blob: a3e406b2452e204e627c12d01578386809a6bf1e [file] [log] [blame]
//===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Decl subclasses.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/Expr.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/IdentifierTable.h"
#include <vector>
using namespace clang;
void Attr::Destroy(ASTContext &C) {
if (Next) {
Next->Destroy(C);
Next = 0;
}
this->~Attr();
C.Deallocate((void*)this);
}
//===----------------------------------------------------------------------===//
// Decl Allocation/Deallocation Method Implementations
//===----------------------------------------------------------------------===//
TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
return new (C) TranslationUnitDecl();
}
NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id) {
return new (C) NamespaceDecl(DC, L, Id);
}
void NamespaceDecl::Destroy(ASTContext& C) {
// NamespaceDecl uses "NextDeclarator" to chain namespace declarations
// together. They are all top-level Decls.
this->~NamespaceDecl();
C.Deallocate((void *)this);
}
ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id, QualType T) {
return new (C) ImplicitParamDecl(ImplicitParam, DC, L, Id, T);
}
const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
switch (SC) {
case VarDecl::None: break;
case VarDecl::Auto: return "auto"; break;
case VarDecl::Extern: return "extern"; break;
case VarDecl::PrivateExtern: return "__private_extern__"; break;
case VarDecl::Register: return "register"; break;
case VarDecl::Static: return "static"; break;
}
assert(0 && "Invalid storage class");
return 0;
}
ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
QualType T, StorageClass S,
Expr *DefArg) {
return new (C) ParmVarDecl(ParmVar, DC, L, Id, T, S, DefArg);
}
QualType ParmVarDecl::getOriginalType() const {
if (const OriginalParmVarDecl *PVD =
dyn_cast<OriginalParmVarDecl>(this))
return PVD->OriginalType;
return getType();
}
void VarDecl::setInit(ASTContext &C, Expr *I) {
if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
Eval->~EvaluatedStmt();
C.Deallocate(Eval);
}
Init = I;
}
bool VarDecl::isExternC(ASTContext &Context) const {
if (!Context.getLangOptions().CPlusPlus)
return (getDeclContext()->isTranslationUnit() &&
getStorageClass() != Static) ||
(getDeclContext()->isFunctionOrMethod() && hasExternalStorage());
for (const DeclContext *DC = getDeclContext(); !DC->isTranslationUnit();
DC = DC->getParent()) {
if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC)) {
if (Linkage->getLanguage() == LinkageSpecDecl::lang_c)
return getStorageClass() != Static;
break;
}
if (DC->isFunctionOrMethod())
return false;
}
return false;
}
OriginalParmVarDecl *OriginalParmVarDecl::Create(
ASTContext &C, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
QualType T, QualType OT, StorageClass S,
Expr *DefArg) {
return new (C) OriginalParmVarDecl(DC, L, Id, T, OT, S, DefArg);
}
FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
DeclarationName N, QualType T,
StorageClass S, bool isInline,
bool hasWrittenPrototype,
SourceLocation TypeSpecStartLoc) {
FunctionDecl *New
= new (C) FunctionDecl(Function, DC, L, N, T, S, isInline,
TypeSpecStartLoc);
New->HasWrittenPrototype = hasWrittenPrototype;
return New;
}
BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
return new (C) BlockDecl(DC, L);
}
FieldDecl *FieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType T, Expr *BW,
bool Mutable) {
return new (C) FieldDecl(Decl::Field, DC, L, Id, T, BW, Mutable);
}
bool FieldDecl::isAnonymousStructOrUnion() const {
if (!isImplicit() || getDeclName())
return false;
if (const RecordType *Record = getType()->getAsRecordType())
return Record->getDecl()->isAnonymousStructOrUnion();
return false;
}
EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
SourceLocation L,
IdentifierInfo *Id, QualType T,
Expr *E, const llvm::APSInt &V) {
return new (C) EnumConstantDecl(CD, L, Id, T, E, V);
}
void EnumConstantDecl::Destroy(ASTContext& C) {
if (Init) Init->Destroy(C);
Decl::Destroy(C);
}
TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
IdentifierInfo *Id, QualType T) {
return new (C) TypedefDecl(DC, L, Id, T);
}
EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id,
EnumDecl *PrevDecl) {
EnumDecl *Enum = new (C) EnumDecl(DC, L, Id);
C.getTypeDeclType(Enum, PrevDecl);
return Enum;
}
void EnumDecl::Destroy(ASTContext& C) {
Decl::Destroy(C);
}
void EnumDecl::completeDefinition(ASTContext &C, QualType NewType) {
assert(!isDefinition() && "Cannot redefine enums!");
IntegerType = NewType;
TagDecl::completeDefinition();
}
FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
StringLiteral *Str) {
return new (C) FileScopeAsmDecl(DC, L, Str);
}
//===----------------------------------------------------------------------===//
// NamedDecl Implementation
//===----------------------------------------------------------------------===//
std::string NamedDecl::getQualifiedNameAsString() const {
std::vector<std::string> Names;
std::string QualName;
const DeclContext *Ctx = getDeclContext();
if (Ctx->isFunctionOrMethod())
return getNameAsString();
while (Ctx) {
if (Ctx->isFunctionOrMethod())
// FIXME: That probably will happen, when D was member of local
// scope class/struct/union. How do we handle this case?
