Revert changes from r170428, as I accidentally changed the line endings of these files to Windows style.

git-svn-id: https://llvm.org/svn/llvm-project/cfe/trunk@170431 91177308-0d34-0410-b5e6-96231b3b80d8
diff --git a/lib/AST/ItaniumMangle.cpp b/lib/AST/ItaniumMangle.cpp
index 65907f9..566a389 100644
--- a/lib/AST/ItaniumMangle.cpp
+++ b/lib/AST/ItaniumMangle.cpp
@@ -1,3580 +1,3574 @@
-//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//

-//

-//                     The LLVM Compiler Infrastructure

-//

-// This file is distributed under the University of Illinois Open Source

-// License. See LICENSE.TXT for details.

-//

-//===----------------------------------------------------------------------===//

-//

-// Implements C++ name mangling according to the Itanium C++ ABI,

-// which is used in GCC 3.2 and newer (and many compilers that are

-// ABI-compatible with GCC):

-//

-//   http://www.codesourcery.com/public/cxx-abi/abi.html

-//

-//===----------------------------------------------------------------------===//

-#include "clang/AST/Mangle.h"

-#include "clang/AST/ASTContext.h"

-#include "clang/AST/Attr.h"

-#include "clang/AST/Decl.h"

-#include "clang/AST/DeclCXX.h"

-#include "clang/AST/DeclObjC.h"

-#include "clang/AST/DeclTemplate.h"

-#include "clang/AST/ExprCXX.h"

-#include "clang/AST/ExprObjC.h"

-#include "clang/AST/TypeLoc.h"

-#include "clang/Basic/ABI.h"

-#include "clang/Basic/SourceManager.h"

-#include "clang/Basic/TargetInfo.h"

-#include "llvm/ADT/StringExtras.h"

-#include "llvm/Support/ErrorHandling.h"

-#include "llvm/Support/raw_ostream.h"

-

-#define MANGLE_CHECKER 0

-

-#if MANGLE_CHECKER

-#include <cxxabi.h>

-#endif

-

-using namespace clang;

-

-namespace {

-

-/// \brief Retrieve the declaration context that should be used when mangling 

-/// the given declaration.

-static const DeclContext *getEffectiveDeclContext(const Decl *D) {

-  // The ABI assumes that lambda closure types that occur within 

-  // default arguments live in the context of the function. However, due to

-  // the way in which Clang parses and creates function declarations, this is

-  // not the case: the lambda closure type ends up living in the context 

-  // where the function itself resides, because the function declaration itself

-  // had not yet been created. Fix the context here.

-  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {

-    if (RD->isLambda())

-      if (ParmVarDecl *ContextParam

-            = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))

-        return ContextParam->getDeclContext();

-  }

-  

-  return D->getDeclContext();

-}

-

-static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {

-  return getEffectiveDeclContext(cast<Decl>(DC));

-}

-  

-static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {

-  const DeclContext *DC = dyn_cast<DeclContext>(ND);

-  if (!DC)

-    DC = getEffectiveDeclContext(ND);

-  while (!DC->isNamespace() && !DC->isTranslationUnit()) {

-    const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC));

-    if (isa<FunctionDecl>(Parent))

-      return dyn_cast<CXXRecordDecl>(DC);

-    DC = Parent;

-  }

-  return 0;

-}

-

-static const FunctionDecl *getStructor(const FunctionDecl *fn) {

-  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())

-    return ftd->getTemplatedDecl();

-

-  return fn;

-}

-

-static const NamedDecl *getStructor(const NamedDecl *decl) {

-  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);

-  return (fn ? getStructor(fn) : decl);

-}

-                                                    

-static const unsigned UnknownArity = ~0U;

-

-class ItaniumMangleContext : public MangleContext {

-  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;

-  unsigned Discriminator;

-  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;

-  

-public:

-  explicit ItaniumMangleContext(ASTContext &Context,

-                                DiagnosticsEngine &Diags)

-    : MangleContext(Context, Diags) { }

-

-  uint64_t getAnonymousStructId(const TagDecl *TD) {

-    std::pair<llvm::DenseMap<const TagDecl *,

-      uint64_t>::iterator, bool> Result =

-      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));

-    return Result.first->second;

-  }

-

-  void startNewFunction() {

-    MangleContext::startNewFunction();

-    mangleInitDiscriminator();

-  }

-

-  /// @name Mangler Entry Points

-  /// @{

-

-  bool shouldMangleDeclName(const NamedDecl *D);

-  void mangleName(const NamedDecl *D, raw_ostream &);

-  void mangleThunk(const CXXMethodDecl *MD,

-                   const ThunkInfo &Thunk,

-                   raw_ostream &);

-  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,

-                          const ThisAdjustment &ThisAdjustment,

-                          raw_ostream &);

-  void mangleReferenceTemporary(const VarDecl *D,

-                                raw_ostream &);

-  void mangleCXXVTable(const CXXRecordDecl *RD,

-                       raw_ostream &);

-  void mangleCXXVTT(const CXXRecordDecl *RD,

-                    raw_ostream &);

-  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,

-                           const CXXRecordDecl *Type,

-                           raw_ostream &);

-  void mangleCXXRTTI(QualType T, raw_ostream &);

-  void mangleCXXRTTIName(QualType T, raw_ostream &);

-  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,

-                     raw_ostream &);

-  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,

-                     raw_ostream &);

-

-  void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);

-

-  void mangleInitDiscriminator() {

-    Discriminator = 0;

-  }

-

-  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {

-    // Lambda closure types with external linkage (indicated by a 

-    // non-zero lambda mangling number) have their own numbering scheme, so

-    // they do not need a discriminator.

-    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))

-      if (RD->isLambda() && RD->getLambdaManglingNumber() > 0)

-        return false;

-        

-    unsigned &discriminator = Uniquifier[ND];

-    if (!discriminator)

-      discriminator = ++Discriminator;

-    if (discriminator == 1)

-      return false;

-    disc = discriminator-2;

-    return true;

-  }

-  /// @}

-};

-

-/// CXXNameMangler - Manage the mangling of a single name.

-class CXXNameMangler {

-  ItaniumMangleContext &Context;

-  raw_ostream &Out;

-

-  /// The "structor" is the top-level declaration being mangled, if

-  /// that's not a template specialization; otherwise it's the pattern

-  /// for that specialization.

-  const NamedDecl *Structor;

-  unsigned StructorType;

-

-  /// SeqID - The next subsitution sequence number.

-  unsigned SeqID;

-

-  class FunctionTypeDepthState {

-    unsigned Bits;

-

-    enum { InResultTypeMask = 1 };

-

-  public:

-    FunctionTypeDepthState() : Bits(0) {}

-

-    /// The number of function types we're inside.

-    unsigned getDepth() const {

-      return Bits >> 1;

-    }

-

-    /// True if we're in the return type of the innermost function type.

-    bool isInResultType() const {

-      return Bits & InResultTypeMask;

-    }

-

-    FunctionTypeDepthState push() {

-      FunctionTypeDepthState tmp = *this;

-      Bits = (Bits & ~InResultTypeMask) + 2;

-      return tmp;

-    }

-

-    void enterResultType() {

-      Bits |= InResultTypeMask;

-    }

-

-    void leaveResultType() {

-      Bits &= ~InResultTypeMask;

-    }

-

-    void pop(FunctionTypeDepthState saved) {

-      assert(getDepth() == saved.getDepth() + 1);

-      Bits = saved.Bits;

-    }

-

-  } FunctionTypeDepth;

-

-  llvm::DenseMap<uintptr_t, unsigned> Substitutions;

-

-  ASTContext &getASTContext() const { return Context.getASTContext(); }

-

-public:

-  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,

-                 const NamedDecl *D = 0)

-    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),

-      SeqID(0) {

-    // These can't be mangled without a ctor type or dtor type.

-    assert(!D || (!isa<CXXDestructorDecl>(D) &&

-                  !isa<CXXConstructorDecl>(D)));

-  }

-  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,

-                 const CXXConstructorDecl *D, CXXCtorType Type)

-    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),

-      SeqID(0) { }

-  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,

-                 const CXXDestructorDecl *D, CXXDtorType Type)

-    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),

-      SeqID(0) { }

-

-#if MANGLE_CHECKER

-  ~CXXNameMangler() {

-    if (Out.str()[0] == '\01')

-      return;

-

-    int status = 0;

-    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);

-    assert(status == 0 && "Could not demangle mangled name!");

-    free(result);

-  }

-#endif

-  raw_ostream &getStream() { return Out; }

-

-  void mangle(const NamedDecl *D, StringRef Prefix = "_Z");

-  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);

-  void mangleNumber(const llvm::APSInt &I);

-  void mangleNumber(int64_t Number);

-  void mangleFloat(const llvm::APFloat &F);

-  void mangleFunctionEncoding(const FunctionDecl *FD);

-  void mangleName(const NamedDecl *ND);

-  void mangleType(QualType T);

-  void mangleNameOrStandardSubstitution(const NamedDecl *ND);

-  

-private:

-  bool mangleSubstitution(const NamedDecl *ND);

-  bool mangleSubstitution(QualType T);

-  bool mangleSubstitution(TemplateName Template);

-  bool mangleSubstitution(uintptr_t Ptr);

-

-  void mangleExistingSubstitution(QualType type);

-  void mangleExistingSubstitution(TemplateName name);

-

-  bool mangleStandardSubstitution(const NamedDecl *ND);

-

-  void addSubstitution(const NamedDecl *ND) {

-    ND = cast<NamedDecl>(ND->getCanonicalDecl());

-

-    addSubstitution(reinterpret_cast<uintptr_t>(ND));

-  }

-  void addSubstitution(QualType T);

-  void addSubstitution(TemplateName Template);

-  void addSubstitution(uintptr_t Ptr);

-

-  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,

-                              NamedDecl *firstQualifierLookup,

-                              bool recursive = false);

-  void mangleUnresolvedName(NestedNameSpecifier *qualifier,

-                            NamedDecl *firstQualifierLookup,

-                            DeclarationName name,

-                            unsigned KnownArity = UnknownArity);

-

-  void mangleName(const TemplateDecl *TD,

-                  const TemplateArgument *TemplateArgs,

-                  unsigned NumTemplateArgs);

-  void mangleUnqualifiedName(const NamedDecl *ND) {

-    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);

-  }

-  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,

-                             unsigned KnownArity);

-  void mangleUnscopedName(const NamedDecl *ND);

-  void mangleUnscopedTemplateName(const TemplateDecl *ND);

-  void mangleUnscopedTemplateName(TemplateName);

-  void mangleSourceName(const IdentifierInfo *II);

-  void mangleLocalName(const NamedDecl *ND);

-  void mangleLambda(const CXXRecordDecl *Lambda);

-  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,

-                        bool NoFunction=false);

-  void mangleNestedName(const TemplateDecl *TD,

-                        const TemplateArgument *TemplateArgs,

-                        unsigned NumTemplateArgs);

-  void manglePrefix(NestedNameSpecifier *qualifier);

-  void manglePrefix(const DeclContext *DC, bool NoFunction=false);

-  void manglePrefix(QualType type);

-  void mangleTemplatePrefix(const TemplateDecl *ND);

-  void mangleTemplatePrefix(TemplateName Template);

-  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);

-  void mangleQualifiers(Qualifiers Quals);

-  void mangleRefQualifier(RefQualifierKind RefQualifier);

-

-  void mangleObjCMethodName(const ObjCMethodDecl *MD);

-

-  // Declare manglers for every type class.

-#define ABSTRACT_TYPE(CLASS, PARENT)

-#define NON_CANONICAL_TYPE(CLASS, PARENT)

-#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);

-#include "clang/AST/TypeNodes.def"

-

-  void mangleType(const TagType*);

-  void mangleType(TemplateName);

-  void mangleBareFunctionType(const FunctionType *T,

-                              bool MangleReturnType);

-  void mangleNeonVectorType(const VectorType *T);

-

-  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);

-  void mangleMemberExpr(const Expr *base, bool isArrow,

-                        NestedNameSpecifier *qualifier,

-                        NamedDecl *firstQualifierLookup,

-                        DeclarationName name,

-                        unsigned knownArity);

-  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);

-  void mangleCXXCtorType(CXXCtorType T);

-  void mangleCXXDtorType(CXXDtorType T);

-

-  void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);

-  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,

-                          unsigned NumTemplateArgs);

-  void mangleTemplateArgs(const TemplateArgumentList &AL);

-  void mangleTemplateArg(TemplateArgument A);

-

-  void mangleTemplateParameter(unsigned Index);

-

-  void mangleFunctionParam(const ParmVarDecl *parm);

-};

-

-}

-

-static bool isInCLinkageSpecification(const Decl *D) {

-  D = D->getCanonicalDecl();

-  for (const DeclContext *DC = getEffectiveDeclContext(D);

-       !DC->isTranslationUnit(); DC = getEffectiveParentContext(DC)) {

-    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))

-      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;

-  }

-

-  return false;

-}

-

-bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {

-  // In C, functions with no attributes never need to be mangled. Fastpath them.

-  if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())

-    return false;

-

-  // Any decl can be declared with __asm("foo") on it, and this takes precedence

-  // over all other naming in the .o file.

-  if (D->hasAttr<AsmLabelAttr>())

-    return true;

-

-  // Clang's "overloadable" attribute extension to C/C++ implies name mangling

-  // (always) as does passing a C++ member function and a function

-  // whose name is not a simple identifier.

-  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);

-  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||

-             !FD->getDeclName().isIdentifier()))

-    return true;

-

-  // Otherwise, no mangling is done outside C++ mode.

-  if (!getASTContext().getLangOpts().CPlusPlus)

-    return false;

-

-  // Variables at global scope with non-internal linkage are not mangled

-  if (!FD) {

-    const DeclContext *DC = getEffectiveDeclContext(D);

-    // Check for extern variable declared locally.

-    if (DC->isFunctionOrMethod() && D->hasLinkage())

-      while (!DC->isNamespace() && !DC->isTranslationUnit())

-        DC = getEffectiveParentContext(DC);

-    if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)

-      return false;

-  }

-

-  // Class members are always mangled.

-  if (getEffectiveDeclContext(D)->isRecord())

-    return true;

-

-  // C functions and "main" are not mangled.

-  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))

-    return false;

-

-  return true;

-}

-

-void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {

-  // Any decl can be declared with __asm("foo") on it, and this takes precedence

-  // over all other naming in the .o file.

-  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {

-    // If we have an asm name, then we use it as the mangling.

-

-    // Adding the prefix can cause problems when one file has a "foo" and

-    // another has a "\01foo". That is known to happen on ELF with the

-    // tricks normally used for producing aliases (PR9177). Fortunately the

-    // llvm mangler on ELF is a nop, so we can just avoid adding the \01

-    // marker.  We also avoid adding the marker if this is an alias for an

-    // LLVM intrinsic.

-    StringRef UserLabelPrefix =

-      getASTContext().getTargetInfo().getUserLabelPrefix();

-    if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))

-      Out << '\01';  // LLVM IR Marker for __asm("foo")

-

-    Out << ALA->getLabel();

-    return;

-  }

-

-  // <mangled-name> ::= _Z <encoding>

-  //            ::= <data name>

-  //            ::= <special-name>

-  Out << Prefix;

-  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))

-    mangleFunctionEncoding(FD);

-  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))

-    mangleName(VD);

-  else

-    mangleName(cast<FieldDecl>(D));

-}

-

-void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {

-  // <encoding> ::= <function name> <bare-function-type>

-  mangleName(FD);

-

-  // Don't mangle in the type if this isn't a decl we should typically mangle.

-  if (!Context.shouldMangleDeclName(FD))

-    return;

-

-  // Whether the mangling of a function type includes the return type depends on

-  // the context and the nature of the function. The rules for deciding whether

-  // the return type is included are:

-  //

-  //   1. Template functions (names or types) have return types encoded, with

-  //   the exceptions listed below.

-  //   2. Function types not appearing as part of a function name mangling,

-  //   e.g. parameters, pointer types, etc., have return type encoded, with the

-  //   exceptions listed below.

-  //   3. Non-template function names do not have return types encoded.

-  //

-  // The exceptions mentioned in (1) and (2) above, for which the return type is

-  // never included, are

-  //   1. Constructors.

-  //   2. Destructors.

-  //   3. Conversion operator functions, e.g. operator int.

-  bool MangleReturnType = false;

-  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {

-    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||

-          isa<CXXConversionDecl>(FD)))

-      MangleReturnType = true;

-

-    // Mangle the type of the primary template.

-    FD = PrimaryTemplate->getTemplatedDecl();

-  }

-

-  mangleBareFunctionType(FD->getType()->getAs<FunctionType>(), 

-                         MangleReturnType);

-}

-

-static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {

-  while (isa<LinkageSpecDecl>(DC)) {

-    DC = getEffectiveParentContext(DC);

-  }

-

-  return DC;

-}

-

-/// isStd - Return whether a given namespace is the 'std' namespace.

-static bool isStd(const NamespaceDecl *NS) {

-  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))

-                                ->isTranslationUnit())

-    return false;

-  

-  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();

-  return II && II->isStr("std");

-}

-

-// isStdNamespace - Return whether a given decl context is a toplevel 'std'

-// namespace.

-static bool isStdNamespace(const DeclContext *DC) {

-  if (!DC->isNamespace())

-    return false;

-

-  return isStd(cast<NamespaceDecl>(DC));

-}

-

-static const TemplateDecl *

-isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {

-  // Check if we have a function template.

-  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){

-    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {

-      TemplateArgs = FD->getTemplateSpecializationArgs();

-      return TD;

-    }

-  }

-

-  // Check if we have a class template.

-  if (const ClassTemplateSpecializationDecl *Spec =

-        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {

-    TemplateArgs = &Spec->getTemplateArgs();

-    return Spec->getSpecializedTemplate();

-  }

-

-  return 0;

-}

-

-static bool isLambda(const NamedDecl *ND) {

-  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);

-  if (!Record)

-    return false;

-  

-  return Record->isLambda();

-}

-

-void CXXNameMangler::mangleName(const NamedDecl *ND) {

-  //  <name> ::= <nested-name>

-  //         ::= <unscoped-name>

-  //         ::= <unscoped-template-name> <template-args>

-  //         ::= <local-name>

-  //

-  const DeclContext *DC = getEffectiveDeclContext(ND);

-

-  // If this is an extern variable declared locally, the relevant DeclContext

-  // is that of the containing namespace, or the translation unit.

-  // FIXME: This is a hack; extern variables declared locally should have

-  // a proper semantic declaration context!

-  if (isa<FunctionDecl>(DC) && ND->hasLinkage() && !isLambda(ND))

-    while (!DC->isNamespace() && !DC->isTranslationUnit())

-      DC = getEffectiveParentContext(DC);

-  else if (GetLocalClassDecl(ND)) {

-    mangleLocalName(ND);

-    return;

-  }

-

-  DC = IgnoreLinkageSpecDecls(DC);

-

-  if (DC->isTranslationUnit() || isStdNamespace(DC)) {

-    // Check if we have a template.

-    const TemplateArgumentList *TemplateArgs = 0;

-    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {

-      mangleUnscopedTemplateName(TD);

-      mangleTemplateArgs(*TemplateArgs);

-      return;

-    }

-

-    mangleUnscopedName(ND);

-    return;

-  }

-

-  if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {

-    mangleLocalName(ND);

-    return;

-  }

-

-  mangleNestedName(ND, DC);

-}

-void CXXNameMangler::mangleName(const TemplateDecl *TD,

-                                const TemplateArgument *TemplateArgs,

-                                unsigned NumTemplateArgs) {

-  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));

-

-  if (DC->isTranslationUnit() || isStdNamespace(DC)) {

-    mangleUnscopedTemplateName(TD);

-    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);

-  } else {

-    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);

-  }

-}

-

-void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {

-  //  <unscoped-name> ::= <unqualified-name>

-  //                  ::= St <unqualified-name>   # ::std::

-

-  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))

-    Out << "St";

-

-  mangleUnqualifiedName(ND);

-}

-

-void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {

-  //     <unscoped-template-name> ::= <unscoped-name>

-  //                              ::= <substitution>

-  if (mangleSubstitution(ND))

-    return;

-

-  // <template-template-param> ::= <template-param>

-  if (const TemplateTemplateParmDecl *TTP

-                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {

-    mangleTemplateParameter(TTP->getIndex());

-    return;

-  }

-

-  mangleUnscopedName(ND->getTemplatedDecl());

-  addSubstitution(ND);

-}

-

-void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {

-  //     <unscoped-template-name> ::= <unscoped-name>

-  //                              ::= <substitution>

-  if (TemplateDecl *TD = Template.getAsTemplateDecl())

-    return mangleUnscopedTemplateName(TD);

-  

-  if (mangleSubstitution(Template))

-    return;

-

-  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();

-  assert(Dependent && "Not a dependent template name?");

-  if (const IdentifierInfo *Id = Dependent->getIdentifier())

-    mangleSourceName(Id);

-  else

-    mangleOperatorName(Dependent->getOperator(), UnknownArity);

-  

-  addSubstitution(Template);

-}

-

-void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {

-  // ABI:

-  //   Floating-point literals are encoded using a fixed-length

-  //   lowercase hexadecimal string corresponding to the internal

-  //   representation (IEEE on Itanium), high-order bytes first,

-  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f

-  //   on Itanium.

-  // The 'without leading zeroes' thing seems to be an editorial

-  // mistake; see the discussion on cxx-abi-dev beginning on

-  // 2012-01-16.

-

-  // Our requirements here are just barely weird enough to justify

-  // using a custom algorithm instead of post-processing APInt::toString().

-

-  llvm::APInt valueBits = f.bitcastToAPInt();

-  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;

-  assert(numCharacters != 0);

-

-  // Allocate a buffer of the right number of characters.

-  llvm::SmallVector<char, 20> buffer;

-  buffer.set_size(numCharacters);

-

-  // Fill the buffer left-to-right.

-  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {

-    // The bit-index of the next hex digit.

-    unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);

-

-    // Project out 4 bits starting at 'digitIndex'.

-    llvm::integerPart hexDigit

-      = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];

-    hexDigit >>= (digitBitIndex % llvm::integerPartWidth);

-    hexDigit &= 0xF;

-

-    // Map that over to a lowercase hex digit.

-    static const char charForHex[16] = {

-      '0', '1', '2', '3', '4', '5', '6', '7',

-      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'

-    };

-    buffer[stringIndex] = charForHex[hexDigit];

-  }

-

-  Out.write(buffer.data(), numCharacters);

-}

-

-void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {

-  if (Value.isSigned() && Value.isNegative()) {

-    Out << 'n';

-    Value.abs().print(Out, /*signed*/ false);

-  } else {

-    Value.print(Out, /*signed*/ false);

-  }

-}

-

-void CXXNameMangler::mangleNumber(int64_t Number) {

-  //  <number> ::= [n] <non-negative decimal integer>

-  if (Number < 0) {

-    Out << 'n';

-    Number = -Number;

-  }

-

-  Out << Number;

-}

-

-void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {

-  //  <call-offset>  ::= h <nv-offset> _

-  //                 ::= v <v-offset> _

-  //  <nv-offset>    ::= <offset number>        # non-virtual base override

-  //  <v-offset>     ::= <offset number> _ <virtual offset number>

-  //                      # virtual base override, with vcall offset

-  if (!Virtual) {

-    Out << 'h';

-    mangleNumber(NonVirtual);

-    Out << '_';

-    return;

-  }

-

-  Out << 'v';

-  mangleNumber(NonVirtual);

-  Out << '_';

-  mangleNumber(Virtual);

-  Out << '_';

-}

-

-void CXXNameMangler::manglePrefix(QualType type) {

-  if (const TemplateSpecializationType *TST =

-        type->getAs<TemplateSpecializationType>()) {

-    if (!mangleSubstitution(QualType(TST, 0))) {

-      mangleTemplatePrefix(TST->getTemplateName());

-        

-      // FIXME: GCC does not appear to mangle the template arguments when

-      // the template in question is a dependent template name. Should we

-      // emulate that badness?

-      mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());

-      addSubstitution(QualType(TST, 0));

-    }

-  } else if (const DependentTemplateSpecializationType *DTST

-               = type->getAs<DependentTemplateSpecializationType>()) {

-    TemplateName Template

-      = getASTContext().getDependentTemplateName(DTST->getQualifier(), 

-                                                 DTST->getIdentifier());

-    mangleTemplatePrefix(Template);

-

-    // FIXME: GCC does not appear to mangle the template arguments when

-    // the template in question is a dependent template name. Should we

-    // emulate that badness?

-    mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());

-  } else {

-    // We use the QualType mangle type variant here because it handles

-    // substitutions.

-    mangleType(type);

-  }

-}

-

-/// Mangle everything prior to the base-unresolved-name in an unresolved-name.

-///

-/// \param firstQualifierLookup - the entity found by unqualified lookup

-///   for the first name in the qualifier, if this is for a member expression

-/// \param recursive - true if this is being called recursively,

-///   i.e. if there is more prefix "to the right".

-void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,

-                                            NamedDecl *firstQualifierLookup,

-                                            bool recursive) {

-

-  // x, ::x

-  // <unresolved-name> ::= [gs] <base-unresolved-name>

-

-  // T::x / decltype(p)::x

-  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>

-

-  // T::N::x /decltype(p)::N::x

-  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E

-  //                       <base-unresolved-name>

-

-  // A::x, N::y, A<T>::z; "gs" means leading "::"

-  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E

-  //                       <base-unresolved-name>

-

-  switch (qualifier->getKind()) {

-  case NestedNameSpecifier::Global:

-    Out << "gs";

-

-    // We want an 'sr' unless this is the entire NNS.

-    if (recursive)

-      Out << "sr";

-

-    // We never want an 'E' here.

-    return;

-

-  case NestedNameSpecifier::Namespace:

-    if (qualifier->getPrefix())

-      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,

-                             /*recursive*/ true);

-    else

-      Out << "sr";

-    mangleSourceName(qualifier->getAsNamespace()->getIdentifier());

-    break;

-  case NestedNameSpecifier::NamespaceAlias:

-    if (qualifier->getPrefix())

-      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,

-                             /*recursive*/ true);

-    else

-      Out << "sr";

-    mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());

-    break;

-

-  case NestedNameSpecifier::TypeSpec:

-  case NestedNameSpecifier::TypeSpecWithTemplate: {

-    const Type *type = qualifier->getAsType();

-

-    // We only want to use an unresolved-type encoding if this is one of:

-    //   - a decltype

-    //   - a template type parameter

-    //   - a template template parameter with arguments

-    // In all of these cases, we should have no prefix.

-    if (qualifier->getPrefix()) {

-      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,

-                             /*recursive*/ true);

-    } else {

-      // Otherwise, all the cases want this.

-      Out << "sr";

-    }

-

-    // Only certain other types are valid as prefixes;  enumerate them.

-    switch (type->getTypeClass()) {

-    case Type::Builtin:

-    case Type::Complex:

-    case Type::Pointer:

-    case Type::BlockPointer:

-    case Type::LValueReference:

-    case Type::RValueReference:

-    case Type::MemberPointer:

-    case Type::ConstantArray:

-    case Type::IncompleteArray:

-    case Type::VariableArray:

-    case Type::DependentSizedArray:

-    case Type::DependentSizedExtVector:

-    case Type::Vector:

-    case Type::ExtVector:

-    case Type::FunctionProto:

-    case Type::FunctionNoProto:

-    case Type::Enum:

-    case Type::Paren:

-    case Type::Elaborated:

-    case Type::Attributed:

-    case Type::Auto:

-    case Type::PackExpansion:

-    case Type::ObjCObject:

-    case Type::ObjCInterface:

-    case Type::ObjCObjectPointer:

-    case Type::Atomic:

-      llvm_unreachable("type is illegal as a nested name specifier");

-

-    case Type::SubstTemplateTypeParmPack:

-      // FIXME: not clear how to mangle this!

-      // template <class T...> class A {

-      //   template <class U...> void foo(decltype(T::foo(U())) x...);

-      // };

-      Out << "_SUBSTPACK_";

-      break;

-

-    // <unresolved-type> ::= <template-param>

-    //                   ::= <decltype>

-    //                   ::= <template-template-param> <template-args>

-    // (this last is not official yet)

-    case Type::TypeOfExpr:

-    case Type::TypeOf:

-    case Type::Decltype:

-    case Type::TemplateTypeParm:

-    case Type::UnaryTransform:

-    case Type::SubstTemplateTypeParm:

-    unresolvedType:

-      assert(!qualifier->getPrefix());

-

-      // We only get here recursively if we're followed by identifiers.

-      if (recursive) Out << 'N';

-

-      // This seems to do everything we want.  It's not really

-      // sanctioned for a substituted template parameter, though.

-      mangleType(QualType(type, 0));

-

-      // We never want to print 'E' directly after an unresolved-type,

-      // so we return directly.

