blob: 21b6d46a245e676ba2bf28fbda35800a42f23aee [file] [log] [blame]
// RUN: %clang_cc1 -analyze -analyzer-experimental-internal-checks -analyzer-check-objc-mem -analyzer-experimental-checks -analyzer-store=region -verify %s
typedef __typeof(sizeof(int)) size_t;
void *malloc(size_t);
void free(void *);
void *realloc(void *ptr, size_t size);
void *calloc(size_t nmemb, size_t size);
void f1() {
int *p = malloc(10);
return; // expected-warning{{Allocated memory never released. Potential memory leak.}}
}
void f1_b() {
int *p = malloc(10); // expected-warning{{Allocated memory never released. Potential memory leak.}}
}
void f2() {
int *p = malloc(10);
free(p);
free(p); // expected-warning{{Try to free a memory block that has been released}}
}
// This case tests that storing malloc'ed memory to a static variable which is
// then returned is not leaked. In the absence of known contracts for functions
// or inter-procedural analysis, this is a conservative answer.
int *f3() {
static int *p = 0;
p = malloc(10);
return p; // no-warning
}
// This case tests that storing malloc'ed memory to a static global variable
// which is then returned is not leaked. In the absence of known contracts for
// functions or inter-procedural analysis, this is a conservative answer.
static int *p_f4 = 0;
int *f4() {
p_f4 = malloc(10);
return p_f4; // no-warning
}
int *f5() {
int *q = malloc(10);
q = realloc(q, 20);
return q; // no-warning
}
void f6() {
int *p = malloc(10);
if (!p)
return; // no-warning
else
free(p);
}
char *doit2();
void pr6069() {
char *buf = doit2();
free(buf);
}
void pr6293() {
free(0);
}
void f7() {
char *x = (char*) malloc(4);
free(x);
x[0] = 'a'; // expected-warning{{Use dynamically allocated memory after it is freed.}}
}