Type::VoidTy, |
| std::vector<const llvm::Type*>(), |
| false); |
| llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); |
| |
| // Get the type of a ctor entry, { i32, void ()* }. |
| llvm::StructType* CtorStructTy = |
| llvm::StructType::get(llvm::Type::Int32Ty, |
| llvm::PointerType::getUnqual(CtorFTy), NULL); |
| |
| // Construct the constructor and destructor arrays. |
| std::vector<llvm::Constant*> Ctors; |
| for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { |
| std::vector<llvm::Constant*> S; |
| S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); |
| S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); |
| Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); |
| } |
| |
| if (!Ctors.empty()) { |
| llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); |
| new llvm::GlobalVariable(AT, false, |
| llvm::GlobalValue::AppendingLinkage, |
| llvm::ConstantArray::get(AT, Ctors), |
| GlobalName, |
| &TheModule); |
| } |
| } |
| |
| void CodeGenModule::EmitAnnotations() { |
| if (Annotations.empty()) |
| return; |
| |
| // Create a new global variable for the ConstantStruct in the Module. |
| llvm::Constant *Array = |
| llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), |
| Annotations.size()), |
| Annotations); |
| llvm::GlobalValue *gv = |
| new llvm::GlobalVariable(Array->getType(), false, |
| llvm::GlobalValue::AppendingLinkage, Array, |
| "llvm.global.annotations", &TheModule); |
| gv->setSection("llvm.metadata"); |
| } |
| |
| bool hasAggregateLLVMType(QualType T) { |
| return !T->isRealType() && !T->isPointerLikeType() && |
| !T->isVoidType() && !T->isVectorType() && !T->isFunctionType(); |
| } |
| |
| void CodeGenModule::SetGlobalValueAttributes(const FunctionDecl *FD, |
| llvm::GlobalValue *GV) { |
| // TODO: Set up linkage and many other things. Note, this is a simple |
| // approximation of what we really want. |
| if (FD->getStorageClass() == FunctionDecl::Static) |
| GV->setLinkage(llvm::Function::InternalLinkage); |
| else if (FD->getAttr<DLLImportAttr>()) |
| GV->setLinkage(llvm::Function::DLLImportLinkage); |
| else if (FD->getAttr<DLLExportAttr>()) |
| GV->setLinkage(llvm::Function::DLLExportLinkage); |
| else if (FD->getAttr<WeakAttr>() || FD->isInline()) |
| GV->setLinkage(llvm::Function::WeakLinkage); |
| |
| if (const VisibilityAttr *attr = FD->getAttr<VisibilityAttr>()) |
| CodeGenModule::setVisibility(GV, attr->getVisibility()); |
| // FIXME: else handle -fvisibility |
| |
| if (const AsmLabelAttr *ALA = FD->getAttr<AsmLabelAttr>()) { |
| // Prefaced with special LLVM marker to indicate that the name |
| // should not be munged. |
| GV->setName("\01" + ALA->getLabel()); |
| } |
| } |
| |
| void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, |
| llvm::Function *F, |
| const llvm::FunctionType *FTy) { |
| unsigned FuncAttrs = 0; |
| if (FD->getAttr<NoThrowAttr>()) |
| FuncAttrs |= llvm::ParamAttr::NoUnwind; |
| if (FD->getAttr<NoReturnAttr>()) |
| FuncAttrs |= llvm::ParamAttr::NoReturn; |
| |
| llvm::SmallVector<llvm::ParamAttrsWithIndex, 8> ParamAttrList; |
| if (FuncAttrs) |
| ParamAttrList.push_back(llvm::ParamAttrsWithIndex::get(0, FuncAttrs)); |
| // Note that there is parallel code in CodeGenFunction::EmitCallExpr |
| bool AggregateReturn = hasAggregateLLVMType(FD->getResultType()); |
| if (AggregateReturn) |
| ParamAttrList.push_back( |
| llvm::ParamAttrsWithIndex::get(1, llvm::ParamAttr::StructRet)); |
| unsigned increment = AggregateReturn ? 2 : 1; |
| const FunctionTypeProto* FTP = dyn_cast<FunctionTypeProto>(FD->getType()); |
| if (FTP) { |
| for (unsigned i = 0; i < FTP->getNumArgs(); i++) { |
| QualType ParamType = FTP->getArgType(i); |
| unsigned ParamAttrs = 0; |
| if (ParamType->isRecordType()) |
| ParamAttrs |= llvm::ParamAttr::ByVal; |
| if (ParamType->isSignedIntegerType() && |