break;
if (const ClassTemplateSpecializationDecl *Spec
= dyn_cast<ClassTemplateSpecializationDecl>(Ctx)) {
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
PrintingPolicy Policy;
Policy.CPlusPlus = true;
std::string TemplateArgsStr
= TemplateSpecializationType::PrintTemplateArgumentList(
TemplateArgs.getFlatArgumentList(),
TemplateArgs.flat_size(),
Policy);
Names.push_back(Spec->getIdentifier()->getName() + TemplateArgsStr);
} else if (const NamedDecl *ND = dyn_cast<NamedDecl>(Ctx))
Names.push_back(ND->getNameAsString());
else
break;
Ctx = Ctx->getParent();
}
std::vector<std::string>::reverse_iterator
I = Names.rbegin(),
End = Names.rend();
for (; I!=End; ++I)
QualName += *I + "::";
QualName += getNameAsString();
return QualName;
}
bool NamedDecl::declarationReplaces(NamedDecl *OldD) const {
assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
// UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
// We want to keep it, unless it nominates same namespace.
if (getKind() == Decl::UsingDirective) {
return cast<UsingDirectiveDecl>(this)->getNominatedNamespace() ==
cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace();
}
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
// For function declarations, we keep track of redeclarations.
return FD->getPreviousDeclaration() == OldD;
// For method declarations, we keep track of redeclarations.
if (isa<ObjCMethodDecl>(this))
return false;
// For non-function declarations, if the declarations are of the
// same kind then this must be a redeclaration, or semantic analysis
// would not have given us the new declaration.
return this->getKind() == OldD->getKind();
}
bool NamedDecl::hasLinkage() const {
if (const VarDecl *VD = dyn_cast<VarDecl>(this))
return VD->hasExternalStorage() || VD->isFileVarDecl();
if (isa<FunctionDecl>(this) && !isa<CXXMethodDecl>(this))
return true;
return false;
}
//===----------------------------------------------------------------------===//
// VarDecl Implementation
//===----------------------------------------------------------------------===//
VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id, QualType T, StorageClass S,
SourceLocation TypeSpecStartLoc) {
return new (C) VarDecl(Var, DC, L, Id, T, S, TypeSpecStartLoc);
}
void VarDecl::Destroy(ASTContext& C) {
Expr *Init = getInit();
if (Init) {
Init->Destroy(C);
if (EvaluatedStmt *Eval = this->Init.dyn_cast<EvaluatedStmt *>()) {
Eval->~EvaluatedStmt();
C.Deallocate(Eval);
}
}
this->~VarDecl();
C.Deallocate((void *)this);
}
VarDecl::~VarDecl() {
}
bool VarDecl::isTentativeDefinition(ASTContext &Context) const {
if (!isFileVarDecl() || Context.getLangOptions().CPlusPlus)
return false;
const VarDecl *Def = 0;
return (!getDefinition(Def) &&
(getStorageClass() == None || getStorageClass() == Static));
}
const Expr *VarDecl::getDefinition(const VarDecl *&Def) const {
Def = this;
while (Def && !Def->getInit())
Def = Def->getPreviousDeclaration();
return Def? Def->getInit() : 0;
}
//===----------------------------------------------------------------------===//
// FunctionDecl Implementation
//===----------------------------------------------------------------------===//
void FunctionDecl::Destroy(ASTContext& C) {
if (Body && Body.isOffset())
Body.get(C.getExternalSource())->Destroy(C);
for (param_iterator I=param_begin(), E=param_end(); I!=E; ++I)
(*I)->Destroy(C);
C.Deallocate(ParamInfo);
Decl::Destroy(C);
}
Stmt *FunctionDecl::getBody(ASTContext &Context,
const FunctionDecl *&Definition) const {
for (const FunctionDecl *FD = this; FD != 0; FD = FD->PreviousDeclaration) {
if (FD->Body) {
Definition = FD;
return FD->Body.get(Context.getExternalSource());
}
}
return 0;
}
Stmt *FunctionDecl::getBodyIfAvailable() const {
for (const FunctionDecl *FD = this; FD != 0; FD = FD->PreviousDeclaration) {
if (FD->Body && !FD->Body.isOffset()) {
return FD->Body.get(0);
}
}
return 0;
}
bool FunctionDecl::isMain() const {
return getDeclContext()->getLookupContext()->isTranslationUnit() &&
getIdentifier() && getIdentifier()->isStr("main");
}
bool FunctionDecl::isExternC(ASTContext &Context) const {
// In C, any non-static, non-overloadable function has external
// linkage.
