| //===------- SemaTemplateInstantiate.cpp - C++ Template Instantiation ------===/ |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| //===----------------------------------------------------------------------===/ |
| // |
| // This file implements C++ template instantiation. |
| // |
| //===----------------------------------------------------------------------===/ |
| |
| #include "Sema.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Expr.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/Parse/DeclSpec.h" |
| #include "clang/Lex/Preprocessor.h" // for the identifier table |
| #include "clang/Basic/LangOptions.h" |
| #include "llvm/Support/Compiler.h" |
| |
| using namespace clang; |
| |
| //===----------------------------------------------------------------------===/ |
| // Template Instantiation Support |
| //===----------------------------------------------------------------------===/ |
| |
| Sema::InstantiatingTemplate:: |
| InstantiatingTemplate(Sema &SemaRef, SourceLocation PointOfInstantiation, |
| ClassTemplateSpecializationDecl *Entity, |
| SourceRange InstantiationRange) |
| : SemaRef(SemaRef) { |
| |
| Invalid = CheckInstantiationDepth(PointOfInstantiation, |
| InstantiationRange); |
| if (!Invalid) { |
| ActiveTemplateInstantiation Inst; |
| Inst.Kind = ActiveTemplateInstantiation::TemplateInstantiation; |
| Inst.PointOfInstantiation = PointOfInstantiation; |
| Inst.Entity = reinterpret_cast<uintptr_t>(Entity); |
| Inst.TemplateArgs = 0; |
| Inst.NumTemplateArgs = 0; |
| Inst.InstantiationRange = InstantiationRange; |
| SemaRef.ActiveTemplateInstantiations.push_back(Inst); |
| Invalid = false; |
| } |
| } |
| |
| Sema::InstantiatingTemplate::InstantiatingTemplate(Sema &SemaRef, |
| SourceLocation PointOfInstantiation, |
| TemplateDecl *Template, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs, |
| SourceRange InstantiationRange) |
| : SemaRef(SemaRef) { |
| |
| Invalid = CheckInstantiationDepth(PointOfInstantiation, |
| InstantiationRange); |
| if (!Invalid) { |
| ActiveTemplateInstantiation Inst; |
| Inst.Kind |
| = ActiveTemplateInstantiation::DefaultTemplateArgumentInstantiation; |
| Inst.PointOfInstantiation = PointOfInstantiation; |
| Inst.Entity = reinterpret_cast<uintptr_t>(Template); |
| Inst.TemplateArgs = TemplateArgs; |
| Inst.NumTemplateArgs = NumTemplateArgs; |
| Inst.InstantiationRange = InstantiationRange; |
| SemaRef.ActiveTemplateInstantiations.push_back(Inst); |
| Invalid = false; |
| } |
| } |
| |
| Sema::InstantiatingTemplate::~InstantiatingTemplate() { |
| if (!Invalid) |
| SemaRef.ActiveTemplateInstantiations.pop_back(); |
| } |
| |
| bool Sema::InstantiatingTemplate::CheckInstantiationDepth( |
| SourceLocation PointOfInstantiation, |
| SourceRange InstantiationRange) { |
| if (SemaRef.ActiveTemplateInstantiations.size() |
| <= SemaRef.getLangOptions().InstantiationDepth) |
| return false; |
| |
| SemaRef.Diag(PointOfInstantiation, |
| diag::err_template_recursion_depth_exceeded) |
| << SemaRef.getLangOptions().InstantiationDepth |
| << InstantiationRange; |
| SemaRef.Diag(PointOfInstantiation, diag::note_template_recursion_depth) |
| << SemaRef.getLangOptions().InstantiationDepth; |
| return true; |
| } |
| |
| /// \brief Post-diagnostic hook for printing the instantiation stack. |
| void Sema::PrintInstantiationStackHook(unsigned, void *Cookie) { |
| Sema &SemaRef = *static_cast<Sema*>(Cookie); |
| SemaRef.PrintInstantiationStack(); |
| SemaRef.LastTemplateInstantiationErrorContext |
| = SemaRef.ActiveTemplateInstantiations.back(); |
| } |
| |
| /// \brief Prints the current instantiation stack through a series of |
| /// notes. |
| void Sema::PrintInstantiationStack() { |
| for (llvm::SmallVector<ActiveTemplateInstantiation, 16>::reverse_iterator |
| Active = ActiveTemplateInstantiations.rbegin(), |
| ActiveEnd = ActiveTemplateInstantiations.rend(); |
| Active != ActiveEnd; |
| ++Active) { |
| switch (Active->Kind) { |
| case ActiveTemplateInstantiation::TemplateInstantiation: { |
| ClassTemplateSpecializationDecl *Spec |
| = cast<ClassTemplateSpecializationDecl>((Decl*)Active->Entity); |
| Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr), |
| diag::note_template_class_instantiation_here) |
| << Context.getTypeDeclType(Spec) |
| << Active->InstantiationRange; |
| break; |
| } |
| |
| case ActiveTemplateInstantiation::DefaultTemplateArgumentInstantiation: { |
| TemplateDecl *Template = cast<TemplateDecl>((Decl *)Active->Entity); |
| std::string TemplateArgsStr |
| = ClassTemplateSpecializationType::PrintTemplateArgumentList( |
| Active->TemplateArgs, |
| Active->NumTemplateArgs); |
| Diags.Report(FullSourceLoc(Active->PointOfInstantiation, SourceMgr), |
| diag::note_default_arg_instantiation_here) |
| << (Template->getNameAsString() + TemplateArgsStr) |
| << Active->InstantiationRange; |
| break; |