| ParamType->isPromotableIntegerType()) |
| ParamAttrs |= llvm::ParamAttr::SExt; |
| if (ParamType->isUnsignedIntegerType() && |
| ParamType->isPromotableIntegerType()) |
| ParamAttrs |= llvm::ParamAttr::ZExt; |
| if (ParamAttrs) |
| ParamAttrList.push_back(llvm::ParamAttrsWithIndex::get(i + increment, |
| ParamAttrs)); |
| } |
| } |
| |
| F->setParamAttrs(llvm::PAListPtr::get(ParamAttrList.begin(), |
| ParamAttrList.size())); |
| |
| // Set the appropriate calling convention for the Function. |
| if (FD->getAttr<FastCallAttr>()) |
| F->setCallingConv(llvm::CallingConv::Fast); |
| |
| SetGlobalValueAttributes(FD, F); |
| } |
| |
| void CodeGenModule::EmitObjCMethod(const ObjCMethodDecl *OMD) { |
| // If this is not a prototype, emit the body. |
| if (OMD->getBody()) |
| CodeGenFunction(*this).GenerateObjCMethod(OMD); |
| } |
| void CodeGenModule::EmitObjCProtocolImplementation(const ObjCProtocolDecl *PD){ |
| Runtime->GenerateProtocol(PD); |
| } |
| |
| void CodeGenModule::EmitObjCCategoryImpl(const ObjCCategoryImplDecl *OCD) { |
| Runtime->GenerateCategory(OCD); |
| } |
| |
| void |
| CodeGenModule::EmitObjCClassImplementation(const ObjCImplementationDecl *OID) { |
| Runtime->GenerateClass(OID); |
| } |
| |
| void CodeGenModule::EmitStatics() { |
| // Emit code for each used static decl encountered. Since a previously unused |
| // static decl may become used during the generation of code for a static |
| // function, iterate until no changes are made. |
| bool Changed; |
| do { |
| Changed = false; |
| for (unsigned i = 0, e = StaticDecls.size(); i != e; ++i) { |
| const ValueDecl *D = StaticDecls[i]; |
| |
| // Check if we have used a decl with the same name |
| // FIXME: The AST should have some sort of aggregate decls or |
| // global symbol map. |
| if (!GlobalDeclMap.count(D->getName())) |
| continue; |
| |
| // Emit the definition. |
| EmitGlobalDefinition(D); |
| |
| // Erase the used decl from the list. |
| StaticDecls[i] = StaticDecls.back(); |
| StaticDecls.pop_back(); |
| --i; |
| --e; |
| |
| // Remember that we made a change. |
| Changed = true; |
| } |
| } while (Changed); |
| } |
| |
| /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the |
| /// annotation information for a given GlobalValue. The annotation struct is |
| /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the |
| /// GlobalValue being annotated. The second field is the constant string |
| /// created from the AnnotateAttr's annotation. The third field is a constant |
| /// string containing the name of the translation unit. The fourth field is |
| /// the line number in the file of the annotated value declaration. |
| /// |
| /// FIXME: this does not unique the annotation string constants, as llvm-gcc |
| /// appears to. |
| /// |
| llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, |
| const AnnotateAttr *AA, |
| unsigned LineNo) { |
| llvm::Module *M = &getModule(); |
| |
| // get [N x i8] constants for the annotation string, and the filename string |
| // which are the 2nd and 3rd elements of the global annotation structure. |
| const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); |
| llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); |
| llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), |
| true); |
| |
| // Get the two global values corresponding to the ConstantArrays we just |
| // created to hold the bytes of the strings. |
| llvm::GlobalValue *annoGV = |
| new llvm::GlobalVariable(anno->getType(), false, |
| llvm::GlobalValue::InternalLinkage, anno, |
| GV->getName() + ".str", M); |
| // translation unit name string, emitted into the llvm.metadata section. |
| llvm::GlobalValue *unitGV = |
| new llvm::GlobalVariable(unit->getType(), false, |
| llvm::GlobalValue::InternalLinkage, unit, ".str", M); |
| |