-      return;

-

-    case Type::Typedef:

-      mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());

-      break;

-

-    case Type::UnresolvedUsing:

-      mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()

-                         ->getIdentifier());

-      break;

-

-    case Type::Record:

-      mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());

-      break;

-

-    case Type::TemplateSpecialization: {

-      const TemplateSpecializationType *tst

-        = cast<TemplateSpecializationType>(type);

-      TemplateName name = tst->getTemplateName();

-      switch (name.getKind()) {

-      case TemplateName::Template:

-      case TemplateName::QualifiedTemplate: {

-        TemplateDecl *temp = name.getAsTemplateDecl();

-

-        // If the base is a template template parameter, this is an

-        // unresolved type.

-        assert(temp && "no template for template specialization type");

-        if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;

-

-        mangleSourceName(temp->getIdentifier());

-        break;

-      }

-

-      case TemplateName::OverloadedTemplate:

-      case TemplateName::DependentTemplate:

-        llvm_unreachable("invalid base for a template specialization type");

-

-      case TemplateName::SubstTemplateTemplateParm: {

-        SubstTemplateTemplateParmStorage *subst

-          = name.getAsSubstTemplateTemplateParm();

-        mangleExistingSubstitution(subst->getReplacement());

-        break;

-      }

-

-      case TemplateName::SubstTemplateTemplateParmPack: {

-        // FIXME: not clear how to mangle this!

-        // template <template <class U> class T...> class A {

-        //   template <class U...> void foo(decltype(T<U>::foo) x...);

-        // };

-        Out << "_SUBSTPACK_";

-        break;

-      }

-      }

-

-      mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());

-      break;

-    }

-

-    case Type::InjectedClassName:

-      mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()

-                         ->getIdentifier());

-      break;

-

-    case Type::DependentName:

-      mangleSourceName(cast<DependentNameType>(type)->getIdentifier());

-      break;

-

-    case Type::DependentTemplateSpecialization: {

-      const DependentTemplateSpecializationType *tst

-        = cast<DependentTemplateSpecializationType>(type);

-      mangleSourceName(tst->getIdentifier());

-      mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());

-      break;

-    }

-    }

-    break;

-  }

-

-  case NestedNameSpecifier::Identifier:

-    // Member expressions can have these without prefixes.

-    if (qualifier->getPrefix()) {

-      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,

-                             /*recursive*/ true);

-    } else if (firstQualifierLookup) {

-

-      // Try to make a proper qualifier out of the lookup result, and

-      // then just recurse on that.

-      NestedNameSpecifier *newQualifier;

-      if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {

-        QualType type = getASTContext().getTypeDeclType(typeDecl);

-

-        // Pretend we had a different nested name specifier.

-        newQualifier = NestedNameSpecifier::Create(getASTContext(),

-                                                   /*prefix*/ 0,

-                                                   /*template*/ false,

-                                                   type.getTypePtr());

-      } else if (NamespaceDecl *nspace =

-                   dyn_cast<NamespaceDecl>(firstQualifierLookup)) {

-        newQualifier = NestedNameSpecifier::Create(getASTContext(),

-                                                   /*prefix*/ 0,

-                                                   nspace);

-      } else if (NamespaceAliasDecl *alias =

-                   dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {

-        newQualifier = NestedNameSpecifier::Create(getASTContext(),

-                                                   /*prefix*/ 0,

-                                                   alias);

-      } else {

-        // No sensible mangling to do here.

-        newQualifier = 0;

-      }

-

-      if (newQualifier)

-        return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);

-

-    } else {

-      Out << "sr";

-    }

-

-    mangleSourceName(qualifier->getAsIdentifier());

-    break;

-  }

-

-  // If this was the innermost part of the NNS, and we fell out to

-  // here, append an 'E'.

-  if (!recursive)

-    Out << 'E';

-}

-

-/// Mangle an unresolved-name, which is generally used for names which

-/// weren't resolved to specific entities.

-void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,

-                                          NamedDecl *firstQualifierLookup,

-                                          DeclarationName name,

-                                          unsigned knownArity) {

-  if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);

-  mangleUnqualifiedName(0, name, knownArity);

-}

-

-static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {

-  assert(RD->isAnonymousStructOrUnion() &&

-         "Expected anonymous struct or union!");

-  

-  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();

-       I != E; ++I) {

-    if (I->getIdentifier())

-      return *I;

-    

-    if (const RecordType *RT = I->getType()->getAs<RecordType>())

-      if (const FieldDecl *NamedDataMember = 

-          FindFirstNamedDataMember(RT->getDecl()))

-        return NamedDataMember;

-    }

-

-  // We didn't find a named data member.

-  return 0;

-}

-

-void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,

-                                           DeclarationName Name,

-                                           unsigned KnownArity) {

-  //  <unqualified-name> ::= <operator-name>

-  //                     ::= <ctor-dtor-name>

-  //                     ::= <source-name>

-  switch (Name.getNameKind()) {

-  case DeclarationName::Identifier: {

-    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {

-      // We must avoid conflicts between internally- and externally-

-      // linked variable and function declaration names in the same TU:

-      //   void test() { extern void foo(); }

-      //   static void foo();

-      // This naming convention is the same as that followed by GCC,

-      // though it shouldn't actually matter.

-      if (ND && ND->getLinkage() == InternalLinkage &&

-          getEffectiveDeclContext(ND)->isFileContext())

-        Out << 'L';

-

-      mangleSourceName(II);

-      break;

-    }

-

-    // Otherwise, an anonymous entity.  We must have a declaration.

-    assert(ND && "mangling empty name without declaration");

-

-    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {

-      if (NS->isAnonymousNamespace()) {

-        // This is how gcc mangles these names.

-        Out << "12_GLOBAL__N_1";

-        break;

-      }

-    }

-

-    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {

-      // We must have an anonymous union or struct declaration.

-      const RecordDecl *RD = 

-        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());

-      

-      // Itanium C++ ABI 5.1.2:

-      //

-      //   For the purposes of mangling, the name of an anonymous union is

-      //   considered to be the name of the first named data member found by a

-      //   pre-order, depth-first, declaration-order walk of the data members of

-      //   the anonymous union. If there is no such data member (i.e., if all of

-      //   the data members in the union are unnamed), then there is no way for

-      //   a program to refer to the anonymous union, and there is therefore no

-      //   need to mangle its name.

-      const FieldDecl *FD = FindFirstNamedDataMember(RD);

-

-      // It's actually possible for various reasons for us to get here

-      // with an empty anonymous struct / union.  Fortunately, it

-      // doesn't really matter what name we generate.

-      if (!FD) break;

-      assert(FD->getIdentifier() && "Data member name isn't an identifier!");

-      

-      mangleSourceName(FD->getIdentifier());

-      break;

-    }

-    

-    // We must have an anonymous struct.

-    const TagDecl *TD = cast<TagDecl>(ND);

-    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {

-      assert(TD->getDeclContext() == D->getDeclContext() &&

-             "Typedef should not be in another decl context!");

-      assert(D->getDeclName().getAsIdentifierInfo() &&

-             "Typedef was not named!");

-      mangleSourceName(D->getDeclName().getAsIdentifierInfo());

-      break;

-    }

-

-    // <unnamed-type-name> ::= <closure-type-name>

-    // 

-    // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _

-    // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.

-    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {

-      if (Record->isLambda() && Record->getLambdaManglingNumber()) {

-        mangleLambda(Record);

-        break;

-      }

-    }

-

-    int UnnamedMangle = Context.getASTContext().getUnnamedTagManglingNumber(TD);

-    if (UnnamedMangle != -1) {

-      Out << "Ut";

-      if (UnnamedMangle != 0)

-        Out << llvm::utostr(UnnamedMangle - 1);

-      Out << '_';

-      break;

-    }

-

-    // Get a unique id for the anonymous struct.

-    uint64_t AnonStructId = Context.getAnonymousStructId(TD);

-

-    // Mangle it as a source name in the form

-    // [n] $_<id>

-    // where n is the length of the string.

-    SmallString<8> Str;

-    Str += "$_";

-    Str += llvm::utostr(AnonStructId);

-

-    Out << Str.size();

-    Out << Str.str();

-    break;

-  }

-

-  case DeclarationName::ObjCZeroArgSelector:

-  case DeclarationName::ObjCOneArgSelector:

-  case DeclarationName::ObjCMultiArgSelector:

-    llvm_unreachable("Can't mangle Objective-C selector names here!");

-

-  case DeclarationName::CXXConstructorName:

-    if (ND == Structor)

-      // If the named decl is the C++ constructor we're mangling, use the type

-      // we were given.

-      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));

-    else

-      // Otherwise, use the complete constructor name. This is relevant if a

-      // class with a constructor is declared within a constructor.

-      mangleCXXCtorType(Ctor_Complete);

-    break;

-

-  case DeclarationName::CXXDestructorName:

-    if (ND == Structor)

-      // If the named decl is the C++ destructor we're mangling, use the type we

-      // were given.

-      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));

-    else

-      // Otherwise, use the complete destructor name. This is relevant if a

-      // class with a destructor is declared within a destructor.

-      mangleCXXDtorType(Dtor_Complete);

-    break;

-

-  case DeclarationName::CXXConversionFunctionName:

-    // <operator-name> ::= cv <type>    # (cast)

-    Out << "cv";

-    mangleType(Name.getCXXNameType());

-    break;

-

-  case DeclarationName::CXXOperatorName: {

-    unsigned Arity;

-    if (ND) {

-      Arity = cast<FunctionDecl>(ND)->getNumParams();

-

-      // If we have a C++ member function, we need to include the 'this' pointer.

-      // FIXME: This does not make sense for operators that are static, but their

-      // names stay the same regardless of the arity (operator new for instance).

-      if (isa<CXXMethodDecl>(ND))

-        Arity++;

-    } else

-      Arity = KnownArity;

-

-    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);

-    break;

-  }

-

-  case DeclarationName::CXXLiteralOperatorName:

-    // FIXME: This mangling is not yet official.

-    Out << "li";

-    mangleSourceName(Name.getCXXLiteralIdentifier());

-    break;

-

-  case DeclarationName::CXXUsingDirective:

-    llvm_unreachable("Can't mangle a using directive name!");

-  }

-}

-

-void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {

-  // <source-name> ::= <positive length number> <identifier>

-  // <number> ::= [n] <non-negative decimal integer>

-  // <identifier> ::= <unqualified source code identifier>

-  Out << II->getLength() << II->getName();

-}

-

-void CXXNameMangler::mangleNestedName(const NamedDecl *ND,

-                                      const DeclContext *DC,

-                                      bool NoFunction) {

-  // <nested-name> 

-  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E

-  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> 

-  //       <template-args> E

-

-  Out << 'N';

-  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {

-    mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));

-    mangleRefQualifier(Method->getRefQualifier());

-  }

-  

-  // Check if we have a template.

-  const TemplateArgumentList *TemplateArgs = 0;

-  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {

-    mangleTemplatePrefix(TD);

-    mangleTemplateArgs(*TemplateArgs);

-  }

-  else {

-    manglePrefix(DC, NoFunction);

-    mangleUnqualifiedName(ND);

-  }

-

-  Out << 'E';

-}

-void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,

-                                      const TemplateArgument *TemplateArgs,

-                                      unsigned NumTemplateArgs) {

-  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E

-

-  Out << 'N';

-

-  mangleTemplatePrefix(TD);

-  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);

-

-  Out << 'E';

-}

-

-void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {

-  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]

-  //              := Z <function encoding> E s [<discriminator>]

-  // <local-name> := Z <function encoding> E d [ <parameter number> ] 

-  //                 _ <entity name>

-  // <discriminator> := _ <non-negative number>

-  const DeclContext *DC = getEffectiveDeclContext(ND);

-  if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {

-    // Don't add objc method name mangling to locally declared function

-    mangleUnqualifiedName(ND);

-    return;

-  }

-

-  Out << 'Z';

-

-  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {

-   mangleObjCMethodName(MD);

-  } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {

-    mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD)));

-    Out << 'E';

-

-    // The parameter number is omitted for the last parameter, 0 for the 

-    // second-to-last parameter, 1 for the third-to-last parameter, etc. The 

-    // <entity name> will of course contain a <closure-type-name>: Its 

-    // numbering will be local to the particular argument in which it appears

-    // -- other default arguments do not affect its encoding.

-    bool SkipDiscriminator = false;

-    if (RD->isLambda()) {

-      if (const ParmVarDecl *Parm

-                 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) {

-        if (const FunctionDecl *Func

-              = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {

-          Out << 'd';

-          unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();

-          if (Num > 1)

-            mangleNumber(Num - 2);

-          Out << '_';

-          SkipDiscriminator = true;

-        }

-      }

-    }

-    

-    // Mangle the name relative to the closest enclosing function.

-    if (ND == RD) // equality ok because RD derived from ND above

-      mangleUnqualifiedName(ND);

-    else

-      mangleNestedName(ND, DC, true /*NoFunction*/);

-

-    if (!SkipDiscriminator) {

-      unsigned disc;

-      if (Context.getNextDiscriminator(RD, disc)) {

-        if (disc < 10)

-          Out << '_' << disc;

-        else

-          Out << "__" << disc << '_';

-      }

-    }

-    

-    return;

-  }

-  else

-    mangleFunctionEncoding(cast<FunctionDecl>(DC));

-

-  Out << 'E';

-  mangleUnqualifiedName(ND);

-}

-

-void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {

-  // If the context of a closure type is an initializer for a class member 

-  // (static or nonstatic), it is encoded in a qualified name with a final 

-  // <prefix> of the form:

-  //

-  //   <data-member-prefix> := <member source-name> M

-  //

-  // Technically, the data-member-prefix is part of the <prefix>. However,

-  // since a closure type will always be mangled with a prefix, it's easier

-  // to emit that last part of the prefix here.

-  if (Decl *Context = Lambda->getLambdaContextDecl()) {

-    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&

-        Context->getDeclContext()->isRecord()) {

-      if (const IdentifierInfo *Name

-            = cast<NamedDecl>(Context)->getIdentifier()) {

-        mangleSourceName(Name);

-        Out << 'M';            

-      }

-    }

-  }

-

-  Out << "Ul";

-  const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->

-                                   getAs<FunctionProtoType>();

-  mangleBareFunctionType(Proto, /*MangleReturnType=*/false);        

-  Out << "E";

-  

-  // The number is omitted for the first closure type with a given 

-  // <lambda-sig> in a given context; it is n-2 for the nth closure type 

-  // (in lexical order) with that same <lambda-sig> and context.

-  //

-  // The AST keeps track of the number for us.

-  unsigned Number = Lambda->getLambdaManglingNumber();

-  assert(Number > 0 && "Lambda should be mangled as an unnamed class");

-  if (Number > 1)

-    mangleNumber(Number - 2);

-  Out << '_';  

-}

-

-void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {

-  switch (qualifier->getKind()) {

-  case NestedNameSpecifier::Global:

-    // nothing

-    return;

-

-  case NestedNameSpecifier::Namespace:

-    mangleName(qualifier->getAsNamespace());

-    return;

-

-  case NestedNameSpecifier::NamespaceAlias:

-    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());

-    return;

-

-  case NestedNameSpecifier::TypeSpec:

-  case NestedNameSpecifier::TypeSpecWithTemplate:

-    manglePrefix(QualType(qualifier->getAsType(), 0));

-    return;

-

-  case NestedNameSpecifier::Identifier:

-    // Member expressions can have these without prefixes, but that

-    // should end up in mangleUnresolvedPrefix instead.

-    assert(qualifier->getPrefix());

-    manglePrefix(qualifier->getPrefix());

-

-    mangleSourceName(qualifier->getAsIdentifier());

-    return;

-  }

-

-  llvm_unreachable("unexpected nested name specifier");

-}

-

-void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {

-  //  <prefix> ::= <prefix> <unqualified-name>

-  //           ::= <template-prefix> <template-args>

-  //           ::= <template-param>

-  //           ::= # empty

-  //           ::= <substitution>

-

-  DC = IgnoreLinkageSpecDecls(DC);

-

-  if (DC->isTranslationUnit())

-    return;

-

-  if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {

-    manglePrefix(getEffectiveParentContext(DC), NoFunction);    

-    SmallString<64> Name;

-    llvm::raw_svector_ostream NameStream(Name);

-    Context.mangleBlock(Block, NameStream);

-    NameStream.flush();

-    Out << Name.size() << Name;

-    return;

-  }

-  

-  const NamedDecl *ND = cast<NamedDecl>(DC);  

-  if (mangleSubstitution(ND))

-    return;

-  

-  // Check if we have a template.

-  const TemplateArgumentList *TemplateArgs = 0;

-  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {

-    mangleTemplatePrefix(TD);

-    mangleTemplateArgs(*TemplateArgs);

-  }

-  else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND)))

-    return;

-  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))

-    mangleObjCMethodName(Method);

-  else {

-    manglePrefix(getEffectiveDeclContext(ND), NoFunction);

-    mangleUnqualifiedName(ND);

-  }

-

-  addSubstitution(ND);

-}

-

-void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {

-  // <template-prefix> ::= <prefix> <template unqualified-name>

-  //                   ::= <template-param>

-  //                   ::= <substitution>

-  if (TemplateDecl *TD = Template.getAsTemplateDecl())

-    return mangleTemplatePrefix(TD);

-

-  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())

-    manglePrefix(Qualified->getQualifier());

-  

-  if (OverloadedTemplateStorage *Overloaded

-                                      = Template.getAsOverloadedTemplate()) {

-    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(), 

-                          UnknownArity);

-    return;

-  }

-   

-  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();

-  assert(Dependent && "Unknown template name kind?");

-  manglePrefix(Dependent->getQualifier());

-  mangleUnscopedTemplateName(Template);

-}

-

-void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {

-  // <template-prefix> ::= <prefix> <template unqualified-name>

-  //                   ::= <template-param>

-  //                   ::= <substitution>

-  // <template-template-param> ::= <template-param>

-  //                               <substitution>

-

-  if (mangleSubstitution(ND))

-    return;

-

-  // <template-template-param> ::= <template-param>

-  if (const TemplateTemplateParmDecl *TTP

-                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {

-    mangleTemplateParameter(TTP->getIndex());

-    return;

-  }

-

-  manglePrefix(getEffectiveDeclContext(ND));

-  mangleUnqualifiedName(ND->getTemplatedDecl());

-  addSubstitution(ND);

-}

-

-/// Mangles a template name under the production <type>.  Required for

-/// template template arguments.

-///   <type> ::= <class-enum-type>

-///          ::= <template-param>

-///          ::= <substitution>

-void CXXNameMangler::mangleType(TemplateName TN) {

-  if (mangleSubstitution(TN))

-    return;

-      

-  TemplateDecl *TD = 0;

-

-  switch (TN.getKind()) {

-  case TemplateName::QualifiedTemplate:

-    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();

-    goto HaveDecl;

-

-  case TemplateName::Template:

-    TD = TN.getAsTemplateDecl();

-    goto HaveDecl;

-

-  HaveDecl:

-    if (isa<TemplateTemplateParmDecl>(TD))

-      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());

-    else

-      mangleName(TD);

-    break;

-

-  case TemplateName::OverloadedTemplate:

-    llvm_unreachable("can't mangle an overloaded template name as a <type>");

-

-  case TemplateName::DependentTemplate: {

-    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();

-    assert(Dependent->isIdentifier());

-

-    // <class-enum-type> ::= <name>

-    // <name> ::= <nested-name>

-    mangleUnresolvedPrefix(Dependent->getQualifier(), 0);

-    mangleSourceName(Dependent->getIdentifier());

-    break;

-  }

-

-  case TemplateName::SubstTemplateTemplateParm: {

-    // Substituted template parameters are mangled as the substituted

-    // template.  This will check for the substitution twice, which is

-    // fine, but we have to return early so that we don't try to *add*

-    // the substitution twice.

-    SubstTemplateTemplateParmStorage *subst

-      = TN.getAsSubstTemplateTemplateParm();

-    mangleType(subst->getReplacement());

-    return;

-  }

-

-  case TemplateName::SubstTemplateTemplateParmPack: {

-    // FIXME: not clear how to mangle this!

-    // template <template <class> class T...> class A {

-    //   template <template <class> class U...> void foo(B<T,U> x...);

-    // };

-    Out << "_SUBSTPACK_";

-    break;

-  }

-  }

-

-  addSubstitution(TN);

-}

-

-void

-CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {

-  switch (OO) {

-  // <operator-name> ::= nw     # new

-  case OO_New: Out << "nw"; break;

-  //              ::= na        # new[]

-  case OO_Array_New: Out << "na"; break;

-  //              ::= dl        # delete

-  case OO_Delete: Out << "dl"; break;

-  //              ::= da        # delete[]

-  case OO_Array_Delete: Out << "da"; break;

-  //              ::= ps        # + (unary)

-  //              ::= pl        # + (binary or unknown)

-  case OO_Plus:

-    Out << (Arity == 1? "ps" : "pl"); break;

-  //              ::= ng        # - (unary)

-  //              ::= mi        # - (binary or unknown)

-  case OO_Minus:

-    Out << (Arity == 1? "ng" : "mi"); break;

-  //              ::= ad        # & (unary)

-  //              ::= an        # & (binary or unknown)

-  case OO_Amp:

-    Out << (Arity == 1? "ad" : "an"); break;

-  //              ::= de        # * (unary)

-  //              ::= ml        # * (binary or unknown)

-  case OO_Star:

-    // Use binary when unknown.

-    Out << (Arity == 1? "de" : "ml"); break;

-  //              ::= co        # ~

-  case OO_Tilde: Out << "co"; break;

-  //              ::= dv        # /

-  case OO_Slash: Out << "dv"; break;

-  //              ::= rm        # %

-  case OO_Percent: Out << "rm"; break;

-  //              ::= or        # |

-  case OO_Pipe: Out << "or"; break;

-  //              ::= eo        # ^

-  case OO_Caret: Out << "eo"; break;

-  //              ::= aS        # =

-  case OO_Equal: Out << "aS"; break;

-  //              ::= pL        # +=

-  case OO_PlusEqual: Out << "pL"; break;

-  //              ::= mI        # -=

-  case OO_MinusEqual: Out << "mI"; break;

-  //              ::= mL        # *=

-  case OO_StarEqual: Out << "mL"; break;

-  //              ::= dV        # /=

-  case OO_SlashEqual: Out << "dV"; break;

-  //              ::= rM        # %=

-  case OO_PercentEqual: Out << "rM"; break;

-  //              ::= aN        # &=

-  case OO_AmpEqual: Out << "aN"; break;

-  //              ::= oR        # |=

-  case OO_PipeEqual: Out << "oR"; break;

-  //              ::= eO        # ^=

-  case OO_CaretEqual: Out << "eO"; break;

-  //              ::= ls        # <<

-  case OO_LessLess: Out << "ls"; break;

-  //              ::= rs        # >>

-  case OO_GreaterGreater: Out << "rs"; break;

-  //              ::= lS        # <<=

-  case OO_LessLessEqual: Out << "lS"; break;

-  //              ::= rS        # >>=

-  case OO_GreaterGreaterEqual: Out << "rS"; break;

-  //              ::= eq        # ==

-  case OO_EqualEqual: Out << "eq"; break;

-  //              ::= ne        # !=

-  case OO_ExclaimEqual: Out << "ne"; break;

-  //              ::= lt        # <

-  case OO_Less: Out << "lt"; break;

-  //              ::= gt        # >

-  case OO_Greater: Out << "gt"; break;

-  //              ::= le        # <=

-  case OO_LessEqual: Out << "le"; break;

-  //              ::= ge        # >=

-  case OO_GreaterEqual: Out << "ge"; break;

-  //              ::= nt        # !

-  case OO_Exclaim: Out << "nt"; break;

-  //              ::= aa        # &&

-  case OO_AmpAmp: Out << "aa"; break;

-  //              ::= oo        # ||

-  case OO_PipePipe: Out << "oo"; break;

-  //              ::= pp        # ++

-  case OO_PlusPlus: Out << "pp"; break;

-  //              ::= mm        # --

-  case OO_MinusMinus: Out << "mm"; break;

-  //              ::= cm        # ,

-  case OO_Comma: Out << "cm"; break;

-  //              ::= pm        # ->*

-  case OO_ArrowStar: Out << "pm"; break;

-  //              ::= pt        # ->

-  case OO_Arrow: Out << "pt"; break;

-  //              ::= cl        # ()

-  case OO_Call: Out << "cl"; break;

-  //              ::= ix        # []

-  case OO_Subscript: Out << "ix"; break;

-

-  //              ::= qu        # ?

-  // The conditional operator can't be overloaded, but we still handle it when

-  // mangling expressions.

-  case OO_Conditional: Out << "qu"; break;

-

-  case OO_None:

-  case NUM_OVERLOADED_OPERATORS:

-    llvm_unreachable("Not an overloaded operator");

-  }

-}

-

-void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {

-  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const

-  if (Quals.hasRestrict())

-    Out << 'r';

-  if (Quals.hasVolatile())

-    Out << 'V';

-  if (Quals.hasConst())

-    Out << 'K';

-

-  if (Quals.hasAddressSpace()) {

-    // Extension:

-    //

-    //   <type> ::= U <address-space-number>

-    // 

-    // where <address-space-number> is a source name consisting of 'AS' 

-    // followed by the address space <number>.

-    SmallString<64> ASString;

-    ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());

-    Out << 'U' << ASString.size() << ASString;

-  }

-  

-  StringRef LifetimeName;

-  switch (Quals.getObjCLifetime()) {

-  // Objective-C ARC Extension:

-  //

-  //   <type> ::= U "__strong"

-  //   <type> ::= U "__weak"

-  //   <type> ::= U "__autoreleasing"

-  case Qualifiers::OCL_None:

-    break;

-    

-  case Qualifiers::OCL_Weak:

-    LifetimeName = "__weak";

-    break;

-    

-  case Qualifiers::OCL_Strong:

-    LifetimeName = "__strong";

-    break;

-    

-  case Qualifiers::OCL_Autoreleasing:

-    LifetimeName = "__autoreleasing";

-    break;

-    

-  case Qualifiers::OCL_ExplicitNone:

-    // The __unsafe_unretained qualifier is *not* mangled, so that

-    // __unsafe_unretained types in ARC produce the same manglings as the

-    // equivalent (but, naturally, unqualified) types in non-ARC, providing

-    // better ABI compatibility.

-    //

-    // It's safe to do this because unqualified 'id' won't show up

-    // in any type signatures that need to be mangled.

-    break;

-  }

-  if (!LifetimeName.empty())

-    Out << 'U' << LifetimeName.size() << LifetimeName;

-}

-

-void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {

-  // <ref-qualifier> ::= R                # lvalue reference

-  //                 ::= O                # rvalue-reference

-  // Proposal to Itanium C++ ABI list on 1/26/11

-  switch (RefQualifier) {

-  case RQ_None:

-    break;

-      

-  case RQ_LValue:

-    Out << 'R';

-    break;

-      

-  case RQ_RValue:

-    Out << 'O';

-    break;

-  }

-}

-

-void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {

-  Context.mangleObjCMethodName(MD, Out);

-}

-

-void CXXNameMangler::mangleType(QualType T) {

-  // If our type is instantiation-dependent but not dependent, we mangle

-  // it as it was written in the source, removing any top-level sugar. 

-  // Otherwise, use the canonical type.

-  //

-  // FIXME: This is an approximation of the instantiation-dependent name 

-  // mangling rules, since we should really be using the type as written and

-  // augmented via semantic analysis (i.e., with implicit conversions and

-  // default template arguments) for any instantiation-dependent type. 

-  // Unfortunately, that requires several changes to our AST:

-  //   - Instantiation-dependent TemplateSpecializationTypes will need to be 

-  //     uniqued, so that we can handle substitutions properly

-  //   - Default template arguments will need to be represented in the

-  //     TemplateSpecializationType, since they need to be mangled even though

-  //     they aren't written.

-  //   - Conversions on non-type template arguments need to be expressed, since

-  //     they can affect the mangling of sizeof/alignof.

-  if (!T->isInstantiationDependentType() || T->isDependentType())

-    T = T.getCanonicalType();

-  else {

-    // Desugar any types that are purely sugar.

-    do {

-      // Don't desugar through template specialization types that aren't

-      // type aliases. We need to mangle the template arguments as written.

-      if (const TemplateSpecializationType *TST 

-                                      = dyn_cast<TemplateSpecializationType>(T))

-        if (!TST->isTypeAlias())

-          break;

-

-      QualType Desugared 

-        = T.getSingleStepDesugaredType(Context.getASTContext());

-      if (Desugared == T)

-        break;

-      

-      T = Desugared;

-    } while (true);

-  }

-  SplitQualType split = T.split();

-  Qualifiers quals = split.Quals;

-  const Type *ty = split.Ty;

-

-  bool isSubstitutable = quals || !isa<BuiltinType>(T);

-  if (isSubstitutable && mangleSubstitution(T))

-    return;

-

-  // If we're mangling a qualified array type, push the qualifiers to

-  // the element type.

-  if (quals && isa<ArrayType>(T)) {

-    ty = Context.getASTContext().getAsArrayType(T);

-    quals = Qualifiers();

-

-    // Note that we don't update T: we want to add the

-    // substitution at the original type.