| } |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===/ |
| // Template Instantiation for Types |
| //===----------------------------------------------------------------------===/ |
| namespace { |
| class VISIBILITY_HIDDEN TemplateTypeInstantiator { |
| Sema &SemaRef; |
| const TemplateArgument *TemplateArgs; |
| unsigned NumTemplateArgs; |
| SourceLocation Loc; |
| DeclarationName Entity; |
| |
| public: |
| TemplateTypeInstantiator(Sema &SemaRef, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs, |
| SourceLocation Loc, |
| DeclarationName Entity) |
| : SemaRef(SemaRef), TemplateArgs(TemplateArgs), |
| NumTemplateArgs(NumTemplateArgs), Loc(Loc), Entity(Entity) { } |
| |
| QualType operator()(QualType T) const { return Instantiate(T); } |
| |
| QualType Instantiate(QualType T) const; |
| |
| // Declare instantiate functions for each type. |
| #define TYPE(Class, Base) \ |
| QualType Instantiate##Class##Type(const Class##Type *T, \ |
| unsigned Quals) const; |
| #define ABSTRACT_TYPE(Class, Base) |
| #include "clang/AST/TypeNodes.def" |
| }; |
| } |
| |
| QualType |
| TemplateTypeInstantiator::InstantiateExtQualType(const ExtQualType *T, |
| unsigned Quals) const { |
| // FIXME: Implement this |
| assert(false && "Cannot instantiate ExtQualType yet"); |
| return QualType(); |
| } |
| |
| QualType |
| TemplateTypeInstantiator::InstantiateBuiltinType(const BuiltinType *T, |
| unsigned Quals) const { |
| assert(false && "Builtin types are not dependent and cannot be instantiated"); |
| return QualType(T, Quals); |
| } |
| |
| QualType |
| TemplateTypeInstantiator:: |
| InstantiateFixedWidthIntType(const FixedWidthIntType *T, unsigned Quals) const { |
| // FIXME: Implement this |
| assert(false && "Cannot instantiate FixedWidthIntType yet"); |
| return QualType(); |
| } |
| |
| QualType |
| TemplateTypeInstantiator::InstantiateComplexType(const ComplexType *T, |
| unsigned Quals) const { |
| // FIXME: Implement this |
| assert(false && "Cannot instantiate ComplexType yet"); |
| return QualType(); |
| } |
| |
| QualType |
| TemplateTypeInstantiator::InstantiatePointerType(const PointerType *T, |
| unsigned Quals) const { |
| QualType PointeeType = Instantiate(T->getPointeeType()); |
| if (PointeeType.isNull()) |
| return QualType(); |
| |
| return SemaRef.BuildPointerType(PointeeType, Quals, Loc, Entity); |
| } |
| |
| QualType |
| TemplateTypeInstantiator::InstantiateBlockPointerType(const BlockPointerType *T, |
| unsigned Quals) const { |
| // FIXME: Implement this |
| assert(false && "Cannot instantiate BlockPointerType yet"); |
| return QualType(); |
| } |
| |
| QualType |
| TemplateTypeInstantiator::InstantiateLValueReferenceType( |
| const LValueReferenceType *T, unsigned Quals) const { |
| QualType ReferentType = Instantiate(T->getPointeeType()); |
| if (ReferentType.isNull()) |
| return QualType(); |
| |
| return SemaRef.BuildReferenceType(ReferentType, true, Quals, Loc, Entity); |
| } |
| |
| QualType |
| TemplateTypeInstantiator::InstantiateRValueReferenceType( |
| const RValueReferenceType *T, unsigned Quals) const { |
| QualType ReferentType = Instantiate(T->getPointeeType()); |
| if (ReferentType.isNull()) |
| return QualType(); |
| |
| return SemaRef.BuildReferenceType(ReferentType, false, Quals, Loc, Entity); |
| } |
| |
| QualType |
| TemplateTypeInstantiator:: |
| InstantiateMemberPointerType(const MemberPointerType *T, |
| unsigned Quals) const { |
| // FIXME: Implement this |
| assert(false && "Cannot instantiate MemberPointerType yet"); |
| return QualType(); |
| } |
| |
| QualType |
| TemplateTypeInstantiator:: |
| InstantiateConstantArrayType(const ConstantArrayType *T, |
| unsigned Quals) const { |
| QualType ElementType = Instantiate(T->getElementType()); |
| if (ElementType.isNull()) |
| return ElementType; |
| |
| // Build a temporary integer literal to specify the size for |
| // BuildArrayType. Since we have already checked the size as part of |
| // creating the dependent array type in the first place, we know |
| // there aren't any errors. |
| // FIXME: Is IntTy big enough? Maybe not, but LongLongTy causes |
| // problems that I have yet to investigate. |
| IntegerLiteral ArraySize(T->getSize(), SemaRef.Context.IntTy, Loc); |
| return SemaRef.BuildArrayType(ElementType, T->getSizeModifier(), |
| &ArraySize, T->getIndexTypeQualifier(), |
| Loc, Entity); |
| } |
| |
| QualType |
| TemplateTypeInstantiator:: |
| InstantiateIncompleteArrayType(const IncompleteArrayType *T, |
| unsigned Quals) const { |
| QualType ElementType = Instantiate(T->getElementType()); |
| if (ElementType.isNull()) |
| return ElementType; |
| |
| return SemaRef.BuildArrayType(ElementType, T->getSizeModifier(), |
| 0, T->getIndexTypeQualifier(), |
| Loc, Entity); |
| } |
| |
| QualType |
| TemplateTypeInstantiator:: |
| InstantiateVariableArrayType(const VariableArrayType *T, |
| unsigned Quals) const { |
