blob: 7eedd0b07f8537c3cb1ff83b34d91dcdc845ae63 [file] [log] [blame]
//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for declarations.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ExprCXX.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/SourceManager.h"
// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/HeaderSearch.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <functional>
using namespace clang;
/// getDeclName - Return a pretty name for the specified decl if possible, or
/// an empty string if not. This is used for pretty crash reporting.
std::string Sema::getDeclName(DeclTy *d) {
Decl *D = static_cast<Decl *>(d);
if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
return DN->getQualifiedNameAsString();
return "";
}
/// \brief If the identifier refers to a type name within this scope,
/// return the declaration of that type.
///
/// This routine performs ordinary name lookup of the identifier II
/// within the given scope, with optional C++ scope specifier SS, to
/// determine whether the name refers to a type. If so, returns an
/// opaque pointer (actually a QualType) corresponding to that
/// type. Otherwise, returns NULL.
///
/// If name lookup results in an ambiguity, this routine will complain
/// and then return NULL.
Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
Scope *S, const CXXScopeSpec *SS) {
NamedDecl *IIDecl = 0;
LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
false, false);
switch (Result.getKind()) {
case LookupResult::NotFound:
case LookupResult::FoundOverloaded:
return 0;
case LookupResult::AmbiguousBaseSubobjectTypes:
case LookupResult::AmbiguousBaseSubobjects:
case LookupResult::AmbiguousReference:
DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
return 0;
case LookupResult::Found:
IIDecl = Result.getAsDecl();
break;
}
if (IIDecl) {
if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
// Check whether we can use this type
(void)DiagnoseUseOfDecl(IIDecl, NameLoc);
return Context.getTypeDeclType(TD).getAsOpaquePtr();
}
if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
// Check whether we can use this interface.
(void)DiagnoseUseOfDecl(IIDecl, NameLoc);
return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
}
// Otherwise, could be a variable, function etc.
}
return 0;
}
DeclContext *Sema::getContainingDC(DeclContext *DC) {
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
// A C++ out-of-line method will return to the file declaration context.
if (MD->isOutOfLineDefinition())
return MD->getLexicalDeclContext();
// A C++ inline method is parsed *after* the topmost class it was declared
// in is fully parsed (it's "complete").
// The parsing of a C++ inline method happens at the declaration context of
// the topmost (non-nested) class it is lexically declared in.
assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
DC = MD->getParent();
while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
DC = RD;
// Return the declaration context of the topmost class the inline method is
// declared in.
return DC;
}
if (isa<ObjCMethodDecl>(DC))
return Context.getTranslationUnitDecl();
return DC->getLexicalParent();
}
void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
assert(getContainingDC(DC) == CurContext &&
"The next DeclContext should be lexically contained in the current one.");
CurContext = DC;
S->setEntity(DC);
}
void Sema::PopDeclContext() {
assert(CurContext && "DeclContext imbalance!");
CurContext = getContainingDC(CurContext);
}
/// \brief Determine whether we allow overloading of the function
/// PrevDecl with another declaration.
///
/// This routine determines whether overloading is possible, not
/// whether some new function is actually an overload. It will return
/// true in C++ (where we can always provide overloads) or, as an
/// extension, in C when the previous function is already an
/// overloaded function declaration or has the "overloadable"
/// attribute.
static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
if (Context.getLangOptions().CPlusPlus)
return true;
if (isa<OverloadedFunctionDecl>(PrevDecl))
return true;
return PrevDecl->getAttr<OverloadableAttr>() != 0;
}
/// Add this decl to the scope shadowed decl chains.
void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
// Move up the scope chain until we find the nearest enclosing
// non-transparent context. The declaration will be introduced into this
// scope.
while (S->getEntity() &&
((DeclContext *)S->getEntity())->isTransparentContext())
S = S->getParent();
S->AddDecl(D);
// Add scoped declarations into their context, so that they can be
// found later. Declarations without a context won't be inserted
// into any context.
CurContext->addDecl(D);
// C++ [basic.scope]p4:
// -- exactly one declaration shall declare a class name or
// enumeration name that is not a typedef name and the other
// declarations shall all refer to the same object or
// enumerator, or all refer to functions and function templates;
// in this case the class name or enumeration name is hidden.
if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
// We are pushing the name of a tag (enum or class).
if (CurContext->getLookupContext()
== TD->getDeclContext()->getLookupContext()) {
// We're pushing the tag into the current context, which might
// require some reshuffling in the identifier resolver.
IdentifierResolver::iterator
I = IdResolver.begin(TD->getDeclName()),
IEnd = IdResolver.end();
if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
NamedDecl *PrevDecl = *I;
for (; I != IEnd && isDeclInScope(*I, CurContext, S);
PrevDecl = *I, ++I) {
if (TD->declarationReplaces(*I)) {
// This is a redeclaration. Remove it from the chain and
// break out, so that we'll add in the shadowed
// declaration.
S->RemoveDecl(*I);
if (PrevDecl == *I) {
IdResolver.RemoveDecl(*I);
IdResolver.AddDecl(TD);
return;
} else {
IdResolver.RemoveDecl(*I);
break;
}
}
}
// There is already a declaration with the same name in the same
// scope, which is not a tag declaration. It must be found
// before we find the new declaration, so insert the new
// declaration at the end of the chain.
IdResolver.AddShadowedDecl(TD, PrevDecl);
return;
}
}
} else if (isa<FunctionDecl>(D) &&
AllowOverloadingOfFunction(D, Context)) {
// We are pushing the name of a function, which might be an
// overloaded name.
FunctionDecl *FD = cast<FunctionDecl>(D);
IdentifierResolver::iterator Redecl
= std::find_if(IdResolver.begin(FD->getDeclName()),
IdResolver.end(),
std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
FD));
if (Redecl != IdResolver.end() && S->isDeclScope(*Redecl)) {
// There is already a declaration of a function on our
// IdResolver chain. Replace it with this declaration.
S->RemoveDecl(*Redecl);
IdResolver.RemoveDecl(*Redecl);
}
}
IdResolver.AddDecl(D);
}
void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
if (S->decl_empty()) return;
assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
"Scope shouldn't contain decls!");
for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
I != E; ++I) {
Decl *TmpD = static_cast<Decl*>(*I);
assert(TmpD && "This decl didn't get pushed??");
assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
NamedDecl *D = cast<NamedDecl>(TmpD);
if (!D->getDeclName()) continue;
// Remove this name from our lexical scope.
IdResolver.RemoveDecl(D);
}
}
/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
/// return 0 if one not found.
ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
// The third "scope" argument is 0 since we aren't enabling lazy built-in
// creation from this context.
NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
}
/// getNonFieldDeclScope - Retrieves the innermost scope, starting
/// from S, where a non-field would be declared. This routine copes
/// with the difference between C and C++ scoping rules in structs and
/// unions. For example, the following code is well-formed in C but
/// ill-formed in C++:
/// @code
/// struct S6 {
/// enum { BAR } e;
/// };
///
/// void test_S6() {
/// struct S6 a;
/// a.e = BAR;
/// }
/// @endcode
/// For the declaration of BAR, this routine will return a different
/// scope. The scope S will be the scope of the unnamed enumeration
/// within S6. In C++, this routine will return the scope associated
/// with S6, because the enumeration's scope is a transparent
/// context but structures can contain non-field names. In C, this
/// routine will return the translation unit scope, since the
/// enumeration's scope is a transparent context and structures cannot
/// contain non-field names.
Scope *Sema::getNonFieldDeclScope(Scope *S) {
while (((S->getFlags() & Scope::DeclScope) == 0) ||
(S->getEntity() &&
((DeclContext *)S->getEntity())->isTransparentContext()) ||
(S->isClassScope() && !getLangOptions().CPlusPlus))
S = S->getParent();
return S;
}
void Sema::InitBuiltinVaListType() {
if (!Context.getBuiltinVaListType().isNull())
return;
IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
}
/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
/// file scope. lazily create a decl for it. ForRedeclaration is true
/// if we're creating this built-in in anticipation of redeclaring the
/// built-in.
NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
Scope *S, bool ForRedeclaration,
SourceLocation Loc) {
Builtin::ID BID = (Builtin::ID)bid;
if (Context.BuiltinInfo.hasVAListUse(BID))
InitBuiltinVaListType();
Builtin::Context::GetBuiltinTypeError Error;
QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
switch (Error) {
case Builtin::Context::GE_None:
// Okay
break;
case Builtin::Context::GE_Missing_FILE:
if (ForRedeclaration)
Diag(Loc, diag::err_implicit_decl_requires_stdio)
<< Context.BuiltinInfo.GetName(BID);
return 0;
}
if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
Diag(Loc, diag::ext_implicit_lib_function_decl)
<< Context.BuiltinInfo.GetName(BID)
<< R;
if (Context.BuiltinInfo.getHeaderName(BID) &&
Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
!= diag::MAP_IGNORE)
Diag(Loc, diag::note_please_include_header)
<< Context.BuiltinInfo.getHeaderName(BID)
<< Context.BuiltinInfo.GetName(BID);
}
FunctionDecl *New = FunctionDecl::Create(Context,
Context.getTranslationUnitDecl(),
Loc, II, R,
FunctionDecl::Extern, false,
/*hasPrototype=*/true);
New->setImplicit();
// Create Decl objects for each parameter, adding them to the
// FunctionDecl.
if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
llvm::SmallVector<ParmVarDecl*, 16> Params;
for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
FT->getArgType(i), VarDecl::None, 0));
New->setParams(Context, &Params[0], Params.size());
}
AddKnownFunctionAttributes(New);
// TUScope is the translation-unit scope to insert this function into.
// FIXME: This is hideous. We need to teach PushOnScopeChains to
// relate Scopes to DeclContexts, and probably eliminate CurContext
// entirely, but we're not there yet.
DeclContext *SavedContext = CurContext;
CurContext = Context.getTranslationUnitDecl();
PushOnScopeChains(New, TUScope);
CurContext = SavedContext;
return New;
}
/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
/// everything from the standard library is defined.
NamespaceDecl *Sema::GetStdNamespace() {
if (!StdNamespace) {
IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
DeclContext *Global = Context.getTranslationUnitDecl();
Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
}
return StdNamespace;
}
/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
/// same name and scope as a previous declaration 'Old'. Figure out
/// how to resolve this situation, merging decls or emitting
/// diagnostics as appropriate. Returns true if there was an error,
/// false otherwise.
///
bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
bool objc_types = false;
// Allow multiple definitions for ObjC built-in typedefs.
// FIXME: Verify the underlying types are equivalent!
if (getLangOptions().ObjC1) {
const IdentifierInfo *TypeID = New->getIdentifier();
switch (TypeID->getLength()) {
default: break;
case 2:
if (!TypeID->isStr("id"))
break;
Context.setObjCIdType(New);
objc_types = true;
break;
case 5:
if (!TypeID->isStr("Class"))
break;
Context.setObjCClassType(New);
objc_types = true;
return false;
case 3:
if (!TypeID->isStr("SEL"))
break;
Context.setObjCSelType(New);
objc_types = true;
return false;
case 8:
if (!TypeID->isStr("Protocol"))
break;
Context.setObjCProtoType(New->getUnderlyingType());
objc_types = true;
return false;
}
// Fall through - the typedef name was not a builtin type.
}
// Verify the old decl was also a type.
TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
if (!Old) {
Diag(New->getLocation(), diag::err_redefinition_different_kind)
<< New->getDeclName();
if (!objc_types)
Diag(OldD->getLocation(), diag::note_previous_definition);
return true;
}
// Determine the "old" type we'll use for checking and diagnostics.
QualType OldType;
if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
OldType = OldTypedef->getUnderlyingType();
else
OldType = Context.getTypeDeclType(Old);
// If the typedef types are not identical, reject them in all languages and
// with any extensions enabled.
if (OldType != New->getUnderlyingType() &&
Context.getCanonicalType(OldType) !=
Context.getCanonicalType(New->getUnderlyingType())) {
Diag(New->getLocation(), diag::err_redefinition_different_typedef)
<< New->getUnderlyingType() << OldType;
if (!objc_types)
Diag(Old->getLocation(), diag::note_previous_definition);
return true;
}
if (objc_types) return false;
if (getLangOptions().Microsoft) return false;
// C++ [dcl.typedef]p2:
// In a given non-class scope, a typedef specifier can be used to
// redefine the name of any type declared in that scope to refer
// to the type to which it already refers.
if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
return false;
// In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
// Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
// *either* declaration is in a system header. The code below implements
// this adhoc compatibility rule. FIXME: The following code will not
// work properly when compiling ".i" files (containing preprocessed output).
if (PP.getDiagnostics().getSuppressSystemWarnings()) {
SourceManager &SrcMgr = Context.getSourceManager();
if (SrcMgr.isInSystemHeader(Old->getLocation()))
return false;
if (SrcMgr.isInSystemHeader(New->getLocation()))
return false;
}
Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
Diag(Old->getLocation(), diag::note_previous_definition);
return true;
}
/// DeclhasAttr - returns true if decl Declaration already has the target
/// attribute.
static bool DeclHasAttr(const Decl *decl, const Attr *target) {
for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
if (attr->getKind() == target->getKind())
return true;
return false;
}
/// MergeAttributes - append attributes from the Old decl to the New one.
static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
Attr *attr = const_cast<Attr*>(Old->getAttrs());
while (attr) {
Attr *tmp = attr;
attr = attr->getNext();
if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
tmp->setInherited(true);
New->addAttr(tmp);
} else {
tmp->setNext(0);
tmp->Destroy(C);
}
}
Old->invalidateAttrs();
}
/// Used in MergeFunctionDecl to keep track of function parameters in
/// C.
struct GNUCompatibleParamWarning {
ParmVarDecl *OldParm;
ParmVarDecl *NewParm;
QualType PromotedType;
};
/// MergeFunctionDecl - We just parsed a function 'New' from
/// declarator D which has the same name and scope as a previous
/// declaration 'Old'. Figure out how to resolve this situation,
/// merging decls or emitting diagnostics as appropriate.
///
/// In C++, New and Old must be declarations that are not
/// overloaded. Use IsOverload to determine whether New and Old are
/// overloaded, and to select the Old declaration that New should be
/// merged with.
///
/// Returns true if there was an error, false otherwise.
bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
assert(!isa<OverloadedFunctionDecl>(OldD) &&
"Cannot merge with an overloaded function declaration");
// Verify the old decl was also a function.
FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
if (!Old) {
Diag(New->getLocation(), diag::err_redefinition_different_kind)
<< New->getDeclName();
Diag(OldD->getLocation(), diag::note_previous_definition);
return true;
}
// Determine whether the previous declaration was a definition,
// implicit declaration, or a declaration.
diag::kind PrevDiag;
if (Old->isThisDeclarationADefinition())
PrevDiag = diag::note_previous_definition;
else if (Old->isImplicit())
PrevDiag = diag::note_previous_implicit_declaration;
else
PrevDiag = diag::note_previous_declaration;
QualType OldQType = Context.getCanonicalType(Old->getType());
QualType NewQType = Context.getCanonicalType(New->getType());
if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
New->getStorageClass() == FunctionDecl::Static &&
Old->getStorageClass() != FunctionDecl::Static) {
Diag(New->getLocation(), diag::err_static_non_static)
<< New;
Diag(Old->getLocation(), PrevDiag);
return true;
}
if (getLangOptions().CPlusPlus) {
// (C++98 13.1p2):
// Certain function declarations cannot be overloaded:
// -- Function declarations that differ only in the return type
// cannot be overloaded.
QualType OldReturnType
= cast<FunctionType>(OldQType.getTypePtr())->getResultType();
QualType NewReturnType
= cast<FunctionType>(NewQType.getTypePtr())->getResultType();
if (OldReturnType != NewReturnType) {
Diag(New->getLocation(), diag::err_ovl_diff_return_type);
Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
return true;
}
const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
if (OldMethod && NewMethod &&
OldMethod->getLexicalDeclContext() ==
NewMethod->getLexicalDeclContext()) {
// -- Member function declarations with the same name and the
// same parameter types cannot be overloaded if any of them
// is a static member function declaration.
if (OldMethod->isStatic() || NewMethod->isStatic()) {
Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
return true;
}
// C++ [class.mem]p1:
// [...] A member shall not be declared twice in the
// member-specification, except that a nested class or member
// class template can be declared and then later defined.
unsigned NewDiag;
if (isa<CXXConstructorDecl>(OldMethod))
NewDiag = diag::err_constructor_redeclared;
else if (isa<CXXDestructorDecl>(NewMethod))
NewDiag = diag::err_destructor_redeclared;
else if (isa<CXXConversionDecl>(NewMethod))
NewDiag = diag::err_conv_function_redeclared;
else
NewDiag = diag::err_member_redeclared;
Diag(New->getLocation(), NewDiag);
Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
}
// (C++98 8.3.5p3):
// All declarations for a function shall agree exactly in both the
// return type and the parameter-type-list.
if (OldQType == NewQType)
return MergeCompatibleFunctionDecls(New, Old);
// Fall through for conflicting redeclarations and redefinitions.
}
// C: Function types need to be compatible, not identical. This handles
// duplicate function decls like "void f(int); void f(enum X);" properly.
if (!getLangOptions().CPlusPlus &&
Context.typesAreCompatible(OldQType, NewQType)) {
const FunctionType *OldFuncType = OldQType->getAsFunctionType();
const FunctionType *NewFuncType = NewQType->getAsFunctionType();
const FunctionProtoType *OldProto = 0;
if (isa<FunctionNoProtoType>(NewFuncType) &&
(OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
// The old declaration provided a function prototype, but the
// new declaration does not. Merge in the prototype.
llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
OldProto->arg_type_end());
NewQType = Context.getFunctionType(NewFuncType->getResultType(),
&ParamTypes[0], ParamTypes.size(),
OldProto->isVariadic(),
OldProto->getTypeQuals());
New->setType(NewQType);
New->setInheritedPrototype();
// Synthesize a parameter for each argument type.
llvm::SmallVector<ParmVarDecl*, 16> Params;
for (FunctionProtoType::arg_type_iterator
ParamType = OldProto->arg_type_begin(),
ParamEnd = OldProto->arg_type_end();
ParamType != ParamEnd; ++ParamType) {
ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
SourceLocation(), 0,
*ParamType, VarDecl::None,
0);
Param->setImplicit();
Params.push_back(Param);
}
New->setParams(Context, &Params[0], Params.size());
}
return MergeCompatibleFunctionDecls(New, Old);
}
// GNU C permits a K&R definition to follow a prototype declaration
// if the declared types of the parameters in the K&R definition
// match the types in the prototype declaration, even when the
// promoted types of the parameters from the K&R definition differ
// from the types in the prototype. GCC then keeps the types from
// the prototype.
if (!getLangOptions().CPlusPlus &&
!getLangOptions().NoExtensions &&
Old->hasPrototype() && !New->hasPrototype() &&
New->getType()->getAsFunctionProtoType() &&
Old->getNumParams() == New->getNumParams()) {
llvm::SmallVector<QualType, 16> ArgTypes;
llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
const FunctionProtoType *OldProto
= Old->getType()->getAsFunctionProtoType();
const FunctionProtoType *NewProto
= New->getType()->getAsFunctionProtoType();
// Determine whether this is the GNU C extension.
bool GNUCompatible =
Context.typesAreCompatible(OldProto->getResultType(),
NewProto->getResultType()) &&
(OldProto->isVariadic() == NewProto->isVariadic());
for (unsigned Idx = 0, End = Old->getNumParams();
GNUCompatible && Idx != End; ++Idx) {
ParmVarDecl *OldParm = Old->getParamDecl(Idx);
ParmVarDecl *NewParm = New->getParamDecl(Idx);
if (Context.typesAreCompatible(OldParm->getType(),
NewProto->getArgType(Idx))) {
ArgTypes.push_back(NewParm->getType());
} else if (Context.typesAreCompatible(OldParm->getType(),
NewParm->getType())) {
GNUCompatibleParamWarning Warn
= { OldParm, NewParm, NewProto->getArgType(Idx) };
Warnings.push_back(Warn);
ArgTypes.push_back(NewParm->getType());
} else
GNUCompatible = false;
}
if (GNUCompatible) {
for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
Diag(Warnings[Warn].NewParm->getLocation(),
diag::ext_param_promoted_not_compatible_with_prototype)
<< Warnings[Warn].PromotedType
<< Warnings[Warn].OldParm->getType();
Diag(Warnings[Warn].OldParm->getLocation(),
diag::note_previous_declaration);
}
New->setType(Context.getFunctionType(NewProto->getResultType(),
&ArgTypes[0], ArgTypes.size(),
NewProto->isVariadic(),
NewProto->getTypeQuals()));
return MergeCompatibleFunctionDecls(New, Old);
}
// Fall through to diagnose conflicting types.
}
// A function that has already been declared has been redeclared or defined
// with a different type- show appropriate diagnostic
if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
// The user has declared a builtin function with an incompatible
// signature.
if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
// The function the user is redeclaring is a library-defined
// function like 'malloc' or 'printf'. Warn about the
// redeclaration, then ignore it.
Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
<< Old << Old->getType();
return true;
}
PrevDiag = diag::note_previous_builtin_declaration;
}
Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
return true;
}
/// \brief Completes the merge of two function declarations that are
/// known to be compatible.
///
/// This routine handles the merging of attributes and other
/// properties of function declarations form the old declaration to
/// the new declaration, once we know that New is in fact a
/// redeclaration of Old.
///
/// \returns false
bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
// Merge the attributes
MergeAttributes(New, Old, Context);
// Merge the storage class.
New->setStorageClass(Old->getStorageClass());
// FIXME: need to implement inline semantics
// Merge "pure" flag.
if (Old->isPure())
New->setPure();
// Merge the "deleted" flag.
if (Old->isDeleted())
New->setDeleted();
if (getLangOptions().CPlusPlus)
return MergeCXXFunctionDecl(New, Old);
return false;
}
/// MergeVarDecl - We just parsed a variable 'New' which has the same name
/// and scope as a previous declaration 'Old'. Figure out how to resolve this
/// situation, merging decls or emitting diagnostics as appropriate.
///
/// Tentative definition rules (C99 6.9.2p2) are checked by
/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
/// definitions here, since the initializer hasn't been attached.
///
bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
// Verify the old decl was also a variable.
VarDecl *Old = dyn_cast<VarDecl>(OldD);
if (!Old) {
Diag(New->getLocation(), diag::err_redefinition_different_kind)
<< New->getDeclName();
Diag(OldD->getLocation(), diag::note_previous_definition);
return true;
}
MergeAttributes(New, Old, Context);
// Merge the types
QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
if (MergedT.isNull()) {
Diag(New->getLocation(), diag::err_redefinition_different_type)
<< New->getDeclName();
Diag(Old->getLocation(), diag::note_previous_definition);
return true;
}
New->setType(MergedT);
// C99 6.2.2p4: Check if we have a static decl followed by a non-static.
if (New->getStorageClass() == VarDecl::Static &&
(Old->getStorageClass() == VarDecl::None ||
Old->getStorageClass() == VarDecl::Extern)) {
Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
Diag(Old->getLocation(), diag::note_previous_definition);
return true;
}
// C99 6.2.2p4: Check if we have a non-static decl followed by a static.
if (New->getStorageClass() != VarDecl::Static &&
Old->getStorageClass() == VarDecl::Static) {
Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
Diag(Old->getLocation(), diag::note_previous_definition);
return true;
}
// Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl() &&
// Don't complain about out-of-line definitions of static members.
!(Old->getLexicalDeclContext()->isRecord() &&
!New->getLexicalDeclContext()->isRecord())) {
Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
Diag(Old->getLocation(), diag::note_previous_definition);
return true;
}
// Keep a chain of previous declarations.
New->setPreviousDeclaration(Old);
return false;
}
/// CheckParmsForFunctionDef - Check that the parameters of the given
/// function are appropriate for the definition of a function. This
/// takes care of any checks that cannot be performed on the
/// declaration itself, e.g., that the types of each of the function
/// parameters are complete.
bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
bool HasInvalidParm = false;
for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
ParmVarDecl *Param = FD->getParamDecl(p);
// C99 6.7.5.3p4: the parameters in a parameter type list in a
// function declarator that is part of a function definition of
// that function shall not have incomplete type.
if (!Param->isInvalidDecl() &&
RequireCompleteType(Param->getLocation(), Param->getType(),
diag::err_typecheck_decl_incomplete_type)) {
Param->setInvalidDecl();
HasInvalidParm = true;
}
// C99 6.9.1p5: If the declarator includes a parameter type list, the
// declaration of each parameter shall include an identifier.
if (Param->getIdentifier() == 0 &&
!Param->isImplicit() &&
!getLangOptions().CPlusPlus)
Diag(Param->getLocation(), diag::err_parameter_name_omitted);
}
return HasInvalidParm;
}
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
/// no declarator (e.g. "struct foo;") is parsed.
Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
TagDecl *Tag = 0;
if (DS.getTypeSpecType() == DeclSpec::TST_class ||
DS.getTypeSpecType() == DeclSpec::TST_struct ||
DS.getTypeSpecType() == DeclSpec::TST_union ||
DS.getTypeSpecType() == DeclSpec::TST_enum)
Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
if (!Record->getDeclName() && Record->isDefinition() &&
DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
if (getLangOptions().CPlusPlus ||
Record->getDeclContext()->isRecord())
return BuildAnonymousStructOrUnion(S, DS, Record);
Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
<< DS.getSourceRange();
}
// Microsoft allows unnamed struct/union fields. Don't complain
// about them.
// FIXME: Should we support Microsoft's extensions in this area?
if (Record->getDeclName() && getLangOptions().Microsoft)
return Tag;
}
if (!DS.isMissingDeclaratorOk() &&
DS.getTypeSpecType() != DeclSpec::TST_error) {
// Warn about typedefs of enums without names, since this is an
// extension in both Microsoft an GNU.
if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
Tag && isa<EnumDecl>(Tag)) {
Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
<< DS.getSourceRange();
return Tag;
}
Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
<< DS.getSourceRange();
return 0;
}
return Tag;
}
/// InjectAnonymousStructOrUnionMembers - Inject the members of the
/// anonymous struct or union AnonRecord into the owning context Owner
/// and scope S. This routine will be invoked just after we realize
/// that an unnamed union or struct is actually an anonymous union or
/// struct, e.g.,
///
/// @code
/// union {
/// int i;
/// float f;
/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
/// // f into the surrounding scope.x
/// @endcode
///
/// This routine is recursive, injecting the names of nested anonymous
/// structs/unions into the owning context and scope as well.
bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
RecordDecl *AnonRecord) {
bool Invalid = false;
for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
FEnd = AnonRecord->field_end();
F != FEnd; ++F) {
if ((*F)->getDeclName()) {
NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
LookupOrdinaryName, true);
if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
// C++ [class.union]p2:
// The names of the members of an anonymous union shall be
// distinct from the names of any other entity in the
// scope in which the anonymous union is declared.
unsigned diagKind
= AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
: diag::err_anonymous_struct_member_redecl;
Diag((*F)->getLocation(), diagKind)
<< (*F)->getDeclName();
Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
Invalid = true;
} else {
// C++ [class.union]p2:
// For the purpose of name lookup, after the anonymous union
// definition, the members of the anonymous union are
// considered to have been defined in the scope in which the
// anonymous union is declared.
Owner->makeDeclVisibleInContext(*F);
S->AddDecl(*F);
IdResolver.AddDecl(*F);
}
} else if (const RecordType *InnerRecordType
= (*F)->getType()->getAsRecordType()) {
RecordDecl *InnerRecord = InnerRecordType->getDecl();
if (InnerRecord->isAnonymousStructOrUnion())
Invalid = Invalid ||
InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
}
}
return Invalid;
}
/// ActOnAnonymousStructOrUnion - Handle the declaration of an
/// anonymous structure or union. Anonymous unions are a C++ feature
/// (C++ [class.union]) and a GNU C extension; anonymous structures
/// are a GNU C and GNU C++ extension.
Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
RecordDecl *Record) {
DeclContext *Owner = Record->getDeclContext();
// Diagnose whether this anonymous struct/union is an extension.
if (Record->isUnion() && !getLangOptions().CPlusPlus)
Diag(Record->getLocation(), diag::ext_anonymous_union);
else if (!Record->isUnion())
Diag(Record->getLocation(), diag::ext_anonymous_struct);
// C and C++ require different kinds of checks for anonymous
// structs/unions.
bool Invalid = false;
if (getLangOptions().CPlusPlus) {
const char* PrevSpec = 0;
// C++ [class.union]p3:
// Anonymous unions declared in a named namespace or in the
// global namespace shall be declared static.
if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
(isa<TranslationUnitDecl>(Owner) ||
(isa<NamespaceDecl>(Owner) &&
cast<NamespaceDecl>(Owner)->getDeclName()))) {
Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
Invalid = true;
// Recover by adding 'static'.
DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
}
// C++ [class.union]p3:
// A storage class is not allowed in a declaration of an
// anonymous union in a class scope.
else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
isa<RecordDecl>(Owner)) {
Diag(DS.getStorageClassSpecLoc(),
diag::err_anonymous_union_with_storage_spec);
Invalid = true;
// Recover by removing the storage specifier.
DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
PrevSpec);
}
// C++ [class.union]p2:
// The member-specification of an anonymous union shall only
// define non-static data members. [Note: nested types and
// functions cannot be declared within an anonymous union. ]
for (DeclContext::decl_iterator Mem = Record->decls_begin(),
MemEnd = Record->decls_end();
Mem != MemEnd; ++Mem) {
if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
// C++ [class.union]p3:
// An anonymous union shall not have private or protected
// members (clause 11).
if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
<< (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
Invalid = true;
}
} else if ((*Mem)->isImplicit()) {
// Any implicit members are fine.
} else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
// This is a type that showed up in an
// elaborated-type-specifier inside the anonymous struct or
// union, but which actually declares a type outside of the
// anonymous struct or union. It's okay.
} else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
if (!MemRecord->isAnonymousStructOrUnion() &&
MemRecord->getDeclName()) {
// This is a nested type declaration.
Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
<< (int)Record->isUnion();
Invalid = true;
}
} else {
// We have something that isn't a non-static data
// member. Complain about it.
unsigned DK = diag::err_anonymous_record_bad_member;
if (isa<TypeDecl>(*Mem))
DK = diag::err_anonymous_record_with_type;
else if (isa<FunctionDecl>(*Mem))
DK = diag::err_anonymous_record_with_function;
else if (isa<VarDecl>(*Mem))
DK = diag::err_anonymous_record_with_static;
Diag((*Mem)->getLocation(), DK)
<< (int)Record->isUnion();
Invalid = true;
}
}
}
if (!Record->isUnion() && !Owner->isRecord()) {
Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
<< (int)getLangOptions().CPlusPlus;
Invalid = true;
}
// Create a declaration for this anonymous struct/union.
NamedDecl *Anon = 0;
if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
/*IdentifierInfo=*/0,
Context.getTypeDeclType(Record),
/*BitWidth=*/0, /*Mutable=*/false);
Anon->setAccess(AS_public);
if (getLangOptions().CPlusPlus)
FieldCollector->Add(cast<FieldDecl>(Anon));
} else {
VarDecl::StorageClass SC;
switch (DS.getStorageClassSpec()) {
default: assert(0 && "Unknown storage class!");
case DeclSpec::SCS_unspecified: SC = VarDecl::None; break;
case DeclSpec::SCS_extern: SC = VarDecl::Extern; break;
case DeclSpec::SCS_static: SC = VarDecl::Static; break;
case DeclSpec::SCS_auto: SC = VarDecl::Auto; break;
case DeclSpec::SCS_register: SC = VarDecl::Register; break;
case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
case DeclSpec::SCS_mutable:
// mutable can only appear on non-static class members, so it's always
// an error here
Diag(Record->getLocation(), diag::err_mutable_nonmember);
Invalid = true;
SC = VarDecl::None;
break;
}
Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
/*IdentifierInfo=*/0,
Context.getTypeDeclType(Record),
SC, DS.getSourceRange().getBegin());
}
Anon->setImplicit();
// Add the anonymous struct/union object to the current
// context. We'll be referencing this object when we refer to one of
// its members.
Owner->addDecl(Anon);
// Inject the members of the anonymous struct/union into the owning
// context and into the identifier resolver chain for name lookup
// purposes.
if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
Invalid = true;
// Mark this as an anonymous struct/union type. Note that we do not
// do this until after we have already checked and injected the
// members of this anonymous struct/union type, because otherwise
// the members could be injected twice: once by DeclContext when it
// builds its lookup table, and once by
// InjectAnonymousStructOrUnionMembers.
Record->setAnonymousStructOrUnion(true);
if (Invalid)
Anon->setInvalidDecl();
return Anon;
}
/// GetNameForDeclarator - Determine the full declaration name for the
/// given Declarator.
DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
switch (D.getKind()) {
case Declarator::DK_Abstract:
assert(D.getIdentifier() == 0 && "abstract declarators have no name");
return DeclarationName();
case Declarator::DK_Normal:
assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
return DeclarationName(D.getIdentifier());
case Declarator::DK_Constructor: {
QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
Ty = Context.getCanonicalType(Ty);
return Context.DeclarationNames.getCXXConstructorName(Ty);
}
case Declarator::DK_Destructor: {
QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
Ty = Context.getCanonicalType(Ty);
return Context.DeclarationNames.getCXXDestructorName(Ty);
}
case Declarator::DK_Conversion: {
// FIXME: We'd like to keep the non-canonical type for diagnostics!
QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
Ty = Context.getCanonicalType(Ty);
return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
}
case Declarator::DK_Operator:
assert(D.getIdentifier() == 0 && "operator names have no identifier");
return Context.DeclarationNames.getCXXOperatorName(
D.getOverloadedOperator());
}
assert(false && "Unknown name kind");
return DeclarationName();
}
/// isNearlyMatchingFunction - Determine whether the C++ functions
/// Declaration and Definition are "nearly" matching. This heuristic
/// is used to improve diagnostics in the case where an out-of-line
/// function definition doesn't match any declaration within
/// the class or namespace.
static bool isNearlyMatchingFunction(ASTContext &Context,
FunctionDecl *Declaration,
FunctionDecl *Definition) {
if (Declaration->param_size() != Definition->param_size())
return false;
for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
return false;
}
return true;
}
Sema::DeclTy *
Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
bool IsFunctionDefinition) {
NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
DeclarationName Name = GetNameForDeclarator(D);
// All of these full declarators require an identifier. If it doesn't have
// one, the ParsedFreeStandingDeclSpec action should be used.
if (!Name) {
if (!D.getInvalidType()) // Reject this if we think it is valid.
Diag(D.getDeclSpec().getSourceRange().getBegin(),
diag::err_declarator_need_ident)
<< D.getDeclSpec().getSourceRange() << D.getSourceRange();
return 0;
}
// The scope passed in may not be a decl scope. Zip up the scope tree until
// we find one that is.
while ((S->getFlags() & Scope::DeclScope) == 0 ||
(S->getFlags() & Scope::TemplateParamScope) != 0)
S = S->getParent();
DeclContext *DC;
NamedDecl *PrevDecl;
NamedDecl *New;
bool InvalidDecl = false;
QualType R = GetTypeForDeclarator(D, S);
if (R.isNull()) {
InvalidDecl = true;
R = Context.IntTy;
}
// See if this is a redefinition of a variable in the same scope.
if (D.getCXXScopeSpec().isInvalid()) {
DC = CurContext;
PrevDecl = 0;
InvalidDecl = true;
} else if (!D.getCXXScopeSpec().isSet()) {
LookupNameKind NameKind = LookupOrdinaryName;
// If the declaration we're planning to build will be a function
// or object with linkage, then look for another declaration with
// linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
/* Do nothing*/;
else if (R->isFunctionType()) {
if (CurContext->isFunctionOrMethod())
NameKind = LookupRedeclarationWithLinkage;
} else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
NameKind = LookupRedeclarationWithLinkage;
DC = CurContext;
PrevDecl = LookupName(S, Name, NameKind, true,
D.getDeclSpec().getStorageClassSpec() !=
DeclSpec::SCS_static,
D.getIdentifierLoc());
} else { // Something like "int foo::x;"
DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
// FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
// C++ 7.3.1.2p2:
// Members (including explicit specializations of templates) of a named
// namespace can also be defined outside that namespace by explicit
// qualification of the name being defined, provided that the entity being
// defined was already declared in the namespace and the definition appears
// after the point of declaration in a namespace that encloses the
// declarations namespace.
//
// Note that we only check the context at this point. We don't yet
// have enough information to make sure that PrevDecl is actually
// the declaration we want to match. For example, given:
//
// class X {
// void f();
// void f(float);
// };
//
// void X::f(int) { } // ill-formed
//
// In this case, PrevDecl will point to the overload set
// containing the two f's declared in X, but neither of them
// matches.
// First check whether we named the global scope.
if (isa<TranslationUnitDecl>(DC)) {
Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
<< Name << D.getCXXScopeSpec().getRange();
} else if (!CurContext->Encloses(DC)) {
// The qualifying scope doesn't enclose the original declaration.
// Emit diagnostic based on current scope.
SourceLocation L = D.getIdentifierLoc();
SourceRange R = D.getCXXScopeSpec().getRange();
if (isa<FunctionDecl>(CurContext))
Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
else
Diag(L, diag::err_invalid_declarator_scope)
<< Name << cast<NamedDecl>(DC) << R;
InvalidDecl = true;
}
}
if (PrevDecl && PrevDecl->isTemplateParameter()) {
// Maybe we will complain about the shadowed template parameter.
InvalidDecl = InvalidDecl
|| DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
// Just pretend that we didn't see the previous declaration.
PrevDecl = 0;
}
// In C++, the previous declaration we find might be a tag type
// (class or enum). In this case, the new declaration will hide the
// tag type. Note that this does does not apply if we're declaring a
// typedef (C++ [dcl.typedef]p4).
if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
PrevDecl = 0;
bool Redeclaration = false;
if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
InvalidDecl, Redeclaration);
} else if (R->isFunctionType()) {
New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
IsFunctionDefinition, InvalidDecl,
Redeclaration);
} else {
New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
InvalidDecl, Redeclaration);
}
if (New == 0)
return 0;
// If this has an identifier and is not an invalid redeclaration,
// add it to the scope stack.
if (Name && !(Redeclaration && InvalidDecl))
PushOnScopeChains(New, S);
// If any semantic error occurred, mark the decl as invalid.
if (D.getInvalidType() || InvalidDecl)
New->setInvalidDecl();
return New;
}
/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
/// types into constant array types in certain situations which would otherwise
/// be errors (for GCC compatibility).
static QualType TryToFixInvalidVariablyModifiedType(QualType T,
ASTContext &Context,
bool &SizeIsNegative) {
// This method tries to turn a variable array into a constant
// array even when the size isn't an ICE. This is necessary
// for compatibility with code that depends on gcc's buggy
// constant expression folding, like struct {char x[(int)(char*)2];}
SizeIsNegative = false;
if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
QualType Pointee = PTy->getPointeeType();
QualType FixedType =
TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
if (FixedType.isNull()) return FixedType;
FixedType = Context.getPointerType(FixedType);
FixedType.setCVRQualifiers(T.getCVRQualifiers());
return FixedType;
}
const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
if (!VLATy)
return QualType();
// FIXME: We should probably handle this case
if (VLATy->getElementType()->isVariablyModifiedType())
return QualType();
Expr::EvalResult EvalResult;
if (!VLATy->getSizeExpr() ||
!VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
!EvalResult.Val.isInt())
return QualType();
llvm::APSInt &Res = EvalResult.Val.getInt();
if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
return Context.getConstantArrayType(VLATy->getElementType(),
Res, ArrayType::Normal, 0);
SizeIsNegative = true;
return QualType();
}
/// \brief Register the given locally-scoped external C declaration so
/// that it can be found later for redeclarations
void
Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
Scope *S) {
assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
"Decl is not a locally-scoped decl!");
// Note that we have a locally-scoped external with this name.
LocallyScopedExternalDecls[ND->getDeclName()] = ND;
if (!PrevDecl)
return;
// If there was a previous declaration of this variable, it may be
// in our identifier chain. Update the identifier chain with the new
// declaration.
if (IdResolver.ReplaceDecl(PrevDecl, ND)) {
// The previous declaration was found on the identifer resolver
// chain, so remove it from its scope.
while (S && !S->isDeclScope(PrevDecl))
S = S->getParent();
if (S)
S->RemoveDecl(PrevDecl);
}
}
NamedDecl*
Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
QualType R, Decl* LastDeclarator,
Decl* PrevDecl, bool& InvalidDecl,
bool &Redeclaration) {
// Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
if (D.getCXXScopeSpec().isSet()) {
Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
<< D.getCXXScopeSpec().getRange();
InvalidDecl = true;
// Pretend we didn't see the scope specifier.
DC = 0;
}
if (getLangOptions().CPlusPlus) {
// Check that there are no default arguments (C++ only).
CheckExtraCXXDefaultArguments(D);
if (D.getDeclSpec().isVirtualSpecified())
Diag(D.getDeclSpec().getVirtualSpecLoc(),
diag::err_virtual_non_function);
}
TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
if (!NewTD) return 0;
// Handle attributes prior to checking for duplicates in MergeVarDecl
ProcessDeclAttributes(NewTD, D);
// Merge the decl with the existing one if appropriate. If the decl is
// in an outer scope, it isn't the same thing.
if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
Redeclaration = true;
if (MergeTypeDefDecl(NewTD, PrevDecl))
InvalidDecl = true;
}
if (S->getFnParent() == 0) {
QualType T = NewTD->getUnderlyingType();
// C99 6.7.7p2: If a typedef name specifies a variably modified type
// then it shall have block scope.
if (T->isVariablyModifiedType()) {
bool SizeIsNegative;
QualType FixedTy =
TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
if (!FixedTy.isNull()) {
Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
NewTD->setUnderlyingType(FixedTy);
} else {
if (SizeIsNegative)
Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
else if (T->isVariableArrayType())
Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
else
Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
InvalidDecl = true;
}
}
}
return NewTD;
}
/// \brief Determines whether the given declaration is an out-of-scope
/// previous declaration.
///
/// This routine should be invoked when name lookup has found a
/// previous declaration (PrevDecl) that is not in the scope where a
/// new declaration by the same name is being introduced. If the new
/// declaration occurs in a local scope, previous declarations with
/// linkage may still be considered previous declarations (C99
/// 6.2.2p4-5, C++ [basic.link]p6).
///
/// \param PrevDecl the previous declaration found by name
/// lookup
///
/// \param DC the context in which the new declaration is being
/// declared.
///
/// \returns true if PrevDecl is an out-of-scope previous declaration
/// for a new delcaration with the same name.
static bool
isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
ASTContext &Context) {
if (!PrevDecl)
return 0;
// FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
// case we need to check each of the overloaded functions.
if (!PrevDecl->hasLinkage())
return false;
if (Context.getLangOptions().CPlusPlus) {
// C++ [basic.link]p6:
// If there is a visible declaration of an entity with linkage
// having the same name and type, ignoring entities declared
// outside the innermost enclosing namespace scope, the block
// scope declaration declares that same entity and receives the
// linkage of the previous declaration.