if (!Context.getLangOptions().CPlusPlus)
return getStorageClass() != Static && !getAttr<OverloadableAttr>();
for (const DeclContext *DC = getDeclContext(); !DC->isTranslationUnit();
DC = DC->getParent()) {
if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC)) {
if (Linkage->getLanguage() == LinkageSpecDecl::lang_c)
return getStorageClass() != Static && !getAttr<OverloadableAttr>();
break;
}
}
return false;
}
bool FunctionDecl::isGlobal() const {
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
return Method->isStatic();
if (getStorageClass() == Static)
return false;
for (const DeclContext *DC = getDeclContext();
DC->isNamespace();
DC = DC->getParent()) {
if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
if (!Namespace->getDeclName())
return false;
break;
}
}
return true;
}
/// \brief Returns a value indicating whether this function
/// corresponds to a builtin function.
///
/// The function corresponds to a built-in function if it is
/// declared at translation scope or within an extern "C" block and
/// its name matches with the name of a builtin. The returned value
/// will be 0 for functions that do not correspond to a builtin, a
/// value of type \c Builtin::ID if in the target-independent range
/// \c [1,Builtin::First), or a target-specific builtin value.
unsigned FunctionDecl::getBuiltinID(ASTContext &Context) const {
if (!getIdentifier() || !getIdentifier()->getBuiltinID())
return 0;
unsigned BuiltinID = getIdentifier()->getBuiltinID();
if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
return BuiltinID;
// This function has the name of a known C library
// function. Determine whether it actually refers to the C library
// function or whether it just has the same name.
// If this is a static function, it's not a builtin.
if (getStorageClass() == Static)
return 0;
// If this function is at translation-unit scope and we're not in
// C++, it refers to the C library function.
if (!Context.getLangOptions().CPlusPlus &&
getDeclContext()->isTranslationUnit())
return BuiltinID;
// If the function is in an extern "C" linkage specification and is
// not marked "overloadable", it's the real function.
if (isa<LinkageSpecDecl>(getDeclContext()) &&
cast<LinkageSpecDecl>(getDeclContext())->getLanguage()
== LinkageSpecDecl::lang_c &&
!getAttr<OverloadableAttr>())
return BuiltinID;
// Not a builtin
return 0;
}
/// getNumParams - Return the number of parameters this function must have
/// based on its FunctionType. This is the length of the PararmInfo array
/// after it has been created.
unsigned FunctionDecl::getNumParams() const {
const FunctionType *FT = getType()->getAsFunctionType();
if (isa<FunctionNoProtoType>(FT))
return 0;
return cast<FunctionProtoType>(FT)->getNumArgs();
}
void FunctionDecl::setParams(ASTContext& C, ParmVarDecl **NewParamInfo,
unsigned NumParams) {
assert(ParamInfo == 0 && "Already has param info!");
assert(NumParams == getNumParams() && "Parameter count mismatch!");
// Zero params -> null pointer.
if (NumParams) {
void *Mem = C.Allocate(sizeof(ParmVarDecl*)*NumParams);
ParamInfo = new (Mem) ParmVarDecl*[NumParams];
memcpy(ParamInfo, NewParamInfo, sizeof(ParmVarDecl*)*NumParams);
}
}
/// getMinRequiredArguments - Returns the minimum number of arguments
/// needed to call this function. This may be fewer than the number of
/// function parameters, if some of the parameters have default
/// arguments (in C++).