| // FIXME: Implement this |
| assert(false && "Cannot instantiate VariableArrayType yet"); |
| return QualType(); |
| } |
| |
| QualType |
| TemplateTypeInstantiator:: |
| InstantiateDependentSizedArrayType(const DependentSizedArrayType *T, |
| unsigned Quals) const { |
| Expr *ArraySize = T->getSizeExpr(); |
| assert(ArraySize->isValueDependent() && |
| "dependent sized array types must have value dependent size expr"); |
| |
| // Instantiate the element type if needed |
| QualType ElementType = T->getElementType(); |
| if (ElementType->isDependentType()) { |
| ElementType = Instantiate(ElementType); |
| if (ElementType.isNull()) |
| return QualType(); |
| } |
| |
| // Instantiate the size expression |
| Sema::OwningExprResult InstantiatedArraySize = |
| SemaRef.InstantiateExpr(ArraySize, TemplateArgs, NumTemplateArgs); |
| if (InstantiatedArraySize.isInvalid()) |
| return QualType(); |
| |
| return SemaRef.BuildArrayType(ElementType, T->getSizeModifier(), |
| (Expr *)InstantiatedArraySize.release(), |
| T->getIndexTypeQualifier(), Loc, Entity); |
| } |
| |
| QualType |
| TemplateTypeInstantiator::InstantiateVectorType(const VectorType *T, |
| unsigned Quals) const { |
| // FIXME: Implement this |
| assert(false && "Cannot instantiate VectorType yet"); |
| return QualType(); |
| } |
| |
| QualType |
| TemplateTypeInstantiator::InstantiateExtVectorType(const ExtVectorType *T, |
| unsigned Quals) const { |
| // FIXME: Implement this |
| assert(false && "Cannot instantiate ExtVectorType yet"); |
| return QualType(); |
| } |
| |
| QualType |
| TemplateTypeInstantiator:: |
| InstantiateFunctionProtoType(const FunctionProtoType *T, |
| unsigned Quals) const { |
| QualType ResultType = Instantiate(T->getResultType()); |
| if (ResultType.isNull()) |
| return ResultType; |
| |
| llvm::SmallVector<QualType, 16> ParamTypes; |
| for (FunctionProtoType::arg_type_iterator Param = T->arg_type_begin(), |
| ParamEnd = T->arg_type_end(); |
| Param != ParamEnd; ++Param) { |
| QualType P = Instantiate(*Param); |
| if (P.isNull()) |
| return P; |
| |
| ParamTypes.push_back(P); |
| } |
| |
| return SemaRef.BuildFunctionType(ResultType, &ParamTypes[0], |
| ParamTypes.size(), |
| T->isVariadic(), T->getTypeQuals(), |
| Loc, Entity); |
| } |
| |
| QualType |
| TemplateTypeInstantiator:: |
| InstantiateFunctionNoProtoType(const FunctionNoProtoType *T, |
| unsigned Quals) const { |
| assert(false && "Functions without prototypes cannot be dependent."); |
| return QualType(); |
| } |
| |
| QualType |
| TemplateTypeInstantiator::InstantiateTypedefType(const TypedefType *T, |
| unsigned Quals) const { |
| // FIXME: Implement this |
| assert(false && "Cannot instantiate TypedefType yet"); |
| return QualType(); |
| } |
| |
| QualType |
| TemplateTypeInstantiator::InstantiateTypeOfExprType(const TypeOfExprType *T, |
| unsigned Quals) const { |
| // FIXME: Implement this |
| assert(false && "Cannot instantiate TypeOfExprType yet"); |
| return QualType(); |
| } |
| |
| QualType |
| TemplateTypeInstantiator::InstantiateTypeOfType(const TypeOfType *T, |
| unsigned Quals) const { |
| // FIXME: Implement this |
| assert(false && "Cannot instantiate TypeOfType yet"); |
| return QualType(); |
| } |
| |
| QualType |
| TemplateTypeInstantiator::InstantiateRecordType(const RecordType *T, |
| unsigned Quals) const { |
| // FIXME: Implement this |
| assert(false && "Cannot instantiate RecordType yet"); |
| return QualType(); |
| } |
| |
| QualType |
| TemplateTypeInstantiator::InstantiateEnumType(const EnumType *T, |
| unsigned Quals) const { |
| // FIXME: Implement this |
| assert(false && "Cannot instantiate EnumType yet"); |
| return QualType(); |
| } |
| |
| QualType |
| TemplateTypeInstantiator:: |
| InstantiateTemplateTypeParmType(const TemplateTypeParmType *T, |
| unsigned Quals) const { |
| if (T->getDepth() == 0) { |
| // Replace the template type parameter with its corresponding |
| // template argument. |
| assert(T->getIndex() < NumTemplateArgs && "Wrong # of template args"); |
| assert(TemplateArgs[T->getIndex()].getKind() == TemplateArgument::Type && |
| "Template argument kind mismatch"); |
| QualType Result = TemplateArgs[T->getIndex()].getAsType(); |
| if (Result.isNull() || !Quals) |
| return Result; |
| |
| // C++ [dcl.ref]p1: |
| // [...] Cv-qualified references are ill-formed except when |
| // the cv-qualifiers are introduced through the use of a |
| // typedef (7.1.3) or of a template type argument (14.3), in |
| // which case the cv-qualifiers are ignored. |
| if (Quals && Result->isReferenceType()) |
| Quals = 0; |
| |
| return QualType(Result.getTypePtr(), Quals | Result.getCVRQualifiers()); |
| } |
| |
| // The template type parameter comes from an inner template (e.g., |
| // the template parameter list of a member template inside the |
| // template we are instantiating). Create a new template type |