DeclContext *OuterContext = DC->getLookupContext();
if (!OuterContext->isFunctionOrMethod())
// This rule only applies to block-scope declarations.
return false;
else {
DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
if (PrevOuterContext->isRecord())
// We found a member function: ignore it.
return false;
else {
// Find the innermost enclosing namespace for the new and
// previous declarations.
while (!OuterContext->isFileContext())
OuterContext = OuterContext->getParent();
while (!PrevOuterContext->isFileContext())
PrevOuterContext = PrevOuterContext->getParent();
// The previous declaration is in a different namespace, so it
// isn't the same function.
if (OuterContext->getPrimaryContext() !=
PrevOuterContext->getPrimaryContext())
return false;
}
}
}
return true;
}
NamedDecl*
Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
QualType R, Decl* LastDeclarator,
NamedDecl* PrevDecl, bool& InvalidDecl,
bool &Redeclaration) {
DeclarationName Name = GetNameForDeclarator(D);
// Check that there are no default arguments (C++ only).
if (getLangOptions().CPlusPlus)
CheckExtraCXXDefaultArguments(D);
if (R.getTypePtr()->isObjCInterfaceType()) {
Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object);
InvalidDecl = true;
}
VarDecl *NewVD;
VarDecl::StorageClass SC;
switch (D.getDeclSpec().getStorageClassSpec()) {
default: assert(0 && "Unknown storage class!");
case DeclSpec::SCS_unspecified: SC = VarDecl::None; break;
case DeclSpec::SCS_extern: SC = VarDecl::Extern; break;
case DeclSpec::SCS_static: SC = VarDecl::Static; break;
case DeclSpec::SCS_auto: SC = VarDecl::Auto; break;
case DeclSpec::SCS_register: SC = VarDecl::Register; break;
case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
case DeclSpec::SCS_mutable:
// mutable can only appear on non-static class members, so it's always
// an error here
Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
InvalidDecl = true;
SC = VarDecl::None;
break;
}
IdentifierInfo *II = Name.getAsIdentifierInfo();
if (!II) {
Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
<< Name.getAsString();
return 0;
}
if (D.getDeclSpec().isVirtualSpecified())
Diag(D.getDeclSpec().getVirtualSpecLoc(),
diag::err_virtual_non_function);
bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
if (!DC->isRecord() && S->getFnParent() == 0) {
// C99 6.9p2: The storage-class specifiers auto and register shall not
// appear in the declaration specifiers in an external declaration.
if (SC == VarDecl::Auto || SC == VarDecl::Register) {
Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
InvalidDecl = true;
}
}
if (DC->isRecord() && !CurContext->isRecord()) {
// This is an out-of-line definition of a static data member.
if (SC == VarDecl::Static) {
Diag(D.getDeclSpec().getStorageClassSpecLoc(),
diag::err_static_out_of_line)
<< CodeModificationHint::CreateRemoval(
SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
} else if (SC == VarDecl::None)
SC = VarDecl::Static;
}
NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
II, R, SC,
// FIXME: Move to DeclGroup...
D.getDeclSpec().getSourceRange().getBegin());
NewVD->setThreadSpecified(ThreadSpecified);
NewVD->setNextDeclarator(LastDeclarator);
// Set the lexical context. If the declarator has a C++ scope specifier, the
// lexical context will be different from the semantic context.
NewVD->setLexicalDeclContext(CurContext);
// Handle attributes prior to checking for duplicates in MergeVarDecl
ProcessDeclAttributes(NewVD, D);
// Handle GNU asm-label extension (encoded as an attribute).
if (Expr *E = (Expr*) D.getAsmLabel()) {
// The parser guarantees this is a string.
StringLiteral *SE = cast<StringLiteral>(E);
NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
SE->getByteLength())));
}
// Emit an error if an address space was applied to decl with local storage.
// This includes arrays of objects with address space qualifiers, but not
// automatic variables that point to other address spaces.
// ISO/IEC TR 18037 S5.1.2
if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
InvalidDecl = true;
}
if (NewVD->hasLocalStorage() && NewVD->getType().isObjCGCWeak()) {
Diag(D.getIdentifierLoc(), diag::warn_attribute_weak_on_local);
}
bool isIllegalVLA = R->isVariableArrayType() && NewVD->hasGlobalStorage();
bool isIllegalVM = R->isVariablyModifiedType() && NewVD->hasLinkage();
if (isIllegalVLA || isIllegalVM) {
bool SizeIsNegative;
QualType FixedTy =
TryToFixInvalidVariablyModifiedType(R, Context, SizeIsNegative);
if (!FixedTy.isNull()) {
Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
NewVD->setType(FixedTy);
} else if (R->isVariableArrayType()) {
NewVD->setInvalidDecl();
const VariableArrayType *VAT = Context.getAsVariableArrayType(R);
// FIXME: This won't give the correct result for
// int a[10][n];
SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
if (NewVD->isFileVarDecl())
Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
<< SizeRange;
else if (NewVD->getStorageClass() == VarDecl::Static)
Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
<< SizeRange;
else
Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
<< SizeRange;
} else {
InvalidDecl = true;
if (NewVD->isFileVarDecl())
Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
else
Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
}
}
// If name lookup finds a previous declaration that is not in the
// same scope as the new declaration, this may still be an
// acceptable redeclaration.
if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
!(NewVD->hasLinkage() &&
isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
PrevDecl = 0;
if (!PrevDecl && NewVD->isExternC(Context)) {
// Since we did not find anything by this name and we're declaring
// an extern "C" variable, look for a non-visible extern "C"
// declaration with the same name.
llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
= LocallyScopedExternalDecls.find(Name);
if (Pos != LocallyScopedExternalDecls.end())
PrevDecl = Pos->second;
}
// Merge the decl with the existing one if appropriate.
if (PrevDecl) {
if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
// The user tried to define a non-static data member
// out-of-line (C++ [dcl.meaning]p1).
Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
<< D.getCXXScopeSpec().getRange();
NewVD->Destroy(Context);
return 0;
}
Redeclaration = true;
if (MergeVarDecl(NewVD, PrevDecl))
InvalidDecl = true;
} else if (D.getCXXScopeSpec().isSet()) {
// No previous declaration in the qualifying scope.
Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
<< Name << D.getCXXScopeSpec().getRange();
InvalidDecl = true;
}
if (!InvalidDecl && R->isVoidType() && !NewVD->hasExternalStorage()) {
Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
<< R;
InvalidDecl = true;
}
// If this is a locally-scoped extern C variable, update the map of
// such variables.
if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
!InvalidDecl)
RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
return NewVD;
}
NamedDecl*
Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
QualType R, Decl *LastDeclarator,
NamedDecl* PrevDecl, bool IsFunctionDefinition,
bool& InvalidDecl, bool &Redeclaration) {
assert(R.getTypePtr()->isFunctionType());
DeclarationName Name = GetNameForDeclarator(D);
FunctionDecl::StorageClass SC = FunctionDecl::None;
switch (D.getDeclSpec().getStorageClassSpec()) {
default: assert(0 && "Unknown storage class!");
case DeclSpec::SCS_auto:
case DeclSpec::SCS_register:
case DeclSpec::SCS_mutable:
Diag(D.getDeclSpec().getStorageClassSpecLoc(),
diag::err_typecheck_sclass_func);
InvalidDecl = true;
break;
case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
case DeclSpec::SCS_extern: SC = FunctionDecl::Extern; break;
case DeclSpec::SCS_static: {
if (CurContext->getLookupContext()->isFunctionOrMethod()) {
// C99 6.7.1p5:
// The declaration of an identifier for a function that has
// block scope shall have no explicit storage-class specifier
// other than extern
// See also (C++ [dcl.stc]p4).
Diag(D.getDeclSpec().getStorageClassSpecLoc(),
diag::err_static_block_func);
SC = FunctionDecl::None;
} else
SC = FunctionDecl::Static;
break;
}
case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
}
bool isInline = D.getDeclSpec().isInlineSpecified();
bool isVirtual = D.getDeclSpec().isVirtualSpecified();
bool isExplicit = D.getDeclSpec().isExplicitSpecified();
bool isVirtualOkay = false;
FunctionDecl *NewFD;
if (D.getKind() == Declarator::DK_Constructor) {
// This is a C++ constructor declaration.
assert(DC->isRecord() &&
"Constructors can only be declared in a member context");
InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
// Create the new declaration
NewFD = CXXConstructorDecl::Create(Context,
cast<CXXRecordDecl>(DC),
D.getIdentifierLoc(), Name, R,
isExplicit, isInline,
/*isImplicitlyDeclared=*/false);
if (InvalidDecl)
NewFD->setInvalidDecl();
} else if (D.getKind() == Declarator::DK_Destructor) {
// This is a C++ destructor declaration.
if (DC->isRecord()) {
InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
NewFD = CXXDestructorDecl::Create(Context,
cast<CXXRecordDecl>(DC),
D.getIdentifierLoc(), Name, R,
isInline,
/*isImplicitlyDeclared=*/false);
if (InvalidDecl)
NewFD->setInvalidDecl();
isVirtualOkay = true;
} else {
Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
// Create a FunctionDecl to satisfy the function definition parsing
// code path.
NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
Name, R, SC, isInline,
/*hasPrototype=*/true,
// FIXME: Move to DeclGroup...
D.getDeclSpec().getSourceRange().getBegin());
InvalidDecl = true;
NewFD->setInvalidDecl();
}
} else if (D.getKind() == Declarator::DK_Conversion) {
if (!DC->isRecord()) {
Diag(D.getIdentifierLoc(),
diag::err_conv_function_not_member);
return 0;
} else {
InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
D.getIdentifierLoc(), Name, R,
isInline, isExplicit);
if (InvalidDecl)
NewFD->setInvalidDecl();
isVirtualOkay = true;
}
} else if (DC->isRecord()) {
// This is a C++ method declaration.
NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
D.getIdentifierLoc(), Name, R,
(SC == FunctionDecl::Static), isInline);
isVirtualOkay = (SC != FunctionDecl::Static);
} else {
NewFD = FunctionDecl::Create(Context, DC,
D.getIdentifierLoc(),
Name, R, SC, isInline,
/*hasPrototype=*/
(getLangOptions().CPlusPlus ||
(D.getNumTypeObjects() &&
D.getTypeObject(0).Fun.hasPrototype)),
// FIXME: Move to DeclGroup...
D.getDeclSpec().getSourceRange().getBegin());
}
NewFD->setNextDeclarator(LastDeclarator);
// Set the lexical context. If the declarator has a C++
// scope specifier, the lexical context will be different
// from the semantic context.
NewFD->setLexicalDeclContext(CurContext);
// C++ [dcl.fct.spec]p5:
// The virtual specifier shall only be used in declarations of
// nonstatic class member functions that appear within a
// member-specification of a class declaration; see 10.3.
//
// FIXME: Checking the 'virtual' specifier is not sufficient. A
// function is also virtual if it overrides an already virtual
// function. This is important to do here because it's part of the
// declaration.
if (isVirtual && !InvalidDecl) {
if (!isVirtualOkay) {
Diag(D.getDeclSpec().getVirtualSpecLoc(),
diag::err_virtual_non_function);
} else if (!CurContext->isRecord()) {
// 'virtual' was specified outside of the class.
Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
<< CodeModificationHint::CreateRemoval(
SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
} else {
// Okay: Add virtual to the method.
cast<CXXMethodDecl>(NewFD)->setVirtual();
CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
CurClass->setAggregate(false);
CurClass->setPOD(false);
CurClass->setPolymorphic(true);
}
}
if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
!CurContext->isRecord()) {
// C++ [class.static]p1:
// A data or function member of a class may be declared static
// in a class definition, in which case it is a static member of
// the class.
// Complain about the 'static' specifier if it's on an out-of-line
// member function definition.
Diag(D.getDeclSpec().getStorageClassSpecLoc(),
diag::err_static_out_of_line)
<< CodeModificationHint::CreateRemoval(
SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
}
// Handle GNU asm-label extension (encoded as an attribute).
if (Expr *E = (Expr*) D.getAsmLabel()) {
// The parser guarantees this is a string.
StringLiteral *SE = cast<StringLiteral>(E);
NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
SE->getByteLength())));
}
// Copy the parameter declarations from the declarator D to
// the function declaration NewFD, if they are available.
if (D.getNumTypeObjects() > 0) {
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
// Create Decl objects for each parameter, adding them to the
// FunctionDecl.
llvm::SmallVector<ParmVarDecl*, 16> Params;
// Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
// function that takes no arguments, not a function that takes a
// single void argument.
// We let through "const void" here because Sema::GetTypeForDeclarator
// already checks for that case.
if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
FTI.ArgInfo[0].Param &&
((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
// empty arg list, don't push any params.
ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
// In C++, the empty parameter-type-list must be spelled "void"; a
// typedef of void is not permitted.
if (getLangOptions().CPlusPlus &&
Param->getType().getUnqualifiedType() != Context.VoidTy) {
Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
}
} else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
}
NewFD->setParams(Context, &Params[0], Params.size());
} else if (R->getAsTypedefType()) {
// When we're declaring a function with a typedef, as in the
// following example, we'll need to synthesize (unnamed)
// parameters for use in the declaration.
//
// @code
// typedef void fn(int);
// fn f;
// @endcode
const FunctionProtoType *FT = R->getAsFunctionProtoType();
if (!FT) {
// This is a typedef of a function with no prototype, so we
// don't need to do anything.
} else if ((FT->getNumArgs() == 0) ||
(FT->getNumArgs() == 1 && !FT->isVariadic() &&
FT->getArgType(0)->isVoidType())) {
// This is a zero-argument function. We don't need to do anything.
} else {
// Synthesize a parameter for each argument type.
llvm::SmallVector<ParmVarDecl*, 16> Params;
for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
ArgType != FT->arg_type_end(); ++ArgType) {
ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
SourceLocation(), 0,
*ArgType, VarDecl::None,
0);
Param->setImplicit();
Params.push_back(Param);
}
NewFD->setParams(Context, &Params[0], Params.size());
}
}
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
else if (isa<CXXDestructorDecl>(NewFD)) {
CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
Record->setUserDeclaredDestructor(true);
// C++ [class]p4: A POD-struct is an aggregate class that has [...] no
// user-defined destructor.