-  }

-

-  if (quals) {

-    mangleQualifiers(quals);

-    // Recurse:  even if the qualified type isn't yet substitutable,

-    // the unqualified type might be.

-    mangleType(QualType(ty, 0));

-  } else {

-    switch (ty->getTypeClass()) {

-#define ABSTRACT_TYPE(CLASS, PARENT)

-#define NON_CANONICAL_TYPE(CLASS, PARENT) \

-    case Type::CLASS: \

-      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \

-      return;

-#define TYPE(CLASS, PARENT) \

-    case Type::CLASS: \

-      mangleType(static_cast<const CLASS##Type*>(ty)); \

-      break;

-#include "clang/AST/TypeNodes.def"

-    }

-  }

-

-  // Add the substitution.

-  if (isSubstitutable)

-    addSubstitution(T);

-}

-

-void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {

-  if (!mangleStandardSubstitution(ND))

-    mangleName(ND);

-}

-

-void CXXNameMangler::mangleType(const BuiltinType *T) {

-  //  <type>         ::= <builtin-type>

-  //  <builtin-type> ::= v  # void

-  //                 ::= w  # wchar_t

-  //                 ::= b  # bool

-  //                 ::= c  # char

-  //                 ::= a  # signed char

-  //                 ::= h  # unsigned char

-  //                 ::= s  # short

-  //                 ::= t  # unsigned short

-  //                 ::= i  # int

-  //                 ::= j  # unsigned int

-  //                 ::= l  # long

-  //                 ::= m  # unsigned long

-  //                 ::= x  # long long, __int64

-  //                 ::= y  # unsigned long long, __int64

-  //                 ::= n  # __int128

-  // UNSUPPORTED:    ::= o  # unsigned __int128

-  //                 ::= f  # float

-  //                 ::= d  # double

-  //                 ::= e  # long double, __float80

-  // UNSUPPORTED:    ::= g  # __float128

-  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)

-  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)

-  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)

-  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)

-  //                 ::= Di # char32_t

-  //                 ::= Ds # char16_t

-  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))

-  //                 ::= u <source-name>    # vendor extended type

-  switch (T->getKind()) {

-  case BuiltinType::Void: Out << 'v'; break;

-  case BuiltinType::Bool: Out << 'b'; break;

-  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;

-  case BuiltinType::UChar: Out << 'h'; break;

-  case BuiltinType::UShort: Out << 't'; break;

-  case BuiltinType::UInt: Out << 'j'; break;

-  case BuiltinType::ULong: Out << 'm'; break;

-  case BuiltinType::ULongLong: Out << 'y'; break;

-  case BuiltinType::UInt128: Out << 'o'; break;

-  case BuiltinType::SChar: Out << 'a'; break;

-  case BuiltinType::WChar_S:

-  case BuiltinType::WChar_U: Out << 'w'; break;

-  case BuiltinType::Char16: Out << "Ds"; break;

-  case BuiltinType::Char32: Out << "Di"; break;

-  case BuiltinType::Short: Out << 's'; break;

-  case BuiltinType::Int: Out << 'i'; break;

-  case BuiltinType::Long: Out << 'l'; break;

-  case BuiltinType::LongLong: Out << 'x'; break;

-  case BuiltinType::Int128: Out << 'n'; break;

-  case BuiltinType::Half: Out << "Dh"; break;

-  case BuiltinType::Float: Out << 'f'; break;

-  case BuiltinType::Double: Out << 'd'; break;

-  case BuiltinType::LongDouble: Out << 'e'; break;

-  case BuiltinType::NullPtr: Out << "Dn"; break;

-

-#define BUILTIN_TYPE(Id, SingletonId)

-#define PLACEHOLDER_TYPE(Id, SingletonId) \

-  case BuiltinType::Id:

-#include "clang/AST/BuiltinTypes.def"

-  case BuiltinType::Dependent:

-    llvm_unreachable("mangling a placeholder type");

-  case BuiltinType::ObjCId: Out << "11objc_object"; break;

-  case BuiltinType::ObjCClass: Out << "10objc_class"; break;

-  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;

-  case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;

-  case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;

-  case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;

-  case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;

-  case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;

-  case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;

-  }

-}

-

-// <type>          ::= <function-type>

-// <function-type> ::= [<CV-qualifiers>] F [Y]

-//                      <bare-function-type> [<ref-qualifier>] E

-// (Proposal to cxx-abi-dev, 2012-05-11)

-void CXXNameMangler::mangleType(const FunctionProtoType *T) {

-  // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,

-  // e.g. "const" in "int (A::*)() const".

-  mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));

-

-  Out << 'F';

-

-  // FIXME: We don't have enough information in the AST to produce the 'Y'

-  // encoding for extern "C" function types.

-  mangleBareFunctionType(T, /*MangleReturnType=*/true);

-

-  // Mangle the ref-qualifier, if present.

-  mangleRefQualifier(T->getRefQualifier());

-

-  Out << 'E';

-}

-void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {

-  llvm_unreachable("Can't mangle K&R function prototypes");

-}

-void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,

-                                            bool MangleReturnType) {

-  // We should never be mangling something without a prototype.

-  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);

-

-  // Record that we're in a function type.  See mangleFunctionParam

-  // for details on what we're trying to achieve here.

-  FunctionTypeDepthState saved = FunctionTypeDepth.push();

-

-  // <bare-function-type> ::= <signature type>+

-  if (MangleReturnType) {

-    FunctionTypeDepth.enterResultType();

-    mangleType(Proto->getResultType());

-    FunctionTypeDepth.leaveResultType();

-  }

-

-  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {

-    //   <builtin-type> ::= v   # void

-    Out << 'v';

-

-    FunctionTypeDepth.pop(saved);

-    return;

-  }

-

-  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),

-                                         ArgEnd = Proto->arg_type_end();

-       Arg != ArgEnd; ++Arg)

-    mangleType(Context.getASTContext().getSignatureParameterType(*Arg));

-

-  FunctionTypeDepth.pop(saved);

-

-  // <builtin-type>      ::= z  # ellipsis

-  if (Proto->isVariadic())

-    Out << 'z';

-}

-

-// <type>            ::= <class-enum-type>

-// <class-enum-type> ::= <name>

-void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {

-  mangleName(T->getDecl());

-}

-

-// <type>            ::= <class-enum-type>

-// <class-enum-type> ::= <name>

-void CXXNameMangler::mangleType(const EnumType *T) {

-  mangleType(static_cast<const TagType*>(T));

-}

-void CXXNameMangler::mangleType(const RecordType *T) {

-  mangleType(static_cast<const TagType*>(T));

-}

-void CXXNameMangler::mangleType(const TagType *T) {

-  mangleName(T->getDecl());

-}

-

-// <type>       ::= <array-type>

-// <array-type> ::= A <positive dimension number> _ <element type>

-//              ::= A [<dimension expression>] _ <element type>

-void CXXNameMangler::mangleType(const ConstantArrayType *T) {

-  Out << 'A' << T->getSize() << '_';

-  mangleType(T->getElementType());

-}

-void CXXNameMangler::mangleType(const VariableArrayType *T) {

-  Out << 'A';

-  // decayed vla types (size 0) will just be skipped.

-  if (T->getSizeExpr())

-    mangleExpression(T->getSizeExpr());

-  Out << '_';

-  mangleType(T->getElementType());

-}

-void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {

-  Out << 'A';

-  mangleExpression(T->getSizeExpr());

-  Out << '_';

-  mangleType(T->getElementType());

-}

-void CXXNameMangler::mangleType(const IncompleteArrayType *T) {

-  Out << "A_";

-  mangleType(T->getElementType());

-}

-

-// <type>                   ::= <pointer-to-member-type>

-// <pointer-to-member-type> ::= M <class type> <member type>

-void CXXNameMangler::mangleType(const MemberPointerType *T) {

-  Out << 'M';

-  mangleType(QualType(T->getClass(), 0));

-  QualType PointeeType = T->getPointeeType();

-  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {

-    mangleType(FPT);

-    

-    // Itanium C++ ABI 5.1.8:

-    //

-    //   The type of a non-static member function is considered to be different,

-    //   for the purposes of substitution, from the type of a namespace-scope or

-    //   static member function whose type appears similar. The types of two

-    //   non-static member functions are considered to be different, for the

-    //   purposes of substitution, if the functions are members of different

-    //   classes. In other words, for the purposes of substitution, the class of 

-    //   which the function is a member is considered part of the type of 

-    //   function.

-

-    // Given that we already substitute member function pointers as a

-    // whole, the net effect of this rule is just to unconditionally

-    // suppress substitution on the function type in a member pointer.

-    // We increment the SeqID here to emulate adding an entry to the

-    // substitution table.

-    ++SeqID;

-  } else

-    mangleType(PointeeType);

-}

-

-// <type>           ::= <template-param>

-void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {

-  mangleTemplateParameter(T->getIndex());

-}

-

-// <type>           ::= <template-param>

-void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {

-  // FIXME: not clear how to mangle this!

-  // template <class T...> class A {

-  //   template <class U...> void foo(T(*)(U) x...);

-  // };

-  Out << "_SUBSTPACK_";

-}

-

-// <type> ::= P <type>   # pointer-to

-void CXXNameMangler::mangleType(const PointerType *T) {

-  Out << 'P';

-  mangleType(T->getPointeeType());

-}

-void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {

-  Out << 'P';

-  mangleType(T->getPointeeType());

-}

-

-// <type> ::= R <type>   # reference-to

-void CXXNameMangler::mangleType(const LValueReferenceType *T) {

-  Out << 'R';

-  mangleType(T->getPointeeType());

-}

-

-// <type> ::= O <type>   # rvalue reference-to (C++0x)

-void CXXNameMangler::mangleType(const RValueReferenceType *T) {

-  Out << 'O';

-  mangleType(T->getPointeeType());

-}

-

-// <type> ::= C <type>   # complex pair (C 2000)

-void CXXNameMangler::mangleType(const ComplexType *T) {

-  Out << 'C';

-  mangleType(T->getElementType());

-}

-

-// ARM's ABI for Neon vector types specifies that they should be mangled as

-// if they are structs (to match ARM's initial implementation).  The

-// vector type must be one of the special types predefined by ARM.

-void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {

-  QualType EltType = T->getElementType();

-  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");

-  const char *EltName = 0;

-  if (T->getVectorKind() == VectorType::NeonPolyVector) {

-    switch (cast<BuiltinType>(EltType)->getKind()) {

-    case BuiltinType::SChar:     EltName = "poly8_t"; break;

-    case BuiltinType::Short:     EltName = "poly16_t"; break;

-    default: llvm_unreachable("unexpected Neon polynomial vector element type");

-    }

-  } else {

-    switch (cast<BuiltinType>(EltType)->getKind()) {

-    case BuiltinType::SChar:     EltName = "int8_t"; break;

-    case BuiltinType::UChar:     EltName = "uint8_t"; break;

-    case BuiltinType::Short:     EltName = "int16_t"; break;

-    case BuiltinType::UShort:    EltName = "uint16_t"; break;

-    case BuiltinType::Int:       EltName = "int32_t"; break;

-    case BuiltinType::UInt:      EltName = "uint32_t"; break;

-    case BuiltinType::LongLong:  EltName = "int64_t"; break;

-    case BuiltinType::ULongLong: EltName = "uint64_t"; break;

-    case BuiltinType::Float:     EltName = "float32_t"; break;

-    default: llvm_unreachable("unexpected Neon vector element type");

-    }

-  }

-  const char *BaseName = 0;

-  unsigned BitSize = (T->getNumElements() *

-                      getASTContext().getTypeSize(EltType));

-  if (BitSize == 64)

-    BaseName = "__simd64_";

-  else {

-    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");

-    BaseName = "__simd128_";

-  }

-  Out << strlen(BaseName) + strlen(EltName);

-  Out << BaseName << EltName;

-}

-

-// GNU extension: vector types

-// <type>                  ::= <vector-type>

-// <vector-type>           ::= Dv <positive dimension number> _

-//                                    <extended element type>

-//                         ::= Dv [<dimension expression>] _ <element type>

-// <extended element type> ::= <element type>

-//                         ::= p # AltiVec vector pixel

-//                         ::= b # Altivec vector bool

-void CXXNameMangler::mangleType(const VectorType *T) {

-  if ((T->getVectorKind() == VectorType::NeonVector ||

-       T->getVectorKind() == VectorType::NeonPolyVector)) {

-    mangleNeonVectorType(T);

-    return;

-  }

-  Out << "Dv" << T->getNumElements() << '_';

-  if (T->getVectorKind() == VectorType::AltiVecPixel)

-    Out << 'p';

-  else if (T->getVectorKind() == VectorType::AltiVecBool)

-    Out << 'b';

-  else

-    mangleType(T->getElementType());

-}

-void CXXNameMangler::mangleType(const ExtVectorType *T) {

-  mangleType(static_cast<const VectorType*>(T));

-}

-void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {

-  Out << "Dv";

-  mangleExpression(T->getSizeExpr());

-  Out << '_';

-  mangleType(T->getElementType());

-}

-

-void CXXNameMangler::mangleType(const PackExpansionType *T) {

-  // <type>  ::= Dp <type>          # pack expansion (C++0x)

-  Out << "Dp";

-  mangleType(T->getPattern());

-}

-

-void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {

-  mangleSourceName(T->getDecl()->getIdentifier());

-}

-

-void CXXNameMangler::mangleType(const ObjCObjectType *T) {

-  // We don't allow overloading by different protocol qualification,

-  // so mangling them isn't necessary.

-  mangleType(T->getBaseType());

-}

-

-void CXXNameMangler::mangleType(const BlockPointerType *T) {

-  Out << "U13block_pointer";

-  mangleType(T->getPointeeType());

-}

-

-void CXXNameMangler::mangleType(const InjectedClassNameType *T) {

-  // Mangle injected class name types as if the user had written the

-  // specialization out fully.  It may not actually be possible to see

-  // this mangling, though.

-  mangleType(T->getInjectedSpecializationType());

-}

-

-void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {

-  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {

-    mangleName(TD, T->getArgs(), T->getNumArgs());

-  } else {

-    if (mangleSubstitution(QualType(T, 0)))

-      return;

-    

-    mangleTemplatePrefix(T->getTemplateName());

-    

-    // FIXME: GCC does not appear to mangle the template arguments when

-    // the template in question is a dependent template name. Should we

-    // emulate that badness?

-    mangleTemplateArgs(T->getArgs(), T->getNumArgs());

-    addSubstitution(QualType(T, 0));

-  }

-}

-

-void CXXNameMangler::mangleType(const DependentNameType *T) {

-  // Typename types are always nested

-  Out << 'N';

-  manglePrefix(T->getQualifier());

-  mangleSourceName(T->getIdentifier());    

-  Out << 'E';

-}

-

-void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {

-  // Dependently-scoped template types are nested if they have a prefix.

-  Out << 'N';

-

-  // TODO: avoid making this TemplateName.

-  TemplateName Prefix =

-    getASTContext().getDependentTemplateName(T->getQualifier(),

-                                             T->getIdentifier());

-  mangleTemplatePrefix(Prefix);

-

-  // FIXME: GCC does not appear to mangle the template arguments when

-  // the template in question is a dependent template name. Should we

-  // emulate that badness?

-  mangleTemplateArgs(T->getArgs(), T->getNumArgs());    

-  Out << 'E';

-}

-

-void CXXNameMangler::mangleType(const TypeOfType *T) {

-  // FIXME: this is pretty unsatisfactory, but there isn't an obvious

-  // "extension with parameters" mangling.

-  Out << "u6typeof";

-}

-

-void CXXNameMangler::mangleType(const TypeOfExprType *T) {

-  // FIXME: this is pretty unsatisfactory, but there isn't an obvious

-  // "extension with parameters" mangling.

-  Out << "u6typeof";

-}

-

-void CXXNameMangler::mangleType(const DecltypeType *T) {

-  Expr *E = T->getUnderlyingExpr();

-

-  // type ::= Dt <expression> E  # decltype of an id-expression

-  //                             #   or class member access

-  //      ::= DT <expression> E  # decltype of an expression

-

-  // This purports to be an exhaustive list of id-expressions and

-  // class member accesses.  Note that we do not ignore parentheses;

-  // parentheses change the semantics of decltype for these

-  // expressions (and cause the mangler to use the other form).

-  if (isa<DeclRefExpr>(E) ||

-      isa<MemberExpr>(E) ||

-      isa<UnresolvedLookupExpr>(E) ||

-      isa<DependentScopeDeclRefExpr>(E) ||

-      isa<CXXDependentScopeMemberExpr>(E) ||

-      isa<UnresolvedMemberExpr>(E))

-    Out << "Dt";

-  else

-    Out << "DT";

-  mangleExpression(E);

-  Out << 'E';

-}

-

-void CXXNameMangler::mangleType(const UnaryTransformType *T) {

-  // If this is dependent, we need to record that. If not, we simply

-  // mangle it as the underlying type since they are equivalent.

-  if (T->isDependentType()) {

-    Out << 'U';

-    

-    switch (T->getUTTKind()) {

-      case UnaryTransformType::EnumUnderlyingType:

-        Out << "3eut";

-        break;

-    }

-  }

-

-  mangleType(T->getUnderlyingType());

-}

-

-void CXXNameMangler::mangleType(const AutoType *T) {

-  QualType D = T->getDeducedType();

-  // <builtin-type> ::= Da  # dependent auto

-  if (D.isNull())

-    Out << "Da";

-  else

-    mangleType(D);

-}

-

-void CXXNameMangler::mangleType(const AtomicType *T) {

-  // <type> ::= U <source-name> <type>	# vendor extended type qualifier

-  // (Until there's a standardized mangling...)

-  Out << "U7_Atomic";

-  mangleType(T->getValueType());

-}

-

-void CXXNameMangler::mangleIntegerLiteral(QualType T,

-                                          const llvm::APSInt &Value) {

-  //  <expr-primary> ::= L <type> <value number> E # integer literal

-  Out << 'L';

-

-  mangleType(T);

-  if (T->isBooleanType()) {

-    // Boolean values are encoded as 0/1.

-    Out << (Value.getBoolValue() ? '1' : '0');

-  } else {

-    mangleNumber(Value);

-  }

-  Out << 'E';

-

-}

-

-/// Mangles a member expression.

-void CXXNameMangler::mangleMemberExpr(const Expr *base,

-                                      bool isArrow,

-                                      NestedNameSpecifier *qualifier,

-                                      NamedDecl *firstQualifierLookup,

-                                      DeclarationName member,

-                                      unsigned arity) {

-  // <expression> ::= dt <expression> <unresolved-name>

-  //              ::= pt <expression> <unresolved-name>

-  if (base) {

-    if (base->isImplicitCXXThis()) {

-      // Note: GCC mangles member expressions to the implicit 'this' as

-      // *this., whereas we represent them as this->. The Itanium C++ ABI

-      // does not specify anything here, so we follow GCC.

-      Out << "dtdefpT";

-    } else {

-      Out << (isArrow ? "pt" : "dt");

-      mangleExpression(base);

-    }

-  }

-  mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);

-}

-

-/// Look at the callee of the given call expression and determine if

-/// it's a parenthesized id-expression which would have triggered ADL

-/// otherwise.

-static bool isParenthesizedADLCallee(const CallExpr *call) {

-  const Expr *callee = call->getCallee();

-  const Expr *fn = callee->IgnoreParens();

-

-  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,

-  // too, but for those to appear in the callee, it would have to be

-  // parenthesized.

-  if (callee == fn) return false;

-

-  // Must be an unresolved lookup.

-  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);

-  if (!lookup) return false;

-

-  assert(!lookup->requiresADL());

-

-  // Must be an unqualified lookup.

-  if (lookup->getQualifier()) return false;

-

-  // Must not have found a class member.  Note that if one is a class

-  // member, they're all class members.

-  if (lookup->getNumDecls() > 0 &&

-      (*lookup->decls_begin())->isCXXClassMember())

-    return false;

-

-  // Otherwise, ADL would have been triggered.

-  return true;

-}

-

-void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {

-  // <expression> ::= <unary operator-name> <expression>

-  //              ::= <binary operator-name> <expression> <expression>

-  //              ::= <trinary operator-name> <expression> <expression> <expression>

-  //              ::= cv <type> expression           # conversion with one argument

-  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments

-  //              ::= st <type>                      # sizeof (a type)

-  //              ::= at <type>                      # alignof (a type)

-  //              ::= <template-param>

-  //              ::= <function-param>

-  //              ::= sr <type> <unqualified-name>                   # dependent name

-  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id

-  //              ::= ds <expression> <expression>                   # expr.*expr

-  //              ::= sZ <template-param>                            # size of a parameter pack

-  //              ::= sZ <function-param>    # size of a function parameter pack

-  //              ::= <expr-primary>

-  // <expr-primary> ::= L <type> <value number> E    # integer literal

-  //                ::= L <type <value float> E      # floating literal

-  //                ::= L <mangled-name> E           # external name

-  //                ::= fpT                          # 'this' expression

-  QualType ImplicitlyConvertedToType;

-  

-recurse:

-  switch (E->getStmtClass()) {

-  case Expr::NoStmtClass:

-#define ABSTRACT_STMT(Type)

-#define EXPR(Type, Base)

-#define STMT(Type, Base) \

-  case Expr::Type##Class:

-#include "clang/AST/StmtNodes.inc"

-    // fallthrough

-

-  // These all can only appear in local or variable-initialization

-  // contexts and so should never appear in a mangling.

-  case Expr::AddrLabelExprClass:

-  case Expr::DesignatedInitExprClass:

-  case Expr::ImplicitValueInitExprClass:

-  case Expr::ParenListExprClass:

-  case Expr::LambdaExprClass:

-    llvm_unreachable("unexpected statement kind");

-

-  // FIXME: invent manglings for all these.

-  case Expr::BlockExprClass:

-  case Expr::CXXPseudoDestructorExprClass:

-  case Expr::ChooseExprClass:

-  case Expr::CompoundLiteralExprClass:

-  case Expr::ExtVectorElementExprClass:

-  case Expr::GenericSelectionExprClass:

-  case Expr::ObjCEncodeExprClass:

-  case Expr::ObjCIsaExprClass:

-  case Expr::ObjCIvarRefExprClass:

-  case Expr::ObjCMessageExprClass:

-  case Expr::ObjCPropertyRefExprClass:

-  case Expr::ObjCProtocolExprClass:

-  case Expr::ObjCSelectorExprClass:

-  case Expr::ObjCStringLiteralClass:

-  case Expr::ObjCBoxedExprClass:

-  case Expr::ObjCArrayLiteralClass:

-  case Expr::ObjCDictionaryLiteralClass:

-  case Expr::ObjCSubscriptRefExprClass:

-  case Expr::ObjCIndirectCopyRestoreExprClass:

-  case Expr::OffsetOfExprClass:

-  case Expr::PredefinedExprClass:

-  case Expr::ShuffleVectorExprClass:

-  case Expr::StmtExprClass:

-  case Expr::UnaryTypeTraitExprClass:

-  case Expr::BinaryTypeTraitExprClass:

-  case Expr::TypeTraitExprClass:

-  case Expr::ArrayTypeTraitExprClass:

-  case Expr::ExpressionTraitExprClass:

-  case Expr::VAArgExprClass:

-  case Expr::CXXUuidofExprClass:

-  case Expr::CUDAKernelCallExprClass:

-  case Expr::AsTypeExprClass:

-  case Expr::PseudoObjectExprClass:

-  case Expr::AtomicExprClass:

-  {

-    // As bad as this diagnostic is, it's better than crashing.

-    DiagnosticsEngine &Diags = Context.getDiags();

-    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,

-                                     "cannot yet mangle expression type %0");

-    Diags.Report(E->getExprLoc(), DiagID)

-      << E->getStmtClassName() << E->getSourceRange();

-    break;

-  }

-

-  // Even gcc-4.5 doesn't mangle this.

-  case Expr::BinaryConditionalOperatorClass: {

-    DiagnosticsEngine &Diags = Context.getDiags();

-    unsigned DiagID =

-      Diags.getCustomDiagID(DiagnosticsEngine::Error,

-                "?: operator with omitted middle operand cannot be mangled");

-    Diags.Report(E->getExprLoc(), DiagID)

-      << E->getStmtClassName() << E->getSourceRange();

-    break;

-  }

-

-  // These are used for internal purposes and cannot be meaningfully mangled.

-  case Expr::OpaqueValueExprClass:

-    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");

-

-  case Expr::InitListExprClass: {

-    // Proposal by Jason Merrill, 2012-01-03

-    Out << "il";

-    const InitListExpr *InitList = cast<InitListExpr>(E);

-    for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)

-      mangleExpression(InitList->getInit(i));

-    Out << "E";

-    break;

-  }

-

-  case Expr::CXXDefaultArgExprClass:

-    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);

-    break;

-

-  case Expr::SubstNonTypeTemplateParmExprClass:

-    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),

-                     Arity);

-    break;

-

-  case Expr::UserDefinedLiteralClass:

-    // We follow g++'s approach of mangling a UDL as a call to the literal

-    // operator.

-  case Expr::CXXMemberCallExprClass: // fallthrough

-  case Expr::CallExprClass: {

-    const CallExpr *CE = cast<CallExpr>(E);

-

-    // <expression> ::= cp <simple-id> <expression>* E

-    // We use this mangling only when the call would use ADL except

-    // for being parenthesized.  Per discussion with David

-    // Vandervoorde, 2011.04.25.

-    if (isParenthesizedADLCallee(CE)) {

-      Out << "cp";

-      // The callee here is a parenthesized UnresolvedLookupExpr with

-      // no qualifier and should always get mangled as a <simple-id>

-      // anyway.

-

-    // <expression> ::= cl <expression>* E

-    } else {

-      Out << "cl";

-    }

-

-    mangleExpression(CE->getCallee(), CE->getNumArgs());

-    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)

-      mangleExpression(CE->getArg(I));

-    Out << 'E';

-    break;

-  }

-

-  case Expr::CXXNewExprClass: {

-    const CXXNewExpr *New = cast<CXXNewExpr>(E);

-    if (New->isGlobalNew()) Out << "gs";

-    Out << (New->isArray() ? "na" : "nw");

-    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),

-           E = New->placement_arg_end(); I != E; ++I)

-      mangleExpression(*I);

-    Out << '_';

-    mangleType(New->getAllocatedType());

-    if (New->hasInitializer()) {

-      // Proposal by Jason Merrill, 2012-01-03

-      if (New->getInitializationStyle() == CXXNewExpr::ListInit)

-        Out << "il";

-      else

-        Out << "pi";

-      const Expr *Init = New->getInitializer();

-      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {

-        // Directly inline the initializers.

-        for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),

-                                                  E = CCE->arg_end();

-             I != E; ++I)

-          mangleExpression(*I);

-      } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {

-        for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)

-          mangleExpression(PLE->getExpr(i));

-      } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&

-                 isa<InitListExpr>(Init)) {

-        // Only take InitListExprs apart for list-initialization.

-        const InitListExpr *InitList = cast<InitListExpr>(Init);

-        for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)

-          mangleExpression(InitList->getInit(i));

-      } else

-        mangleExpression(Init);

-    }

-    Out << 'E';

-    break;

-  }

-

-  case Expr::MemberExprClass: {

-    const MemberExpr *ME = cast<MemberExpr>(E);

-    mangleMemberExpr(ME->getBase(), ME->isArrow(),

-                     ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),

-                     Arity);

-    break;

-  }

-

-  case Expr::UnresolvedMemberExprClass: {

-    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);

-    mangleMemberExpr(ME->getBase(), ME->isArrow(),

-                     ME->getQualifier(), 0, ME->getMemberName(),

-                     Arity);

-    if (ME->hasExplicitTemplateArgs())

-      mangleTemplateArgs(ME->getExplicitTemplateArgs());

-    break;

-  }

-

-  case Expr::CXXDependentScopeMemberExprClass: {

-    const CXXDependentScopeMemberExpr *ME

-      = cast<CXXDependentScopeMemberExpr>(E);

-    mangleMemberExpr(ME->getBase(), ME->isArrow(),

-                     ME->getQualifier(), ME->getFirstQualifierFoundInScope(),

-                     ME->getMember(), Arity);

-    if (ME->hasExplicitTemplateArgs())

-      mangleTemplateArgs(ME->getExplicitTemplateArgs());

-    break;

-  }

-

-  case Expr::UnresolvedLookupExprClass: {

-    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);

-    mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);

-

-    // All the <unresolved-name> productions end in a

-    // base-unresolved-name, where <template-args> are just tacked

-    // onto the end.