| // parameter with the template "level" reduced by one. |
| return SemaRef.Context.getTemplateTypeParmType(T->getDepth() - 1, |
| T->getIndex(), |
| T->getName()) |
| .getQualifiedType(Quals); |
| } |
| |
| QualType |
| TemplateTypeInstantiator:: |
| InstantiateClassTemplateSpecializationType( |
| const ClassTemplateSpecializationType *T, |
| unsigned Quals) const { |
| llvm::SmallVector<TemplateArgument, 16> InstantiatedTemplateArgs; |
| InstantiatedTemplateArgs.reserve(T->getNumArgs()); |
| for (ClassTemplateSpecializationType::iterator Arg = T->begin(), |
| ArgEnd = T->end(); |
| Arg != ArgEnd; ++Arg) { |
| switch (Arg->getKind()) { |
| case TemplateArgument::Type: { |
| QualType T = SemaRef.InstantiateType(Arg->getAsType(), |
| TemplateArgs, NumTemplateArgs, |
| Arg->getLocation(), |
| DeclarationName()); |
| if (T.isNull()) |
| return QualType(); |
| |
| InstantiatedTemplateArgs.push_back( |
| TemplateArgument(Arg->getLocation(), T)); |
| break; |
| } |
| |
| case TemplateArgument::Declaration: |
| case TemplateArgument::Integral: |
| InstantiatedTemplateArgs.push_back(*Arg); |
| break; |
| |
| case TemplateArgument::Expression: |
| Sema::OwningExprResult E |
| = SemaRef.InstantiateExpr(Arg->getAsExpr(), TemplateArgs, |
| NumTemplateArgs); |
| if (E.isInvalid()) |
| return QualType(); |
| InstantiatedTemplateArgs.push_back((Expr *)E.release()); |
| break; |
| } |
| } |
| |
| // FIXME: We're missing the locations of the template name, '<', and |
| // '>'. |
| return SemaRef.CheckClassTemplateId(cast<ClassTemplateDecl>(T->getTemplate()), |
| Loc, |
| SourceLocation(), |
| &InstantiatedTemplateArgs[0], |
| InstantiatedTemplateArgs.size(), |
| SourceLocation()); |
| } |
| |
| QualType |
| TemplateTypeInstantiator:: |
| InstantiateObjCInterfaceType(const ObjCInterfaceType *T, |
| unsigned Quals) const { |
| assert(false && "Objective-C types cannot be dependent"); |
| return QualType(); |
| } |
| |
| QualType |
| TemplateTypeInstantiator:: |
| InstantiateObjCQualifiedInterfaceType(const ObjCQualifiedInterfaceType *T, |
| unsigned Quals) const { |
| assert(false && "Objective-C types cannot be dependent"); |
| return QualType(); |
| } |
| |
| QualType |
| TemplateTypeInstantiator:: |
| InstantiateObjCQualifiedIdType(const ObjCQualifiedIdType *T, |
| unsigned Quals) const { |
| assert(false && "Objective-C types cannot be dependent"); |
| return QualType(); |
| } |
| |
| QualType |
| TemplateTypeInstantiator:: |
| InstantiateObjCQualifiedClassType(const ObjCQualifiedClassType *T, |
| unsigned Quals) const { |
| assert(false && "Objective-C types cannot be dependent"); |
| return QualType(); |
| } |
| |
| /// \brief The actual implementation of Sema::InstantiateType(). |
| QualType TemplateTypeInstantiator::Instantiate(QualType T) const { |
| // If T is not a dependent type, there is nothing to do. |
| if (!T->isDependentType()) |
| return T; |
| |
| switch (T->getTypeClass()) { |
| #define TYPE(Class, Base) \ |
| case Type::Class: \ |
| return Instantiate##Class##Type(cast<Class##Type>(T.getTypePtr()), \ |
| T.getCVRQualifiers()); |
| #define ABSTRACT_TYPE(Class, Base) |
| #include "clang/AST/TypeNodes.def" |
| } |
| |
| assert(false && "Not all types have been decoded for instantiation"); |
| return QualType(); |
| } |
| |
| /// \brief Instantiate the type T with a given set of template arguments. |
| /// |
| /// This routine substitutes the given template arguments into the |
| /// type T and produces the instantiated type. |
| /// |
| /// \param T the type into which the template arguments will be |
| /// substituted. If this type is not dependent, it will be returned |
| /// immediately. |
| /// |
| /// \param TemplateArgs the template arguments that will be |
| /// substituted for the top-level template parameters within T. |
| /// |
| /// \param NumTemplateArgs the number of template arguments provided |
| /// by TemplateArgs. |
| /// |
| /// \param Loc the location in the source code where this substitution |
| /// is being performed. It will typically be the location of the |
| /// declarator (if we're instantiating the type of some declaration) |
| /// or the location of the type in the source code (if, e.g., we're |
| /// instantiating the type of a cast expression). |
| /// |
| /// \param Entity the name of the entity associated with a declaration |
| /// being instantiated (if any). May be empty to indicate that there |
| /// is no such entity (if, e.g., this is a type that occurs as part of |
| /// a cast expression) or that the entity has no name (e.g., an |
| /// unnamed function parameter). |
| /// |
| /// \returns If the instantiation succeeds, the instantiated |
| /// type. Otherwise, produces diagnostics and returns a NULL type. |
| QualType Sema::InstantiateType(QualType T, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs, |
| SourceLocation Loc, DeclarationName Entity) { |