unsigned FunctionDecl::getMinRequiredArguments() const {
unsigned NumRequiredArgs = getNumParams();
while (NumRequiredArgs > 0
&& getParamDecl(NumRequiredArgs-1)->hasDefaultArg())
--NumRequiredArgs;
return NumRequiredArgs;
}
bool FunctionDecl::hasActiveGNUInlineAttribute() const {
if (!isInline() || !hasAttr<GNUInlineAttr>())
return false;
for (const FunctionDecl *FD = getPreviousDeclaration(); FD;
FD = FD->getPreviousDeclaration()) {
if (FD->isInline() && !FD->hasAttr<GNUInlineAttr>())
return false;
}
return true;
}
bool FunctionDecl::isExternGNUInline() const {
if (!hasActiveGNUInlineAttribute())
return false;
for (const FunctionDecl *FD = this; FD; FD = FD->getPreviousDeclaration())
if (FD->getStorageClass() == Extern && FD->hasAttr<GNUInlineAttr>())
return true;
return false;
}
/// getOverloadedOperator - Which C++ overloaded operator this
/// function represents, if any.
OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
return getDeclName().getCXXOverloadedOperator();
else
return OO_None;
}
//===----------------------------------------------------------------------===//
// TagDecl Implementation
//===----------------------------------------------------------------------===//
void TagDecl::startDefinition() {
TagType *TagT = const_cast<TagType *>(TypeForDecl->getAsTagType());
TagT->decl.setPointer(this);
TagT->getAsTagType()->decl.setInt(1);
}
void TagDecl::completeDefinition() {
assert((!TypeForDecl ||
TypeForDecl->getAsTagType()->decl.getPointer() == this) &&
"Attempt to redefine a tag definition?");
IsDefinition = true;
TagType *TagT = const_cast<TagType *>(TypeForDecl->getAsTagType());
TagT->decl.setPointer(this);
TagT->decl.setInt(0);
}
TagDecl* TagDecl::getDefinition(ASTContext& C) const {
QualType T = C.getTypeDeclType(const_cast<TagDecl*>(this));
TagDecl* D = cast<TagDecl>(T->getAsTagType()->getDecl());
return D->isDefinition() ? D : 0;
}
//===----------------------------------------------------------------------===//
// RecordDecl Implementation
//===----------------------------------------------------------------------===//
RecordDecl::RecordDecl(Kind DK, TagKind TK, DeclContext *DC, SourceLocation L,
IdentifierInfo *Id)
: TagDecl(DK, TK, DC, L, Id) {
HasFlexibleArrayMember = false;
AnonymousStructOrUnion = false;
assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
}
RecordDecl *RecordDecl::Create(ASTContext &C, TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
RecordDecl* PrevDecl) {
RecordDecl* R = new (C) RecordDecl(Record, TK, DC, L, Id);
C.getTypeDeclType(R, PrevDecl);
return R;
}
RecordDecl::~RecordDecl() {
}
void RecordDecl::Destroy(ASTContext& C) {
TagDecl::Destroy(C);
}
bool RecordDecl::isInjectedClassName() const {
return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
}
/// completeDefinition - Notes that the definition of this type is now
/// complete.
void RecordDecl::completeDefinition(ASTContext& C) {
assert(!isDefinition() && "Cannot redefine record!");
TagDecl::completeDefinition();
}
//===----------------------------------------------------------------------===//
// BlockDecl Implementation
//===----------------------------------------------------------------------===//
BlockDecl::~BlockDecl() {
}
void BlockDecl::Destroy(ASTContext& C) {
if (Body)
Body->Destroy(C);
for (param_iterator I=param_begin(), E=param_end(); I!=E; ++I)
(*I)->Destroy(C);
C.Deallocate(ParamInfo);
Decl::Destroy(C);
}
void BlockDecl::setParams(ASTContext& C, ParmVarDecl **NewParamInfo,
unsigned NParms) {
assert(ParamInfo == 0 && "Already has param info!");
// Zero params -> null pointer.
if (NParms) {
NumParams = NParms;
void *Mem = C.Allocate(sizeof(ParmVarDecl*)*NumParams);
ParamInfo = new (Mem) ParmVarDecl*[NumParams];
memcpy(ParamInfo, NewParamInfo, sizeof(ParmVarDecl*)*NumParams);
}
}
unsigned BlockDecl::getNumParams() const {
return NumParams;
}