Record->setPOD(false);
} else if (CXXConversionDecl *Conversion =
dyn_cast<CXXConversionDecl>(NewFD))
ActOnConversionDeclarator(Conversion);
// Extra checking for C++ overloaded operators (C++ [over.oper]).
if (NewFD->isOverloadedOperator() &&
CheckOverloadedOperatorDeclaration(NewFD))
NewFD->setInvalidDecl();
// If name lookup finds a previous declaration that is not in the
// same scope as the new declaration, this may still be an
// acceptable redeclaration.
if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
!(NewFD->hasLinkage() &&
isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
PrevDecl = 0;
if (!PrevDecl && NewFD->isExternC(Context)) {
// Since we did not find anything by this name and we're declaring
// an extern "C" function, look for a non-visible extern "C"
// declaration with the same name.
llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
= LocallyScopedExternalDecls.find(Name);
if (Pos != LocallyScopedExternalDecls.end())
PrevDecl = Pos->second;
}
// Merge or overload the declaration with an existing declaration of
// the same name, if appropriate.
bool OverloadableAttrRequired = false;
if (PrevDecl) {
// Determine whether NewFD is an overload of PrevDecl or
// a declaration that requires merging. If it's an overload,
// there's no more work to do here; we'll just add the new
// function to the scope.
OverloadedFunctionDecl::function_iterator MatchedDecl;
if (!getLangOptions().CPlusPlus &&
AllowOverloadingOfFunction(PrevDecl, Context)) {
OverloadableAttrRequired = true;
// Functions marked "overloadable" must have a prototype (that
// we can't get through declaration merging).
if (!R->getAsFunctionProtoType()) {
Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
<< NewFD;
InvalidDecl = true;
Redeclaration = true;
// Turn this into a variadic function with no parameters.
R = Context.getFunctionType(R->getAsFunctionType()->getResultType(),
0, 0, true, 0);
NewFD->setType(R);
}
}
if (PrevDecl &&
(!AllowOverloadingOfFunction(PrevDecl, Context) ||
!IsOverload(NewFD, PrevDecl, MatchedDecl))) {
Redeclaration = true;
Decl *OldDecl = PrevDecl;
// If PrevDecl was an overloaded function, extract the
// FunctionDecl that matched.
if (isa<OverloadedFunctionDecl>(PrevDecl))
OldDecl = *MatchedDecl;
// NewFD and PrevDecl represent declarations that need to be
// merged.
if (MergeFunctionDecl(NewFD, OldDecl))
InvalidDecl = true;
if (!InvalidDecl) {
NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
// An out-of-line member function declaration must also be a
// definition (C++ [dcl.meaning]p1).
if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
!InvalidDecl) {
Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
<< D.getCXXScopeSpec().getRange();
NewFD->setInvalidDecl();
}
}
}
}
if (D.getCXXScopeSpec().isSet() &&
(!PrevDecl || !Redeclaration)) {
// The user tried to provide an out-of-line definition for a
// function that is a member of a class or namespace, but there
// was no such member function declared (C++ [class.mfct]p2,
// C++ [namespace.memdef]p2). For example:
//
// class X {
// void f() const;
// };
//
// void X::f() { } // ill-formed
//
// Complain about this problem, and attempt to suggest close
// matches (e.g., those that differ only in cv-qualifiers and
// whether the parameter types are references).
Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
<< cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
InvalidDecl = true;
LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
true);
assert(!Prev.isAmbiguous() &&
"Cannot have an ambiguity in previous-declaration lookup");
for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
Func != FuncEnd; ++Func) {
if (isa<FunctionDecl>(*Func) &&
isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
Diag((*Func)->getLocation(), diag::note_member_def_close_match);
}
PrevDecl = 0;
}
// Handle attributes. We need to have merged decls when handling attributes
// (for example to check for conflicts, etc).
ProcessDeclAttributes(NewFD, D);
AddKnownFunctionAttributes(NewFD);
if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
// If a function name is overloadable in C, then every function
// with that name must be marked "overloadable".
Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
<< Redeclaration << NewFD;
if (PrevDecl)
Diag(PrevDecl->getLocation(),
diag::note_attribute_overloadable_prev_overload);
NewFD->addAttr(::new (Context) OverloadableAttr());
}
if (getLangOptions().CPlusPlus) {
// In C++, check default arguments now that we have merged decls. Unless
// the lexical context is the class, because in this case this is done
// during delayed parsing anyway.
if (!CurContext->isRecord())
CheckCXXDefaultArguments(NewFD);
// An out-of-line member function declaration must also be a
// definition (C++ [dcl.meaning]p1).
if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
<< D.getCXXScopeSpec().getRange();
InvalidDecl = true;
}
}
// If this is a locally-scoped extern C function, update the
// map of such names.
if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
&& !InvalidDecl)
RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
return NewFD;
}
bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
// FIXME: Need strict checking. In C89, we need to check for
// any assignment, increment, decrement, function-calls, or
// commas outside of a sizeof. In C99, it's the same list,
// except that the aforementioned are allowed in unevaluated
// expressions. Everything else falls under the
// "may accept other forms of constant expressions" exception.
// (We never end up here for C++, so the constant expression
// rules there don't matter.)
if (Init->isConstantInitializer(Context))
return false;
Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
<< Init->getSourceRange();
return true;
}
void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
}
/// AddInitializerToDecl - Adds the initializer Init to the
/// declaration dcl. If DirectInit is true, this is C++ direct
/// initialization rather than copy initialization.
void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
Decl *RealDecl = static_cast<Decl *>(dcl);
// If there is no declaration, there was an error parsing it. Just ignore
// the initializer.
if (RealDecl == 0)
return;
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
// With declarators parsed the way they are, the parser cannot
// distinguish between a normal initializer and a pure-specifier.
// Thus this grotesque test.
IntegerLiteral *IL;
Expr *Init = static_cast<Expr *>(init.get());
if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
Context.getCanonicalType(IL->getType()) == Context.IntTy) {
if (Method->isVirtual())
Method->setPure();
else {
Diag(Method->getLocation(), diag::err_non_virtual_pure)
<< Method->getDeclName() << Init->getSourceRange();
Method->setInvalidDecl();
}
} else {
Diag(Method->getLocation(), diag::err_member_function_initialization)
<< Method->getDeclName() << Init->getSourceRange();
Method->setInvalidDecl();
}
return;
}
VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
if (!VDecl) {
if (getLangOptions().CPlusPlus &&
RealDecl->getLexicalDeclContext()->isRecord() &&
isa<NamedDecl>(RealDecl))
Diag(RealDecl->getLocation(), diag::err_member_initialization)
<< cast<NamedDecl>(RealDecl)->getDeclName();
else
Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
RealDecl->setInvalidDecl();
return;
}
const VarDecl *Def = 0;
if (VDecl->getDefinition(Def)) {
Diag(VDecl->getLocation(), diag::err_redefinition)
<< VDecl->getDeclName();
Diag(Def->getLocation(), diag::note_previous_definition);
VDecl->setInvalidDecl();
return;
}
// Take ownership of the expression, now that we're sure we have somewhere
// to put it.
Expr *Init = static_cast<Expr *>(init.release());
assert(Init && "missing initializer");
// Get the decls type and save a reference for later, since
// CheckInitializerTypes may change it.
QualType DclT = VDecl->getType(), SavT = DclT;
if (VDecl->isBlockVarDecl()) {
VarDecl::StorageClass SC = VDecl->getStorageClass();
if (SC == VarDecl::Extern) { // C99 6.7.8p5
Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
VDecl->setInvalidDecl();
} else if (!VDecl->isInvalidDecl()) {
if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
VDecl->getDeclName(), DirectInit))
VDecl->setInvalidDecl();
// C++ 3.6.2p2, allow dynamic initialization of static initializers.
// Don't check invalid declarations to avoid emitting useless diagnostics.
if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
if (SC == VarDecl::Static) // C99 6.7.8p4.
CheckForConstantInitializer(Init, DclT);
}
}
} else if (VDecl->isStaticDataMember() &&
VDecl->getLexicalDeclContext()->isRecord()) {
// This is an in-class initialization for a static data member, e.g.,
//
// struct S {
// static const int value = 17;
// };
// Attach the initializer
VDecl->setInit(Init);
// C++ [class.mem]p4:
// A member-declarator can contain a constant-initializer only
// if it declares a static member (9.4) of const integral or
// const enumeration type, see 9.4.2.
QualType T = VDecl->getType();
if (!T->isDependentType() &&
(!Context.getCanonicalType(T).isConstQualified() ||
!T->isIntegralType())) {
Diag(VDecl->getLocation(), diag::err_member_initialization)
<< VDecl->getDeclName() << Init->getSourceRange();
VDecl->setInvalidDecl();
} else {
// C++ [class.static.data]p4:
// If a static data member is of const integral or const
// enumeration type, its declaration in the class definition
// can specify a constant-initializer which shall be an
// integral constant expression (5.19).
if (!Init->isTypeDependent() &&
!Init->getType()->isIntegralType()) {
// We have a non-dependent, non-integral or enumeration type.
Diag(Init->getSourceRange().getBegin(),
diag::err_in_class_initializer_non_integral_type)
<< Init->getType() << Init->getSourceRange();
VDecl->setInvalidDecl();
} else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
// Check whether the expression is a constant expression.
llvm::APSInt Value;
SourceLocation Loc;
if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
Diag(Loc, diag::err_in_class_initializer_non_constant)
<< Init->getSourceRange();
VDecl->setInvalidDecl();
}
}
}
} else if (VDecl->isFileVarDecl()) {
if (VDecl->getStorageClass() == VarDecl::Extern)
Diag(VDecl->getLocation(), diag::warn_extern_init);
if (!VDecl->isInvalidDecl())
if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
VDecl->getDeclName(), DirectInit))
VDecl->setInvalidDecl();
// C++ 3.6.2p2, allow dynamic initialization of static initializers.
// Don't check invalid declarations to avoid emitting useless diagnostics.
if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
// C99 6.7.8p4. All file scoped initializers need to be constant.
CheckForConstantInitializer(Init, DclT);
}
}
// If the type changed, it means we had an incomplete type that was
// completed by the initializer. For example:
// int ary[] = { 1, 3, 5 };
// "ary" transitions from a VariableArrayType to a ConstantArrayType.
if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
VDecl->setType(DclT);
Init->setType(DclT);
}
// Attach the initializer to the decl.
VDecl->setInit(Init);
return;
}
void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
Decl *RealDecl = static_cast<Decl *>(dcl);
// If there is no declaration, there was an error parsing it. Just ignore it.
if (RealDecl == 0)
return;
if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
QualType Type = Var->getType();
// C++ [dcl.init.ref]p3:
// The initializer can be omitted for a reference only in a
// parameter declaration (8.3.5), in the declaration of a
// function return type, in the declaration of a class member
// within its class declaration (9.2), and where the extern
// specifier is explicitly used.
if (Type->isReferenceType() &&
Var->getStorageClass() != VarDecl::Extern &&
Var->getStorageClass() != VarDecl::PrivateExtern) {
Diag(Var->getLocation(), diag::err_reference_var_requires_init)
<< Var->getDeclName()
<< SourceRange(Var->getLocation(), Var->getLocation());
Var->setInvalidDecl();
return;
}
// C++ [dcl.init]p9:
//
// If no initializer is specified for an object, and the object
// is of (possibly cv-qualified) non-POD class type (or array
// thereof), the object shall be default-initialized; if the
// object is of const-qualified type, the underlying class type
// shall have a user-declared default constructor.
if (getLangOptions().CPlusPlus) {
QualType InitType = Type;
if (const ArrayType *Array = Context.getAsArrayType(Type))
InitType = Array->getElementType();
if (Var->getStorageClass() != VarDecl::Extern &&
Var->getStorageClass() != VarDecl::PrivateExtern &&
InitType->isRecordType()) {
const CXXConstructorDecl *Constructor = 0;
if (!RequireCompleteType(Var->getLocation(), InitType,
diag::err_invalid_incomplete_type_use))
Constructor
= PerformInitializationByConstructor(InitType, 0, 0,
Var->getLocation(),
SourceRange(Var->getLocation(),
Var->getLocation()),
Var->getDeclName(),
IK_Default);
if (!Constructor)
Var->setInvalidDecl();
}
}
#if 0
// FIXME: Temporarily disabled because we are not properly parsing
// linkage specifications on declarations, e.g.,
//
// extern "C" const CGPoint CGPointerZero;
//
// C++ [dcl.init]p9:
//
// If no initializer is specified for an object, and the
// object is of (possibly cv-qualified) non-POD class type (or
// array thereof), the object shall be default-initialized; if
// the object is of const-qualified type, the underlying class
// type shall have a user-declared default
// constructor. Otherwise, if no initializer is specified for
// an object, the object and its subobjects, if any, have an
// indeterminate initial value; if the object or any of its
// subobjects are of const-qualified type, the program is
// ill-formed.
//
// This isn't technically an error in C, so we don't diagnose it.
//
// FIXME: Actually perform the POD/user-defined default
// constructor check.
if (getLangOptions().CPlusPlus &&
Context.getCanonicalType(Type).isConstQualified() &&
Var->getStorageClass() != VarDecl::Extern)
Diag(Var->getLocation(), diag::err_const_var_requires_init)
<< Var->getName()
<< SourceRange(Var->getLocation(), Var->getLocation());
#endif
}
}
/// The declarators are chained together backwards, reverse the list.
Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
// Often we have single declarators, handle them quickly.
Decl *Group = static_cast<Decl*>(group);
if (Group == 0)
return 0;
Decl *NewGroup = 0;
if (Group->getNextDeclarator() == 0)
NewGroup = Group;
else { // reverse the list.
while (Group) {
Decl *Next = Group->getNextDeclarator();
Group->setNextDeclarator(NewGroup);
NewGroup = Group;
Group = Next;
}
}
// Perform semantic analysis that depends on having fully processed both
// the declarator and initializer.
for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
VarDecl *IDecl = dyn_cast<VarDecl>(ID);
if (!IDecl)
continue;
QualType T = IDecl->getType();
// Block scope. C99 6.7p7: If an identifier for an object is declared with
// no linkage (C99 6.2.2p6), the type for the object shall be complete...
if (IDecl->isBlockVarDecl() &&
IDecl->getStorageClass() != VarDecl::Extern) {
if (!IDecl->isInvalidDecl() &&
RequireCompleteType(IDecl->getLocation(), T,
diag::err_typecheck_decl_incomplete_type))
IDecl->setInvalidDecl();
}
// File scope. C99 6.9.2p2: A declaration of an identifier for and
// object that has file scope without an initializer, and without a
// storage-class specifier or with the storage-class specifier "static",
// constitutes a tentative definition. Note: A tentative definition with
// external linkage is valid (C99 6.2.2p5).
if (IDecl->isTentativeDefinition(Context)) {
QualType CheckType = T;
unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
if (ArrayT) {
CheckType = ArrayT->getElementType();
DiagID = diag::err_illegal_decl_array_incomplete_type;
}
if (IDecl->isInvalidDecl()) {
// Do nothing with invalid declarations
} else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
// C99 6.9.2p3: If the declaration of an identifier for an object is
// a tentative definition and has internal linkage (C99 6.2.2p3), the
// declared type shall not be an incomplete type.