| assert(!ActiveTemplateInstantiations.empty() && |
| "Cannot perform an instantiation without some context on the " |
| "instantiation stack"); |
| |
| // If T is not a dependent type, there is nothing to do. |
| if (!T->isDependentType()) |
| return T; |
| |
| TemplateTypeInstantiator Instantiator(*this, TemplateArgs, NumTemplateArgs, |
| Loc, Entity); |
| return Instantiator(T); |
| } |
| |
| //===----------------------------------------------------------------------===/ |
| // Template Instantiation for Expressions |
| //===----------------------------------------------------------------------===/ |
| namespace { |
| class VISIBILITY_HIDDEN TemplateExprInstantiator |
| : public StmtVisitor<TemplateExprInstantiator, Sema::OwningExprResult> { |
| Sema &SemaRef; |
| const TemplateArgument *TemplateArgs; |
| unsigned NumTemplateArgs; |
| |
| public: |
| typedef Sema::OwningExprResult OwningExprResult; |
| |
| TemplateExprInstantiator(Sema &SemaRef, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs) |
| : SemaRef(SemaRef), TemplateArgs(TemplateArgs), |
| NumTemplateArgs(NumTemplateArgs) { } |
| |
| // FIXME: Once we get closer to completion, replace these |
| // manually-written declarations with automatically-generated ones |
| // from clang/AST/StmtNodes.def. |
| OwningExprResult VisitIntegerLiteral(IntegerLiteral *E); |
| OwningExprResult VisitDeclRefExpr(DeclRefExpr *E); |
| OwningExprResult VisitParenExpr(ParenExpr *E); |
| OwningExprResult VisitUnaryOperator(UnaryOperator *E); |
| OwningExprResult VisitBinaryOperator(BinaryOperator *E); |
| OwningExprResult VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E); |
| OwningExprResult VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E); |
| OwningExprResult VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *E); |
| OwningExprResult VisitImplicitCastExpr(ImplicitCastExpr *E); |
| |
| // Base case. I'm supposed to ignore this. |
| Sema::OwningExprResult VisitStmt(Stmt *S) { |
| S->dump(); |
| assert(false && "Cannot instantiate this kind of expression"); |
| return SemaRef.ExprError(); |
| } |
| }; |
| } |
| |
| Sema::OwningExprResult |
| TemplateExprInstantiator::VisitIntegerLiteral(IntegerLiteral *E) { |
| return SemaRef.Clone(E); |
| } |
| |
| Sema::OwningExprResult |
| TemplateExprInstantiator::VisitDeclRefExpr(DeclRefExpr *E) { |
| Decl *D = E->getDecl(); |
| if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) { |
| assert(NTTP->getDepth() == 0 && "No nested templates yet"); |
| const TemplateArgument &Arg = TemplateArgs[NTTP->getPosition()]; |
| QualType T = Arg.getIntegralType(); |
| if (T->isCharType() || T->isWideCharType()) |
| return SemaRef.Owned(new (SemaRef.Context) CharacterLiteral( |
| Arg.getAsIntegral()->getZExtValue(), |
| T->isWideCharType(), |
| T, |
| E->getSourceRange().getBegin())); |
| else if (T->isBooleanType()) |
| return SemaRef.Owned(new (SemaRef.Context) CXXBoolLiteralExpr( |
| Arg.getAsIntegral()->getBoolValue(), |
| T, |
| E->getSourceRange().getBegin())); |
| |
| return SemaRef.Owned(new (SemaRef.Context) IntegerLiteral( |
| *Arg.getAsIntegral(), |
| T, |
| E->getSourceRange().getBegin())); |
| } else |
| assert(false && "Can't handle arbitrary declaration references"); |
| |
| return SemaRef.ExprError(); |
| } |
| |
| Sema::OwningExprResult |
| TemplateExprInstantiator::VisitParenExpr(ParenExpr *E) { |
| Sema::OwningExprResult SubExpr = Visit(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| return SemaRef.Owned(new (SemaRef.Context) ParenExpr( |
| E->getLParen(), E->getRParen(), |
| (Expr *)SubExpr.release())); |
| } |
| |
| Sema::OwningExprResult |
| TemplateExprInstantiator::VisitUnaryOperator(UnaryOperator *E) { |
| Sema::OwningExprResult Arg = Visit(E->getSubExpr()); |
| if (Arg.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| return SemaRef.CreateBuiltinUnaryOp(E->getOperatorLoc(), |
| E->getOpcode(), |
| move(Arg)); |
| } |
| |
| Sema::OwningExprResult |
| TemplateExprInstantiator::VisitBinaryOperator(BinaryOperator *E) { |
| Sema::OwningExprResult LHS = Visit(E->getLHS()); |
| if (LHS.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| Sema::OwningExprResult RHS = Visit(E->getRHS()); |
| if (RHS.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| Sema::OwningExprResult Result |
| = SemaRef.CreateBuiltinBinOp(E->getOperatorLoc(), |
| E->getOpcode(), |
| (Expr *)LHS.get(), |
| (Expr *)RHS.get()); |
| if (Result.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| LHS.release(); |
| RHS.release(); |
| return move(Result); |
| } |
| |
| Sema::OwningExprResult |
| TemplateExprInstantiator::VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { |
| Sema::OwningExprResult First = Visit(E->getArg(0)); |
| if (First.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| Expr *Args[2] = { (Expr *)First.get(), 0 }; |
| |
| Sema::OwningExprResult Second(SemaRef); |