| // Create the ConstantStruct that is the global annotion. |
| llvm::Constant *Fields[4] = { |
| llvm::ConstantExpr::getBitCast(GV, SBP), |
| llvm::ConstantExpr::getBitCast(annoGV, SBP), |
| llvm::ConstantExpr::getBitCast(unitGV, SBP), |
| llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) |
| }; |
| return llvm::ConstantStruct::get(Fields, 4, false); |
| } |
| |
| void CodeGenModule::EmitGlobal(const ValueDecl *Global) { |
| bool isDef, isStatic; |
| |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { |
| isDef = (FD->isThisDeclarationADefinition() || |
| FD->getAttr<AliasAttr>()); |
| isStatic = FD->getStorageClass() == FunctionDecl::Static; |
| } else if (const VarDecl *VD = cast<VarDecl>(Global)) { |
| assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); |
| |
| isDef = !(VD->getStorageClass() == VarDecl::Extern && VD->getInit() == 0); |
| isStatic = VD->getStorageClass() == VarDecl::Static; |
| } else { |
| assert(0 && "Invalid argument to EmitGlobal"); |
| return; |
| } |
| |
| // Forward declarations are emitted lazily on first use. |
| if (!isDef) |
| return; |
| |
| // If the global is a static, defer code generation until later so |
| // we can easily omit unused statics. |
| if (isStatic) { |
| StaticDecls.push_back(Global); |
| return; |
| } |
| |
| // Otherwise emit the definition. |
| EmitGlobalDefinition(Global); |
| } |
| |
| void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| EmitGlobalFunctionDefinition(FD); |
| } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| EmitGlobalVarDefinition(VD); |
| } else { |
| assert(0 && "Invalid argument to EmitGlobalDefinition()"); |
| } |
| } |
| |
| llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D) { |
| assert(D->hasGlobalStorage() && "Not a global variable"); |
| |
| QualType ASTTy = D->getType(); |
| const llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy); |
| const llvm::Type *PTy = llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); |
| |
| // Lookup the entry, lazily creating it if necessary. |
| llvm::GlobalValue *&Entry = GlobalDeclMap[D->getName()]; |
| if (!Entry) |
| Entry = new llvm::GlobalVariable(Ty, false, |
| llvm::GlobalValue::ExternalLinkage, |
| 0, D->getName(), &getModule(), 0, |
| ASTTy.getAddressSpace()); |
| |
| // Make sure the result is of the correct type. |
| return llvm::ConstantExpr::getBitCast(Entry, PTy); |
| } |
| |
| void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { |
| llvm::Constant *Init = 0; |
| QualType ASTTy = D->getType(); |
| const llvm::Type *VarTy = getTypes().ConvertTypeForMem(ASTTy); |
| |
| if (D->getInit() == 0) { |
| // This is a tentative definition; tentative definitions are |
| // implicitly initialized with { 0 } |
| const llvm::Type* InitTy; |
| if (ASTTy->isIncompleteArrayType()) { |
| // An incomplete array is normally [ TYPE x 0 ], but we need |
| // to fix it to [ TYPE x 1 ]. |
| const llvm::ArrayType* ATy = cast<llvm::ArrayType>(VarTy); |
| InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); |
| } else { |
| InitTy = VarTy; |
| } |
| Init = llvm::Constant::getNullValue(InitTy); |
| } else { |
| Init = EmitConstantExpr(D->getInit()); |
| } |
| const llvm::Type* InitType = Init->getType(); |
| |
| llvm::GlobalValue *&Entry = GlobalDeclMap[D->getName()]; |
| llvm::GlobalVariable *GV = cast_or_null<llvm::GlobalVariable>(Entry); |
| |
| if (!GV) { |
| GV = new llvm::GlobalVariable(InitType, false, |
| llvm::GlobalValue::ExternalLinkage, |
| 0, D->getName(), &getModule(), 0, |
| ASTTy.getAddressSpace()); |
| } else if (GV->getType() != |
| llvm::PointerType::get(InitType, ASTTy.getAddressSpace())) { |
| // We have a definition after a prototype with the wrong type. |
| // We must make a new GlobalVariable* and update everything that used OldGV |
| // (a declaration or tentative definition) with the new GlobalVariable* |