IDecl->setInvalidDecl();
}
}
}
return NewGroup;
}
/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
/// to introduce parameters into function prototype scope.
Sema::DeclTy *
Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
const DeclSpec &DS = D.getDeclSpec();
// Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
VarDecl::StorageClass StorageClass = VarDecl::None;
if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
StorageClass = VarDecl::Register;
} else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
Diag(DS.getStorageClassSpecLoc(),
diag::err_invalid_storage_class_in_func_decl);
D.getMutableDeclSpec().ClearStorageClassSpecs();
}
if (DS.isThreadSpecified()) {
Diag(DS.getThreadSpecLoc(),
diag::err_invalid_storage_class_in_func_decl);
D.getMutableDeclSpec().ClearStorageClassSpecs();
}
// Check that there are no default arguments inside the type of this
// parameter (C++ only).
if (getLangOptions().CPlusPlus)
CheckExtraCXXDefaultArguments(D);
// In this context, we *do not* check D.getInvalidType(). If the declarator
// type was invalid, GetTypeForDeclarator() still returns a "valid" type,
// though it will not reflect the user specified type.
QualType parmDeclType = GetTypeForDeclarator(D, S);
assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
// TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
// Can this happen for params? We already checked that they don't conflict
// among each other. Here they can only shadow globals, which is ok.
IdentifierInfo *II = D.getIdentifier();
if (II) {
if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
if (PrevDecl->isTemplateParameter()) {
// Maybe we will complain about the shadowed template parameter.
DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
// Just pretend that we didn't see the previous declaration.
PrevDecl = 0;
} else if (S->isDeclScope(PrevDecl)) {
Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
// Recover by removing the name
II = 0;
D.SetIdentifier(0, D.getIdentifierLoc());
}
}
}
// Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
// Doing the promotion here has a win and a loss. The win is the type for
// both Decl's and DeclRefExpr's will match (a convenient invariant for the
// code generator). The loss is the orginal type isn't preserved. For example:
//
// void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
// int blockvardecl[5];
// sizeof(parmvardecl); // size == 4
// sizeof(blockvardecl); // size == 20
// }
//
// For expressions, all implicit conversions are captured using the
// ImplicitCastExpr AST node (we have no such mechanism for Decl's).
//
// FIXME: If a source translation tool needs to see the original type, then
// we need to consider storing both types (in ParmVarDecl)...
//
if (parmDeclType->isArrayType()) {
// int x[restrict 4] -> int *restrict
parmDeclType = Context.getArrayDecayedType(parmDeclType);
} else if (parmDeclType->isFunctionType())
parmDeclType = Context.getPointerType(parmDeclType);
ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
D.getIdentifierLoc(), II,
parmDeclType, StorageClass,
0);
if (D.getInvalidType())
New->setInvalidDecl();
// Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
if (D.getCXXScopeSpec().isSet()) {
Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
<< D.getCXXScopeSpec().getRange();
New->setInvalidDecl();
}
// Parameter declarators cannot be interface types. All ObjC objects are
// passed by reference.
if (parmDeclType->isObjCInterfaceType()) {
Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
<< "passed";
New->setInvalidDecl();
}
// Add the parameter declaration into this scope.
S->AddDecl(New);
if (II)
IdResolver.AddDecl(New);
ProcessDeclAttributes(New, D);
return New;
}
void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
"Not a function declarator!");
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
// Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
// for a K&R function.
if (!FTI.hasPrototype) {
for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
if (FTI.ArgInfo[i].Param == 0) {
Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
<< FTI.ArgInfo[i].Ident;
// Implicitly declare the argument as type 'int' for lack of a better
// type.
DeclSpec DS;
const char* PrevSpec; // unused
DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
PrevSpec);
Declarator ParamD(DS, Declarator::KNRTypeListContext);
ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
}
}
}
}
Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
assert(getCurFunctionDecl() == 0 && "Function parsing confused");
assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
"Not a function declarator!");
DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
if (FTI.hasPrototype) {
// FIXME: Diagnose arguments without names in C.
}
Scope *ParentScope = FnBodyScope->getParent();
return ActOnStartOfFunctionDef(FnBodyScope,
ActOnDeclarator(ParentScope, D, 0,
/*IsFunctionDefinition=*/true));
}
Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
Decl *decl = static_cast<Decl*>(D);
FunctionDecl *FD = cast<FunctionDecl>(decl);
// See if this is a redefinition.
const FunctionDecl *Definition;
if (FD->getBody(Definition)) {
Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
Diag(Definition->getLocation(), diag::note_previous_definition);
}
// Builtin functions cannot be defined.
if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
FD->setInvalidDecl();
}
}
// The return type of a function definition must be complete
// (C99 6.9.1p3)
if (FD->getResultType()->isIncompleteType() &&
!FD->getResultType()->isVoidType()) {
Diag(FD->getLocation(), diag::err_func_def_incomplete_result) << FD;
FD->setInvalidDecl();
}
PushDeclContext(FnBodyScope, FD);
// Check the validity of our function parameters
CheckParmsForFunctionDef(FD);
// Introduce our parameters into the function scope
for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
ParmVarDecl *Param = FD->getParamDecl(p);
Param->setOwningFunction(FD);
// If this has an identifier, add it to the scope stack.
if (Param->getIdentifier())
PushOnScopeChains(Param, FnBodyScope);
}
// Checking attributes of current function definition
// dllimport attribute.
if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
// dllimport attribute cannot be applied to definition.
if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
Diag(FD->getLocation(),
diag::err_attribute_can_be_applied_only_to_symbol_declaration)
<< "dllimport";
FD->setInvalidDecl();
return FD;
} else {
// If a symbol previously declared dllimport is later defined, the
// attribute is ignored in subsequent references, and a warning is
// emitted.
Diag(FD->getLocation(),
diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
<< FD->getNameAsCString() << "dllimport";
}
}
return FD;
}
static bool StatementCreatesScope(Stmt* S) {
bool result = false;
if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
for (DeclStmt::decl_iterator i = DS->decl_begin();
i != DS->decl_end(); ++i) {
if (VarDecl* D = dyn_cast<VarDecl>(*i)) {
result |= D->getType()->isVariablyModifiedType();
result |= !!D->getAttr<CleanupAttr>();
} else if (TypedefDecl* D = dyn_cast<TypedefDecl>(*i)) {
result |= D->getUnderlyingType()->isVariablyModifiedType();
}
}
}
return result;
}
void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
llvm::DenseMap<void*, Stmt*>& PopScopeMap,
std::vector<void*>& ScopeStack,
Stmt* CurStmt,
Stmt* ParentCompoundStmt) {
for (Stmt::child_iterator i = CurStmt->child_begin();
i != CurStmt->child_end(); ++i) {
if (!*i) continue;
if (StatementCreatesScope(*i)) {
ScopeStack.push_back(*i);
PopScopeMap[*i] = ParentCompoundStmt;
} else if (isa<LabelStmt>(CurStmt)) {
LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
}
if (isa<DeclStmt>(*i)) continue;
Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
*i, CurCompound);
}
while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
ScopeStack.pop_back();
}
}
void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
llvm::DenseMap<void*, Stmt*>& PopScopeMap,
llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
std::vector<void*>& ScopeStack,
Stmt* CurStmt) {
for (Stmt::child_iterator i = CurStmt->child_begin();
i != CurStmt->child_end(); ++i) {
if (!*i) continue;
if (StatementCreatesScope(*i)) {
ScopeStack.push_back(*i);
} else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
void* LScope = LabelScopeMap[GS->getLabel()];
if (LScope) {
bool foundScopeInStack = false;
for (unsigned i = ScopeStack.size(); i > 0; --i) {
if (LScope == ScopeStack[i-1]) {
foundScopeInStack = true;
break;
}
}
if (!foundScopeInStack) {
Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
}
}
}
if (isa<DeclStmt>(*i)) continue;
RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap,
ScopeStack, *i);
}
while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
ScopeStack.pop_back();
}
}
Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
Decl *dcl = static_cast<Decl *>(D);
Stmt *Body = static_cast<Stmt*>(BodyArg.release());
if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
FD->setBody(cast<CompoundStmt>(Body));
assert(FD == getCurFunctionDecl() && "Function parsing confused");
} else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
assert(MD == getCurMethodDecl() && "Method parsing confused");
MD->setBody(cast<CompoundStmt>(Body));
} else {
Body->Destroy(Context);
return 0;
}
PopDeclContext();
// Verify and clean out per-function state.
bool HaveLabels = !LabelMap.empty();
// Check goto/label use.
for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
// Verify that we have no forward references left. If so, there was a goto
// or address of a label taken, but no definition of it. Label fwd
// definitions are indicated with a null substmt.
if (I->second->getSubStmt() == 0) {
LabelStmt *L = I->second;
// Emit error.
Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
// At this point, we have gotos that use the bogus label. Stitch it into
// the function body so that they aren't leaked and that the AST is well
// formed.
if (Body) {
#if 0
// FIXME: Why do this? Having a 'push_back' in CompoundStmt is ugly,
// and the AST is malformed anyway. We should just blow away 'L'.
L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
cast<CompoundStmt>(Body)->push_back(L);
#else
L->Destroy(Context);
#endif
} else {
// The whole function wasn't parsed correctly, just delete this.
L->Destroy(Context);
}
}
}
LabelMap.clear();
if (!Body) return D;
if (HaveLabels) {
llvm::DenseMap<Stmt*, void*> LabelScopeMap;
llvm::DenseMap<void*, Stmt*> PopScopeMap;
llvm::DenseMap<Stmt*, void*> GotoScopeMap;
std::vector<void*> ScopeStack;
RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
}
return D;
}
/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
IdentifierInfo &II, Scope *S) {
// Before we produce a declaration for an implicitly defined
// function, see whether there was a locally-scoped declaration of
// this name as a function or variable. If so, use that
// (non-visible) declaration, and complain about it.
llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
= LocallyScopedExternalDecls.find(&II);
if (Pos != LocallyScopedExternalDecls.end()) {
Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
Diag(Pos->second->getLocation(), diag::note_previous_declaration);
return Pos->second;
}
// Extension in C99. Legal in C90, but warn about it.
if (getLangOptions().C99)
Diag(Loc, diag::ext_implicit_function_decl) << &II;
else
Diag(Loc, diag::warn_implicit_function_decl) << &II;
// FIXME: handle stuff like:
// void foo() { extern float X(); }
// void bar() { X(); } <-- implicit decl for X in another scope.
// Set a Declarator for the implicit definition: int foo();
const char *Dummy;
DeclSpec DS;
bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
Error = Error; // Silence warning.
assert(!Error && "Error setting up implicit decl!");
Declarator D(DS, Declarator::BlockContext);
D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
0, 0, 0, Loc, D),
SourceLocation());
D.SetIdentifier(&II, Loc);
// Insert this function into translation-unit scope.
DeclContext *PrevDC = CurContext;
CurContext = Context.getTranslationUnitDecl();
FunctionDecl *FD =
dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
FD->setImplicit();
CurContext = PrevDC;
AddKnownFunctionAttributes(FD);
return FD;
}
/// \brief Adds any function attributes that we know a priori based on
/// the declaration of this function.
///
/// These attributes can apply both to implicitly-declared builtins
/// (like __builtin___printf_chk) or to library-declared functions
/// like NSLog or printf.
void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
if (FD->isInvalidDecl())
return;
// If this is a built-in function, map its builtin attributes to
// actual attributes.
if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
// Handle printf-formatting attributes.
unsigned FormatIdx;
bool HasVAListArg;
if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
if (!FD->getAttr<FormatAttr>())
FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
FormatIdx + 2));
}
// Mark const if we don't care about errno and that is the only
// thing preventing the function from being const. This allows
// IRgen to use LLVM intrinsics for such functions.
if (!getLangOptions().MathErrno &&
Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
if (!FD->getAttr<ConstAttr>())
FD->addAttr(::new (Context) ConstAttr());
}
}
IdentifierInfo *Name = FD->getIdentifier();
if (!Name)
return;
if ((!getLangOptions().CPlusPlus &&
FD->getDeclContext()->isTranslationUnit()) ||
(isa<LinkageSpecDecl>(FD->getDeclContext()) &&
cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
LinkageSpecDecl::lang_c)) {
// Okay: this could be a libc/libm/Objective-C function we know
// about.
} else
return;
unsigned KnownID;
for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
if (KnownFunctionIDs[KnownID] == Name)
break;
switch (KnownID) {
case id_NSLog:
case id_NSLogv:
if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
// FIXME: We known better than our headers.
const_cast<FormatAttr *>(Format)->setType("printf");
} else
FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
break;
case id_asprintf:
case id_vasprintf:
if (!FD->getAttr<FormatAttr>())
FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
break;
default:
// Unknown function or known function without any attributes to
// add. Do nothing.
break;
}
}
TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
Decl *LastDeclarator) {
assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
// Scope manipulation handled by caller.
TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
D.getIdentifierLoc(),
D.getIdentifier(),
T);
if (TagType *TT = dyn_cast<TagType>(T)) {
TagDecl *TD = TT->getDecl();
// If the TagDecl that the TypedefDecl points to is an anonymous decl
// keep track of the TypedefDecl.
if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
TD->setTypedefForAnonDecl(NewTD);
}
NewTD->setNextDeclarator(LastDeclarator);
if (D.getInvalidType())
NewTD->setInvalidDecl();
return NewTD;
}
/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the
/// former case, Name will be non-null. In the later case, Name will be null.
/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
/// reference/declaration/definition of a tag.
Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
SourceLocation KWLoc, const CXXScopeSpec &SS,
IdentifierInfo *Name, SourceLocation NameLoc,
AttributeList *Attr) {
// If this is not a definition, it must have a name.
assert((Name != 0 || TK == TK_Definition) &&
"Nameless record must be a definition!");
TagDecl::TagKind Kind;
switch (TagSpec) {
default: assert(0 && "Unknown tag type!");
case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
case DeclSpec::TST_union: Kind = TagDecl::TK_union; break;
case DeclSpec::TST_class: Kind = TagDecl::TK_class; break;
case DeclSpec::TST_enum: Kind = TagDecl::TK_enum; break;
}
DeclContext *SearchDC = CurContext;
DeclContext *DC = CurContext;
NamedDecl *PrevDecl = 0;
bool Invalid = false;
if (Name && SS.isNotEmpty()) {
// We have a nested-name tag ('struct foo::bar').