| if (E->getNumArgs() == 2) { |
| Second = Visit(E->getArg(1)); |
| |
| if (Second.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| Args[1] = (Expr *)Second.get(); |
| } |
| |
| if (!E->isTypeDependent()) { |
| // Since our original expression was not type-dependent, we do not |
| // perform lookup again at instantiation time (C++ [temp.dep]p1). |
| // Instead, we just build the new overloaded operator call |
| // expression. |
| First.release(); |
| Second.release(); |
| // FIXME: Don't reuse the callee here. We need to instantiate it. |
| return SemaRef.Owned(new (SemaRef.Context) CXXOperatorCallExpr( |
| SemaRef.Context, |
| E->getOperator(), |
| E->getCallee(), |
| Args, E->getNumArgs(), |
| E->getType(), |
| E->getOperatorLoc())); |
| } |
| |
| bool isPostIncDec = E->getNumArgs() == 2 && |
| (E->getOperator() == OO_PlusPlus || E->getOperator() == OO_MinusMinus); |
| if (E->getNumArgs() == 1 || isPostIncDec) { |
| if (!Args[0]->getType()->isOverloadableType()) { |
| // The argument is not of overloadable type, so try to create a |
| // built-in unary operation. |
| UnaryOperator::Opcode Opc |
| = UnaryOperator::getOverloadedOpcode(E->getOperator(), isPostIncDec); |
| |
| return SemaRef.CreateBuiltinUnaryOp(E->getOperatorLoc(), Opc, |
| move(First)); |
| } |
| |
| // Fall through to perform overload resolution |
| } else { |
| assert(E->getNumArgs() == 2 && "Expected binary operation"); |
| |
| Sema::OwningExprResult Result(SemaRef); |
| if (!Args[0]->getType()->isOverloadableType() && |
| !Args[1]->getType()->isOverloadableType()) { |
| // Neither of the arguments is an overloadable type, so try to |
| // create a built-in binary operation. |
| BinaryOperator::Opcode Opc = |
| BinaryOperator::getOverloadedOpcode(E->getOperator()); |
| Result = SemaRef.CreateBuiltinBinOp(E->getOperatorLoc(), Opc, |
| Args[0], Args[1]); |
| if (Result.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| First.release(); |
| Second.release(); |
| return move(Result); |
| } |
| |
| // Fall through to perform overload resolution. |
| } |
| |
| // Compute the set of functions that were found at template |
| // definition time. |
| Sema::FunctionSet Functions; |
| DeclRefExpr *DRE = cast<DeclRefExpr>(E->getCallee()); |
| OverloadedFunctionDecl *Overloads |
| = cast<OverloadedFunctionDecl>(DRE->getDecl()); |
| |
| // FIXME: Do we have to check |
| // IsAcceptableNonMemberOperatorCandidate for each of these? |
| for (OverloadedFunctionDecl::function_iterator |
| F = Overloads->function_begin(), |
| FEnd = Overloads->function_end(); |
| F != FEnd; ++F) |
| Functions.insert(*F); |
| |
| // Add any functions found via argument-dependent lookup. |
| DeclarationName OpName |
| = SemaRef.Context.DeclarationNames.getCXXOperatorName(E->getOperator()); |
| SemaRef.ArgumentDependentLookup(OpName, Args, E->getNumArgs(), Functions); |
| |
| // Create the overloaded operator invocation. |
| if (E->getNumArgs() == 1 || isPostIncDec) { |
| UnaryOperator::Opcode Opc |
| = UnaryOperator::getOverloadedOpcode(E->getOperator(), isPostIncDec); |
| return SemaRef.CreateOverloadedUnaryOp(E->getOperatorLoc(), Opc, |
| Functions, move(First)); |
| } |
| |
| // FIXME: This would be far less ugly if CreateOverloadedBinOp took |
| // in ExprArg arguments! |
| BinaryOperator::Opcode Opc = |
| BinaryOperator::getOverloadedOpcode(E->getOperator()); |
| OwningExprResult Result |
| = SemaRef.CreateOverloadedBinOp(E->getOperatorLoc(), Opc, |
| Functions, Args[0], Args[1]); |
| |
| if (Result.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| First.release(); |
| Second.release(); |
| return move(Result); |
| } |
| |
| Sema::OwningExprResult |
| TemplateExprInstantiator::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E) { |
| bool isSizeOf = E->isSizeOf(); |
| |
| if (E->isArgumentType()) { |
| QualType T = E->getArgumentType(); |
| if (T->isDependentType()) { |
| T = SemaRef.InstantiateType(T, TemplateArgs, NumTemplateArgs, |
| /*FIXME*/E->getOperatorLoc(), |
| &SemaRef.PP.getIdentifierTable().get("sizeof")); |
| if (T.isNull()) |
| return SemaRef.ExprError(); |
| } |
| |
| return SemaRef.CreateSizeOfAlignOfExpr(T, E->getOperatorLoc(), isSizeOf, |
| E->getSourceRange()); |
| } |
| |
| Sema::OwningExprResult Arg = Visit(E->getArgumentExpr()); |
| if (Arg.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| Sema::OwningExprResult Result |
| = SemaRef.CreateSizeOfAlignOfExpr((Expr *)Arg.get(), E->getOperatorLoc(), |
| isSizeOf, E->getSourceRange()); |
| if (Result.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| Arg.release(); |
| return move(Result); |
| } |
| |
| Sema::OwningExprResult |
| TemplateExprInstantiator::VisitCXXTemporaryObjectExpr( |
| CXXTemporaryObjectExpr *E) { |
| QualType T = E->getType(); |
| if (T->isDependentType()) { |
| T = SemaRef.InstantiateType(T, TemplateArgs, NumTemplateArgs, |