| // (which will be a definition). |
| // |
| // This happens if there is a prototype for a global (e.g. "extern int x[];") |
| // and then a definition of a different type (e.g. "int x[10];"). This also |
| // happens when an initializer has a different type from the type of the |
| // global (this happens with unions). |
| // |
| // FIXME: This also ends up happening if there's a definition followed by |
| // a tentative definition! (Although Sema rejects that construct |
| // at the moment.) |
| |
| // Save the old global |
| llvm::GlobalVariable *OldGV = GV; |
| |
| // Make a new global with the correct type |
| GV = new llvm::GlobalVariable(InitType, false, |
| llvm::GlobalValue::ExternalLinkage, |
| 0, D->getName(), &getModule(), 0, |
| ASTTy.getAddressSpace()); |
| // Steal the name of the old global |
| GV->takeName(OldGV); |
| |
| // Replace all uses of the old global with the new global |
| llvm::Constant *NewPtrForOldDecl = |
| llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); |
| OldGV->replaceAllUsesWith(NewPtrForOldDecl); |
| |
| // Erase the old global, since it is no longer used. |
| OldGV->eraseFromParent(); |
| } |
| |
| Entry = GV; |
| |
| if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { |
| SourceManager &SM = Context.getSourceManager(); |
| AddAnnotation(EmitAnnotateAttr(GV, AA, |
| SM.getLogicalLineNumber(D->getLocation()))); |
| } |
| |
| GV->setInitializer(Init); |
| |
| // FIXME: This is silly; getTypeAlign should just work for incomplete arrays |
| unsigned Align; |
| if (const IncompleteArrayType* IAT = |
| Context.getAsIncompleteArrayType(D->getType())) |
| Align = Context.getTypeAlign(IAT->getElementType()); |
| else |
| Align = Context.getTypeAlign(D->getType()); |
| if (const AlignedAttr* AA = D->getAttr<AlignedAttr>()) { |
| Align = std::max(Align, AA->getAlignment()); |
| } |
| GV->setAlignment(Align / 8); |
| |
| if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) |
| setVisibility(GV, attr->getVisibility()); |
| // FIXME: else handle -fvisibility |
| |
| if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) { |
| // Prefaced with special LLVM marker to indicate that the name |
| // should not be munged. |
| GV->setName("\01" + ALA->getLabel()); |
| } |
| |
| // Set the llvm linkage type as appropriate. |
| if (D->getStorageClass() == VarDecl::Static) |
| GV->setLinkage(llvm::Function::InternalLinkage); |
| else if (D->getAttr<DLLImportAttr>()) |
| GV->setLinkage(llvm::Function::DLLImportLinkage); |
| else if (D->getAttr<DLLExportAttr>()) |
| GV->setLinkage(llvm::Function::DLLExportLinkage); |
| else if (D->getAttr<WeakAttr>()) |
| GV->setLinkage(llvm::GlobalVariable::WeakLinkage); |
| else { |
| // FIXME: This isn't right. This should handle common linkage and other |
| // stuff. |
| switch (D->getStorageClass()) { |
| case VarDecl::Static: assert(0 && "This case handled above"); |
| case VarDecl::Auto: |
| case VarDecl::Register: |
| assert(0 && "Can't have auto or register globals"); |
| case VarDecl::None: |
| if (!D->getInit()) |
| GV->setLinkage(llvm::GlobalVariable::CommonLinkage); |
| break; |
| case VarDecl::Extern: |
| case VarDecl::PrivateExtern: |
| // todo: common |
| break; |
| } |
| } |
| |
| // Emit global variable debug information. |
| CGDebugInfo *DI = getDebugInfo(); |
| if(DI) { |
| if(D->getLocation().isValid()) |
| DI->setLocation(D->getLocation()); |
| DI->EmitGlobalVariable(GV, D); |
| } |
| } |
| |
| llvm::GlobalValue * |
| CodeGenModule::EmitForwardFunctionDefinition(const FunctionDecl *D) { |
| // FIXME: param attributes for sext/zext etc. |
| if (const AliasAttr *AA = D->getAttr<AliasAttr>()) { |
| assert(!D->getBody() && "Unexpected alias attr on function with body."); |
| |
| const std::string& aliaseeName = AA->getAliasee(); |