// Check for invalid 'foo::'.
if (SS.isInvalid()) {
Name = 0;
goto CreateNewDecl;
}
// FIXME: RequireCompleteDeclContext(SS)?
DC = static_cast<DeclContext*>(SS.getScopeRep());
SearchDC = DC;
// Look-up name inside 'foo::'.
PrevDecl = dyn_cast_or_null<TagDecl>(
LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
// A tag 'foo::bar' must already exist.
if (PrevDecl == 0) {
Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
Name = 0;
goto CreateNewDecl;
}
} else if (Name) {
// If this is a named struct, check to see if there was a previous forward
// declaration or definition.
// FIXME: We're looking into outer scopes here, even when we
// shouldn't be. Doing so can result in ambiguities that we
// shouldn't be diagnosing.
LookupResult R = LookupName(S, Name, LookupTagName,
/*RedeclarationOnly=*/(TK != TK_Reference));
if (R.isAmbiguous()) {
DiagnoseAmbiguousLookup(R, Name, NameLoc);
// FIXME: This is not best way to recover from case like:
//
// struct S s;
//
// causes needless err_ovl_no_viable_function_in_init latter.
Name = 0;
PrevDecl = 0;
Invalid = true;
}
else
PrevDecl = R;
if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
// FIXME: This makes sure that we ignore the contexts associated
// with C structs, unions, and enums when looking for a matching
// tag declaration or definition. See the similar lookup tweak
// in Sema::LookupName; is there a better way to deal with this?
while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
SearchDC = SearchDC->getParent();
}
}
if (PrevDecl && PrevDecl->isTemplateParameter()) {
// Maybe we will complain about the shadowed template parameter.
DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
// Just pretend that we didn't see the previous declaration.
PrevDecl = 0;
}
if (PrevDecl) {
// Check whether the previous declaration is usable.
(void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
// If this is a use of a previous tag, or if the tag is already declared
// in the same scope (so that the definition/declaration completes or
// rementions the tag), reuse the decl.
if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
// Make sure that this wasn't declared as an enum and now used as a
// struct or something similar.
if (PrevTagDecl->getTagKind() != Kind) {
Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
Diag(PrevDecl->getLocation(), diag::note_previous_use);
// Recover by making this an anonymous redefinition.
Name = 0;
PrevDecl = 0;
Invalid = true;
} else {
// If this is a use, just return the declaration we found.
// FIXME: In the future, return a variant or some other clue
// for the consumer of this Decl to know it doesn't own it.
// For our current ASTs this shouldn't be a problem, but will
// need to be changed with DeclGroups.
if (TK == TK_Reference)
return PrevDecl;
// Diagnose attempts to redefine a tag.
if (TK == TK_Definition) {
if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
Diag(NameLoc, diag::err_redefinition) << Name;
Diag(Def->getLocation(), diag::note_previous_definition);
// If this is a redefinition, recover by making this
// struct be anonymous, which will make any later
// references get the previous definition.
Name = 0;
PrevDecl = 0;
Invalid = true;
} else {
// If the type is currently being defined, complain
// about a nested redefinition.
TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
if (Tag->isBeingDefined()) {
Diag(NameLoc, diag::err_nested_redefinition) << Name;
Diag(PrevTagDecl->getLocation(),
diag::note_previous_definition);
Name = 0;
PrevDecl = 0;
Invalid = true;
}
}
// Okay, this is definition of a previously declared or referenced
// tag PrevDecl. We're going to create a new Decl for it.
}
}
// If we get here we have (another) forward declaration or we
// have a definition. Just create a new decl.
} else {
// If we get here, this is a definition of a new tag type in a nested
// scope, e.g. "struct foo; void bar() { struct foo; }", just create a
// new decl/type. We set PrevDecl to NULL so that the entities
// have distinct types.
PrevDecl = 0;
}
// If we get here, we're going to create a new Decl. If PrevDecl
// is non-NULL, it's a definition of the tag declared by
// PrevDecl. If it's NULL, we have a new definition.
} else {
// PrevDecl is a namespace, template, or anything else
// that lives in the IDNS_Tag identifier namespace.
if (isDeclInScope(PrevDecl, SearchDC, S)) {
// The tag name clashes with a namespace name, issue an error and
// recover by making this tag be anonymous.
Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
Name = 0;
PrevDecl = 0;
Invalid = true;
} else {
// The existing declaration isn't relevant to us; we're in a
// new scope, so clear out the previous declaration.
PrevDecl = 0;
}
}
} else if (TK == TK_Reference && SS.isEmpty() && Name &&
(Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
// C.scope.pdecl]p5:
// -- for an elaborated-type-specifier of the form
//
// class-key identifier
//
// if the elaborated-type-specifier is used in the
// decl-specifier-seq or parameter-declaration-clause of a
// function defined in namespace scope, the identifier is
// declared as a class-name in the namespace that contains
// the declaration; otherwise, except as a friend
// declaration, the identifier is declared in the smallest
// non-class, non-function-prototype scope that contains the
// declaration.
//
// C99 6.7.2.3p8 has a similar (but not identical!) provision for
// C structs and unions.
//
// GNU C also supports this behavior as part of its incomplete
// enum types extension, while GNU C++ does not.
//
// Find the context where we'll be declaring the tag.
// FIXME: We would like to maintain the current DeclContext as the
// lexical context,
while (SearchDC->isRecord())
SearchDC = SearchDC->getParent();
// Find the scope where we'll be declaring the tag.
while (S->isClassScope() ||
(getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
((S->getFlags() & Scope::DeclScope) == 0) ||
(S->getEntity() &&
((DeclContext *)S->getEntity())->isTransparentContext()))
S = S->getParent();
}
CreateNewDecl:
// If there is an identifier, use the location of the identifier as the
// location of the decl, otherwise use the location of the struct/union
// keyword.
SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
// Otherwise, create a new declaration. If there is a previous
// declaration of the same entity, the two will be linked via
// PrevDecl.
TagDecl *New;
if (Kind == TagDecl::TK_enum) {
// FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
// enum X { A, B, C } D; D should chain to X.
New = EnumDecl::Create(Context, SearchDC, Loc, Name,
cast_or_null<EnumDecl>(PrevDecl));
// If this is an undefined enum, warn.
if (TK != TK_Definition && !Invalid) {
unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
: diag::ext_forward_ref_enum;
Diag(Loc, DK);
}
} else {
// struct/union/class
// FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
// struct X { int A; } D; D should chain to X.
if (getLangOptions().CPlusPlus)
// FIXME: Look for a way to use RecordDecl for simple structs.
New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
cast_or_null<CXXRecordDecl>(PrevDecl));
else
New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
cast_or_null<RecordDecl>(PrevDecl));
}
if (Kind != TagDecl::TK_enum) {
// Handle #pragma pack: if the #pragma pack stack has non-default
// alignment, make up a packed attribute for this decl. These
// attributes are checked when the ASTContext lays out the
// structure.
//
// It is important for implementing the correct semantics that this
// happen here (in act on tag decl). The #pragma pack stack is
// maintained as a result of parser callbacks which can occur at
// many points during the parsing of a struct declaration (because
// the #pragma tokens are effectively skipped over during the
// parsing of the struct).
if (unsigned Alignment = getPragmaPackAlignment())
New->addAttr(::new (Context) PackedAttr(Alignment * 8));
}
if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
// C++ [dcl.typedef]p3:
// [...] Similarly, in a given scope, a class or enumeration
// shall not be declared with the same name as a typedef-name
// that is declared in that scope and refers to a type other
// than the class or enumeration itself.
LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
TypedefDecl *PrevTypedef = 0;
if (Lookup.getKind() == LookupResult::Found)
PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
Context.getCanonicalType(Context.getTypeDeclType(New))) {
Diag(Loc, diag::err_tag_definition_of_typedef)
<< Context.getTypeDeclType(New)
<< PrevTypedef->getUnderlyingType();
Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
Invalid = true;
}
}
if (Invalid)
New->setInvalidDecl();
if (Attr)
ProcessDeclAttributeList(New, Attr);
// If we're declaring or defining a tag in function prototype scope
// in C, note that this type can only be used within the function.
if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
// Set the lexical context. If the tag has a C++ scope specifier, the
// lexical context will be different from the semantic context.
New->setLexicalDeclContext(CurContext);
if (TK == TK_Definition)
New->startDefinition();
// If this has an identifier, add it to the scope stack.
if (Name) {
S = getNonFieldDeclScope(S);
PushOnScopeChains(New, S);
} else {
CurContext->addDecl(New);
}
return New;
}
void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
AdjustDeclIfTemplate(TagD);
TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
// Enter the tag context.
PushDeclContext(S, Tag);
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
FieldCollector->StartClass();
if (Record->getIdentifier()) {
// C++ [class]p2:
// [...] The class-name is also inserted into the scope of the
// class itself; this is known as the injected-class-name. For
// purposes of access checking, the injected-class-name is treated
// as if it were a public member name.
RecordDecl *InjectedClassName
= CXXRecordDecl::Create(Context, Record->getTagKind(),
CurContext, Record->getLocation(),
Record->getIdentifier(), Record);
InjectedClassName->setImplicit();
PushOnScopeChains(InjectedClassName, S);
}
}
}
void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
AdjustDeclIfTemplate(TagD);
TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
if (isa<CXXRecordDecl>(Tag))
FieldCollector->FinishClass();
// Exit this scope of this tag's definition.
PopDeclContext();
// Notify the consumer that we've defined a tag.
Consumer.HandleTagDeclDefinition(Tag);
}
bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
QualType FieldTy, const Expr *BitWidth) {
// C99 6.7.2.1p4 - verify the field type.
// C++ 9.6p3: A bit-field shall have integral or enumeration type.
if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
// Handle incomplete types with specific error.
if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
return true;
return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
<< FieldName << FieldTy << BitWidth->getSourceRange();
}
// If the bit-width is type- or value-dependent, don't try to check
// it now.
if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
return false;
llvm::APSInt Value;
if (VerifyIntegerConstantExpression(BitWidth, &Value))
return true;
// Zero-width bitfield is ok for anonymous field.
if (Value == 0 && FieldName)
return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
if (Value.isSigned() && Value.isNegative())
return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
<< FieldName << Value.toString(10);
if (!FieldTy->isDependentType()) {
uint64_t TypeSize = Context.getTypeSize(FieldTy);
// FIXME: We won't need the 0 size once we check that the field type is valid.
if (TypeSize && Value.getZExtValue() > TypeSize)
return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
<< FieldName << (unsigned)TypeSize;
}
return false;
}
/// ActOnField - Each field of a struct/union/class is passed into this in order
/// to create a FieldDecl object for it.
Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
SourceLocation DeclStart,
Declarator &D, ExprTy *BitfieldWidth) {
return HandleField(S, static_cast<RecordDecl*>(TagD), DeclStart, D,
static_cast<Expr*>(BitfieldWidth),
AS_public);
}
/// HandleField - Analyze a field of a C struct or a C++ data member.
///
FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
SourceLocation DeclStart,
Declarator &D, Expr *BitWidth,
AccessSpecifier AS) {
IdentifierInfo *II = D.getIdentifier();
SourceLocation Loc = DeclStart;
if (II) Loc = D.getIdentifierLoc();
QualType T = GetTypeForDeclarator(D, S);
if (getLangOptions().CPlusPlus) {
CheckExtraCXXDefaultArguments(D);
if (D.getDeclSpec().isVirtualSpecified())
Diag(D.getDeclSpec().getVirtualSpecLoc(),
diag::err_virtual_non_function);
}
NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
PrevDecl = 0;
FieldDecl *NewFD
= CheckFieldDecl(II, T, Record, Loc,
D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
BitWidth, AS, PrevDecl, &D);
if (NewFD->isInvalidDecl() && PrevDecl) {
// Don't introduce NewFD into scope; there's already something
// with the same name in the same scope.
} else if (II) {
PushOnScopeChains(NewFD, S);
} else
Record->addDecl(NewFD);
return NewFD;
}
/// \brief Build a new FieldDecl and check its well-formedness.
///
/// This routine builds a new FieldDecl given the fields name, type,
/// record, etc. \p PrevDecl should refer to any previous declaration
/// with the same name and in the same scope as the field to be
/// created.
///
/// \returns a new FieldDecl.
///
/// \todo The Declarator argument is a hack. It will be removed once
FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
RecordDecl *Record, SourceLocation Loc,
bool Mutable, Expr *BitWidth,
AccessSpecifier AS, NamedDecl *PrevDecl,
Declarator *D) {
IdentifierInfo *II = Name.getAsIdentifierInfo();
bool InvalidDecl = false;
// If we receive a broken type, recover by assuming 'int' and
// marking this declaration as invalid.
if (T.isNull()) {
InvalidDecl = true;
T = Context.IntTy;
}
// C99 6.7.2.1p8: A member of a structure or union may have any type other
// than a variably modified type.
if (T->isVariablyModifiedType()) {
bool SizeIsNegative;
QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
SizeIsNegative);
if (!FixedTy.isNull()) {
Diag(Loc, diag::warn_illegal_constant_array_size);
T = FixedTy;
} else {
if (SizeIsNegative)
Diag(Loc, diag::err_typecheck_negative_array_size);
else
Diag(Loc, diag::err_typecheck_field_variable_size);
T = Context.IntTy;
InvalidDecl = true;
}
}
// If this is declared as a bit-field, check the bit-field.
if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
InvalidDecl = true;
DeleteExpr(BitWidth);
BitWidth = 0;
}
FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
Mutable);
if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
Diag(Loc, diag::err_duplicate_member) << II;
Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
NewFD->setInvalidDecl();
Record->setInvalidDecl();
}
if (getLangOptions().CPlusPlus && !T->isPODType())
cast<CXXRecordDecl>(Record)->setPOD(false);
// FIXME: We need to pass in the attributes given an AST
// representation, not a parser representation.
if (D)
ProcessDeclAttributes(NewFD, *D);
if (T.isObjCGCWeak())
Diag(Loc, diag::warn_attribute_weak_on_field);
if (InvalidDecl)
NewFD->setInvalidDecl();
NewFD->setAccess(AS);
// C++ [dcl.init.aggr]p1:
// An aggregate is an array or a class (clause 9) with [...] no
// private or protected non-static data members (clause 11).