-    if (ULE->hasExplicitTemplateArgs())

-      mangleTemplateArgs(ULE->getExplicitTemplateArgs());

-    break;

-  }

-

-  case Expr::CXXUnresolvedConstructExprClass: {

-    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);

-    unsigned N = CE->arg_size();

-

-    Out << "cv";

-    mangleType(CE->getType());

-    if (N != 1) Out << '_';

-    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));

-    if (N != 1) Out << 'E';

-    break;

-  }

-

-  case Expr::CXXTemporaryObjectExprClass:

-  case Expr::CXXConstructExprClass: {

-    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);

-    unsigned N = CE->getNumArgs();

-

-    // Proposal by Jason Merrill, 2012-01-03

-    if (CE->isListInitialization())

-      Out << "tl";

-    else

-      Out << "cv";

-    mangleType(CE->getType());

-    if (N != 1) Out << '_';

-    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));

-    if (N != 1) Out << 'E';

-    break;

-  }

-

-  case Expr::CXXScalarValueInitExprClass:

-    Out <<"cv";

-    mangleType(E->getType());

-    Out <<"_E";

-    break;

-

-  case Expr::CXXNoexceptExprClass:

-    Out << "nx";

-    mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());

-    break;

-

-  case Expr::UnaryExprOrTypeTraitExprClass: {

-    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);

-    

-    if (!SAE->isInstantiationDependent()) {

-      // Itanium C++ ABI:

-      //   If the operand of a sizeof or alignof operator is not 

-      //   instantiation-dependent it is encoded as an integer literal 

-      //   reflecting the result of the operator.

-      //

-      //   If the result of the operator is implicitly converted to a known 

-      //   integer type, that type is used for the literal; otherwise, the type 

-      //   of std::size_t or std::ptrdiff_t is used.

-      QualType T = (ImplicitlyConvertedToType.isNull() || 

-                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()

-                                                    : ImplicitlyConvertedToType;

-      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());

-      mangleIntegerLiteral(T, V);

-      break;

-    }

-    

-    switch(SAE->getKind()) {

-    case UETT_SizeOf:

-      Out << 's';

-      break;

-    case UETT_AlignOf:

-      Out << 'a';

-      break;

-    case UETT_VecStep:

-      DiagnosticsEngine &Diags = Context.getDiags();

-      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,

-                                     "cannot yet mangle vec_step expression");

-      Diags.Report(DiagID);

-      return;

-    }

-    if (SAE->isArgumentType()) {

-      Out << 't';

-      mangleType(SAE->getArgumentType());

-    } else {

-      Out << 'z';

-      mangleExpression(SAE->getArgumentExpr());

-    }

-    break;

-  }

-

-  case Expr::CXXThrowExprClass: {

-    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);

-

-    // Proposal from David Vandervoorde, 2010.06.30

-    if (TE->getSubExpr()) {

-      Out << "tw";

-      mangleExpression(TE->getSubExpr());

-    } else {

-      Out << "tr";

-    }

-    break;

-  }

-

-  case Expr::CXXTypeidExprClass: {

-    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);

-

-    // Proposal from David Vandervoorde, 2010.06.30

-    if (TIE->isTypeOperand()) {

-      Out << "ti";

-      mangleType(TIE->getTypeOperand());

-    } else {

-      Out << "te";

-      mangleExpression(TIE->getExprOperand());

-    }

-    break;

-  }

-

-  case Expr::CXXDeleteExprClass: {

-    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);

-

-    // Proposal from David Vandervoorde, 2010.06.30

-    if (DE->isGlobalDelete()) Out << "gs";

-    Out << (DE->isArrayForm() ? "da" : "dl");

-    mangleExpression(DE->getArgument());

-    break;

-  }

-

-  case Expr::UnaryOperatorClass: {

-    const UnaryOperator *UO = cast<UnaryOperator>(E);

-    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),

-                       /*Arity=*/1);

-    mangleExpression(UO->getSubExpr());

-    break;

-  }

-

-  case Expr::ArraySubscriptExprClass: {

-    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);

-

-    // Array subscript is treated as a syntactically weird form of

-    // binary operator.

-    Out << "ix";

-    mangleExpression(AE->getLHS());

-    mangleExpression(AE->getRHS());

-    break;

-  }

-

-  case Expr::CompoundAssignOperatorClass: // fallthrough

-  case Expr::BinaryOperatorClass: {

-    const BinaryOperator *BO = cast<BinaryOperator>(E);

-    if (BO->getOpcode() == BO_PtrMemD)

-      Out << "ds";

-    else

-      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),

-                         /*Arity=*/2);

-    mangleExpression(BO->getLHS());

-    mangleExpression(BO->getRHS());

-    break;

-  }

-

-  case Expr::ConditionalOperatorClass: {

-    const ConditionalOperator *CO = cast<ConditionalOperator>(E);

-    mangleOperatorName(OO_Conditional, /*Arity=*/3);

-    mangleExpression(CO->getCond());

-    mangleExpression(CO->getLHS(), Arity);

-    mangleExpression(CO->getRHS(), Arity);

-    break;

-  }

-

-  case Expr::ImplicitCastExprClass: {

-    ImplicitlyConvertedToType = E->getType();

-    E = cast<ImplicitCastExpr>(E)->getSubExpr();

-    goto recurse;

-  }

-      

-  case Expr::ObjCBridgedCastExprClass: {

-    // Mangle ownership casts as a vendor extended operator __bridge, 

-    // __bridge_transfer, or __bridge_retain.

-    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();

-    Out << "v1U" << Kind.size() << Kind;

-  }

-  // Fall through to mangle the cast itself.

-      

-  case Expr::CStyleCastExprClass:

-  case Expr::CXXStaticCastExprClass:

-  case Expr::CXXDynamicCastExprClass:

-  case Expr::CXXReinterpretCastExprClass:

-  case Expr::CXXConstCastExprClass:

-  case Expr::CXXFunctionalCastExprClass: {

-    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);

-    Out << "cv";

-    mangleType(ECE->getType());

-    mangleExpression(ECE->getSubExpr());

-    break;

-  }

-

-  case Expr::CXXOperatorCallExprClass: {

-    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);

-    unsigned NumArgs = CE->getNumArgs();

-    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);

-    // Mangle the arguments.

-    for (unsigned i = 0; i != NumArgs; ++i)

-      mangleExpression(CE->getArg(i));

-    break;

-  }

-

-  case Expr::ParenExprClass:

-    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);

-    break;

-

-  case Expr::DeclRefExprClass: {

-    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();

-

-    switch (D->getKind()) {

-    default:

-      //  <expr-primary> ::= L <mangled-name> E # external name

-      Out << 'L';

-      mangle(D, "_Z");

-      Out << 'E';

-      break;

-

-    case Decl::ParmVar:

-      mangleFunctionParam(cast<ParmVarDecl>(D));

-      break;

-

-    case Decl::EnumConstant: {

-      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);

-      mangleIntegerLiteral(ED->getType(), ED->getInitVal());

-      break;

-    }

-

-    case Decl::NonTypeTemplateParm: {

-      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);

-      mangleTemplateParameter(PD->getIndex());

-      break;

-    }

-

-    }

-

-    break;

-  }

-

-  case Expr::SubstNonTypeTemplateParmPackExprClass:

-    // FIXME: not clear how to mangle this!

-    // template <unsigned N...> class A {

-    //   template <class U...> void foo(U (&x)[N]...);

-    // };

-    Out << "_SUBSTPACK_";

-    break;

-

-  case Expr::FunctionParmPackExprClass: {

-    // FIXME: not clear how to mangle this!

-    const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);

-    Out << "v110_SUBSTPACK";

-    mangleFunctionParam(FPPE->getParameterPack());

-    break;

-  }

-

-  case Expr::DependentScopeDeclRefExprClass: {

-    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);

-    mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);

-

-    // All the <unresolved-name> productions end in a

-    // base-unresolved-name, where <template-args> are just tacked

-    // onto the end.

-    if (DRE->hasExplicitTemplateArgs())

-      mangleTemplateArgs(DRE->getExplicitTemplateArgs());

-    break;

-  }

-

-  case Expr::CXXBindTemporaryExprClass:

-    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());

-    break;

-

-  case Expr::ExprWithCleanupsClass:

-    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);

-    break;

-

-  case Expr::FloatingLiteralClass: {

-    const FloatingLiteral *FL = cast<FloatingLiteral>(E);

-    Out << 'L';

-    mangleType(FL->getType());

-    mangleFloat(FL->getValue());

-    Out << 'E';

-    break;

-  }

-

-  case Expr::CharacterLiteralClass:

-    Out << 'L';

-    mangleType(E->getType());

-    Out << cast<CharacterLiteral>(E)->getValue();

-    Out << 'E';

-    break;

-

-  // FIXME. __objc_yes/__objc_no are mangled same as true/false

-  case Expr::ObjCBoolLiteralExprClass:

-    Out << "Lb";

-    Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');

-    Out << 'E';

-    break;

-  

-  case Expr::CXXBoolLiteralExprClass:

-    Out << "Lb";

-    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');

-    Out << 'E';

-    break;

-

-  case Expr::IntegerLiteralClass: {

-    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());

-    if (E->getType()->isSignedIntegerType())

-      Value.setIsSigned(true);

-    mangleIntegerLiteral(E->getType(), Value);

-    break;

-  }

-

-  case Expr::ImaginaryLiteralClass: {

-    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);

-    // Mangle as if a complex literal.

-    // Proposal from David Vandevoorde, 2010.06.30.

-    Out << 'L';

-    mangleType(E->getType());

-    if (const FloatingLiteral *Imag =

-          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {

-      // Mangle a floating-point zero of the appropriate type.

-      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));

-      Out << '_';

-      mangleFloat(Imag->getValue());

-    } else {

-      Out << "0_";

-      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());

-      if (IE->getSubExpr()->getType()->isSignedIntegerType())

-        Value.setIsSigned(true);

-      mangleNumber(Value);

-    }

-    Out << 'E';

-    break;

-  }

-

-  case Expr::StringLiteralClass: {

-    // Revised proposal from David Vandervoorde, 2010.07.15.

-    Out << 'L';

-    assert(isa<ConstantArrayType>(E->getType()));

-    mangleType(E->getType());

-    Out << 'E';

-    break;

-  }

-

-  case Expr::GNUNullExprClass:

-    // FIXME: should this really be mangled the same as nullptr?

-    // fallthrough

-

-  case Expr::CXXNullPtrLiteralExprClass: {

-    // Proposal from David Vandervoorde, 2010.06.30, as

-    // modified by ABI list discussion.

-    Out << "LDnE";

-    break;

-  }

-      

-  case Expr::PackExpansionExprClass:

-    Out << "sp";

-    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());

-    break;

-      

-  case Expr::SizeOfPackExprClass: {

-    Out << "sZ";

-    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();

-    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))

-      mangleTemplateParameter(TTP->getIndex());

-    else if (const NonTypeTemplateParmDecl *NTTP

-                = dyn_cast<NonTypeTemplateParmDecl>(Pack))

-      mangleTemplateParameter(NTTP->getIndex());

-    else if (const TemplateTemplateParmDecl *TempTP

-                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))

-      mangleTemplateParameter(TempTP->getIndex());

-    else

-      mangleFunctionParam(cast<ParmVarDecl>(Pack));

-    break;

-  }

-      

-  case Expr::MaterializeTemporaryExprClass: {

-    mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());

-    break;

-  }

-      

-  case Expr::CXXThisExprClass:

-    Out << "fpT";

-    break;

-  }

-}

-

-/// Mangle an expression which refers to a parameter variable.

-///

-/// <expression>     ::= <function-param>

-/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0

-/// <function-param> ::= fp <top-level CV-qualifiers>

-///                      <parameter-2 non-negative number> _ # L == 0, I > 0

-/// <function-param> ::= fL <L-1 non-negative number>

-///                      p <top-level CV-qualifiers> _       # L > 0, I == 0

-/// <function-param> ::= fL <L-1 non-negative number>

-///                      p <top-level CV-qualifiers>

-///                      <I-1 non-negative number> _         # L > 0, I > 0

-///

-/// L is the nesting depth of the parameter, defined as 1 if the

-/// parameter comes from the innermost function prototype scope

-/// enclosing the current context, 2 if from the next enclosing

-/// function prototype scope, and so on, with one special case: if

-/// we've processed the full parameter clause for the innermost

-/// function type, then L is one less.  This definition conveniently

-/// makes it irrelevant whether a function's result type was written

-/// trailing or leading, but is otherwise overly complicated; the

-/// numbering was first designed without considering references to

-/// parameter in locations other than return types, and then the

-/// mangling had to be generalized without changing the existing

-/// manglings.

-///

-/// I is the zero-based index of the parameter within its parameter

-/// declaration clause.  Note that the original ABI document describes

-/// this using 1-based ordinals.

-void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {

-  unsigned parmDepth = parm->getFunctionScopeDepth();

-  unsigned parmIndex = parm->getFunctionScopeIndex();

-

-  // Compute 'L'.

-  // parmDepth does not include the declaring function prototype.

-  // FunctionTypeDepth does account for that.

-  assert(parmDepth < FunctionTypeDepth.getDepth());

-  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;

-  if (FunctionTypeDepth.isInResultType())

-    nestingDepth--;

-

-  if (nestingDepth == 0) {

-    Out << "fp";

-  } else {

-    Out << "fL" << (nestingDepth - 1) << 'p';

-  }

-

-  // Top-level qualifiers.  We don't have to worry about arrays here,

-  // because parameters declared as arrays should already have been

-  // transformed to have pointer type. FIXME: apparently these don't

-  // get mangled if used as an rvalue of a known non-class type?

-  assert(!parm->getType()->isArrayType()

-         && "parameter's type is still an array type?");

-  mangleQualifiers(parm->getType().getQualifiers());

-

-  // Parameter index.

-  if (parmIndex != 0) {

-    Out << (parmIndex - 1);

-  }

-  Out << '_';

-}

-

-void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {

-  // <ctor-dtor-name> ::= C1  # complete object constructor

-  //                  ::= C2  # base object constructor

-  //                  ::= C3  # complete object allocating constructor

-  //

-  switch (T) {

-  case Ctor_Complete:

-    Out << "C1";

-    break;

-  case Ctor_Base:

-    Out << "C2";

-    break;

-  case Ctor_CompleteAllocating:

-    Out << "C3";

-    break;

-  }

-}

-

-void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {

-  // <ctor-dtor-name> ::= D0  # deleting destructor

-  //                  ::= D1  # complete object destructor

-  //                  ::= D2  # base object destructor

-  //

-  switch (T) {

-  case Dtor_Deleting:

-    Out << "D0";

-    break;

-  case Dtor_Complete:

-    Out << "D1";

-    break;

-  case Dtor_Base:

-    Out << "D2";

-    break;

-  }

-}

-

-void CXXNameMangler::mangleTemplateArgs(

-                          const ASTTemplateArgumentListInfo &TemplateArgs) {

-  // <template-args> ::= I <template-arg>+ E

-  Out << 'I';

-  for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)

-    mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());

-  Out << 'E';

-}

-

-void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {

-  // <template-args> ::= I <template-arg>+ E

-  Out << 'I';

-  for (unsigned i = 0, e = AL.size(); i != e; ++i)

-    mangleTemplateArg(AL[i]);

-  Out << 'E';

-}

-

-void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,

-                                        unsigned NumTemplateArgs) {

-  // <template-args> ::= I <template-arg>+ E

-  Out << 'I';

-  for (unsigned i = 0; i != NumTemplateArgs; ++i)

-    mangleTemplateArg(TemplateArgs[i]);

-  Out << 'E';

-}

-

-void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {

-  // <template-arg> ::= <type>              # type or template

-  //                ::= X <expression> E    # expression

-  //                ::= <expr-primary>      # simple expressions

-  //                ::= J <template-arg>* E # argument pack

-  //                ::= sp <expression>     # pack expansion of (C++0x)  

-  if (!A.isInstantiationDependent() || A.isDependent())

-    A = Context.getASTContext().getCanonicalTemplateArgument(A);

-  

-  switch (A.getKind()) {

-  case TemplateArgument::Null:

-    llvm_unreachable("Cannot mangle NULL template argument");

-      

-  case TemplateArgument::Type:

-    mangleType(A.getAsType());

-    break;

-  case TemplateArgument::Template:

-    // This is mangled as <type>.

-    mangleType(A.getAsTemplate());

-    break;

-  case TemplateArgument::TemplateExpansion:

-    // <type>  ::= Dp <type>          # pack expansion (C++0x)

-    Out << "Dp";

-    mangleType(A.getAsTemplateOrTemplatePattern());

-    break;

-  case TemplateArgument::Expression: {

-    // It's possible to end up with a DeclRefExpr here in certain

-    // dependent cases, in which case we should mangle as a

-    // declaration.

-    const Expr *E = A.getAsExpr()->IgnoreParens();

-    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {

-      const ValueDecl *D = DRE->getDecl();

-      if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {

-        Out << "L";

-        mangle(D, "_Z");

-        Out << 'E';

-        break;

-      }

-    }

-    

-    Out << 'X';

-    mangleExpression(E);

-    Out << 'E';

-    break;

-  }

-  case TemplateArgument::Integral:

-    mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());

-    break;

-  case TemplateArgument::Declaration: {

-    //  <expr-primary> ::= L <mangled-name> E # external name

-    // Clang produces AST's where pointer-to-member-function expressions

-    // and pointer-to-function expressions are represented as a declaration not

-    // an expression. We compensate for it here to produce the correct mangling.

-    ValueDecl *D = A.getAsDecl();

-    bool compensateMangling = !A.isDeclForReferenceParam();

-    if (compensateMangling) {

-      Out << 'X';

-      mangleOperatorName(OO_Amp, 1);

-    }

-

-    Out << 'L';

-    // References to external entities use the mangled name; if the name would

-    // not normally be manged then mangle it as unqualified.

-    //

-    // FIXME: The ABI specifies that external names here should have _Z, but

-    // gcc leaves this off.

-    if (compensateMangling)

-      mangle(D, "_Z");

-    else

-      mangle(D, "Z");

-    Out << 'E';

-

-    if (compensateMangling)

-      Out << 'E';

-

-    break;

-  }

-  case TemplateArgument::NullPtr: {

-    //  <expr-primary> ::= L <type> 0 E

-    Out << 'L';

-    mangleType(A.getNullPtrType());

-    Out << "0E";

-    break;

-  }

-  case TemplateArgument::Pack: {

-    // Note: proposal by Mike Herrick on 12/20/10

-    Out << 'J';

-    for (TemplateArgument::pack_iterator PA = A.pack_begin(), 

-                                      PAEnd = A.pack_end();

-         PA != PAEnd; ++PA)

-      mangleTemplateArg(*PA);

-    Out << 'E';

-  }

-  }

-}

-

-void CXXNameMangler::mangleTemplateParameter(unsigned Index) {

-  // <template-param> ::= T_    # first template parameter

-  //                  ::= T <parameter-2 non-negative number> _

-  if (Index == 0)

-    Out << "T_";

-  else

-    Out << 'T' << (Index - 1) << '_';

-}

-

-void CXXNameMangler::mangleExistingSubstitution(QualType type) {

-  bool result = mangleSubstitution(type);

-  assert(result && "no existing substitution for type");

-  (void) result;

-}

-

-void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {

-  bool result = mangleSubstitution(tname);

-  assert(result && "no existing substitution for template name");

-  (void) result;

-}

-

-// <substitution> ::= S <seq-id> _

-//                ::= S_

-bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {

-  // Try one of the standard substitutions first.

-  if (mangleStandardSubstitution(ND))

-    return true;

-

-  ND = cast<NamedDecl>(ND->getCanonicalDecl());

-  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));

-}

-

-/// \brief Determine whether the given type has any qualifiers that are

-/// relevant for substitutions.

-static bool hasMangledSubstitutionQualifiers(QualType T) {

-  Qualifiers Qs = T.getQualifiers();

-  return Qs.getCVRQualifiers() || Qs.hasAddressSpace();

-}

-

-bool CXXNameMangler::mangleSubstitution(QualType T) {

-  if (!hasMangledSubstitutionQualifiers(T)) {

-    if (const RecordType *RT = T->getAs<RecordType>())

-      return mangleSubstitution(RT->getDecl());

-  }

-

-  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());

-

-  return mangleSubstitution(TypePtr);

-}

-

-bool CXXNameMangler::mangleSubstitution(TemplateName Template) {

-  if (TemplateDecl *TD = Template.getAsTemplateDecl())

-    return mangleSubstitution(TD);

-  

-  Template = Context.getASTContext().getCanonicalTemplateName(Template);

-  return mangleSubstitution(

-                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));

-}

-

-bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {

-  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);

-  if (I == Substitutions.end())

-    return false;

-

-  unsigned SeqID = I->second;

-  if (SeqID == 0)

-    Out << "S_";

-  else {

-    SeqID--;

-

-    // <seq-id> is encoded in base-36, using digits and upper case letters.

-    char Buffer[10];

-    char *BufferPtr = llvm::array_endof(Buffer);

-

-    if (SeqID == 0) *--BufferPtr = '0';

-

-    while (SeqID) {

-      assert(BufferPtr > Buffer && "Buffer overflow!");

-

-      char c = static_cast<char>(SeqID % 36);

-

-      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);

-      SeqID /= 36;

-    }

-

-    Out << 'S'

-        << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)

-        << '_';

-  }

-

-  return true;

-}

-

-static bool isCharType(QualType T) {

-  if (T.isNull())

-    return false;

-

-  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||

-    T->isSpecificBuiltinType(BuiltinType::Char_U);

-}

-

-/// isCharSpecialization - Returns whether a given type is a template

-/// specialization of a given name with a single argument of type char.

-static bool isCharSpecialization(QualType T, const char *Name) {

-  if (T.isNull())

-    return false;

-

-  const RecordType *RT = T->getAs<RecordType>();

-  if (!RT)

-    return false;

-

-  const ClassTemplateSpecializationDecl *SD =

-    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());

-  if (!SD)

-    return false;

-

-  if (!isStdNamespace(getEffectiveDeclContext(SD)))

-    return false;

-

-  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();

-  if (TemplateArgs.size() != 1)

-    return false;

-

-  if (!isCharType(TemplateArgs[0].getAsType()))

-    return false;

-

-  return SD->getIdentifier()->getName() == Name;

-}

-

-template <std::size_t StrLen>

-static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,

-                                       const char (&Str)[StrLen]) {

-  if (!SD->getIdentifier()->isStr(Str))

-    return false;

-

-  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();

-  if (TemplateArgs.size() != 2)

-    return false;

-

-  if (!isCharType(TemplateArgs[0].getAsType()))

-    return false;

-

-  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))

-    return false;

-

-  return true;

-}

-

-bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {

-  // <substitution> ::= St # ::std::

-  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {

-    if (isStd(NS)) {

-      Out << "St";

-      return true;

-    }

-  }

-

-  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {

-    if (!isStdNamespace(getEffectiveDeclContext(TD)))

-      return false;

-

-    // <substitution> ::= Sa # ::std::allocator

-    if (TD->getIdentifier()->isStr("allocator")) {

-      Out << "Sa";

-      return true;

-    }

-

-    // <<substitution> ::= Sb # ::std::basic_string

-    if (TD->getIdentifier()->isStr("basic_string")) {

-      Out << "Sb";

-      return true;

-    }

-  }

-

-  if (const ClassTemplateSpecializationDecl *SD =

-        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {

-    if (!isStdNamespace(getEffectiveDeclContext(SD)))

-      return false;

-

-    //    <substitution> ::= Ss # ::std::basic_string<char,

-    //                            ::std::char_traits<char>,

-    //                            ::std::allocator<char> >

-    if (SD->getIdentifier()->isStr("basic_string")) {

-      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();

-

-      if (TemplateArgs.size() != 3)

-        return false;

-

-      if (!isCharType(TemplateArgs[0].getAsType()))

-        return false;

-

-      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))

-        return false;

-

-      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))

-        return false;

-

-      Out << "Ss";

-      return true;

-    }

-

-    //    <substitution> ::= Si # ::std::basic_istream<char,

-    //                            ::std::char_traits<char> >

-    if (isStreamCharSpecialization(SD, "basic_istream")) {

-      Out << "Si";

-      return true;

-    }

-

-    //    <substitution> ::= So # ::std::basic_ostream<char,

-    //                            ::std::char_traits<char> >

-    if (isStreamCharSpecialization(SD, "basic_ostream")) {

-      Out << "So";

-      return true;

-    }

-

-    //    <substitution> ::= Sd # ::std::basic_iostream<char,

-    //                            ::std::char_traits<char> >

-    if (isStreamCharSpecialization(SD, "basic_iostream")) {

-      Out << "Sd";

-      return true;

-    }

-  }

-  return false;

-}

-

-void CXXNameMangler::addSubstitution(QualType T) {

-  if (!hasMangledSubstitutionQualifiers(T)) {

-    if (const RecordType *RT = T->getAs<RecordType>()) {

-      addSubstitution(RT->getDecl());

-      return;

-    }

-  }

-

-  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());

-  addSubstitution(TypePtr);

-}

-

-void CXXNameMangler::addSubstitution(TemplateName Template) {

-  if (TemplateDecl *TD = Template.getAsTemplateDecl())

-    return addSubstitution(TD);

-  

-  Template = Context.getASTContext().getCanonicalTemplateName(Template);

-  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));

-}

-

-void CXXNameMangler::addSubstitution(uintptr_t Ptr) {

-  assert(!Substitutions.count(Ptr) && "Substitution already exists!");

-  Substitutions[Ptr] = SeqID++;

-}

-

-//

-

-/// \brief Mangles the name of the declaration D and emits that name to the

-/// given output stream.

-///

-/// If the declaration D requires a mangled name, this routine will emit that

-/// mangled name to \p os and return true. Otherwise, \p os will be unchanged

-/// and this routine will return false. In this case, the caller should just

-/// emit the identifier of the declaration (\c D->getIdentifier()) as its

-/// name.

-void ItaniumMangleContext::mangleName(const NamedDecl *D,

-                                      raw_ostream &Out) {

-  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&

-          "Invalid mangleName() call, argument is not a variable or function!");

-  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&

-         "Invalid mangleName() call on 'structor decl!");

-

-  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),

-                                 getASTContext().getSourceManager(),

-                                 "Mangling declaration");

-

-  CXXNameMangler Mangler(*this, Out, D);

-  return Mangler.mangle(D);

-}

-

-void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,

-                                         CXXCtorType Type,

-                                         raw_ostream &Out) {

-  CXXNameMangler Mangler(*this, Out, D, Type);

-  Mangler.mangle(D);

-}

-

-void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,

-                                         CXXDtorType Type,

-                                         raw_ostream &Out) {

-  CXXNameMangler Mangler(*this, Out, D, Type);

-  Mangler.mangle(D);

-}

-

-void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,

-                                       const ThunkInfo &Thunk,

-                                       raw_ostream &Out) {

-  //  <special-name> ::= T <call-offset> <base encoding>

-  //                      # base is the nominal target function of thunk

-  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>

-  //                      # base is the nominal target function of thunk

-  //                      # first call-offset is 'this' adjustment

-  //                      # second call-offset is result adjustment

-  

-  assert(!isa<CXXDestructorDecl>(MD) &&

-         "Use mangleCXXDtor for destructor decls!");

-  CXXNameMangler Mangler(*this, Out);

-  Mangler.getStream() << "_ZT";

-  if (!Thunk.Return.isEmpty())

-    Mangler.getStream() << 'c';

-  

-  // Mangle the 'this' pointer adjustment.

-  Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);

-  

-  // Mangle the return pointer adjustment if there is one.

-  if (!Thunk.Return.isEmpty())

-    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,

-                             Thunk.Return.VBaseOffsetOffset);

-  

-  Mangler.mangleFunctionEncoding(MD);

-}

-

-void 

-ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,

-                                         CXXDtorType Type,

-                                         const ThisAdjustment &ThisAdjustment,

-                                         raw_ostream &Out) {

-  //  <special-name> ::= T <call-offset> <base encoding>

-  //                      # base is the nominal target function of thunk

-  CXXNameMangler Mangler(*this, Out, DD, Type);

-  Mangler.getStream() << "_ZT";

-

-  // Mangle the 'this' pointer adjustment.

-  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, 

-                           ThisAdjustment.VCallOffsetOffset);

-

-  Mangler.mangleFunctionEncoding(DD);

-}

-

-/// mangleGuardVariable - Returns the mangled name for a guard variable

-/// for the passed in VarDecl.

-void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,

-                                                      raw_ostream &Out) {

-  //  <special-name> ::= GV <object name>       # Guard variable for one-time

-  //                                            # initialization

-  CXXNameMangler Mangler(*this, Out);

-  Mangler.getStream() << "_ZGV";

-  Mangler.mangleName(D);

-}

-

-void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,

-                                                    raw_ostream &Out) {

-  // We match the GCC mangling here.