| llvm::Function *aliasee = getModule().getFunction(aliaseeName); |
| llvm::GlobalValue *alias = new llvm::GlobalAlias(aliasee->getType(), |
| llvm::Function::ExternalLinkage, |
| D->getName(), |
| aliasee, |
| &getModule()); |
| SetGlobalValueAttributes(D, alias); |
| return alias; |
| } else { |
| const llvm::Type *Ty = getTypes().ConvertType(D->getType()); |
| const llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); |
| llvm::Function *F = llvm::Function::Create(FTy, |
| llvm::Function::ExternalLinkage, |
| D->getName(), &getModule()); |
| |
| SetFunctionAttributes(D, F, FTy); |
| return F; |
| } |
| } |
| |
| llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D) { |
| QualType ASTTy = D->getType(); |
| const llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy); |
| const llvm::Type *PTy = llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); |
| |
| // Lookup the entry, lazily creating it if necessary. |
| llvm::GlobalValue *&Entry = GlobalDeclMap[D->getName()]; |
| if (!Entry) |
| Entry = EmitForwardFunctionDefinition(D); |
| |
| return llvm::ConstantExpr::getBitCast(Entry, PTy); |
| } |
| |
| void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { |
| llvm::GlobalValue *&Entry = GlobalDeclMap[D->getName()]; |
| if (!Entry) { |
| Entry = EmitForwardFunctionDefinition(D); |
| } else { |
| // If the types mismatch then we have to rewrite the definition. |
| const llvm::Type *Ty = getTypes().ConvertType(D->getType()); |
| if (Entry->getType() != llvm::PointerType::getUnqual(Ty)) { |
| // Otherwise, we have a definition after a prototype with the wrong type. |
| // F is the Function* for the one with the wrong type, we must make a new |
| // Function* and update everything that used F (a declaration) with the new |
| // Function* (which will be a definition). |
| // |
| // This happens if there is a prototype for a function (e.g. "int f()") and |
| // then a definition of a different type (e.g. "int f(int x)"). Start by |
| // making a new function of the correct type, RAUW, then steal the name. |
| llvm::GlobalValue *NewFn = EmitForwardFunctionDefinition(D); |
| NewFn->takeName(Entry); |
| |
| // Replace uses of F with the Function we will endow with a body. |
| llvm::Constant *NewPtrForOldDecl = |
| llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); |
| Entry->replaceAllUsesWith(NewPtrForOldDecl); |
| |
| // Ok, delete the old function now, which is dead. |
| // FIXME: Add GlobalValue->eraseFromParent(). |
| assert(Entry->isDeclaration() && "Shouldn't replace non-declaration"); |
| if (llvm::Function *F = dyn_cast<llvm::Function>(Entry)) { |
| F->eraseFromParent(); |
| } else if (llvm::GlobalAlias *GA = dyn_cast<llvm::GlobalAlias>(Entry)) { |
| GA->eraseFromParent(); |
| } else { |
| assert(0 && "Invalid global variable type."); |
| } |
| |
| Entry = NewFn; |
| } |
| } |
| |
| if (D->getAttr<AliasAttr>()) { |
| ; |
| } else { |
| llvm::Function *Fn = cast<llvm::Function>(Entry); |
| CodeGenFunction(*this).GenerateCode(D, Fn); |
| |
| // Set attributes specific to definition. |
| // FIXME: This needs to be cleaned up by clearly emitting the |
| // declaration / definition at separate times. |
| if (!Features.Exceptions) |
| Fn->addParamAttr(0, llvm::ParamAttr::NoUnwind); |
| |
| if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) { |
| AddGlobalCtor(Fn, CA->getPriority()); |
| } else if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) { |
| AddGlobalDtor(Fn, DA->getPriority()); |
| } |
| } |
| } |
| |
| void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { |
| // Make sure that this type is translated. |
| Types.UpdateCompletedType(TD); |
| } |
| |
| |
| /// getBuiltinLibFunction |
| llvm::Function *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { |
| if (BuiltinID > BuiltinFunctions.size()) |
| BuiltinFunctions.resize(BuiltinID); |