| E->getTypeBeginLoc(), DeclarationName()); |
| if (T.isNull()) |
| return SemaRef.ExprError(); |
| } |
| |
| llvm::SmallVector<Expr *, 16> Args; |
| Args.reserve(E->getNumArgs()); |
| bool Invalid = false; |
| for (CXXTemporaryObjectExpr::arg_iterator Arg = E->arg_begin(), |
| ArgEnd = E->arg_end(); |
| Arg != ArgEnd; ++Arg) { |
| OwningExprResult InstantiatedArg = Visit(*Arg); |
| if (InstantiatedArg.isInvalid()) { |
| Invalid = true; |
| break; |
| } |
| |
| Args.push_back((Expr *)InstantiatedArg.release()); |
| } |
| |
| if (!Invalid) { |
| SourceLocation CommaLoc; |
| // FIXME: HACK! |
| if (Args.size() > 1) |
| CommaLoc |
| = SemaRef.PP.getLocForEndOfToken(Args[0]->getSourceRange().getEnd()); |
| Sema::OwningExprResult Result( |
| SemaRef.ActOnCXXTypeConstructExpr(SourceRange(E->getTypeBeginLoc() |
| /*, FIXME*/), |
| T.getAsOpaquePtr(), |
| /*FIXME*/E->getTypeBeginLoc(), |
| Sema::MultiExprArg(SemaRef, |
| (void**)&Args[0], |
| Args.size()), |
| /*HACK*/&CommaLoc, |
| E->getSourceRange().getEnd())); |
| // At this point, Args no longer owns the arguments, no matter what. |
| return move(Result); |
| } |
| |
| // Clean up the instantiated arguments. |
| // FIXME: Would rather do this with RAII. |
| for (unsigned Idx = 0; Idx < Args.size(); ++Idx) |
| SemaRef.DeleteExpr(Args[Idx]); |
| |
| return SemaRef.ExprError(); |
| } |
| |
| Sema::OwningExprResult TemplateExprInstantiator::VisitImplicitCastExpr( |
| ImplicitCastExpr *E) { |
| assert(!E->isTypeDependent() && "Implicit casts must have known types"); |
| |
| Sema::OwningExprResult SubExpr = Visit(E->getSubExpr()); |
| if (SubExpr.isInvalid()) |
| return SemaRef.ExprError(); |
| |
| ImplicitCastExpr *ICE = |
| new (SemaRef.Context) ImplicitCastExpr(E->getType(), |
| (Expr *)SubExpr.release(), |
| E->isLvalueCast()); |
| return SemaRef.Owned(ICE); |
| } |
| |
| Sema::OwningExprResult |
| Sema::InstantiateExpr(Expr *E, const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs) { |
| TemplateExprInstantiator Instantiator(*this, TemplateArgs, NumTemplateArgs); |
| return Instantiator.Visit(E); |
| } |
| |
| /// \brief Instantiate the base class specifiers of the given class |
| /// template specialization. |
| /// |
| /// Produces a diagnostic and returns true on error, returns false and |
| /// attaches the instantiated base classes to the class template |
| /// specialization if successful. |
| bool |
| Sema::InstantiateBaseSpecifiers( |
| ClassTemplateSpecializationDecl *ClassTemplateSpec, |
| ClassTemplateDecl *ClassTemplate) { |
| bool Invalid = false; |
| llvm::SmallVector<CXXBaseSpecifier*, 8> InstantiatedBases; |
| for (ClassTemplateSpecializationDecl::base_class_iterator |
| Base = ClassTemplate->getTemplatedDecl()->bases_begin(), |
| BaseEnd = ClassTemplate->getTemplatedDecl()->bases_end(); |
| Base != BaseEnd; ++Base) { |
| if (!Base->getType()->isDependentType()) { |
| // FIXME: Allocate via ASTContext |
| InstantiatedBases.push_back(new CXXBaseSpecifier(*Base)); |
| continue; |
| } |
| |
| QualType BaseType = InstantiateType(Base->getType(), |
| ClassTemplateSpec->getTemplateArgs(), |
| ClassTemplateSpec->getNumTemplateArgs(), |
| Base->getSourceRange().getBegin(), |
| DeclarationName()); |
| if (BaseType.isNull()) { |
| Invalid = true; |
| continue; |
| } |
| |
| if (CXXBaseSpecifier *InstantiatedBase |
| = CheckBaseSpecifier(ClassTemplateSpec, |
| Base->getSourceRange(), |
| Base->isVirtual(), |
| Base->getAccessSpecifierAsWritten(), |
| BaseType, |
| /*FIXME: Not totally accurate */ |
| Base->getSourceRange().getBegin())) |
| InstantiatedBases.push_back(InstantiatedBase); |
| else |
| Invalid = true; |
| } |
| |
| if (!Invalid && |
| AttachBaseSpecifiers(ClassTemplateSpec, &InstantiatedBases[0], |
| InstantiatedBases.size())) |
| Invalid = true; |
| |
| return Invalid; |
| } |
| |
| bool |
| Sema::InstantiateClassTemplateSpecialization( |
| ClassTemplateSpecializationDecl *ClassTemplateSpec, |
| bool ExplicitInstantiation) { |
| // Perform the actual instantiation on the canonical declaration. |
| ClassTemplateSpec = cast<ClassTemplateSpecializationDecl>( |
| Context.getCanonicalDecl(ClassTemplateSpec)); |
| |
| // We can only instantiate something that hasn't already been |
| // instantiated or specialized. Fail without any diagnostics: our |
| // caller will provide an error message. |
| if (ClassTemplateSpec->getSpecializationKind() != TSK_Undeclared) |
| return true; |
| |
| // FIXME: Push this class template instantiation onto the |
| // instantiation stack, checking for recursion that exceeds a |
| // certain depth. |
| |
| // FIXME: Perform class template partial specialization to select |
| // the best template. |
| ClassTemplateDecl *Template = ClassTemplateSpec->getSpecializedTemplate(); |
| |
| if (!Template->getTemplatedDecl()->getDefinition(Context)) { |
| Diag(ClassTemplateSpec->getLocation(), |