-  //  <special-name> ::= GR <object name>

-  CXXNameMangler Mangler(*this, Out);

-  Mangler.getStream() << "_ZGR";

-  Mangler.mangleName(D);

-}

-

-void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,

-                                           raw_ostream &Out) {

-  // <special-name> ::= TV <type>  # virtual table

-  CXXNameMangler Mangler(*this, Out);

-  Mangler.getStream() << "_ZTV";

-  Mangler.mangleNameOrStandardSubstitution(RD);

-}

-

-void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,

-                                        raw_ostream &Out) {

-  // <special-name> ::= TT <type>  # VTT structure

-  CXXNameMangler Mangler(*this, Out);

-  Mangler.getStream() << "_ZTT";

-  Mangler.mangleNameOrStandardSubstitution(RD);

-}

-

-void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,

-                                               int64_t Offset,

-                                               const CXXRecordDecl *Type,

-                                               raw_ostream &Out) {

-  // <special-name> ::= TC <type> <offset number> _ <base type>

-  CXXNameMangler Mangler(*this, Out);

-  Mangler.getStream() << "_ZTC";

-  Mangler.mangleNameOrStandardSubstitution(RD);

-  Mangler.getStream() << Offset;

-  Mangler.getStream() << '_';

-  Mangler.mangleNameOrStandardSubstitution(Type);

-}

-

-void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,

-                                         raw_ostream &Out) {

-  // <special-name> ::= TI <type>  # typeinfo structure

-  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");

-  CXXNameMangler Mangler(*this, Out);

-  Mangler.getStream() << "_ZTI";

-  Mangler.mangleType(Ty);

-}

-

-void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,

-                                             raw_ostream &Out) {

-  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)

-  CXXNameMangler Mangler(*this, Out);

-  Mangler.getStream() << "_ZTS";

-  Mangler.mangleType(Ty);

-}

-

-MangleContext *clang::createItaniumMangleContext(ASTContext &Context,

-                                                 DiagnosticsEngine &Diags) {

-  return new ItaniumMangleContext(Context, Diags);