| |
| // Cache looked up functions. Since builtin id #0 is invalid we don't reserve |
| // a slot for it. |
| assert(BuiltinID && "Invalid Builtin ID"); |
| llvm::Function *&FunctionSlot = BuiltinFunctions[BuiltinID-1]; |
| if (FunctionSlot) |
| return FunctionSlot; |
| |
| assert(Context.BuiltinInfo.isLibFunction(BuiltinID) && "isn't a lib fn"); |
| |
| // Get the name, skip over the __builtin_ prefix. |
| const char *Name = Context.BuiltinInfo.GetName(BuiltinID)+10; |
| |
| // Get the type for the builtin. |
| QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context); |
| const llvm::FunctionType *Ty = |
| cast<llvm::FunctionType>(getTypes().ConvertType(Type)); |
| |
| // FIXME: This has a serious problem with code like this: |
| // void abs() {} |
| // ... __builtin_abs(x); |
| // The two versions of abs will collide. The fix is for the builtin to win, |
| // and for the existing one to be turned into a constantexpr cast of the |
| // builtin. In the case where the existing one is a static function, it |
| // should just be renamed. |
| if (llvm::Function *Existing = getModule().getFunction(Name)) { |
| if (Existing->getFunctionType() == Ty && Existing->hasExternalLinkage()) |
| return FunctionSlot = Existing; |
| assert(Existing == 0 && "FIXME: Name collision"); |
| } |
| |
| // FIXME: param attributes for sext/zext etc. |
| return FunctionSlot = |
| llvm::Function::Create(Ty, llvm::Function::ExternalLinkage, Name, |
| &getModule()); |
| } |
| |
| llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, |
| unsigned NumTys) { |
| return llvm::Intrinsic::getDeclaration(&getModule(), |
| (llvm::Intrinsic::ID)IID, Tys, NumTys); |
| } |
| |
| llvm::Function *CodeGenModule::getMemCpyFn() { |
| if (MemCpyFn) return MemCpyFn; |
| llvm::Intrinsic::ID IID; |
| switch (Context.Target.getPointerWidth(0)) { |
| default: assert(0 && "Unknown ptr width"); |
| case 32: IID = llvm::Intrinsic::memcpy_i32; break; |
| case 64: IID = llvm::Intrinsic::memcpy_i64; break; |
| } |
| return MemCpyFn = getIntrinsic(IID); |
| } |
| |
| llvm::Function *CodeGenModule::getMemMoveFn() { |
| if (MemMoveFn) return MemMoveFn; |
| llvm::Intrinsic::ID IID; |
| switch (Context.Target.getPointerWidth(0)) { |
| default: assert(0 && "Unknown ptr width"); |
| case 32: IID = llvm::Intrinsic::memmove_i32; break; |
| case 64: IID = llvm::Intrinsic::memmove_i64; break; |
| } |
| return MemMoveFn = getIntrinsic(IID); |
| } |
| |
| llvm::Function *CodeGenModule::getMemSetFn() { |
| if (MemSetFn) return MemSetFn; |
| llvm::Intrinsic::ID IID; |
| switch (Context.Target.getPointerWidth(0)) { |
| default: assert(0 && "Unknown ptr width"); |
| case 32: IID = llvm::Intrinsic::memset_i32; break; |
| case 64: IID = llvm::Intrinsic::memset_i64; break; |
| } |
| return MemSetFn = getIntrinsic(IID); |
| } |
| |
| // FIXME: This needs moving into an Apple Objective-C runtime class |
| llvm::Constant *CodeGenModule:: |
| GetAddrOfConstantCFString(const std::string &str) { |
| llvm::StringMapEntry<llvm::Constant *> &Entry = |
| CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); |
| |
| if (Entry.getValue()) |
| return Entry.getValue(); |
| |
| std::vector<llvm::Constant*> Fields; |
| |
| if (!CFConstantStringClassRef) { |
| const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); |
| Ty = llvm::ArrayType::get(Ty, 0); |
| |
| CFConstantStringClassRef = |
| new llvm::GlobalVariable(Ty, false, |
| llvm::GlobalVariable::ExternalLinkage, 0, |
| "__CFConstantStringClassReference", |
| &getModule()); |
| } |
| |
| // Class pointer. |
| llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); |
| llvm::Constant *Zeros[] = { Zero, Zero }; |
| llvm::Constant *C = |
| llvm::ConstantExpr::getGetElementPtr(CFConstantStringClassRef, Zeros, 2); |
| Fields.push_back(C); |
| |
| // Flags. |