// A POD must be an aggregate.
if (getLangOptions().CPlusPlus &&
(AS == AS_private || AS == AS_protected)) {
CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
CXXRecord->setAggregate(false);
CXXRecord->setPOD(false);
}
return NewFD;
}
/// TranslateIvarVisibility - Translate visibility from a token ID to an
/// AST enum value.
static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
switch (ivarVisibility) {
default: assert(0 && "Unknown visitibility kind");
case tok::objc_private: return ObjCIvarDecl::Private;
case tok::objc_public: return ObjCIvarDecl::Public;
case tok::objc_protected: return ObjCIvarDecl::Protected;
case tok::objc_package: return ObjCIvarDecl::Package;
}
}
/// ActOnIvar - Each ivar field of an objective-c class is passed into this
/// in order to create an IvarDecl object for it.
Sema::DeclTy *Sema::ActOnIvar(Scope *S,
SourceLocation DeclStart,
Declarator &D, ExprTy *BitfieldWidth,
tok::ObjCKeywordKind Visibility) {
IdentifierInfo *II = D.getIdentifier();
Expr *BitWidth = (Expr*)BitfieldWidth;
SourceLocation Loc = DeclStart;
if (II) Loc = D.getIdentifierLoc();
// FIXME: Unnamed fields can be handled in various different ways, for
// example, unnamed unions inject all members into the struct namespace!
QualType T = GetTypeForDeclarator(D, S);
assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
bool InvalidDecl = false;
if (BitWidth) {
// 6.7.2.1p3, 6.7.2.1p4
if (VerifyBitField(Loc, II, T, BitWidth)) {
InvalidDecl = true;
DeleteExpr(BitWidth);
BitWidth = 0;
}
} else {
// Not a bitfield.
// validate II.
}
// C99 6.7.2.1p8: A member of a structure or union may have any type other
// than a variably modified type.
if (T->isVariablyModifiedType()) {
Diag(Loc, diag::err_typecheck_ivar_variable_size);
InvalidDecl = true;
}
// Get the visibility (access control) for this ivar.
ObjCIvarDecl::AccessControl ac =
Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
: ObjCIvarDecl::None;
// Construct the decl.
ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
(Expr *)BitfieldWidth);
if (II) {
NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
&& !isa<TagDecl>(PrevDecl)) {
Diag(Loc, diag::err_duplicate_member) << II;
Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
NewID->setInvalidDecl();
}
}
// Process attributes attached to the ivar.
ProcessDeclAttributes(NewID, D);
if (D.getInvalidType() || InvalidDecl)
NewID->setInvalidDecl();
if (II) {
// FIXME: When interfaces are DeclContexts, we'll need to add
// these to the interface.
S->AddDecl(NewID);
IdResolver.AddDecl(NewID);
}
return NewID;
}
void Sema::ActOnFields(Scope* S,
SourceLocation RecLoc, DeclTy *RecDecl,
DeclTy **Fields, unsigned NumFields,
SourceLocation LBrac, SourceLocation RBrac,
AttributeList *Attr) {
Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
assert(EnclosingDecl && "missing record or interface decl");
// If the decl this is being inserted into is invalid, then it may be a
// redeclaration or some other bogus case. Don't try to add fields to it.
if (EnclosingDecl->isInvalidDecl()) {
// FIXME: Deallocate fields?
return;
}
// Verify that all the fields are okay.
unsigned NumNamedMembers = 0;
llvm::SmallVector<FieldDecl*, 32> RecFields;
RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
for (unsigned i = 0; i != NumFields; ++i) {
FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
assert(FD && "missing field decl");
// Get the type for the field.
Type *FDTy = FD->getType().getTypePtr();
if (!FD->isAnonymousStructOrUnion()) {
// Remember all fields written by the user.
RecFields.push_back(FD);
}
// If the field is already invalid for some reason, don't emit more
// diagnostics about it.
if (FD->isInvalidDecl())
continue;
// C99 6.7.2.1p2 - A field may not be a function type.
if (FDTy->isFunctionType()) {
Diag(FD->getLocation(), diag::err_field_declared_as_function)
<< FD->getDeclName();
FD->setInvalidDecl();
EnclosingDecl->setInvalidDecl();
continue;
}
// C99 6.7.2.1p2 - A field may not be an incomplete type except...
if (FDTy->isIncompleteType()) {
if (!Record) { // Incomplete ivar type is always an error.
RequireCompleteType(FD->getLocation(), FD->getType(),
diag::err_field_incomplete);
FD->setInvalidDecl();
EnclosingDecl->setInvalidDecl();
continue;
}
if (i != NumFields-1 || // ... that the last member ...
!Record->isStruct() || // ... of a structure ...
!FDTy->isArrayType()) { //... may have incomplete array type.
RequireCompleteType(FD->getLocation(), FD->getType(),
diag::err_field_incomplete);
FD->setInvalidDecl();
EnclosingDecl->setInvalidDecl();
continue;
}
if (NumNamedMembers < 1) { //... must have more than named member ...
Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
<< FD->getDeclName();
FD->setInvalidDecl();
EnclosingDecl->setInvalidDecl();
continue;
}
// Okay, we have a legal flexible array member at the end of the struct.
if (Record)
Record->setHasFlexibleArrayMember(true);
}
/// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
/// field of another structure or the element of an array.
if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
// If this is a member of a union, then entire union becomes "flexible".
if (Record && Record->isUnion()) {
Record->setHasFlexibleArrayMember(true);
} else {
// If this is a struct/class and this is not the last element, reject
// it. Note that GCC supports variable sized arrays in the middle of
// structures.
if (i != NumFields-1)
Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
<< FD->getDeclName();
else {
// We support flexible arrays at the end of structs in
// other structs as an extension.
Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
<< FD->getDeclName();
if (Record)
Record->setHasFlexibleArrayMember(true);
}
}
}
}
/// A field cannot be an Objective-c object
if (FDTy->isObjCInterfaceType()) {
Diag(FD->getLocation(), diag::err_statically_allocated_object);
FD->setInvalidDecl();
EnclosingDecl->setInvalidDecl();
continue;
}
// Keep track of the number of named members.
if (FD->getIdentifier())
++NumNamedMembers;
}
// Okay, we successfully defined 'Record'.
if (Record) {
Record->completeDefinition(Context);
} else {
ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
ID->setIVarList(ClsFields, RecFields.size(), Context);
ID->setLocEnd(RBrac);
// Must enforce the rule that ivars in the base classes may not be
// duplicates.
if (ID->getSuperClass()) {
for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
ObjCIvarDecl* Ivar = (*IVI);
IdentifierInfo *II = Ivar->getIdentifier();
ObjCIvarDecl* prevIvar =
ID->getSuperClass()->lookupInstanceVariable(II);
if (prevIvar) {
Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
Diag(prevIvar->getLocation(), diag::note_previous_declaration);
}
}
}
} else if (ObjCImplementationDecl *IMPDecl =
dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
}
}
if (Attr)
ProcessDeclAttributeList(Record, Attr);
}
EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
EnumConstantDecl *LastEnumConst,
SourceLocation IdLoc,
IdentifierInfo *Id,
ExprArg val) {
Expr *Val = (Expr *)val.get();
llvm::APSInt EnumVal(32);
QualType EltTy;
if (Val && !Val->isTypeDependent()) {
// Make sure to promote the operand type to int.
UsualUnaryConversions(Val);
if (Val != val.get()) {
val.release();
val = Val;
}
// C99 6.7.2.2p2: Make sure we have an integer constant expression.
SourceLocation ExpLoc;
if (!Val->isValueDependent() &&
VerifyIntegerConstantExpression(Val, &EnumVal)) {
Val = 0;
} else {
EltTy = Val->getType();
}
}
if (!Val) {
if (LastEnumConst) {
// Assign the last value + 1.
EnumVal = LastEnumConst->getInitVal();
++EnumVal;
// Check for overflow on increment.
if (EnumVal < LastEnumConst->getInitVal())
Diag(IdLoc, diag::warn_enum_value_overflow);
EltTy = LastEnumConst->getType();
} else {
// First value, set to zero.
EltTy = Context.IntTy;
EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
}
}
val.release();
return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
Val, EnumVal);
}
Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
DeclTy *lastEnumConst,
SourceLocation IdLoc, IdentifierInfo *Id,
SourceLocation EqualLoc, ExprTy *val) {
EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
EnumConstantDecl *LastEnumConst =
cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
Expr *Val = static_cast<Expr*>(val);
// The scope passed in may not be a decl scope. Zip up the scope tree until
// we find one that is.
S = getNonFieldDeclScope(S);
// Verify that there isn't already something declared with this name in this
// scope.
NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
if (PrevDecl && PrevDecl->isTemplateParameter()) {
// Maybe we will complain about the shadowed template parameter.
DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
// Just pretend that we didn't see the previous declaration.
PrevDecl = 0;
}
if (PrevDecl) {
// When in C++, we may get a TagDecl with the same name; in this case the
// enum constant will 'hide' the tag.
assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
"Received TagDecl when not in C++!");
if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
if (isa<EnumConstantDecl>(PrevDecl))
Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
else
Diag(IdLoc, diag::err_redefinition) << Id;
Diag(PrevDecl->getLocation(), diag::note_previous_definition);
if (Val) Val->Destroy(Context);
return 0;
}
}
EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
IdLoc, Id, Owned(Val));
// Register this decl in the current scope stack.
if (New)
PushOnScopeChains(New, S);
return New;
}
// FIXME: For consistency with ActOnFields(), we should have the parser
// pass in the source location for the left/right braces.
void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
DeclTy **Elements, unsigned NumElements) {
EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
QualType EnumType = Context.getTypeDeclType(Enum);
// TODO: If the result value doesn't fit in an int, it must be a long or long
// long value. ISO C does not support this, but GCC does as an extension,
// emit a warning.
unsigned IntWidth = Context.Target.getIntWidth();
// Verify that all the values are okay, compute the size of the values, and
// reverse the list.
unsigned NumNegativeBits = 0;
unsigned NumPositiveBits = 0;
// Keep track of whether all elements have type int.
bool AllElementsInt = true;
for (unsigned i = 0; i != NumElements; ++i) {
EnumConstantDecl *ECD =
cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
if (!ECD) continue; // Already issued a diagnostic.
// If the enum value doesn't fit in an int, emit an extension warning.
const llvm::APSInt &InitVal = ECD->getInitVal();
assert(InitVal.getBitWidth() >= IntWidth &&
"Should have promoted value to int");
if (InitVal.getBitWidth() > IntWidth) {
llvm::APSInt V(InitVal);
V.trunc(IntWidth);
V.extend(InitVal.getBitWidth());
if (V != InitVal)
Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
<< InitVal.toString(10);
}
// Keep track of the size of positive and negative values.
if (InitVal.isUnsigned() || InitVal.isNonNegative())
NumPositiveBits = std::max(NumPositiveBits,
(unsigned)InitVal.getActiveBits());
else
NumNegativeBits = std::max(NumNegativeBits,
(unsigned)InitVal.getMinSignedBits());
// Keep track of whether every enum element has type int (very commmon).
if (AllElementsInt)
AllElementsInt = ECD->getType() == Context.IntTy;
}
// Figure out the type that should be used for this enum.
// FIXME: Support attribute(packed) on enums and -fshort-enums.
QualType BestType;
unsigned BestWidth;
if (NumNegativeBits) {
// If there is a negative value, figure out the smallest integer type (of
// int/long/longlong) that fits.
if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
BestType = Context.IntTy;
BestWidth = IntWidth;
} else {
BestWidth = Context.Target.getLongWidth();
if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
BestType = Context.LongTy;
else {
BestWidth = Context.Target.getLongLongWidth();
if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
Diag(Enum->getLocation(), diag::warn_enum_too_large);
BestType = Context.LongLongTy;
}
}
} else {
// If there is no negative value, figure out which of uint, ulong, ulonglong
// fits.
if (NumPositiveBits <= IntWidth) {
BestType = Context.UnsignedIntTy;
BestWidth = IntWidth;
} else if (NumPositiveBits <=
(BestWidth = Context.Target.getLongWidth())) {
BestType = Context.UnsignedLongTy;
} else {
BestWidth = Context.Target.getLongLongWidth();
assert(NumPositiveBits <= BestWidth &&
"How could an initializer get larger than ULL?");
BestType = Context.UnsignedLongLongTy;
}
}
// Loop over all of the enumerator constants, changing their types to match
// the type of the enum if needed.
for (unsigned i = 0; i != NumElements; ++i) {
EnumConstantDecl *ECD =
cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
if (!ECD) continue; // Already issued a diagnostic.
// Standard C says the enumerators have int type, but we allow, as an
// extension, the enumerators to be larger than int size. If each
// enumerator value fits in an int, type it as an int, otherwise type it the
// same as the enumerator decl itself. This means that in "enum { X = 1U }"
// that X has type 'int', not 'unsigned'.
if (ECD->getType() == Context.IntTy) {
// Make sure the init value is signed.
llvm::APSInt IV = ECD->getInitVal();
IV.setIsSigned(true);
ECD->setInitVal(IV);
if (getLangOptions().CPlusPlus)
// C++ [dcl.enum]p4: Following the closing brace of an
// enum-specifier, each enumerator has the type of its
// enumeration.
ECD->setType(EnumType);
continue; // Already int type.
}
// Determine whether the value fits into an int.
llvm::APSInt InitVal = ECD->getInitVal();
bool FitsInInt;
if (InitVal.isUnsigned() || !InitVal.isNegative())
FitsInInt = InitVal.getActiveBits() < IntWidth;
else
FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
// If it fits into an integer type, force it. Otherwise force it to match
// the enum decl type.
QualType NewTy;
unsigned NewWidth;
bool NewSign;
if (FitsInInt) {
NewTy = Context.IntTy;
NewWidth = IntWidth;
NewSign = true;
} else if (ECD->getType() == BestType) {
// Already the right type!
if (getLangOptions().CPlusPlus)
// C++ [dcl.enum]p4: Following the closing brace of an
// enum-specifier, each enumerator has the type of its
// enumeration.
ECD->setType(EnumType);
continue;
} else {
NewTy = BestType;
NewWidth = BestWidth;
NewSign = BestType->isSignedIntegerType();
}
// Adjust the APSInt value.
InitVal.extOrTrunc(NewWidth);
InitVal.setIsSigned(NewSign);
ECD->setInitVal(InitVal);
// Adjust the Expr initializer and type.
if (ECD->getInitExpr())
ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
/*isLvalue=*/false));
if (getLangOptions().CPlusPlus)
// C++ [dcl.enum]p4: Following the closing brace of an
// enum-specifier, each enumerator has the type of its
// enumeration.
ECD->setType(EnumType);
else
ECD->setType(NewTy);
}
Enum->completeDefinition(Context, BestType);
}
Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
ExprArg expr) {
StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
}