-}

+//===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Implements C++ name mangling according to the Itanium C++ ABI,
+// which is used in GCC 3.2 and newer (and many compilers that are
+// ABI-compatible with GCC):
+//
+//   http://www.codesourcery.com/public/cxx-abi/abi.html
+//
+//===----------------------------------------------------------------------===//
+#include "clang/AST/Mangle.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Attr.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/ABI.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+
+#define MANGLE_CHECKER 0
+
+#if MANGLE_CHECKER
+#include <cxxabi.h>
+#endif
+
+using namespace clang;
+
+namespace {
+
+/// \brief Retrieve the declaration context that should be used when mangling 
+/// the given declaration.
+static const DeclContext *getEffectiveDeclContext(const Decl *D) {
+  // The ABI assumes that lambda closure types that occur within 
+  // default arguments live in the context of the function. However, due to
+  // the way in which Clang parses and creates function declarations, this is
+  // not the case: the lambda closure type ends up living in the context 
+  // where the function itself resides, because the function declaration itself
+  // had not yet been created. Fix the context here.
+  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
+    if (RD->isLambda())
+      if (ParmVarDecl *ContextParam
+            = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
+        return ContextParam->getDeclContext();
+  }
+  
+  return D->getDeclContext();
+}
+
+static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
+  return getEffectiveDeclContext(cast<Decl>(DC));
+}
+  
+static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) {
+  const DeclContext *DC = dyn_cast<DeclContext>(ND);
+  if (!DC)
+    DC = getEffectiveDeclContext(ND);
+  while (!DC->isNamespace() && !DC->isTranslationUnit()) {
+    const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC));
+    if (isa<FunctionDecl>(Parent))
+      return dyn_cast<CXXRecordDecl>(DC);
+    DC = Parent;
+  }
+  return 0;
+}
+
+static const FunctionDecl *getStructor(const FunctionDecl *fn) {
+  if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
+    return ftd->getTemplatedDecl();
+
+  return fn;
+}
+
+static const NamedDecl *getStructor(const NamedDecl *decl) {
+  const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
+  return (fn ? getStructor(fn) : decl);
+}
+                                                    
+static const unsigned UnknownArity = ~0U;
+
+class ItaniumMangleContext : public MangleContext {
+  llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds;
+  unsigned Discriminator;
+  llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
+  
+public:
+  explicit ItaniumMangleContext(ASTContext &Context,
+                                DiagnosticsEngine &Diags)
+    : MangleContext(Context, Diags) { }
+
+  uint64_t getAnonymousStructId(const TagDecl *TD) {
+    std::pair<llvm::DenseMap<const TagDecl *,
+      uint64_t>::iterator, bool> Result =
+      AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size()));
+    return Result.first->second;
+  }
+
+  void startNewFunction() {
+    MangleContext::startNewFunction();
+    mangleInitDiscriminator();
+  }
+
+  /// @name Mangler Entry Points
+  /// @{
+
+  bool shouldMangleDeclName(const NamedDecl *D);
+  void mangleName(const NamedDecl *D, raw_ostream &);
+  void mangleThunk(const CXXMethodDecl *MD,
+                   const ThunkInfo &Thunk,
+                   raw_ostream &);
+  void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
+                          const ThisAdjustment &ThisAdjustment,
+                          raw_ostream &);
+  void mangleReferenceTemporary(const VarDecl *D,
+                                raw_ostream &);
+  void mangleCXXVTable(const CXXRecordDecl *RD,
+                       raw_ostream &);
+  void mangleCXXVTT(const CXXRecordDecl *RD,
+                    raw_ostream &);
+  void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
+                           const CXXRecordDecl *Type,
+                           raw_ostream &);
+  void mangleCXXRTTI(QualType T, raw_ostream &);
+  void mangleCXXRTTIName(QualType T, raw_ostream &);
+  void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
+                     raw_ostream &);
+  void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
+                     raw_ostream &);
+
+  void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &);
+
+  void mangleInitDiscriminator() {
+    Discriminator = 0;
+  }
+
+  bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
+    // Lambda closure types with external linkage (indicated by a 
+    // non-zero lambda mangling number) have their own numbering scheme, so
+    // they do not need a discriminator.
+    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND))
+      if (RD->isLambda() && RD->getLambdaManglingNumber() > 0)
+        return false;
+        
+    unsigned &discriminator = Uniquifier[ND];
+    if (!discriminator)
+      discriminator = ++Discriminator;
+    if (discriminator == 1)
+      return false;
+    disc = discriminator-2;
+    return true;
+  }
+  /// @}
+};
+
+/// CXXNameMangler - Manage the mangling of a single name.
+class CXXNameMangler {
+  ItaniumMangleContext &Context;
+  raw_ostream &Out;
+
+  /// The "structor" is the top-level declaration being mangled, if
+  /// that's not a template specialization; otherwise it's the pattern
+  /// for that specialization.
+  const NamedDecl *Structor;
+  unsigned StructorType;
+
+  /// SeqID - The next subsitution sequence number.
+  unsigned SeqID;
+
+  class FunctionTypeDepthState {
+    unsigned Bits;
+
+    enum { InResultTypeMask = 1 };
+
+  public:
+    FunctionTypeDepthState() : Bits(0) {}
+
+    /// The number of function types we're inside.
+    unsigned getDepth() const {
+      return Bits >> 1;
+    }
+
+    /// True if we're in the return type of the innermost function type.
+    bool isInResultType() const {
+      return Bits & InResultTypeMask;
+    }
+
+    FunctionTypeDepthState push() {
+      FunctionTypeDepthState tmp = *this;
+      Bits = (Bits & ~InResultTypeMask) + 2;
+      return tmp;
+    }
+
+    void enterResultType() {
+      Bits |= InResultTypeMask;
+    }
+
+    void leaveResultType() {
+      Bits &= ~InResultTypeMask;
+    }
+
+    void pop(FunctionTypeDepthState saved) {
+      assert(getDepth() == saved.getDepth() + 1);
+      Bits = saved.Bits;
+    }
+
+  } FunctionTypeDepth;
+
+  llvm::DenseMap<uintptr_t, unsigned> Substitutions;
+
+  ASTContext &getASTContext() const { return Context.getASTContext(); }
+
+public:
+  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
+                 const NamedDecl *D = 0)
+    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
+      SeqID(0) {
+    // These can't be mangled without a ctor type or dtor type.
+    assert(!D || (!isa<CXXDestructorDecl>(D) &&
+                  !isa<CXXConstructorDecl>(D)));
+  }
+  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
+                 const CXXConstructorDecl *D, CXXCtorType Type)
+    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
+      SeqID(0) { }
+  CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_,
+                 const CXXDestructorDecl *D, CXXDtorType Type)
+    : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
+      SeqID(0) { }
+
+#if MANGLE_CHECKER
+  ~CXXNameMangler() {
+    if (Out.str()[0] == '\01')
+      return;
+
+    int status = 0;
+    char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
+    assert(status == 0 && "Could not demangle mangled name!");
+    free(result);
+  }
+#endif
+  raw_ostream &getStream() { return Out; }
+
+  void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
+  void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
+  void mangleNumber(const llvm::APSInt &I);
+  void mangleNumber(int64_t Number);
+  void mangleFloat(const llvm::APFloat &F);
+  void mangleFunctionEncoding(const FunctionDecl *FD);
+  void mangleName(const NamedDecl *ND);
+  void mangleType(QualType T);
+  void mangleNameOrStandardSubstitution(const NamedDecl *ND);
+  
+private:
+  bool mangleSubstitution(const NamedDecl *ND);
+  bool mangleSubstitution(QualType T);
+  bool mangleSubstitution(TemplateName Template);
+  bool mangleSubstitution(uintptr_t Ptr);
+
+  void mangleExistingSubstitution(QualType type);
+  void mangleExistingSubstitution(TemplateName name);
+
+  bool mangleStandardSubstitution(const NamedDecl *ND);
+
+  void addSubstitution(const NamedDecl *ND) {
+    ND = cast<NamedDecl>(ND->getCanonicalDecl());
+
+    addSubstitution(reinterpret_cast<uintptr_t>(ND));
+  }
+  void addSubstitution(QualType T);
+  void addSubstitution(TemplateName Template);
+  void addSubstitution(uintptr_t Ptr);
+
+  void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
+                              NamedDecl *firstQualifierLookup,
+                              bool recursive = false);
+  void mangleUnresolvedName(NestedNameSpecifier *qualifier,
+                            NamedDecl *firstQualifierLookup,
+                            DeclarationName name,
+                            unsigned KnownArity = UnknownArity);
+
+  void mangleName(const TemplateDecl *TD,
+                  const TemplateArgument *TemplateArgs,
+                  unsigned NumTemplateArgs);
+  void mangleUnqualifiedName(const NamedDecl *ND) {
+    mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
+  }
+  void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
+                             unsigned KnownArity);
+  void mangleUnscopedName(const NamedDecl *ND);
+  void mangleUnscopedTemplateName(const TemplateDecl *ND);
+  void mangleUnscopedTemplateName(TemplateName);
+  void mangleSourceName(const IdentifierInfo *II);
+  void mangleLocalName(const NamedDecl *ND);
+  void mangleLambda(const CXXRecordDecl *Lambda);
+  void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
+                        bool NoFunction=false);
+  void mangleNestedName(const TemplateDecl *TD,
+                        const TemplateArgument *TemplateArgs,
+                        unsigned NumTemplateArgs);
+  void manglePrefix(NestedNameSpecifier *qualifier);
+  void manglePrefix(const DeclContext *DC, bool NoFunction=false);
+  void manglePrefix(QualType type);
+  void mangleTemplatePrefix(const TemplateDecl *ND);
+  void mangleTemplatePrefix(TemplateName Template);
+  void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
+  void mangleQualifiers(Qualifiers Quals);
+  void mangleRefQualifier(RefQualifierKind RefQualifier);
+
+  void mangleObjCMethodName(const ObjCMethodDecl *MD);
+
+  // Declare manglers for every type class.
+#define ABSTRACT_TYPE(CLASS, PARENT)
+#define NON_CANONICAL_TYPE(CLASS, PARENT)
+#define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
+#include "clang/AST/TypeNodes.def"
+
+  void mangleType(const TagType*);
+  void mangleType(TemplateName);
+  void mangleBareFunctionType(const FunctionType *T,
+                              bool MangleReturnType);
+  void mangleNeonVectorType(const VectorType *T);
+
+  void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
+  void mangleMemberExpr(const Expr *base, bool isArrow,
+                        NestedNameSpecifier *qualifier,
+                        NamedDecl *firstQualifierLookup,
+                        DeclarationName name,
+                        unsigned knownArity);
+  void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
+  void mangleCXXCtorType(CXXCtorType T);
+  void mangleCXXDtorType(CXXDtorType T);
+
+  void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
+  void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
+                          unsigned NumTemplateArgs);
+  void mangleTemplateArgs(const TemplateArgumentList &AL);
+  void mangleTemplateArg(TemplateArgument A);
+
+  void mangleTemplateParameter(unsigned Index);
+
+  void mangleFunctionParam(const ParmVarDecl *parm);
+};
+
+}
+
+static bool isInCLinkageSpecification(const Decl *D) {
+  D = D->getCanonicalDecl();
+  for (const DeclContext *DC = getEffectiveDeclContext(D);
+       !DC->isTranslationUnit(); DC = getEffectiveParentContext(DC)) {
+    if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC))
+      return Linkage->getLanguage() == LinkageSpecDecl::lang_c;
+  }
+
+  return false;
+}
+
+bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) {
+  // In C, functions with no attributes never need to be mangled. Fastpath them.
+  if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs())
+    return false;
+
+  // Any decl can be declared with __asm("foo") on it, and this takes precedence
+  // over all other naming in the .o file.
+  if (D->hasAttr<AsmLabelAttr>())
+    return true;
+
+  // Clang's "overloadable" attribute extension to C/C++ implies name mangling
+  // (always) as does passing a C++ member function and a function
+  // whose name is not a simple identifier.
+  const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
+  if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) ||
+             !FD->getDeclName().isIdentifier()))
+    return true;
+
+  // Otherwise, no mangling is done outside C++ mode.
+  if (!getASTContext().getLangOpts().CPlusPlus)
+    return false;
+
+  // Variables at global scope with non-internal linkage are not mangled
+  if (!FD) {
+    const DeclContext *DC = getEffectiveDeclContext(D);
+    // Check for extern variable declared locally.
+    if (DC->isFunctionOrMethod() && D->hasLinkage())
+      while (!DC->isNamespace() && !DC->isTranslationUnit())
+        DC = getEffectiveParentContext(DC);
+    if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage)
+      return false;
+  }
+
+  // Class members are always mangled.
+  if (getEffectiveDeclContext(D)->isRecord())
+    return true;
+
+  // C functions and "main" are not mangled.
+  if ((FD && FD->isMain()) || isInCLinkageSpecification(D))
+    return false;
+
+  return true;
+}
+
+void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
+  // Any decl can be declared with __asm("foo") on it, and this takes precedence
+  // over all other naming in the .o file.
+  if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) {
+    // If we have an asm name, then we use it as the mangling.
+
+    // Adding the prefix can cause problems when one file has a "foo" and
+    // another has a "\01foo". That is known to happen on ELF with the
+    // tricks normally used for producing aliases (PR9177). Fortunately the
+    // llvm mangler on ELF is a nop, so we can just avoid adding the \01
+    // marker.  We also avoid adding the marker if this is an alias for an
+    // LLVM intrinsic.
+    StringRef UserLabelPrefix =
+      getASTContext().getTargetInfo().getUserLabelPrefix();
+    if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm."))
+      Out << '\01';  // LLVM IR Marker for __asm("foo")
+
+    Out << ALA->getLabel();
+    return;
+  }
+
+  // <mangled-name> ::= _Z <encoding>
+  //            ::= <data name>
+  //            ::= <special-name>
+  Out << Prefix;
+  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
+    mangleFunctionEncoding(FD);
+  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
+    mangleName(VD);
+  else
+    mangleName(cast<FieldDecl>(D));
+}
+
+void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
+  // <encoding> ::= <function name> <bare-function-type>
+  mangleName(FD);
+
+  // Don't mangle in the type if this isn't a decl we should typically mangle.
+  if (!Context.shouldMangleDeclName(FD))
+    return;
+
+  // Whether the mangling of a function type includes the return type depends on
+  // the context and the nature of the function. The rules for deciding whether
+  // the return type is included are:
+  //
+  //   1. Template functions (names or types) have return types encoded, with
+  //   the exceptions listed below.
+  //   2. Function types not appearing as part of a function name mangling,
+  //   e.g. parameters, pointer types, etc., have return type encoded, with the
+  //   exceptions listed below.
+  //   3. Non-template function names do not have return types encoded.
+  //
+  // The exceptions mentioned in (1) and (2) above, for which the return type is
+  // never included, are
+  //   1. Constructors.
+  //   2. Destructors.
+  //   3. Conversion operator functions, e.g. operator int.
+  bool MangleReturnType = false;
+  if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
+    if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
+          isa<CXXConversionDecl>(FD)))
+      MangleReturnType = true;
+
+    // Mangle the type of the primary template.
+    FD = PrimaryTemplate->getTemplatedDecl();
+  }
+
+  mangleBareFunctionType(FD->getType()->getAs<FunctionType>(), 
+                         MangleReturnType);
+}
+
+static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
+  while (isa<LinkageSpecDecl>(DC)) {
+    DC = getEffectiveParentContext(DC);
+  }
+
+  return DC;
+}
+
+/// isStd - Return whether a given namespace is the 'std' namespace.
+static bool isStd(const NamespaceDecl *NS) {
+  if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
+                                ->isTranslationUnit())
+    return false;
+  
+  const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
+  return II && II->isStr("std");
+}
+
+// isStdNamespace - Return whether a given decl context is a toplevel 'std'
+// namespace.
+static bool isStdNamespace(const DeclContext *DC) {
+  if (!DC->isNamespace())
+    return false;
+
+  return isStd(cast<NamespaceDecl>(DC));
+}
+
+static const TemplateDecl *
+isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
+  // Check if we have a function template.
+  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
+    if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
+      TemplateArgs = FD->getTemplateSpecializationArgs();
+      return TD;
+    }
+  }
+
+  // Check if we have a class template.
+  if (const ClassTemplateSpecializationDecl *Spec =
+        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
+    TemplateArgs = &Spec->getTemplateArgs();
+    return Spec->getSpecializedTemplate();
+  }
+
+  return 0;
+}
+
+static bool isLambda(const NamedDecl *ND) {
+  const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
+  if (!Record)
+    return false;
+  
+  return Record->isLambda();
+}
+
+void CXXNameMangler::mangleName(const NamedDecl *ND) {
+  //  <name> ::= <nested-name>
+  //         ::= <unscoped-name>
+  //         ::= <unscoped-template-name> <template-args>
+  //         ::= <local-name>
+  //
+  const DeclContext *DC = getEffectiveDeclContext(ND);
+
+  // If this is an extern variable declared locally, the relevant DeclContext
+  // is that of the containing namespace, or the translation unit.
+  // FIXME: This is a hack; extern variables declared locally should have
+  // a proper semantic declaration context!
+  if (isa<FunctionDecl>(DC) && ND->hasLinkage() && !isLambda(ND))
+    while (!DC->isNamespace() && !DC->isTranslationUnit())
+      DC = getEffectiveParentContext(DC);
+  else if (GetLocalClassDecl(ND)) {
+    mangleLocalName(ND);
+    return;
+  }
+
+  DC = IgnoreLinkageSpecDecls(DC);
+
+  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
+    // Check if we have a template.
+    const TemplateArgumentList *TemplateArgs = 0;
+    if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
+      mangleUnscopedTemplateName(TD);
+      mangleTemplateArgs(*TemplateArgs);
+      return;
+    }
+
+    mangleUnscopedName(ND);
+    return;
+  }
+
+  if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) {
+    mangleLocalName(ND);
+    return;
+  }
+
+  mangleNestedName(ND, DC);
+}
+void CXXNameMangler::mangleName(const TemplateDecl *TD,
+                                const TemplateArgument *TemplateArgs,
+                                unsigned NumTemplateArgs) {
+  const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
+
+  if (DC->isTranslationUnit() || isStdNamespace(DC)) {
+    mangleUnscopedTemplateName(TD);
+    mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
+  } else {
+    mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
+  }
+}
+
+void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
+  //  <unscoped-name> ::= <unqualified-name>
+  //                  ::= St <unqualified-name>   # ::std::
+
+  if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
+    Out << "St";
+
+  mangleUnqualifiedName(ND);
+}
+
+void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
+  //     <unscoped-template-name> ::= <unscoped-name>
+  //                              ::= <substitution>
+  if (mangleSubstitution(ND))
+    return;
+
+  // <template-template-param> ::= <template-param>
+  if (const TemplateTemplateParmDecl *TTP
+                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
+    mangleTemplateParameter(TTP->getIndex());
+    return;
+  }
+
+  mangleUnscopedName(ND->getTemplatedDecl());
+  addSubstitution(ND);
+}
+
+void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
+  //     <unscoped-template-name> ::= <unscoped-name>
+  //                              ::= <substitution>
+  if (TemplateDecl *TD = Template.getAsTemplateDecl())
+    return mangleUnscopedTemplateName(TD);
+  
+  if (mangleSubstitution(Template))
+    return;
+
+  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
+  assert(Dependent && "Not a dependent template name?");
+  if (const IdentifierInfo *Id = Dependent->getIdentifier())
+    mangleSourceName(Id);
+  else
+    mangleOperatorName(Dependent->getOperator(), UnknownArity);
+  
+  addSubstitution(Template);
+}
+
+void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
+  // ABI:
+  //   Floating-point literals are encoded using a fixed-length
+  //   lowercase hexadecimal string corresponding to the internal
+  //   representation (IEEE on Itanium), high-order bytes first,
+  //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
+  //   on Itanium.
+  // The 'without leading zeroes' thing seems to be an editorial
+  // mistake; see the discussion on cxx-abi-dev beginning on
+  // 2012-01-16.
+
+  // Our requirements here are just barely weird enough to justify
+  // using a custom algorithm instead of post-processing APInt::toString().
+
+  llvm::APInt valueBits = f.bitcastToAPInt();
+  unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
+  assert(numCharacters != 0);
+
+  // Allocate a buffer of the right number of characters.
+  llvm::SmallVector<char, 20> buffer;
+  buffer.set_size(numCharacters);
+
+  // Fill the buffer left-to-right.
+  for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
+    // The bit-index of the next hex digit.
+    unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
+
+    // Project out 4 bits starting at 'digitIndex'.
+    llvm::integerPart hexDigit
+      = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
+    hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
+    hexDigit &= 0xF;
+
+    // Map that over to a lowercase hex digit.
+    static const char charForHex[16] = {
+      '0', '1', '2', '3', '4', '5', '6', '7',
+      '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
+    };
+    buffer[stringIndex] = charForHex[hexDigit];
+  }
+
+  Out.write(buffer.data(), numCharacters);
+}
+
+void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
+  if (Value.isSigned() && Value.isNegative()) {
+    Out << 'n';
+    Value.abs().print(Out, /*signed*/ false);
+  } else {
+    Value.print(Out, /*signed*/ false);
+  }
+}
+
+void CXXNameMangler::mangleNumber(int64_t Number) {
+  //  <number> ::= [n] <non-negative decimal integer>
+  if (Number < 0) {
+    Out << 'n';
+    Number = -Number;
+  }
+
+  Out << Number;
+}
+
+void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
+  //  <call-offset>  ::= h <nv-offset> _
+  //                 ::= v <v-offset> _
+  //  <nv-offset>    ::= <offset number>        # non-virtual base override
+  //  <v-offset>     ::= <offset number> _ <virtual offset number>
+  //                      # virtual base override, with vcall offset
+  if (!Virtual) {
+    Out << 'h';
+    mangleNumber(NonVirtual);
+    Out << '_';
+    return;
+  }
+
+  Out << 'v';
+  mangleNumber(NonVirtual);
+  Out << '_';
+  mangleNumber(Virtual);
+  Out << '_';
+}
+
+void CXXNameMangler::manglePrefix(QualType type) {
+  if (const TemplateSpecializationType *TST =
+        type->getAs<TemplateSpecializationType>()) {
+    if (!mangleSubstitution(QualType(TST, 0))) {
+      mangleTemplatePrefix(TST->getTemplateName());
+        
+      // FIXME: GCC does not appear to mangle the template arguments when
+      // the template in question is a dependent template name. Should we
+      // emulate that badness?
+      mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
+      addSubstitution(QualType(TST, 0));
+    }
+  } else if (const DependentTemplateSpecializationType *DTST
+               = type->getAs<DependentTemplateSpecializationType>()) {
+    TemplateName Template
+      = getASTContext().getDependentTemplateName(DTST->getQualifier(), 
+                                                 DTST->getIdentifier());
+    mangleTemplatePrefix(Template);
+
+    // FIXME: GCC does not appear to mangle the template arguments when
+    // the template in question is a dependent template name. Should we
+    // emulate that badness?
+    mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
+  } else {
+    // We use the QualType mangle type variant here because it handles
+    // substitutions.
+    mangleType(type);
+  }
+}
+
+/// Mangle everything prior to the base-unresolved-name in an unresolved-name.
+///
+/// \param firstQualifierLookup - the entity found by unqualified lookup
+///   for the first name in the qualifier, if this is for a member expression
+/// \param recursive - true if this is being called recursively,
+///   i.e. if there is more prefix "to the right".
+void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
+                                            NamedDecl *firstQualifierLookup,
+                                            bool recursive) {
+
+  // x, ::x
+  // <unresolved-name> ::= [gs] <base-unresolved-name>
+
+  // T::x / decltype(p)::x
+  // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
+
+  // T::N::x /decltype(p)::N::x
+  // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
+  //                       <base-unresolved-name>
+
+  // A::x, N::y, A<T>::z; "gs" means leading "::"
+  // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
+  //                       <base-unresolved-name>
+
+  switch (qualifier->getKind()) {
+  case NestedNameSpecifier::Global:
+    Out << "gs";
+
+    // We want an 'sr' unless this is the entire NNS.
+    if (recursive)
+      Out << "sr";
+
+    // We never want an 'E' here.
+    return;
+
+  case NestedNameSpecifier::Namespace:
+    if (qualifier->getPrefix())
+      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
+                             /*recursive*/ true);
+    else
+      Out << "sr";
+    mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
+    break;
+  case NestedNameSpecifier::NamespaceAlias:
+    if (qualifier->getPrefix())
+      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
+                             /*recursive*/ true);
+    else
+      Out << "sr";
+    mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
+    break;
+
+  case NestedNameSpecifier::TypeSpec:
+  case NestedNameSpecifier::TypeSpecWithTemplate: {
+    const Type *type = qualifier->getAsType();
+
+    // We only want to use an unresolved-type encoding if this is one of:
+    //   - a decltype
+    //   - a template type parameter
+    //   - a template template parameter with arguments
+    // In all of these cases, we should have no prefix.
+    if (qualifier->getPrefix()) {
+      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
+                             /*recursive*/ true);
+    } else {
+      // Otherwise, all the cases want this.
+      Out << "sr";
+    }
+
+    // Only certain other types are valid as prefixes;  enumerate them.
+    switch (type->getTypeClass()) {
+    case Type::Builtin:
+    case Type::Complex:
+    case Type::Pointer:
+    case Type::BlockPointer:
+    case Type::LValueReference:
+    case Type::RValueReference:
+    case Type::MemberPointer:
+    case Type::ConstantArray:
+    case Type::IncompleteArray:
+    case Type::VariableArray:
+    case Type::DependentSizedArray:
+    case Type::DependentSizedExtVector:
+    case Type::Vector:
+    case Type::ExtVector:
+    case Type::FunctionProto:
+    case Type::FunctionNoProto:
+    case Type::Enum:
+    case Type::Paren:
+    case Type::Elaborated:
+    case Type::Attributed:
+    case Type::Auto:
+    case Type::PackExpansion:
+    case Type::ObjCObject:
+    case Type::ObjCInterface:
+    case Type::ObjCObjectPointer:
+    case Type::Atomic:
+      llvm_unreachable("type is illegal as a nested name specifier");
+
+    case Type::SubstTemplateTypeParmPack:
+      // FIXME: not clear how to mangle this!
+      // template <class T...> class A {
+      //   template <class U...> void foo(decltype(T::foo(U())) x...);
+      // };
+      Out << "_SUBSTPACK_";
+      break;
+
+    // <unresolved-type> ::= <template-param>
+    //                   ::= <decltype>
+    //                   ::= <template-template-param> <template-args>
+    // (this last is not official yet)
+    case Type::TypeOfExpr:
+    case Type::TypeOf:
+    case Type::Decltype:
+    case Type::TemplateTypeParm:
+    case Type::UnaryTransform:
+    case Type::SubstTemplateTypeParm:
+    unresolvedType:
+      assert(!qualifier->getPrefix());
+
+      // We only get here recursively if we're followed by identifiers.
+      if (recursive) Out << 'N';
+
+      // This seems to do everything we want.  It's not really
+      // sanctioned for a substituted template parameter, though.
+      mangleType(QualType(type, 0));
+
+      // We never want to print 'E' directly after an unresolved-type,
+      // so we return directly.
+      return;
+
+    case Type::Typedef:
+      mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
+      break;
+
+    case Type::UnresolvedUsing:
+      mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
+                         ->getIdentifier());
+      break;
+
+    case Type::Record:
+      mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
+      break;
+
+    case Type::TemplateSpecialization: {
+      const TemplateSpecializationType *tst
+        = cast<TemplateSpecializationType>(type);
+      TemplateName name = tst->getTemplateName();
+      switch (name.getKind()) {
+      case TemplateName::Template:
+      case TemplateName::QualifiedTemplate: {
+        TemplateDecl *temp = name.getAsTemplateDecl();
+
+        // If the base is a template template parameter, this is an
+        // unresolved type.
+        assert(temp && "no template for template specialization type");
+        if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
+
+        mangleSourceName(temp->getIdentifier());
+        break;
+      }
+
+      case TemplateName::OverloadedTemplate:
+      case TemplateName::DependentTemplate:
+        llvm_unreachable("invalid base for a template specialization type");
+
+      case TemplateName::SubstTemplateTemplateParm: {
+        SubstTemplateTemplateParmStorage *subst
+          = name.getAsSubstTemplateTemplateParm();
+        mangleExistingSubstitution(subst->getReplacement());
+        break;
+      }
+
+      case TemplateName::SubstTemplateTemplateParmPack: {
+        // FIXME: not clear how to mangle this!
+        // template <template <class U> class T...> class A {
+        //   template <class U...> void foo(decltype(T<U>::foo) x...);
+        // };
+        Out << "_SUBSTPACK_";
+        break;
+      }
+      }
+
+      mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
+      break;
+    }
+
+    case Type::InjectedClassName:
+      mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
+                         ->getIdentifier());
+      break;
+
+    case Type::DependentName:
+      mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
+      break;
+
+    case Type::DependentTemplateSpecialization: {
+      const DependentTemplateSpecializationType *tst
+        = cast<DependentTemplateSpecializationType>(type);
+      mangleSourceName(tst->getIdentifier());
+      mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
+      break;
+    }
+    }
+    break;
+  }
+
+  case NestedNameSpecifier::Identifier:
+    // Member expressions can have these without prefixes.
+    if (qualifier->getPrefix()) {
+      mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
+                             /*recursive*/ true);
+    } else if (firstQualifierLookup) {
+
+      // Try to make a proper qualifier out of the lookup result, and
+      // then just recurse on that.
+      NestedNameSpecifier *newQualifier;
+      if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
+        QualType type = getASTContext().getTypeDeclType(typeDecl);
+
+        // Pretend we had a different nested name specifier.
+        newQualifier = NestedNameSpecifier::Create(getASTContext(),
+                                                   /*prefix*/ 0,
+                                                   /*template*/ false,
+                                                   type.getTypePtr());
+      } else if (NamespaceDecl *nspace =
+                   dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
+        newQualifier = NestedNameSpecifier::Create(getASTContext(),
+                                                   /*prefix*/ 0,
+                                                   nspace);
+      } else if (NamespaceAliasDecl *alias =
+                   dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
+        newQualifier = NestedNameSpecifier::Create(getASTContext(),
+                                                   /*prefix*/ 0,
+                                                   alias);
+      } else {
+        // No sensible mangling to do here.
+        newQualifier = 0;
+      }
+
+      if (newQualifier)
+        return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive);
+
+    } else {
+      Out << "sr";
+    }
+
+    mangleSourceName(qualifier->getAsIdentifier());
+    break;
+  }
+
+  // If this was the innermost part of the NNS, and we fell out to
+  // here, append an 'E'.
+  if (!recursive)
+    Out << 'E';
+}
+
+/// Mangle an unresolved-name, which is generally used for names which
+/// weren't resolved to specific entities.
+void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
+                                          NamedDecl *firstQualifierLookup,
+                                          DeclarationName name,
+                                          unsigned knownArity) {
+  if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
+  mangleUnqualifiedName(0, name, knownArity);
+}
+
+static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
+  assert(RD->isAnonymousStructOrUnion() &&
+         "Expected anonymous struct or union!");
+  
+  for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
+       I != E; ++I) {
+    if (I->getIdentifier())
+      return *I;
+    
+    if (const RecordType *RT = I->getType()->getAs<RecordType>())
+      if (const FieldDecl *NamedDataMember = 
+          FindFirstNamedDataMember(RT->getDecl()))
+        return NamedDataMember;
+    }
+
+  // We didn't find a named data member.
+  return 0;
+}
+
+void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
+                                           DeclarationName Name,
+                                           unsigned KnownArity) {
+  //  <unqualified-name> ::= <operator-name>
+  //                     ::= <ctor-dtor-name>
+  //                     ::= <source-name>
+  switch (Name.getNameKind()) {
+  case DeclarationName::Identifier: {
+    if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
+      // We must avoid conflicts between internally- and externally-
+      // linked variable and function declaration names in the same TU:
+      //   void test() { extern void foo(); }
+      //   static void foo();
+      // This naming convention is the same as that followed by GCC,
+      // though it shouldn't actually matter.
+      if (ND && ND->getLinkage() == InternalLinkage &&
+          getEffectiveDeclContext(ND)->isFileContext())
+        Out << 'L';
+
+      mangleSourceName(II);
+      break;
+    }
+
+    // Otherwise, an anonymous entity.  We must have a declaration.
+    assert(ND && "mangling empty name without declaration");
+
+    if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
+      if (NS->isAnonymousNamespace()) {
+        // This is how gcc mangles these names.
+        Out << "12_GLOBAL__N_1";
+        break;
+      }
+    }
+
+    if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
+      // We must have an anonymous union or struct declaration.
+      const RecordDecl *RD = 
+        cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
+      
+      // Itanium C++ ABI 5.1.2:
+      //
+      //   For the purposes of mangling, the name of an anonymous union is
+      //   considered to be the name of the first named data member found by a
+      //   pre-order, depth-first, declaration-order walk of the data members of
+      //   the anonymous union. If there is no such data member (i.e., if all of
+      //   the data members in the union are unnamed), then there is no way for
+      //   a program to refer to the anonymous union, and there is therefore no
+      //   need to mangle its name.
+      const FieldDecl *FD = FindFirstNamedDataMember(RD);
+
+      // It's actually possible for various reasons for us to get here
+      // with an empty anonymous struct / union.  Fortunately, it
+      // doesn't really matter what name we generate.
+      if (!FD) break;
+      assert(FD->getIdentifier() && "Data member name isn't an identifier!");
+      
+      mangleSourceName(FD->getIdentifier());
+      break;
+    }
+    
+    // We must have an anonymous struct.
+    const TagDecl *TD = cast<TagDecl>(ND);
+    if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
+      assert(TD->getDeclContext() == D->getDeclContext() &&
+             "Typedef should not be in another decl context!");
+      assert(D->getDeclName().getAsIdentifierInfo() &&
+             "Typedef was not named!");
+      mangleSourceName(D->getDeclName().getAsIdentifierInfo());
+      break;
+    }
+
+    // <unnamed-type-name> ::= <closure-type-name>
+    // 
+    // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
+    // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
+    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
+      if (Record->isLambda() && Record->getLambdaManglingNumber()) {
+        mangleLambda(Record);
+        break;
+      }
+    }
+
+    int UnnamedMangle = Context.getASTContext().getUnnamedTagManglingNumber(TD);
+    if (UnnamedMangle != -1) {
+      Out << "Ut";
+      if (UnnamedMangle != 0)
+        Out << llvm::utostr(UnnamedMangle - 1);
+      Out << '_';
+      break;
+    }
+
+    // Get a unique id for the anonymous struct.
+    uint64_t AnonStructId = Context.getAnonymousStructId(TD);
+
+    // Mangle it as a source name in the form
+    // [n] $_<id>
+    // where n is the length of the string.
+    SmallString<8> Str;
+    Str += "$_";
+    Str += llvm::utostr(AnonStructId);
+
+    Out << Str.size();
+    Out << Str.str();
+    break;
+  }
+
+  case DeclarationName::ObjCZeroArgSelector:
+  case DeclarationName::ObjCOneArgSelector:
+  case DeclarationName::ObjCMultiArgSelector:
+    llvm_unreachable("Can't mangle Objective-C selector names here!");
+
+  case DeclarationName::CXXConstructorName:
+    if (ND == Structor)
+      // If the named decl is the C++ constructor we're mangling, use the type
+      // we were given.
+      mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
+    else
+      // Otherwise, use the complete constructor name. This is relevant if a
+      // class with a constructor is declared within a constructor.
+      mangleCXXCtorType(Ctor_Complete);
+    break;
+
+  case DeclarationName::CXXDestructorName:
+    if (ND == Structor)
+      // If the named decl is the C++ destructor we're mangling, use the type we
+      // were given.
+      mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
+    else
+      // Otherwise, use the complete destructor name. This is relevant if a
+      // class with a destructor is declared within a destructor.
+      mangleCXXDtorType(Dtor_Complete);
+    break;
+
+  case DeclarationName::CXXConversionFunctionName:
+    // <operator-name> ::= cv <type>    # (cast)