| const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); |
| Fields.push_back(llvm::ConstantInt::get(Ty, 1992)); |
| |
| // String pointer. |
| C = llvm::ConstantArray::get(str); |
| C = new llvm::GlobalVariable(C->getType(), true, |
| llvm::GlobalValue::InternalLinkage, |
| C, ".str", &getModule()); |
| |
| C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2); |
| Fields.push_back(C); |
| |
| // String length. |
| Ty = getTypes().ConvertType(getContext().LongTy); |
| Fields.push_back(llvm::ConstantInt::get(Ty, str.length())); |
| |
| // The struct. |
| Ty = getTypes().ConvertType(getContext().getCFConstantStringType()); |
| C = llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Fields); |
| llvm::GlobalVariable *GV = |
| new llvm::GlobalVariable(C->getType(), true, |
| llvm::GlobalVariable::InternalLinkage, |
| C, "", &getModule()); |
| GV->setSection("__DATA,__cfstring"); |
| Entry.setValue(GV); |
| return GV; |
| } |
| |
| /// GetStringForStringLiteral - Return the appropriate bytes for a |
| /// string literal, properly padded to match the literal type. |
| std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { |
| assert(!E->isWide() && "FIXME: Wide strings not supported yet!"); |
| const char *StrData = E->getStrData(); |
| unsigned Len = E->getByteLength(); |
| |
| const ConstantArrayType *CAT = |
| getContext().getAsConstantArrayType(E->getType()); |
| assert(CAT && "String isn't pointer or array!"); |
| |
| // Resize the string to the right size |
| // FIXME: What about wchar_t strings? |
| std::string Str(StrData, StrData+Len); |
| uint64_t RealLen = CAT->getSize().getZExtValue(); |
| Str.resize(RealLen, '\0'); |
| |
| return Str; |
| } |
| |
| /// GetAddrOfConstantStringFromLiteral - Return a pointer to a |
| /// constant array for the given string literal. |
| llvm::Constant * |
| CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { |
| // FIXME: This can be more efficient. |
| return GetAddrOfConstantString(GetStringForStringLiteral(S)); |
| } |
| |
| /// GenerateWritableString -- Creates storage for a string literal. |
| static llvm::Constant *GenerateStringLiteral(const std::string &str, |
| bool constant, |
| CodeGenModule &CGM) { |
| // Create Constant for this string literal. Don't add a '\0'. |
| llvm::Constant *C = llvm::ConstantArray::get(str, false); |
| |
| // Create a global variable for this string |
| C = new llvm::GlobalVariable(C->getType(), constant, |
| llvm::GlobalValue::InternalLinkage, |
| C, ".str", &CGM.getModule()); |
| |
| return C; |
| } |
| |
| /// GetAddrOfConstantString - Returns a pointer to a character array |
| /// containing the literal. This contents are exactly that of the |
| /// given string, i.e. it will not be null terminated automatically; |
| /// see GetAddrOfConstantCString. Note that whether the result is |
| /// actually a pointer to an LLVM constant depends on |
| /// Feature.WriteableStrings. |
| /// |
| /// The result has pointer to array type. |
| llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str) { |
| // Don't share any string literals if writable-strings is turned on. |
| if (Features.WritableStrings) |
| return GenerateStringLiteral(str, false, *this); |
| |
| llvm::StringMapEntry<llvm::Constant *> &Entry = |
| ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); |
| |
| if (Entry.getValue()) |
| return Entry.getValue(); |
| |
| // Create a global variable for this. |
| llvm::Constant *C = GenerateStringLiteral(str, true, *this); |
| Entry.setValue(C); |
| return C; |
| } |
| |
| /// GetAddrOfConstantCString - Returns a pointer to a character |
| /// array containing the literal and a terminating '\-' |
| /// character. The result has pointer to array type. |
| llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str) { |
| return GetAddrOfConstantString(str + "\0"); |
| } |