+    Out << "cv";
+    mangleType(Name.getCXXNameType());
+    break;
+
+  case DeclarationName::CXXOperatorName: {
+    unsigned Arity;
+    if (ND) {
+      Arity = cast<FunctionDecl>(ND)->getNumParams();
+
+      // If we have a C++ member function, we need to include the 'this' pointer.
+      // FIXME: This does not make sense for operators that are static, but their
+      // names stay the same regardless of the arity (operator new for instance).
+      if (isa<CXXMethodDecl>(ND))
+        Arity++;
+    } else
+      Arity = KnownArity;
+
+    mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
+    break;
+  }
+
+  case DeclarationName::CXXLiteralOperatorName:
+    // FIXME: This mangling is not yet official.
+    Out << "li";
+    mangleSourceName(Name.getCXXLiteralIdentifier());
+    break;
+
+  case DeclarationName::CXXUsingDirective:
+    llvm_unreachable("Can't mangle a using directive name!");
+  }
+}
+
+void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
+  // <source-name> ::= <positive length number> <identifier>
+  // <number> ::= [n] <non-negative decimal integer>
+  // <identifier> ::= <unqualified source code identifier>
+  Out << II->getLength() << II->getName();
+}
+
+void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
+                                      const DeclContext *DC,
+                                      bool NoFunction) {
+  // <nested-name> 
+  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
+  //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> 
+  //       <template-args> E
+
+  Out << 'N';
+  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
+    mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
+    mangleRefQualifier(Method->getRefQualifier());
+  }
+  
+  // Check if we have a template.
+  const TemplateArgumentList *TemplateArgs = 0;
+  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
+    mangleTemplatePrefix(TD);
+    mangleTemplateArgs(*TemplateArgs);
+  }
+  else {
+    manglePrefix(DC, NoFunction);
+    mangleUnqualifiedName(ND);
+  }
+
+  Out << 'E';
+}
+void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
+                                      const TemplateArgument *TemplateArgs,
+                                      unsigned NumTemplateArgs) {
+  // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
+
+  Out << 'N';
+
+  mangleTemplatePrefix(TD);
+  mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
+
+  Out << 'E';
+}
+
+void CXXNameMangler::mangleLocalName(const NamedDecl *ND) {
+  // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
+  //              := Z <function encoding> E s [<discriminator>]
+  // <local-name> := Z <function encoding> E d [ <parameter number> ] 
+  //                 _ <entity name>
+  // <discriminator> := _ <non-negative number>
+  const DeclContext *DC = getEffectiveDeclContext(ND);
+  if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) {
+    // Don't add objc method name mangling to locally declared function
+    mangleUnqualifiedName(ND);
+    return;
+  }
+
+  Out << 'Z';
+
+  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) {
+   mangleObjCMethodName(MD);
+  } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) {
+    mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD)));
+    Out << 'E';
+
+    // The parameter number is omitted for the last parameter, 0 for the 
+    // second-to-last parameter, 1 for the third-to-last parameter, etc. The 
+    // <entity name> will of course contain a <closure-type-name>: Its 
+    // numbering will be local to the particular argument in which it appears
+    // -- other default arguments do not affect its encoding.
+    bool SkipDiscriminator = false;
+    if (RD->isLambda()) {
+      if (const ParmVarDecl *Parm
+                 = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) {
+        if (const FunctionDecl *Func
+              = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
+          Out << 'd';
+          unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
+          if (Num > 1)
+            mangleNumber(Num - 2);
+          Out << '_';
+          SkipDiscriminator = true;
+        }
+      }
+    }
+    
+    // Mangle the name relative to the closest enclosing function.
+    if (ND == RD) // equality ok because RD derived from ND above
+      mangleUnqualifiedName(ND);
+    else
+      mangleNestedName(ND, DC, true /*NoFunction*/);
+
+    if (!SkipDiscriminator) {
+      unsigned disc;
+      if (Context.getNextDiscriminator(RD, disc)) {
+        if (disc < 10)
+          Out << '_' << disc;
+        else
+          Out << "__" << disc << '_';
+      }
+    }
+    
+    return;
+  }
+  else
+    mangleFunctionEncoding(cast<FunctionDecl>(DC));
+
+  Out << 'E';
+  mangleUnqualifiedName(ND);
+}
+
+void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
+  // If the context of a closure type is an initializer for a class member 
+  // (static or nonstatic), it is encoded in a qualified name with a final 
+  // <prefix> of the form:
+  //
+  //   <data-member-prefix> := <member source-name> M
+  //
+  // Technically, the data-member-prefix is part of the <prefix>. However,
+  // since a closure type will always be mangled with a prefix, it's easier
+  // to emit that last part of the prefix here.
+  if (Decl *Context = Lambda->getLambdaContextDecl()) {
+    if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
+        Context->getDeclContext()->isRecord()) {
+      if (const IdentifierInfo *Name
+            = cast<NamedDecl>(Context)->getIdentifier()) {
+        mangleSourceName(Name);
+        Out << 'M';            
+      }
+    }
+  }
+
+  Out << "Ul";
+  const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
+                                   getAs<FunctionProtoType>();
+  mangleBareFunctionType(Proto, /*MangleReturnType=*/false);        
+  Out << "E";
+  
+  // The number is omitted for the first closure type with a given 
+  // <lambda-sig> in a given context; it is n-2 for the nth closure type 
+  // (in lexical order) with that same <lambda-sig> and context.
+  //
+  // The AST keeps track of the number for us.
+  unsigned Number = Lambda->getLambdaManglingNumber();
+  assert(Number > 0 && "Lambda should be mangled as an unnamed class");
+  if (Number > 1)
+    mangleNumber(Number - 2);
+  Out << '_';  
+}
+
+void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
+  switch (qualifier->getKind()) {
+  case NestedNameSpecifier::Global:
+    // nothing
+    return;
+
+  case NestedNameSpecifier::Namespace:
+    mangleName(qualifier->getAsNamespace());
+    return;
+
+  case NestedNameSpecifier::NamespaceAlias:
+    mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
+    return;
+
+  case NestedNameSpecifier::TypeSpec:
+  case NestedNameSpecifier::TypeSpecWithTemplate:
+    manglePrefix(QualType(qualifier->getAsType(), 0));
+    return;
+
+  case NestedNameSpecifier::Identifier:
+    // Member expressions can have these without prefixes, but that
+    // should end up in mangleUnresolvedPrefix instead.
+    assert(qualifier->getPrefix());
+    manglePrefix(qualifier->getPrefix());
+
+    mangleSourceName(qualifier->getAsIdentifier());
+    return;
+  }
+
+  llvm_unreachable("unexpected nested name specifier");
+}
+
+void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
+  //  <prefix> ::= <prefix> <unqualified-name>
+  //           ::= <template-prefix> <template-args>
+  //           ::= <template-param>
+  //           ::= # empty
+  //           ::= <substitution>
+
+  DC = IgnoreLinkageSpecDecls(DC);
+
+  if (DC->isTranslationUnit())
+    return;
+
+  if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) {
+    manglePrefix(getEffectiveParentContext(DC), NoFunction);    
+    SmallString<64> Name;
+    llvm::raw_svector_ostream NameStream(Name);
+    Context.mangleBlock(Block, NameStream);
+    NameStream.flush();
+    Out << Name.size() << Name;
+    return;
+  }
+  
+  const NamedDecl *ND = cast<NamedDecl>(DC);  
+  if (mangleSubstitution(ND))
+    return;
+  
+  // Check if we have a template.
+  const TemplateArgumentList *TemplateArgs = 0;
+  if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
+    mangleTemplatePrefix(TD);
+    mangleTemplateArgs(*TemplateArgs);
+  }
+  else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND)))
+    return;
+  else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND))
+    mangleObjCMethodName(Method);
+  else {
+    manglePrefix(getEffectiveDeclContext(ND), NoFunction);
+    mangleUnqualifiedName(ND);
+  }
+
+  addSubstitution(ND);
+}
+
+void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
+  // <template-prefix> ::= <prefix> <template unqualified-name>
+  //                   ::= <template-param>
+  //                   ::= <substitution>
+  if (TemplateDecl *TD = Template.getAsTemplateDecl())
+    return mangleTemplatePrefix(TD);
+
+  if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
+    manglePrefix(Qualified->getQualifier());
+  
+  if (OverloadedTemplateStorage *Overloaded
+                                      = Template.getAsOverloadedTemplate()) {
+    mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(), 
+                          UnknownArity);
+    return;
+  }
+   
+  DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
+  assert(Dependent && "Unknown template name kind?");
+  manglePrefix(Dependent->getQualifier());
+  mangleUnscopedTemplateName(Template);
+}
+
+void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) {
+  // <template-prefix> ::= <prefix> <template unqualified-name>
+  //                   ::= <template-param>
+  //                   ::= <substitution>
+  // <template-template-param> ::= <template-param>
+  //                               <substitution>
+
+  if (mangleSubstitution(ND))
+    return;
+
+  // <template-template-param> ::= <template-param>
+  if (const TemplateTemplateParmDecl *TTP
+                                     = dyn_cast<TemplateTemplateParmDecl>(ND)) {
+    mangleTemplateParameter(TTP->getIndex());
+    return;
+  }
+
+  manglePrefix(getEffectiveDeclContext(ND));
+  mangleUnqualifiedName(ND->getTemplatedDecl());
+  addSubstitution(ND);
+}
+
+/// Mangles a template name under the production <type>.  Required for
+/// template template arguments.
+///   <type> ::= <class-enum-type>
+///          ::= <template-param>
+///          ::= <substitution>
+void CXXNameMangler::mangleType(TemplateName TN) {
+  if (mangleSubstitution(TN))
+    return;
+      
+  TemplateDecl *TD = 0;
+
+  switch (TN.getKind()) {
+  case TemplateName::QualifiedTemplate:
+    TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
+    goto HaveDecl;
+
+  case TemplateName::Template:
+    TD = TN.getAsTemplateDecl();
+    goto HaveDecl;
+
+  HaveDecl:
+    if (isa<TemplateTemplateParmDecl>(TD))
+      mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
+    else
+      mangleName(TD);
+    break;
+
+  case TemplateName::OverloadedTemplate:
+    llvm_unreachable("can't mangle an overloaded template name as a <type>");
+
+  case TemplateName::DependentTemplate: {
+    const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
+    assert(Dependent->isIdentifier());
+
+    // <class-enum-type> ::= <name>
+    // <name> ::= <nested-name>
+    mangleUnresolvedPrefix(Dependent->getQualifier(), 0);
+    mangleSourceName(Dependent->getIdentifier());
+    break;
+  }
+
+  case TemplateName::SubstTemplateTemplateParm: {
+    // Substituted template parameters are mangled as the substituted
+    // template.  This will check for the substitution twice, which is
+    // fine, but we have to return early so that we don't try to *add*
+    // the substitution twice.
+    SubstTemplateTemplateParmStorage *subst
+      = TN.getAsSubstTemplateTemplateParm();
+    mangleType(subst->getReplacement());
+    return;
+  }
+
+  case TemplateName::SubstTemplateTemplateParmPack: {
+    // FIXME: not clear how to mangle this!
+    // template <template <class> class T...> class A {
+    //   template <template <class> class U...> void foo(B<T,U> x...);
+    // };
+    Out << "_SUBSTPACK_";
+    break;
+  }
+  }
+
+  addSubstitution(TN);
+}
+
+void
+CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
+  switch (OO) {
+  // <operator-name> ::= nw     # new
+  case OO_New: Out << "nw"; break;
+  //              ::= na        # new[]
+  case OO_Array_New: Out << "na"; break;
+  //              ::= dl        # delete
+  case OO_Delete: Out << "dl"; break;
+  //              ::= da        # delete[]
+  case OO_Array_Delete: Out << "da"; break;
+  //              ::= ps        # + (unary)
+  //              ::= pl        # + (binary or unknown)
+  case OO_Plus:
+    Out << (Arity == 1? "ps" : "pl"); break;
+  //              ::= ng        # - (unary)
+  //              ::= mi        # - (binary or unknown)
+  case OO_Minus:
+    Out << (Arity == 1? "ng" : "mi"); break;
+  //              ::= ad        # & (unary)
+  //              ::= an        # & (binary or unknown)
+  case OO_Amp:
+    Out << (Arity == 1? "ad" : "an"); break;
+  //              ::= de        # * (unary)
+  //              ::= ml        # * (binary or unknown)
+  case OO_Star:
+    // Use binary when unknown.
+    Out << (Arity == 1? "de" : "ml"); break;
+  //              ::= co        # ~
+  case OO_Tilde: Out << "co"; break;
+  //              ::= dv        # /
+  case OO_Slash: Out << "dv"; break;
+  //              ::= rm        # %
+  case OO_Percent: Out << "rm"; break;
+  //              ::= or        # |
+  case OO_Pipe: Out << "or"; break;
+  //              ::= eo        # ^
+  case OO_Caret: Out << "eo"; break;
+  //              ::= aS        # =
+  case OO_Equal: Out << "aS"; break;
+  //              ::= pL        # +=
+  case OO_PlusEqual: Out << "pL"; break;
+  //              ::= mI        # -=
+  case OO_MinusEqual: Out << "mI"; break;
+  //              ::= mL        # *=
+  case OO_StarEqual: Out << "mL"; break;
+  //              ::= dV        # /=
+  case OO_SlashEqual: Out << "dV"; break;
+  //              ::= rM        # %=
+  case OO_PercentEqual: Out << "rM"; break;
+  //              ::= aN        # &=
+  case OO_AmpEqual: Out << "aN"; break;
+  //              ::= oR        # |=
+  case OO_PipeEqual: Out << "oR"; break;
+  //              ::= eO        # ^=
+  case OO_CaretEqual: Out << "eO"; break;
+  //              ::= ls        # <<
+  case OO_LessLess: Out << "ls"; break;
+  //              ::= rs        # >>
+  case OO_GreaterGreater: Out << "rs"; break;
+  //              ::= lS        # <<=
+  case OO_LessLessEqual: Out << "lS"; break;
+  //              ::= rS        # >>=
+  case OO_GreaterGreaterEqual: Out << "rS"; break;
+  //              ::= eq        # ==
+  case OO_EqualEqual: Out << "eq"; break;
+  //              ::= ne        # !=
+  case OO_ExclaimEqual: Out << "ne"; break;
+  //              ::= lt        # <
+  case OO_Less: Out << "lt"; break;
+  //              ::= gt        # >
+  case OO_Greater: Out << "gt"; break;
+  //              ::= le        # <=
+  case OO_LessEqual: Out << "le"; break;
+  //              ::= ge        # >=
+  case OO_GreaterEqual: Out << "ge"; break;
+  //              ::= nt        # !
+  case OO_Exclaim: Out << "nt"; break;
+  //              ::= aa        # &&
+  case OO_AmpAmp: Out << "aa"; break;
+  //              ::= oo        # ||
+  case OO_PipePipe: Out << "oo"; break;
+  //              ::= pp        # ++
+  case OO_PlusPlus: Out << "pp"; break;
+  //              ::= mm        # --
+  case OO_MinusMinus: Out << "mm"; break;
+  //              ::= cm        # ,
+  case OO_Comma: Out << "cm"; break;
+  //              ::= pm        # ->*
+  case OO_ArrowStar: Out << "pm"; break;
+  //              ::= pt        # ->
+  case OO_Arrow: Out << "pt"; break;
+  //              ::= cl        # ()
+  case OO_Call: Out << "cl"; break;
+  //              ::= ix        # []
+  case OO_Subscript: Out << "ix"; break;
+
+  //              ::= qu        # ?
+  // The conditional operator can't be overloaded, but we still handle it when
+  // mangling expressions.
+  case OO_Conditional: Out << "qu"; break;
+
+  case OO_None:
+  case NUM_OVERLOADED_OPERATORS:
+    llvm_unreachable("Not an overloaded operator");
+  }
+}
+
+void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
+  // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
+  if (Quals.hasRestrict())
+    Out << 'r';
+  if (Quals.hasVolatile())
+    Out << 'V';
+  if (Quals.hasConst())
+    Out << 'K';
+
+  if (Quals.hasAddressSpace()) {
+    // Extension:
+    //
+    //   <type> ::= U <address-space-number>
+    // 
+    // where <address-space-number> is a source name consisting of 'AS' 
+    // followed by the address space <number>.
+    SmallString<64> ASString;
+    ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace());
+    Out << 'U' << ASString.size() << ASString;
+  }
+  
+  StringRef LifetimeName;
+  switch (Quals.getObjCLifetime()) {
+  // Objective-C ARC Extension:
+  //
+  //   <type> ::= U "__strong"
+  //   <type> ::= U "__weak"
+  //   <type> ::= U "__autoreleasing"
+  case Qualifiers::OCL_None:
+    break;
+    
+  case Qualifiers::OCL_Weak:
+    LifetimeName = "__weak";
+    break;
+    
+  case Qualifiers::OCL_Strong:
+    LifetimeName = "__strong";
+    break;
+    
+  case Qualifiers::OCL_Autoreleasing:
+    LifetimeName = "__autoreleasing";
+    break;
+    
+  case Qualifiers::OCL_ExplicitNone:
+    // The __unsafe_unretained qualifier is *not* mangled, so that
+    // __unsafe_unretained types in ARC produce the same manglings as the
+    // equivalent (but, naturally, unqualified) types in non-ARC, providing
+    // better ABI compatibility.
+    //
+    // It's safe to do this because unqualified 'id' won't show up
+    // in any type signatures that need to be mangled.
+    break;
+  }
+  if (!LifetimeName.empty())
+    Out << 'U' << LifetimeName.size() << LifetimeName;
+}
+
+void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
+  // <ref-qualifier> ::= R                # lvalue reference
+  //                 ::= O                # rvalue-reference
+  // Proposal to Itanium C++ ABI list on 1/26/11
+  switch (RefQualifier) {
+  case RQ_None:
+    break;
+      
+  case RQ_LValue:
+    Out << 'R';
+    break;
+      
+  case RQ_RValue:
+    Out << 'O';
+    break;
+  }
+}
+
+void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
+  Context.mangleObjCMethodName(MD, Out);
+}
+
+void CXXNameMangler::mangleType(QualType T) {
+  // If our type is instantiation-dependent but not dependent, we mangle
+  // it as it was written in the source, removing any top-level sugar. 
+  // Otherwise, use the canonical type.
+  //
+  // FIXME: This is an approximation of the instantiation-dependent name 
+  // mangling rules, since we should really be using the type as written and
+  // augmented via semantic analysis (i.e., with implicit conversions and
+  // default template arguments) for any instantiation-dependent type. 
+  // Unfortunately, that requires several changes to our AST:
+  //   - Instantiation-dependent TemplateSpecializationTypes will need to be 
+  //     uniqued, so that we can handle substitutions properly
+  //   - Default template arguments will need to be represented in the
+  //     TemplateSpecializationType, since they need to be mangled even though
+  //     they aren't written.
+  //   - Conversions on non-type template arguments need to be expressed, since
+  //     they can affect the mangling of sizeof/alignof.
+  if (!T->isInstantiationDependentType() || T->isDependentType())
+    T = T.getCanonicalType();
+  else {
+    // Desugar any types that are purely sugar.
+    do {
+      // Don't desugar through template specialization types that aren't
+      // type aliases. We need to mangle the template arguments as written.
+      if (const TemplateSpecializationType *TST 
+                                      = dyn_cast<TemplateSpecializationType>(T))
+        if (!TST->isTypeAlias())
+          break;
+
+      QualType Desugared 
+        = T.getSingleStepDesugaredType(Context.getASTContext());
+      if (Desugared == T)
+        break;
+      
+      T = Desugared;
+    } while (true);
+  }
+  SplitQualType split = T.split();
+  Qualifiers quals = split.Quals;
+  const Type *ty = split.Ty;
+
+  bool isSubstitutable = quals || !isa<BuiltinType>(T);
+  if (isSubstitutable && mangleSubstitution(T))
+    return;
+
+  // If we're mangling a qualified array type, push the qualifiers to
+  // the element type.
+  if (quals && isa<ArrayType>(T)) {
+    ty = Context.getASTContext().getAsArrayType(T);
+    quals = Qualifiers();
+
+    // Note that we don't update T: we want to add the
+    // substitution at the original type.
+  }
+
+  if (quals) {
+    mangleQualifiers(quals);
+    // Recurse:  even if the qualified type isn't yet substitutable,
+    // the unqualified type might be.
+    mangleType(QualType(ty, 0));
+  } else {
+    switch (ty->getTypeClass()) {
+#define ABSTRACT_TYPE(CLASS, PARENT)
+#define NON_CANONICAL_TYPE(CLASS, PARENT) \
+    case Type::CLASS: \
+      llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
+      return;
+#define TYPE(CLASS, PARENT) \
+    case Type::CLASS: \
+      mangleType(static_cast<const CLASS##Type*>(ty)); \
+      break;
+#include "clang/AST/TypeNodes.def"
+    }
+  }
+
+  // Add the substitution.
+  if (isSubstitutable)
+    addSubstitution(T);
+}
+
+void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
+  if (!mangleStandardSubstitution(ND))
+    mangleName(ND);
+}
+
+void CXXNameMangler::mangleType(const BuiltinType *T) {
+  //  <type>         ::= <builtin-type>
+  //  <builtin-type> ::= v  # void
+  //                 ::= w  # wchar_t
+  //                 ::= b  # bool
+  //                 ::= c  # char
+  //                 ::= a  # signed char
+  //                 ::= h  # unsigned char
+  //                 ::= s  # short
+  //                 ::= t  # unsigned short
+  //                 ::= i  # int
+  //                 ::= j  # unsigned int
+  //                 ::= l  # long
+  //                 ::= m  # unsigned long
+  //                 ::= x  # long long, __int64
+  //                 ::= y  # unsigned long long, __int64
+  //                 ::= n  # __int128
+  // UNSUPPORTED:    ::= o  # unsigned __int128
+  //                 ::= f  # float
+  //                 ::= d  # double
+  //                 ::= e  # long double, __float80
+  // UNSUPPORTED:    ::= g  # __float128
+  // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
+  // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
+  // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
+  //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
+  //                 ::= Di # char32_t
+  //                 ::= Ds # char16_t
+  //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
+  //                 ::= u <source-name>    # vendor extended type
+  switch (T->getKind()) {
+  case BuiltinType::Void: Out << 'v'; break;
+  case BuiltinType::Bool: Out << 'b'; break;
+  case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
+  case BuiltinType::UChar: Out << 'h'; break;
+  case BuiltinType::UShort: Out << 't'; break;
+  case BuiltinType::UInt: Out << 'j'; break;
+  case BuiltinType::ULong: Out << 'm'; break;
+  case BuiltinType::ULongLong: Out << 'y'; break;
+  case BuiltinType::UInt128: Out << 'o'; break;
+  case BuiltinType::SChar: Out << 'a'; break;
+  case BuiltinType::WChar_S:
+  case BuiltinType::WChar_U: Out << 'w'; break;
+  case BuiltinType::Char16: Out << "Ds"; break;
+  case BuiltinType::Char32: Out << "Di"; break;
+  case BuiltinType::Short: Out << 's'; break;
+  case BuiltinType::Int: Out << 'i'; break;
+  case BuiltinType::Long: Out << 'l'; break;
+  case BuiltinType::LongLong: Out << 'x'; break;
+  case BuiltinType::Int128: Out << 'n'; break;
+  case BuiltinType::Half: Out << "Dh"; break;
+  case BuiltinType::Float: Out << 'f'; break;
+  case BuiltinType::Double: Out << 'd'; break;
+  case BuiltinType::LongDouble: Out << 'e'; break;
+  case BuiltinType::NullPtr: Out << "Dn"; break;
+
+#define BUILTIN_TYPE(Id, SingletonId)
+#define PLACEHOLDER_TYPE(Id, SingletonId) \
+  case BuiltinType::Id:
+#include "clang/AST/BuiltinTypes.def"
+  case BuiltinType::Dependent:
+    llvm_unreachable("mangling a placeholder type");
+  case BuiltinType::ObjCId: Out << "11objc_object"; break;
+  case BuiltinType::ObjCClass: Out << "10objc_class"; break;
+  case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
+  }
+}
+
+// <type>          ::= <function-type>
+// <function-type> ::= [<CV-qualifiers>] F [Y]
+//                      <bare-function-type> [<ref-qualifier>] E
+// (Proposal to cxx-abi-dev, 2012-05-11)
+void CXXNameMangler::mangleType(const FunctionProtoType *T) {
+  // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
+  // e.g. "const" in "int (A::*)() const".
+  mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
+
+  Out << 'F';
+
+  // FIXME: We don't have enough information in the AST to produce the 'Y'
+  // encoding for extern "C" function types.
+  mangleBareFunctionType(T, /*MangleReturnType=*/true);
+
+  // Mangle the ref-qualifier, if present.
+  mangleRefQualifier(T->getRefQualifier());
+
+  Out << 'E';
+}
+void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
+  llvm_unreachable("Can't mangle K&R function prototypes");
+}
+void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
+                                            bool MangleReturnType) {
+  // We should never be mangling something without a prototype.
+  const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
+
+  // Record that we're in a function type.  See mangleFunctionParam
+  // for details on what we're trying to achieve here.
+  FunctionTypeDepthState saved = FunctionTypeDepth.push();
+
+  // <bare-function-type> ::= <signature type>+
+  if (MangleReturnType) {
+    FunctionTypeDepth.enterResultType();
+    mangleType(Proto->getResultType());
+    FunctionTypeDepth.leaveResultType();
+  }
+
+  if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) {
+    //   <builtin-type> ::= v   # void
+    Out << 'v';
+
+    FunctionTypeDepth.pop(saved);
+    return;
+  }
+
+  for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
+                                         ArgEnd = Proto->arg_type_end();
+       Arg != ArgEnd; ++Arg)
+    mangleType(Context.getASTContext().getSignatureParameterType(*Arg));
+
+  FunctionTypeDepth.pop(saved);
+
+  // <builtin-type>      ::= z  # ellipsis
+  if (Proto->isVariadic())
+    Out << 'z';
+}
+
+// <type>            ::= <class-enum-type>
+// <class-enum-type> ::= <name>
+void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
+  mangleName(T->getDecl());
+}
+
+// <type>            ::= <class-enum-type>
+// <class-enum-type> ::= <name>
+void CXXNameMangler::mangleType(const EnumType *T) {
+  mangleType(static_cast<const TagType*>(T));
+}
+void CXXNameMangler::mangleType(const RecordType *T) {
+  mangleType(static_cast<const TagType*>(T));
+}
+void CXXNameMangler::mangleType(const TagType *T) {
+  mangleName(T->getDecl());
+}
+
+// <type>       ::= <array-type>
+// <array-type> ::= A <positive dimension number> _ <element type>
+//              ::= A [<dimension expression>] _ <element type>
+void CXXNameMangler::mangleType(const ConstantArrayType *T) {
+  Out << 'A' << T->getSize() << '_';
+  mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const VariableArrayType *T) {
+  Out << 'A';
+  // decayed vla types (size 0) will just be skipped.
+  if (T->getSizeExpr())
+    mangleExpression(T->getSizeExpr());
+  Out << '_';
+  mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
+  Out << 'A';
+  mangleExpression(T->getSizeExpr());
+  Out << '_';
+  mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
+  Out << "A_";
+  mangleType(T->getElementType());
+}
+
+// <type>                   ::= <pointer-to-member-type>
+// <pointer-to-member-type> ::= M <class type> <member type>
+void CXXNameMangler::mangleType(const MemberPointerType *T) {
+  Out << 'M';
+  mangleType(QualType(T->getClass(), 0));
+  QualType PointeeType = T->getPointeeType();
+  if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
+    mangleType(FPT);
+    
+    // Itanium C++ ABI 5.1.8:
+    //
+    //   The type of a non-static member function is considered to be different,
+    //   for the purposes of substitution, from the type of a namespace-scope or
+    //   static member function whose type appears similar. The types of two
+    //   non-static member functions are considered to be different, for the
+    //   purposes of substitution, if the functions are members of different
+    //   classes. In other words, for the purposes of substitution, the class of 
+    //   which the function is a member is considered part of the type of 
+    //   function.
+
+    // Given that we already substitute member function pointers as a
+    // whole, the net effect of this rule is just to unconditionally
+    // suppress substitution on the function type in a member pointer.
+    // We increment the SeqID here to emulate adding an entry to the
+    // substitution table.
+    ++SeqID;
+  } else
+    mangleType(PointeeType);
+}
+
+// <type>           ::= <template-param>
+void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
+  mangleTemplateParameter(T->getIndex());
+}
+
+// <type>           ::= <template-param>
+void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
+  // FIXME: not clear how to mangle this!
+  // template <class T...> class A {
+  //   template <class U...> void foo(T(*)(U) x...);
+  // };
+  Out << "_SUBSTPACK_";
+}
+
+// <type> ::= P <type>   # pointer-to
+void CXXNameMangler::mangleType(const PointerType *T) {
+  Out << 'P';
+  mangleType(T->getPointeeType());
+}
+void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
+  Out << 'P';
+  mangleType(T->getPointeeType());
+}
+
+// <type> ::= R <type>   # reference-to
+void CXXNameMangler::mangleType(const LValueReferenceType *T) {
+  Out << 'R';
+  mangleType(T->getPointeeType());
+}
+
+// <type> ::= O <type>   # rvalue reference-to (C++0x)
+void CXXNameMangler::mangleType(const RValueReferenceType *T) {
+  Out << 'O';
+  mangleType(T->getPointeeType());
+}
+
+// <type> ::= C <type>   # complex pair (C 2000)
+void CXXNameMangler::mangleType(const ComplexType *T) {
+  Out << 'C';
+  mangleType(T->getElementType());
+}
+
+// ARM's ABI for Neon vector types specifies that they should be mangled as
+// if they are structs (to match ARM's initial implementation).  The
+// vector type must be one of the special types predefined by ARM.
+void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
+  QualType EltType = T->getElementType();
+  assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
+  const char *EltName = 0;
+  if (T->getVectorKind() == VectorType::NeonPolyVector) {
+    switch (cast<BuiltinType>(EltType)->getKind()) {
+    case BuiltinType::SChar:     EltName = "poly8_t"; break;
+    case BuiltinType::Short:     EltName = "poly16_t"; break;
+    default: llvm_unreachable("unexpected Neon polynomial vector element type");
+    }
+  } else {
+    switch (cast<BuiltinType>(EltType)->getKind()) {
+    case BuiltinType::SChar:     EltName = "int8_t"; break;
+    case BuiltinType::UChar:     EltName = "uint8_t"; break;
+    case BuiltinType::Short:     EltName = "int16_t"; break;
+    case BuiltinType::UShort:    EltName = "uint16_t"; break;
+    case BuiltinType::Int:       EltName = "int32_t"; break;
+    case BuiltinType::UInt:      EltName = "uint32_t"; break;
+    case BuiltinType::LongLong:  EltName = "int64_t"; break;
+    case BuiltinType::ULongLong: EltName = "uint64_t"; break;
+    case BuiltinType::Float:     EltName = "float32_t"; break;
+    default: llvm_unreachable("unexpected Neon vector element type");
+    }
+  }
+  const char *BaseName = 0;
+  unsigned BitSize = (T->getNumElements() *
+                      getASTContext().getTypeSize(EltType));
+  if (BitSize == 64)
+    BaseName = "__simd64_";
+  else {
+    assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
+    BaseName = "__simd128_";
+  }
+  Out << strlen(BaseName) + strlen(EltName);
+  Out << BaseName << EltName;
+}
+
+// GNU extension: vector types
+// <type>                  ::= <vector-type>
+// <vector-type>           ::= Dv <positive dimension number> _
+//                                    <extended element type>
+//                         ::= Dv [<dimension expression>] _ <element type>
+// <extended element type> ::= <element type>
+//                         ::= p # AltiVec vector pixel
+//                         ::= b # Altivec vector bool
+void CXXNameMangler::mangleType(const VectorType *T) {
+  if ((T->getVectorKind() == VectorType::NeonVector ||
+       T->getVectorKind() == VectorType::NeonPolyVector)) {
+    mangleNeonVectorType(T);
+    return;
+  }
+  Out << "Dv" << T->getNumElements() << '_';
+  if (T->getVectorKind() == VectorType::AltiVecPixel)
+    Out << 'p';
+  else if (T->getVectorKind() == VectorType::AltiVecBool)
+    Out << 'b';
+  else
+    mangleType(T->getElementType());
+}
+void CXXNameMangler::mangleType(const ExtVectorType *T) {
+  mangleType(static_cast<const VectorType*>(T));
+}
+void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
+  Out << "Dv";
+  mangleExpression(T->getSizeExpr());
+  Out << '_';
+  mangleType(T->getElementType());
+}
+
+void CXXNameMangler::mangleType(const PackExpansionType *T) {
+  // <type>  ::= Dp <type>          # pack expansion (C++0x)
+  Out << "Dp";
+  mangleType(T->getPattern());
+}
+
+void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
+  mangleSourceName(T->getDecl()->getIdentifier());
+}
+
+void CXXNameMangler::mangleType(const ObjCObjectType *T) {
+  // We don't allow overloading by different protocol qualification,
+  // so mangling them isn't necessary.
+  mangleType(T->getBaseType());
+}
+
+void CXXNameMangler::mangleType(const BlockPointerType *T) {
+  Out << "U13block_pointer";
+  mangleType(T->getPointeeType());
+}
+
+void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
+  // Mangle injected class name types as if the user had written the
+  // specialization out fully.  It may not actually be possible to see
+  // this mangling, though.
+  mangleType(T->getInjectedSpecializationType());
+}
+
+void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
+  if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
+    mangleName(TD, T->getArgs(), T->getNumArgs());
+  } else {
+    if (mangleSubstitution(QualType(T, 0)))
+      return;
+    
+    mangleTemplatePrefix(T->getTemplateName());
+    
+    // FIXME: GCC does not appear to mangle the template arguments when
+    // the template in question is a dependent template name. Should we
+    // emulate that badness?
+    mangleTemplateArgs(T->getArgs(), T->getNumArgs());
+    addSubstitution(QualType(T, 0));
+  }
+}
+
+void CXXNameMangler::mangleType(const DependentNameType *T) {
+  // Typename types are always nested
+  Out << 'N';
+  manglePrefix(T->getQualifier());
+  mangleSourceName(T->getIdentifier());    
+  Out << 'E';
+}
+
+void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
+  // Dependently-scoped template types are nested if they have a prefix.
+  Out << 'N';
+
+  // TODO: avoid making this TemplateName.
+  TemplateName Prefix =
+    getASTContext().getDependentTemplateName(T->getQualifier(),
+                                             T->getIdentifier());
+  mangleTemplatePrefix(Prefix);
+
+  // FIXME: GCC does not appear to mangle the template arguments when
+  // the template in question is a dependent template name. Should we
+  // emulate that badness?
+  mangleTemplateArgs(T->getArgs(), T->getNumArgs());    
+  Out << 'E';
+}
+
+void CXXNameMangler::mangleType(const TypeOfType *T) {
+  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
+  // "extension with parameters" mangling.
+  Out << "u6typeof";
+}
+
+void CXXNameMangler::mangleType(const TypeOfExprType *T) {
+  // FIXME: this is pretty unsatisfactory, but there isn't an obvious
+  // "extension with parameters" mangling.
+  Out << "u6typeof";
+}
+
+void CXXNameMangler::mangleType(const DecltypeType *T) {
+  Expr *E = T->getUnderlyingExpr();
+
+  // type ::= Dt <expression> E  # decltype of an id-expression
+  //                             #   or class member access
+  //      ::= DT <expression> E  # decltype of an expression
+
+  // This purports to be an exhaustive list of id-expressions and
+  // class member accesses.  Note that we do not ignore parentheses;
+  // parentheses change the semantics of decltype for these
+  // expressions (and cause the mangler to use the other form).
+  if (isa<DeclRefExpr>(E) ||
+      isa<MemberExpr>(E) ||
+      isa<UnresolvedLookupExpr>(E) ||
+      isa<DependentScopeDeclRefExpr>(E) ||
+      isa<CXXDependentScopeMemberExpr>(E) ||
+      isa<UnresolvedMemberExpr>(E))
+    Out << "Dt";
+  else
+    Out << "DT";
+  mangleExpression(E);
+  Out << 'E';
+}
+
+void CXXNameMangler::mangleType(const UnaryTransformType *T) {
+  // If this is dependent, we need to record that. If not, we simply
+  // mangle it as the underlying type since they are equivalent.
+  if (T->isDependentType()) {
+    Out << 'U';
+    
+    switch (T->getUTTKind()) {
+      case UnaryTransformType::EnumUnderlyingType:
+        Out << "3eut";
+        break;
+    }
+  }
+
+  mangleType(T->getUnderlyingType());
+}
+
+void CXXNameMangler::mangleType(const AutoType *T) {
+  QualType D = T->getDeducedType();
+  // <builtin-type> ::= Da  # dependent auto
+  if (D.isNull())
+    Out << "Da";
+  else
+    mangleType(D);
+}
+
+void CXXNameMangler::mangleType(const AtomicType *T) {
+  // <type> ::= U <source-name> <type>	# vendor extended type qualifier
+  // (Until there's a standardized mangling...)
+  Out << "U7_Atomic";
+  mangleType(T->getValueType());
+}
+
+void CXXNameMangler::mangleIntegerLiteral(QualType T,
+                                          const llvm::APSInt &Value) {
+  //  <expr-primary> ::= L <type> <value number> E # integer literal
+  Out << 'L';
+
+  mangleType(T);
+  if (T->isBooleanType()) {
+    // Boolean values are encoded as 0/1.
+    Out << (Value.getBoolValue() ? '1' : '0');
+  } else {
+    mangleNumber(Value);
+  }
+  Out << 'E';
+
+}
+
+/// Mangles a member expression.
+void CXXNameMangler::mangleMemberExpr(const Expr *base,
+                                      bool isArrow,
+                                      NestedNameSpecifier *qualifier,
+                                      NamedDecl *firstQualifierLookup,
+                                      DeclarationName member,
+                                      unsigned arity) {
+  // <expression> ::= dt <expression> <unresolved-name>
+  //              ::= pt <expression> <unresolved-name>
+  if (base) {
+    if (base->isImplicitCXXThis()) {
+      // Note: GCC mangles member expressions to the implicit 'this' as
+      // *this., whereas we represent them as this->. The Itanium C++ ABI
+      // does not specify anything here, so we follow GCC.
+      Out << "dtdefpT";
+    } else {
+      Out << (isArrow ? "pt" : "dt");
+      mangleExpression(base);
+    }
+  }
+  mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
+}
+
+/// Look at the callee of the given call expression and determine if
+/// it's a parenthesized id-expression which would have triggered ADL
+/// otherwise.
+static bool isParenthesizedADLCallee(const CallExpr *call) {
+  const Expr *callee = call->getCallee();
+  const Expr *fn = callee->IgnoreParens();
+
+  // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
+  // too, but for those to appear in the callee, it would have to be
+  // parenthesized.
+  if (callee == fn) return false;
+
+  // Must be an unresolved lookup.
+  const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
+  if (!lookup) return false;
+
+  assert(!lookup->requiresADL());
+
+  // Must be an unqualified lookup.
+  if (lookup->getQualifier()) return false;
+
+  // Must not have found a class member.  Note that if one is a class
+  // member, they're all class members.
+  if (lookup->getNumDecls() > 0 &&
+      (*lookup->decls_begin())->isCXXClassMember())
+    return false;
+
+  // Otherwise, ADL would have been triggered.
+  return true;
+}
+
+void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
+  // <expression> ::= <unary operator-name> <expression>
+  //              ::= <binary operator-name> <expression> <expression>
+  //              ::= <trinary operator-name> <expression> <expression> <expression>
+  //              ::= cv <type> expression           # conversion with one argument
+  //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
+  //              ::= st <type>                      # sizeof (a type)
+  //              ::= at <type>                      # alignof (a type)
+  //              ::= <template-param>
+  //              ::= <function-param>
+  //              ::= sr <type> <unqualified-name>                   # dependent name
+  //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
+  //              ::= ds <expression> <expression>                   # expr.*expr
+  //              ::= sZ <template-param>                            # size of a parameter pack
+  //              ::= sZ <function-param>    # size of a function parameter pack
+  //              ::= <expr-primary>
+  // <expr-primary> ::= L <type> <value number> E    # integer literal
+  //                ::= L <type <value float> E      # floating literal
+  //                ::= L <mangled-name> E           # external name
+  //                ::= fpT                          # 'this' expression
+  QualType ImplicitlyConvertedToType;
+  
+recurse:
+  switch (E->getStmtClass()) {
+  case Expr::NoStmtClass:
+#define ABSTRACT_STMT(Type)
+#define EXPR(Type, Base)
+#define STMT(Type, Base) \
+  case Expr::Type##Class:
+#include "clang/AST/StmtNodes.inc"
+    // fallthrough
+
+  // These all can only appear in local or variable-initialization
+  // contexts and so should never appear in a mangling.
+  case Expr::AddrLabelExprClass:
+  case Expr::DesignatedInitExprClass:
+  case Expr::ImplicitValueInitExprClass:
+  case Expr::ParenListExprClass:
+  case Expr::LambdaExprClass:
+    llvm_unreachable("unexpected statement kind");
+
+  // FIXME: invent manglings for all these.
+  case Expr::BlockExprClass:
+  case Expr::CXXPseudoDestructorExprClass:
+  case Expr::ChooseExprClass:
+  case Expr::CompoundLiteralExprClass:
+  case Expr::ExtVectorElementExprClass:
+  case Expr::GenericSelectionExprClass:
+  case Expr::ObjCEncodeExprClass:
+  case Expr::ObjCIsaExprClass:
+  case Expr::ObjCIvarRefExprClass:
+  case Expr::ObjCMessageExprClass:
+  case Expr::ObjCPropertyRefExprClass:
+  case Expr::ObjCProtocolExprClass:
+  case Expr::ObjCSelectorExprClass:
+  case Expr::ObjCStringLiteralClass:
+  case Expr::ObjCBoxedExprClass:
+  case Expr::ObjCArrayLiteralClass:
+  case Expr::ObjCDictionaryLiteralClass:
+  case Expr::ObjCSubscriptRefExprClass:
+  case Expr::ObjCIndirectCopyRestoreExprClass:
+  case Expr::OffsetOfExprClass:
+  case Expr::PredefinedExprClass:
+  case Expr::ShuffleVectorExprClass:
+  case Expr::StmtExprClass:
+  case Expr::UnaryTypeTraitExprClass:
+  case Expr::BinaryTypeTraitExprClass:
+  case Expr::TypeTraitExprClass:
+  case Expr::ArrayTypeTraitExprClass:
+  case Expr::ExpressionTraitExprClass:
+  case Expr::VAArgExprClass:
+  case Expr::CXXUuidofExprClass:
+  case Expr::CUDAKernelCallExprClass:
+  case Expr::AsTypeExprClass:
+  case Expr::PseudoObjectExprClass:
+  case Expr::AtomicExprClass:
+  {
+    // As bad as this diagnostic is, it's better than crashing.
+    DiagnosticsEngine &Diags = Context.getDiags();
+    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+                                     "cannot yet mangle expression type %0");
+    Diags.Report(E->getExprLoc(), DiagID)
+      << E->getStmtClassName() << E->getSourceRange();
+    break;
+  }
+
+  // Even gcc-4.5 doesn't mangle this.
+  case Expr::BinaryConditionalOperatorClass: {
+    DiagnosticsEngine &Diags = Context.getDiags();
+    unsigned DiagID =
+      Diags.getCustomDiagID(DiagnosticsEngine::Error,
+                "?: operator with omitted middle operand cannot be mangled");
+    Diags.Report(E->getExprLoc(), DiagID)
+      << E->getStmtClassName() << E->getSourceRange();
+    break;
+  }
+
+  // These are used for internal purposes and cannot be meaningfully mangled.
+  case Expr::OpaqueValueExprClass:
+    llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
+
+  case Expr::InitListExprClass: {
+    // Proposal by Jason Merrill, 2012-01-03
+    Out << "il";
+    const InitListExpr *InitList = cast<InitListExpr>(E);
+    for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
+      mangleExpression(InitList->getInit(i));
+    Out << "E";
+    break;
+  }
+
+  case Expr::CXXDefaultArgExprClass:
+    mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
+    break;
+
+  case Expr::SubstNonTypeTemplateParmExprClass:
+    mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
+                     Arity);
+    break;
+
+  case Expr::UserDefinedLiteralClass:
+    // We follow g++'s approach of mangling a UDL as a call to the literal
+    // operator.
+  case Expr::CXXMemberCallExprClass: // fallthrough
+  case Expr::CallExprClass: {
+    const CallExpr *CE = cast<CallExpr>(E);
+
+    // <expression> ::= cp <simple-id> <expression>* E
+    // We use this mangling only when the call would use ADL except
+    // for being parenthesized.  Per discussion with David
+    // Vandervoorde, 2011.04.25.
+    if (isParenthesizedADLCallee(CE)) {
+      Out << "cp";
+      // The callee here is a parenthesized UnresolvedLookupExpr with
+      // no qualifier and should always get mangled as a <simple-id>
+      // anyway.
+
+    // <expression> ::= cl <expression>* E
+    } else {
+      Out << "cl";
+    }
+
+    mangleExpression(CE->getCallee(), CE->getNumArgs());
+    for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
+      mangleExpression(CE->getArg(I));
+    Out << 'E';
+    break;
+  }
+
+  case Expr::CXXNewExprClass: {
+    const CXXNewExpr *New = cast<CXXNewExpr>(E);
+    if (New->isGlobalNew()) Out << "gs";
+    Out << (New->isArray() ? "na" : "nw");
+    for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
+           E = New->placement_arg_end(); I != E; ++I)
+      mangleExpression(*I);
+    Out << '_';
+    mangleType(New->getAllocatedType());
+    if (New->hasInitializer()) {
+      // Proposal by Jason Merrill, 2012-01-03
+      if (New->getInitializationStyle() == CXXNewExpr::ListInit)
+        Out << "il";
+      else
+        Out << "pi";
+      const Expr *Init = New->getInitializer();
+      if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
+        // Directly inline the initializers.
+        for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
+                                                  E = CCE->arg_end();
+             I != E; ++I)
+          mangleExpression(*I);
+      } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
+        for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
+          mangleExpression(PLE->getExpr(i));
+      } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
+                 isa<InitListExpr>(Init)) {
+        // Only take InitListExprs apart for list-initialization.
+        const InitListExpr *InitList = cast<InitListExpr>(Init);
+        for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
+          mangleExpression(InitList->getInit(i));
+      } else
+        mangleExpression(Init);
+    }
+    Out << 'E';
+    break;
+  }
+
+  case Expr::MemberExprClass: {
+    const MemberExpr *ME = cast<MemberExpr>(E);
+    mangleMemberExpr(ME->getBase(), ME->isArrow(),
+                     ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(),
+                     Arity);
+    break;
+  }
+
+  case Expr::UnresolvedMemberExprClass: {
+    const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
+    mangleMemberExpr(ME->getBase(), ME->isArrow(),
+                     ME->getQualifier(), 0, ME->getMemberName(),
+                     Arity);
+    if (ME->hasExplicitTemplateArgs())
+      mangleTemplateArgs(ME->getExplicitTemplateArgs());
+    break;
+  }
+
+  case Expr::CXXDependentScopeMemberExprClass: {
+    const CXXDependentScopeMemberExpr *ME
+      = cast<CXXDependentScopeMemberExpr>(E);
+    mangleMemberExpr(ME->getBase(), ME->isArrow(),
+                     ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
+                     ME->getMember(), Arity);
+    if (ME->hasExplicitTemplateArgs())
+      mangleTemplateArgs(ME->getExplicitTemplateArgs());
+    break;
+  }
+
+  case Expr::UnresolvedLookupExprClass: {
+    const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
+    mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity);
+
+    // All the <unresolved-name> productions end in a
+    // base-unresolved-name, where <template-args> are just tacked
+    // onto the end.
+    if (ULE->hasExplicitTemplateArgs())
+      mangleTemplateArgs(ULE->getExplicitTemplateArgs());
+    break;
+  }
+
+  case Expr::CXXUnresolvedConstructExprClass: {
+    const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
+    unsigned N = CE->arg_size();
+
+    Out << "cv";
+    mangleType(CE->getType());
+    if (N != 1) Out << '_';
+    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
+    if (N != 1) Out << 'E';
+    break;
+  }
+
+  case Expr::CXXTemporaryObjectExprClass:
+  case Expr::CXXConstructExprClass: {
+    const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
+    unsigned N = CE->getNumArgs();
+
+    // Proposal by Jason Merrill, 2012-01-03
+    if (CE->isListInitialization())
+      Out << "tl";
+    else
+      Out << "cv";
+    mangleType(CE->getType());
+    if (N != 1) Out << '_';
+    for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
+    if (N != 1) Out << 'E';
+    break;
+  }
+
+  case Expr::CXXScalarValueInitExprClass:
+    Out <<"cv";
+    mangleType(E->getType());
+    Out <<"_E";
+    break;
+
+  case Expr::CXXNoexceptExprClass:
+    Out << "nx";
+    mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
+    break;
+
+  case Expr::UnaryExprOrTypeTraitExprClass: {
+    const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
+    
+    if (!SAE->isInstantiationDependent()) {
+      // Itanium C++ ABI:
+      //   If the operand of a sizeof or alignof operator is not 
+      //   instantiation-dependent it is encoded as an integer literal 
+      //   reflecting the result of the operator.
+      //
+      //   If the result of the operator is implicitly converted to a known 
+      //   integer type, that type is used for the literal; otherwise, the type 
+      //   of std::size_t or std::ptrdiff_t is used.
+      QualType T = (ImplicitlyConvertedToType.isNull() || 
+                    !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
+                                                    : ImplicitlyConvertedToType;
+      llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
+      mangleIntegerLiteral(T, V);
+      break;
+    }
+    
+    switch(SAE->getKind()) {
+    case UETT_SizeOf:
+      Out << 's';
+      break;
+    case UETT_AlignOf:
+      Out << 'a';
+      break;
+    case UETT_VecStep:
+      DiagnosticsEngine &Diags = Context.getDiags();
+      unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
+                                     "cannot yet mangle vec_step expression");
+      Diags.Report(DiagID);
+      return;
+    }
+    if (SAE->isArgumentType()) {
+      Out << 't';
+      mangleType(SAE->getArgumentType());
+    } else {
+      Out << 'z';
+      mangleExpression(SAE->getArgumentExpr());
+    }
+    break;
+  }
+
+  case Expr::CXXThrowExprClass: {
+    const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
+
+    // Proposal from David Vandervoorde, 2010.06.30
+    if (TE->getSubExpr()) {
+      Out << "tw";
+      mangleExpression(TE->getSubExpr());
+    } else {
+      Out << "tr";
+    }
+    break;
+  }
+
+  case Expr::CXXTypeidExprClass: {
+    const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
+
+    // Proposal from David Vandervoorde, 2010.06.30
+    if (TIE->isTypeOperand()) {
+      Out << "ti";
+      mangleType(TIE->getTypeOperand());
+    } else {
+      Out << "te";
+      mangleExpression(TIE->getExprOperand());
+    }
+    break;
+  }
+
+  case Expr::CXXDeleteExprClass: {
+    const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
+
+    // Proposal from David Vandervoorde, 2010.06.30
+    if (DE->isGlobalDelete()) Out << "gs";
+    Out << (DE->isArrayForm() ? "da" : "dl");
+    mangleExpression(DE->getArgument());
+    break;
+  }
+
+  case Expr::UnaryOperatorClass: {
+    const UnaryOperator *UO = cast<UnaryOperator>(E);
+    mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
+                       /*Arity=*/1);
+    mangleExpression(UO->getSubExpr());
+    break;
+  }
+
+  case Expr::ArraySubscriptExprClass: {
+    const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
+
+    // Array subscript is treated as a syntactically weird form of
+    // binary operator.
+    Out << "ix";
+    mangleExpression(AE->getLHS());
+    mangleExpression(AE->getRHS());
+    break;
+  }
+
+  case Expr::CompoundAssignOperatorClass: // fallthrough
+  case Expr::BinaryOperatorClass: {
+    const BinaryOperator *BO = cast<BinaryOperator>(E);
+    if (BO->getOpcode() == BO_PtrMemD)
+      Out << "ds";
+    else
+      mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
+                         /*Arity=*/2);
+    mangleExpression(BO->getLHS());
+    mangleExpression(BO->getRHS());
+    break;
+  }
+
+  case Expr::ConditionalOperatorClass: {
+    const ConditionalOperator *CO = cast<ConditionalOperator>(E);
+    mangleOperatorName(OO_Conditional, /*Arity=*/3);
+    mangleExpression(CO->getCond());
+    mangleExpression(CO->getLHS(), Arity);
+    mangleExpression(CO->getRHS(), Arity);
+    break;
+  }
+
+  case Expr::ImplicitCastExprClass: {
+    ImplicitlyConvertedToType = E->getType();
+    E = cast<ImplicitCastExpr>(E)->getSubExpr();
+    goto recurse;
+  }
+      
+  case Expr::ObjCBridgedCastExprClass: {
+    // Mangle ownership casts as a vendor extended operator __bridge, 
+    // __bridge_transfer, or __bridge_retain.
+    StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
+    Out << "v1U" << Kind.size() << Kind;
+  }
+  // Fall through to mangle the cast itself.
+      
+  case Expr::CStyleCastExprClass:
+  case Expr::CXXStaticCastExprClass:
+  case Expr::CXXDynamicCastExprClass:
+  case Expr::CXXReinterpretCastExprClass:
+  case Expr::CXXConstCastExprClass:
+  case Expr::CXXFunctionalCastExprClass: {
+    const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
+    Out << "cv";
+    mangleType(ECE->getType());
+    mangleExpression(ECE->getSubExpr());
+    break;
+  }
+
+  case Expr::CXXOperatorCallExprClass: {
+    const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
+    unsigned NumArgs = CE->getNumArgs();
+    mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
+    // Mangle the arguments.
+    for (unsigned i = 0; i != NumArgs; ++i)
+      mangleExpression(CE->getArg(i));
+    break;
+  }
+
+  case Expr::ParenExprClass:
+    mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
+    break;
+
+  case Expr::DeclRefExprClass: {
+    const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
+
+    switch (D->getKind()) {
+    default:
+      //  <expr-primary> ::= L <mangled-name> E # external name
+      Out << 'L';
+      mangle(D, "_Z");
+      Out << 'E';
+      break;
+
+    case Decl::ParmVar:
+      mangleFunctionParam(cast<ParmVarDecl>(D));
+      break;
+
+    case Decl::EnumConstant: {
+      const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
+      mangleIntegerLiteral(ED->getType(), ED->getInitVal());
+      break;
+    }
+
+    case Decl::NonTypeTemplateParm: {
+      const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
+      mangleTemplateParameter(PD->getIndex());
+      break;
+    }
+
+    }
+
+    break;
+  }
+
+  case Expr::SubstNonTypeTemplateParmPackExprClass:
+    // FIXME: not clear how to mangle this!
+    // template <unsigned N...> class A {
+    //   template <class U...> void foo(U (&x)[N]...);
+    // };
+    Out << "_SUBSTPACK_";
+    break;
+
+  case Expr::FunctionParmPackExprClass: {
+    // FIXME: not clear how to mangle this!
+    const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
+    Out << "v110_SUBSTPACK";
+    mangleFunctionParam(FPPE->getParameterPack());
+    break;
+  }
+
+  case Expr::DependentScopeDeclRefExprClass: {
+    const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
+    mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity);
+
+    // All the <unresolved-name> productions end in a
+    // base-unresolved-name, where <template-args> are just tacked
+    // onto the end.
+    if (DRE->hasExplicitTemplateArgs())
+      mangleTemplateArgs(DRE->getExplicitTemplateArgs());
+    break;
+  }
+
+  case Expr::CXXBindTemporaryExprClass:
+    mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
+    break;
+
+  case Expr::ExprWithCleanupsClass:
+    mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
+    break;
+
+  case Expr::FloatingLiteralClass: {
+    const FloatingLiteral *FL = cast<FloatingLiteral>(E);
+    Out << 'L';
+    mangleType(FL->getType());
+    mangleFloat(FL->getValue());
+    Out << 'E';
+    break;
+  }
+
+  case Expr::CharacterLiteralClass:
+    Out << 'L';
+    mangleType(E->getType());
+    Out << cast<CharacterLiteral>(E)->getValue();
+    Out << 'E';
+    break;
+
+  // FIXME. __objc_yes/__objc_no are mangled same as true/false
+  case Expr::ObjCBoolLiteralExprClass:
+    Out << "Lb";
+    Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
+    Out << 'E';
+    break;
+  
+  case Expr::CXXBoolLiteralExprClass:
+    Out << "Lb";
+    Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
+    Out << 'E';
+    break;
+
+  case Expr::IntegerLiteralClass: {
+    llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
+    if (E->getType()->isSignedIntegerType())
+      Value.setIsSigned(true);
+    mangleIntegerLiteral(E->getType(), Value);
+    break;
+  }
+
+  case Expr::ImaginaryLiteralClass: {
+    const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
+    // Mangle as if a complex literal.
+    // Proposal from David Vandevoorde, 2010.06.30.
+    Out << 'L';
+    mangleType(E->getType());
+    if (const FloatingLiteral *Imag =
+          dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
+      // Mangle a floating-point zero of the appropriate type.
+      mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
+      Out << '_';
+      mangleFloat(Imag->getValue());
+    } else {
+      Out << "0_";
+      llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
+      if (IE->getSubExpr()->getType()->isSignedIntegerType())
+        Value.setIsSigned(true);
+      mangleNumber(Value);
+    }
+    Out << 'E';
+    break;
+  }
+
+  case Expr::StringLiteralClass: {
+    // Revised proposal from David Vandervoorde, 2010.07.15.
+    Out << 'L';
+    assert(isa<ConstantArrayType>(E->getType()));
+    mangleType(E->getType());
+    Out << 'E';
+    break;
+  }
+
+  case Expr::GNUNullExprClass:
+    // FIXME: should this really be mangled the same as nullptr?
+    // fallthrough
+
+  case Expr::CXXNullPtrLiteralExprClass: {
+    // Proposal from David Vandervoorde, 2010.06.30, as
+    // modified by ABI list discussion.
+    Out << "LDnE";
+    break;
+  }
+      
+  case Expr::PackExpansionExprClass:
+    Out << "sp";
+    mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
+    break;
+      
+  case Expr::SizeOfPackExprClass: {
+    Out << "sZ";
+    const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
+    if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
+      mangleTemplateParameter(TTP->getIndex());
+    else if (const NonTypeTemplateParmDecl *NTTP
+                = dyn_cast<NonTypeTemplateParmDecl>(Pack))
+      mangleTemplateParameter(NTTP->getIndex());
+    else if (const TemplateTemplateParmDecl *TempTP
+                                    = dyn_cast<TemplateTemplateParmDecl>(Pack))
+      mangleTemplateParameter(TempTP->getIndex());
+    else
+      mangleFunctionParam(cast<ParmVarDecl>(Pack));
+    break;
+  }
+      
+  case Expr::MaterializeTemporaryExprClass: {
+    mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
+    break;
+  }
+      
+  case Expr::CXXThisExprClass:
+    Out << "fpT";
+    break;
+  }
+}
+
+/// Mangle an expression which refers to a parameter variable.
+///
+/// <expression>     ::= <function-param>
+/// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
+/// <function-param> ::= fp <top-level CV-qualifiers>
+///                      <parameter-2 non-negative number> _ # L == 0, I > 0
+/// <function-param> ::= fL <L-1 non-negative number>
+///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
+/// <function-param> ::= fL <L-1 non-negative number>
+///                      p <top-level CV-qualifiers>
+///                      <I-1 non-negative number> _         # L > 0, I > 0
+///
+/// L is the nesting depth of the parameter, defined as 1 if the
+/// parameter comes from the innermost function prototype scope
+/// enclosing the current context, 2 if from the next enclosing
+/// function prototype scope, and so on, with one special case: if
+/// we've processed the full parameter clause for the innermost
+/// function type, then L is one less.  This definition conveniently
+/// makes it irrelevant whether a function's result type was written
+/// trailing or leading, but is otherwise overly complicated; the
+/// numbering was first designed without considering references to
+/// parameter in locations other than return types, and then the
+/// mangling had to be generalized without changing the existing
+/// manglings.
+///
+/// I is the zero-based index of the parameter within its parameter
+/// declaration clause.  Note that the original ABI document describes
+/// this using 1-based ordinals.
+void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
+  unsigned parmDepth = parm->getFunctionScopeDepth();
+  unsigned parmIndex = parm->getFunctionScopeIndex();
+
+  // Compute 'L'.
+  // parmDepth does not include the declaring function prototype.
+  // FunctionTypeDepth does account for that.
+  assert(parmDepth < FunctionTypeDepth.getDepth());
+  unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
+  if (FunctionTypeDepth.isInResultType())
+    nestingDepth--;
+
+  if (nestingDepth == 0) {
+    Out << "fp";
+  } else {
+    Out << "fL" << (nestingDepth - 1) << 'p';
+  }
+
+  // Top-level qualifiers.  We don't have to worry about arrays here,
+  // because parameters declared as arrays should already have been
+  // transformed to have pointer type. FIXME: apparently these don't
+  // get mangled if used as an rvalue of a known non-class type?
+  assert(!parm->getType()->isArrayType()
+         && "parameter's type is still an array type?");
+  mangleQualifiers(parm->getType().getQualifiers());
+
+  // Parameter index.
+  if (parmIndex != 0) {
+    Out << (parmIndex - 1);
+  }
+  Out << '_';
+}
+
+void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
+  // <ctor-dtor-name> ::= C1  # complete object constructor
+  //                  ::= C2  # base object constructor
+  //                  ::= C3  # complete object allocating constructor
+  //
+  switch (T) {
+  case Ctor_Complete:
+    Out << "C1";
+    break;
+  case Ctor_Base:
+    Out << "C2";
+    break;
+  case Ctor_CompleteAllocating:
+    Out << "C3";
+    break;
+  }
+}
+
+void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
+  // <ctor-dtor-name> ::= D0  # deleting destructor
+  //                  ::= D1  # complete object destructor
+  //                  ::= D2  # base object destructor
+  //
+  switch (T) {
+  case Dtor_Deleting:
+    Out << "D0";
+    break;
+  case Dtor_Complete:
+    Out << "D1";
+    break;
+  case Dtor_Base:
+    Out << "D2";
+    break;
+  }
+}
+
+void CXXNameMangler::mangleTemplateArgs(
+                          const ASTTemplateArgumentListInfo &TemplateArgs) {
+  // <template-args> ::= I <template-arg>+ E
+  Out << 'I';
+  for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
+    mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
+  Out << 'E';
+}
+
+void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
+  // <template-args> ::= I <template-arg>+ E
+  Out << 'I';
+  for (unsigned i = 0, e = AL.size(); i != e; ++i)
+    mangleTemplateArg(AL[i]);
+  Out << 'E';
+}
+
+void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
+                                        unsigned NumTemplateArgs) {
+  // <template-args> ::= I <template-arg>+ E
+  Out << 'I';
+  for (unsigned i = 0; i != NumTemplateArgs; ++i)
+    mangleTemplateArg(TemplateArgs[i]);
+  Out << 'E';
+}
+
+void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
+  // <template-arg> ::= <type>              # type or template
+  //                ::= X <expression> E    # expression
+  //                ::= <expr-primary>      # simple expressions
+  //                ::= J <template-arg>* E # argument pack
+  //                ::= sp <expression>     # pack expansion of (C++0x)  
+  if (!A.isInstantiationDependent() || A.isDependent())
+    A = Context.getASTContext().getCanonicalTemplateArgument(A);
+  
+  switch (A.getKind()) {
+  case TemplateArgument::Null:
+    llvm_unreachable("Cannot mangle NULL template argument");
+      
+  case TemplateArgument::Type:
+    mangleType(A.getAsType());
+    break;
+  case TemplateArgument::Template:
+    // This is mangled as <type>.
+    mangleType(A.getAsTemplate());
+    break;
+  case TemplateArgument::TemplateExpansion:
+    // <type>  ::= Dp <type>          # pack expansion (C++0x)
+    Out << "Dp";
+    mangleType(A.getAsTemplateOrTemplatePattern());
+    break;
+  case TemplateArgument::Expression: {
+    // It's possible to end up with a DeclRefExpr here in certain
+    // dependent cases, in which case we should mangle as a
+    // declaration.
+    const Expr *E = A.getAsExpr()->IgnoreParens();
+    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
+      const ValueDecl *D = DRE->getDecl();
+      if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
+        Out << "L";
+        mangle(D, "_Z");
+        Out << 'E';
+        break;
+      }
+    }
+    
+    Out << 'X';
+    mangleExpression(E);
+    Out << 'E';
+    break;
+  }
+  case TemplateArgument::Integral:
+    mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
+    break;
+  case TemplateArgument::Declaration: {
+    //  <expr-primary> ::= L <mangled-name> E # external name
+    // Clang produces AST's where pointer-to-member-function expressions
+    // and pointer-to-function expressions are represented as a declaration not
+    // an expression. We compensate for it here to produce the correct mangling.
+    ValueDecl *D = A.getAsDecl();
+    bool compensateMangling = !A.isDeclForReferenceParam();
+    if (compensateMangling) {
+      Out << 'X';
+      mangleOperatorName(OO_Amp, 1);
+    }
+
+    Out << 'L';
+    // References to external entities use the mangled name; if the name would
+    // not normally be manged then mangle it as unqualified.
+    //
+    // FIXME: The ABI specifies that external names here should have _Z, but
+    // gcc leaves this off.
+    if (compensateMangling)
+      mangle(D, "_Z");
+    else
+      mangle(D, "Z");
+    Out << 'E';
+
+    if (compensateMangling)
+      Out << 'E';
+
+    break;
+  }
+  case TemplateArgument::NullPtr: {
+    //  <expr-primary> ::= L <type> 0 E
+    Out << 'L';
+    mangleType(A.getNullPtrType());
+    Out << "0E";
+    break;
+  }
+  case TemplateArgument::Pack: {
+    // Note: proposal by Mike Herrick on 12/20/10
+    Out << 'J';
+    for (TemplateArgument::pack_iterator PA = A.pack_begin(), 
+                                      PAEnd = A.pack_end();
+         PA != PAEnd; ++PA)
+      mangleTemplateArg(*PA);
+    Out << 'E';
+  }
+  }
+}
+
+void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
+  // <template-param> ::= T_    # first template parameter
+  //                  ::= T <parameter-2 non-negative number> _
+  if (Index == 0)
+    Out << "T_";
+  else
+    Out << 'T' << (Index - 1) << '_';
+}
+
+void CXXNameMangler::mangleExistingSubstitution(QualType type) {
+  bool result = mangleSubstitution(type);
+  assert(result && "no existing substitution for type");
+  (void) result;
+}
+
+void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
+  bool result = mangleSubstitution(tname);
+  assert(result && "no existing substitution for template name");
+  (void) result;
+}
+
+// <substitution> ::= S <seq-id> _
+//                ::= S_
+bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
+  // Try one of the standard substitutions first.
+  if (mangleStandardSubstitution(ND))
+    return true;
+
+  ND = cast<NamedDecl>(ND->getCanonicalDecl());
+  return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
+}
+
+/// \brief Determine whether the given type has any qualifiers that are
+/// relevant for substitutions.
+static bool hasMangledSubstitutionQualifiers(QualType T) {
+  Qualifiers Qs = T.getQualifiers();
+  return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
+}
+
+bool CXXNameMangler::mangleSubstitution(QualType T) {
+  if (!hasMangledSubstitutionQualifiers(T)) {
+    if (const RecordType *RT = T->getAs<RecordType>())
+      return mangleSubstitution(RT->getDecl());
+  }
+
+  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
+
+  return mangleSubstitution(TypePtr);
+}
+
+bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
+  if (TemplateDecl *TD = Template.getAsTemplateDecl())
+    return mangleSubstitution(TD);
+  
+  Template = Context.getASTContext().getCanonicalTemplateName(Template);
+  return mangleSubstitution(
+                      reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
+}
+
+bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
+  llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
+  if (I == Substitutions.end())
+    return false;
+
+  unsigned SeqID = I->second;
+  if (SeqID == 0)
+    Out << "S_";
+  else {
+    SeqID--;
+
+    // <seq-id> is encoded in base-36, using digits and upper case letters.
+    char Buffer[10];
+    char *BufferPtr = llvm::array_endof(Buffer);
+
+    if (SeqID == 0) *--BufferPtr = '0';
+
+    while (SeqID) {
+      assert(BufferPtr > Buffer && "Buffer overflow!");
+
+      char c = static_cast<char>(SeqID % 36);
+
+      *--BufferPtr =  (c < 10 ? '0' + c : 'A' + c - 10);
+      SeqID /= 36;
+    }
+
+    Out << 'S'
+        << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr)
+        << '_';
+  }
+
+  return true;
+}
+
+static bool isCharType(QualType T) {
+  if (T.isNull())
+    return false;
+
+  return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
+    T->isSpecificBuiltinType(BuiltinType::Char_U);
+}
+
+/// isCharSpecialization - Returns whether a given type is a template
+/// specialization of a given name with a single argument of type char.
+static bool isCharSpecialization(QualType T, const char *Name) {
+  if (T.isNull())
+    return false;
+
+  const RecordType *RT = T->getAs<RecordType>();
+  if (!RT)
+    return false;
+
+  const ClassTemplateSpecializationDecl *SD =
+    dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
+  if (!SD)
+    return false;
+
+  if (!isStdNamespace(getEffectiveDeclContext(SD)))
+    return false;
+
+  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
+  if (TemplateArgs.size() != 1)
+    return false;
+
+  if (!isCharType(TemplateArgs[0].getAsType()))
+    return false;
+
+  return SD->getIdentifier()->getName() == Name;
+}
+
+template <std::size_t StrLen>
+static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
+                                       const char (&Str)[StrLen]) {
+  if (!SD->getIdentifier()->isStr(Str))
+    return false;
+
+  const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
+  if (TemplateArgs.size() != 2)
+    return false;
+
+  if (!isCharType(TemplateArgs[0].getAsType()))
+    return false;
+
+  if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
+    return false;
+
+  return true;
+}
+
+bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
+  // <substitution> ::= St # ::std::
+  if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
+    if (isStd(NS)) {
+      Out << "St";
+      return true;
+    }
+  }
+
+  if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
+    if (!isStdNamespace(getEffectiveDeclContext(TD)))
+      return false;
+
+    // <substitution> ::= Sa # ::std::allocator
+    if (TD->getIdentifier()->isStr("allocator")) {
+      Out << "Sa";
+      return true;
+    }
+
+    // <<substitution> ::= Sb # ::std::basic_string
+    if (TD->getIdentifier()->isStr("basic_string")) {
+      Out << "Sb";
+      return true;
+    }
+  }
+
+  if (const ClassTemplateSpecializationDecl *SD =
+        dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
+    if (!isStdNamespace(getEffectiveDeclContext(SD)))
+      return false;
+
+    //    <substitution> ::= Ss # ::std::basic_string<char,
+    //                            ::std::char_traits<char>,
+    //                            ::std::allocator<char> >
+    if (SD->getIdentifier()->isStr("basic_string")) {
+      const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
+
+      if (TemplateArgs.size() != 3)
+        return false;
+
+      if (!isCharType(TemplateArgs[0].getAsType()))
+        return false;
+
+      if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
+        return false;
+
+      if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
+        return false;
+
+      Out << "Ss";
+      return true;
+    }
+
+    //    <substitution> ::= Si # ::std::basic_istream<char,
+    //                            ::std::char_traits<char> >
+    if (isStreamCharSpecialization(SD, "basic_istream")) {
+      Out << "Si";
+      return true;
+    }
+
+    //    <substitution> ::= So # ::std::basic_ostream<char,
+    //                            ::std::char_traits<char> >
+    if (isStreamCharSpecialization(SD, "basic_ostream")) {
+      Out << "So";
+      return true;
+    }
+
+    //    <substitution> ::= Sd # ::std::basic_iostream<char,
+    //                            ::std::char_traits<char> >
+    if (isStreamCharSpecialization(SD, "basic_iostream")) {
+      Out << "Sd";
+      return true;
+    }
+  }
+  return false;
+}
+
+void CXXNameMangler::addSubstitution(QualType T) {
+  if (!hasMangledSubstitutionQualifiers(T)) {
+    if (const RecordType *RT = T->getAs<RecordType>()) {
+      addSubstitution(RT->getDecl());
+      return;
+    }
+  }
+
+  uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
+  addSubstitution(TypePtr);
+}
+
+void CXXNameMangler::addSubstitution(TemplateName Template) {
+  if (TemplateDecl *TD = Template.getAsTemplateDecl())
+    return addSubstitution(TD);
+  
+  Template = Context.getASTContext().getCanonicalTemplateName(Template);
+  addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
+}
+
+void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
+  assert(!Substitutions.count(Ptr) && "Substitution already exists!");
+  Substitutions[Ptr] = SeqID++;
+}
+
+//
+
+/// \brief Mangles the name of the declaration D and emits that name to the
+/// given output stream.
+///
+/// If the declaration D requires a mangled name, this routine will emit that
+/// mangled name to \p os and return true. Otherwise, \p os will be unchanged
+/// and this routine will return false. In this case, the caller should just
+/// emit the identifier of the declaration (\c D->getIdentifier()) as its
+/// name.
+void ItaniumMangleContext::mangleName(const NamedDecl *D,
+                                      raw_ostream &Out) {
+  assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
+          "Invalid mangleName() call, argument is not a variable or function!");
+  assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
+         "Invalid mangleName() call on 'structor decl!");
+
+  PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
+                                 getASTContext().getSourceManager(),
+                                 "Mangling declaration");
+
+  CXXNameMangler Mangler(*this, Out, D);
+  return Mangler.mangle(D);
+}
+
+void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D,
+                                         CXXCtorType Type,
+                                         raw_ostream &Out) {
+  CXXNameMangler Mangler(*this, Out, D, Type);
+  Mangler.mangle(D);
+}
+
+void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D,
+                                         CXXDtorType Type,
+                                         raw_ostream &Out) {
+  CXXNameMangler Mangler(*this, Out, D, Type);
+  Mangler.mangle(D);
+}
+
+void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD,
+                                       const ThunkInfo &Thunk,
+                                       raw_ostream &Out) {
+  //  <special-name> ::= T <call-offset> <base encoding>
+  //                      # base is the nominal target function of thunk
+  //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
+  //                      # base is the nominal target function of thunk
+  //                      # first call-offset is 'this' adjustment
+  //                      # second call-offset is result adjustment
+  
+  assert(!isa<CXXDestructorDecl>(MD) &&
+         "Use mangleCXXDtor for destructor decls!");
+  CXXNameMangler Mangler(*this, Out);
+  Mangler.getStream() << "_ZT";
+  if (!Thunk.Return.isEmpty())
+    Mangler.getStream() << 'c';
+  
+  // Mangle the 'this' pointer adjustment.
+  Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset);
+  
+  // Mangle the return pointer adjustment if there is one.
+  if (!Thunk.Return.isEmpty())
+    Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
+                             Thunk.Return.VBaseOffsetOffset);
+  
+  Mangler.mangleFunctionEncoding(MD);
+}
+
+void 
+ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD,
+                                         CXXDtorType Type,
+                                         const ThisAdjustment &ThisAdjustment,
+                                         raw_ostream &Out) {
+  //  <special-name> ::= T <call-offset> <base encoding>
+  //                      # base is the nominal target function of thunk
+  CXXNameMangler Mangler(*this, Out, DD, Type);
+  Mangler.getStream() << "_ZT";
+
+  // Mangle the 'this' pointer adjustment.
+  Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, 
+                           ThisAdjustment.VCallOffsetOffset);
+
+  Mangler.mangleFunctionEncoding(DD);
+}
+
+/// mangleGuardVariable - Returns the mangled name for a guard variable
+/// for the passed in VarDecl.
+void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D,
+                                                      raw_ostream &Out) {
+  //  <special-name> ::= GV <object name>       # Guard variable for one-time
+  //                                            # initialization
+  CXXNameMangler Mangler(*this, Out);
+  Mangler.getStream() << "_ZGV";
+  Mangler.mangleName(D);
+}
+
+void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D,
+                                                    raw_ostream &Out) {
+  // We match the GCC mangling here.
+  //  <special-name> ::= GR <object name>
+  CXXNameMangler Mangler(*this, Out);
+  Mangler.getStream() << "_ZGR";
+  Mangler.mangleName(D);
+}
+
+void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD,
+                                           raw_ostream &Out) {
+  // <special-name> ::= TV <type>  # virtual table
+  CXXNameMangler Mangler(*this, Out);
+  Mangler.getStream() << "_ZTV";
+  Mangler.mangleNameOrStandardSubstitution(RD);
+}
+
+void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD,
+                                        raw_ostream &Out) {
+  // <special-name> ::= TT <type>  # VTT structure
+  CXXNameMangler Mangler(*this, Out);
+  Mangler.getStream() << "_ZTT";
+  Mangler.mangleNameOrStandardSubstitution(RD);
+}
+
+void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD,
+                                               int64_t Offset,
+                                               const CXXRecordDecl *Type,
+                                               raw_ostream &Out) {
+  // <special-name> ::= TC <type> <offset number> _ <base type>
+  CXXNameMangler Mangler(*this, Out);
+  Mangler.getStream() << "_ZTC";
+  Mangler.mangleNameOrStandardSubstitution(RD);
+  Mangler.getStream() << Offset;
+  Mangler.getStream() << '_';
+  Mangler.mangleNameOrStandardSubstitution(Type);
+}
+
+void ItaniumMangleContext::mangleCXXRTTI(QualType Ty,
+                                         raw_ostream &Out) {
+  // <special-name> ::= TI <type>  # typeinfo structure
+  assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
+  CXXNameMangler Mangler(*this, Out);
+  Mangler.getStream() << "_ZTI";
+  Mangler.mangleType(Ty);
+}
+
+void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty,
+                                             raw_ostream &Out) {
+  // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
+  CXXNameMangler Mangler(*this, Out);
+  Mangler.getStream() << "_ZTS";
+  Mangler.mangleType(Ty);
+}
+
+MangleContext *clang::createItaniumMangleContext(ASTContext &Context,
+                                                 DiagnosticsEngine &Diags) {
+  return new ItaniumMangleContext(Context, Diags);
+}