| diag::err_template_implicit_instantiate_undefined) |
| << Context.getTypeDeclType(ClassTemplateSpec); |
| Diag(Template->getTemplatedDecl()->getLocation(), |
| diag::note_template_decl_here); |
| return true; |
| } |
| |
| // Note that this is an instantiation. |
| ClassTemplateSpec->setSpecializationKind( |
| ExplicitInstantiation? TSK_ExplicitInstantiation |
| : TSK_ImplicitInstantiation); |
| |
| |
| bool Invalid = false; |
| |
| InstantiatingTemplate Inst(*this, ClassTemplateSpec->getLocation(), |
| ClassTemplateSpec); |
| if (Inst) |
| return true; |
| |
| // Enter the scope of this instantiation. We don't use |
| // PushDeclContext because we don't have a scope. |
| DeclContext *PreviousContext = CurContext; |
| CurContext = ClassTemplateSpec; |
| |
| // Start the definition of this instantiation. |
| ClassTemplateSpec->startDefinition(); |
| |
| |
| // Instantiate the base class specifiers. |
| if (InstantiateBaseSpecifiers(ClassTemplateSpec, Template)) |
| Invalid = true; |
| |
| // FIXME: Create the injected-class-name for the |
| // instantiation. Should this be a typedef or something like it? |
| |
| RecordDecl *Pattern = Template->getTemplatedDecl(); |
| llvm::SmallVector<DeclTy *, 32> Fields; |
| for (RecordDecl::decl_iterator Member = Pattern->decls_begin(), |
| MemberEnd = Pattern->decls_end(); |
| Member != MemberEnd; ++Member) { |
| if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(*Member)) { |
| // FIXME: Simplified instantiation of typedefs needs to be made |
| // "real". |
| QualType T = Typedef->getUnderlyingType(); |
| if (T->isDependentType()) { |
| T = InstantiateType(T, ClassTemplateSpec->getTemplateArgs(), |
| ClassTemplateSpec->getNumTemplateArgs(), |
| Typedef->getLocation(), |
| Typedef->getDeclName()); |
| if (T.isNull()) { |
| Invalid = true; |
| T = Context.IntTy; |
| } |
| } |
| |
| // Create the new typedef |
| TypedefDecl *New |
| = TypedefDecl::Create(Context, ClassTemplateSpec, |
| Typedef->getLocation(), |
| Typedef->getIdentifier(), |
| T); |
| ClassTemplateSpec->addDecl(New); |
| } |
| else if (FieldDecl *Field = dyn_cast<FieldDecl>(*Member)) { |
| // FIXME: Simplified instantiation of fields needs to be made |
| // "real". |
| bool InvalidDecl = false; |
| QualType T = Field->getType(); |
| if (T->isDependentType()) { |
| T = InstantiateType(T, ClassTemplateSpec->getTemplateArgs(), |
| ClassTemplateSpec->getNumTemplateArgs(), |
| Field->getLocation(), |
| Field->getDeclName()); |
| if (!T.isNull() && T->isFunctionType()) { |
| // C++ [temp.arg.type]p3: |
| // If a declaration acquires a function type through a type |
| // dependent on a template-parameter and this causes a |
| // declaration that does not use the syntactic form of a |
| // function declarator to have function type, the program is |
| // ill-formed. |
| Diag(Field->getLocation(), diag::err_field_instantiates_to_function) |
| << T; |
| T = QualType(); |
| InvalidDecl = true; |
| } |
| } |
| |
| Expr *BitWidth = Field->getBitWidth(); |
| if (InvalidDecl) |
| BitWidth = 0; |
| else if (BitWidth) { |
| OwningExprResult InstantiatedBitWidth |
| = InstantiateExpr(BitWidth, |
| ClassTemplateSpec->getTemplateArgs(), |
| ClassTemplateSpec->getNumTemplateArgs()); |
| if (InstantiatedBitWidth.isInvalid()) { |
| Invalid = InvalidDecl = true; |
| BitWidth = 0; |
| } else |
| BitWidth = (Expr *)InstantiatedBitWidth.release(); |
| } |
| |
| FieldDecl *New = CheckFieldDecl(Field->getDeclName(), T, |
| ClassTemplateSpec, |
| Field->getLocation(), |
| Field->isMutable(), |
| BitWidth, |
| Field->getAccess(), |
| 0); |
| if (New) { |
| ClassTemplateSpec->addDecl(New); |
| Fields.push_back(New); |
| |
| if (InvalidDecl) |
| New->setInvalidDecl(); |
| |
| if (New->isInvalidDecl()) |
| Invalid = true; |
| } |
| } else if (StaticAssertDecl *SA = dyn_cast<StaticAssertDecl>(*Member)) { |
| Expr *AssertExpr = SA->getAssertExpr(); |
| |
| OwningExprResult InstantiatedAssertExpr |
| = InstantiateExpr(AssertExpr, |
| ClassTemplateSpec->getTemplateArgs(), |
| ClassTemplateSpec->getNumTemplateArgs()); |
| if (!InstantiatedAssertExpr.isInvalid()) { |
| OwningExprResult Message = Clone(SA->getMessage()); |
| |
| Decl *New = |
| (Decl *)ActOnStaticAssertDeclaration(SA->getLocation(), |
| move(InstantiatedAssertExpr), |
| move(Message)); |
| if (New->isInvalidDecl()) |
| Invalid = true; |
| |
| } else |
| Invalid = true; |
| } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(*Member)) { |
| // FIXME: Spaghetti, anyone? |
| EnumDecl *New = EnumDecl::Create(Context, ClassTemplateSpec, |
| Enum->getLocation(), |
| Enum->getIdentifier(), |
| /*PrevDecl=*/0); |
| ClassTemplateSpec->addDecl(New); |
| New->startDefinition(); |
| |
| llvm::SmallVector<DeclTy *, 16> Enumerators; |
| |
| EnumConstantDecl *LastEnumConst = 0; |
| for (EnumDecl::enumerator_iterator EC = Enum->enumerator_begin(), |
| ECEnd = Enum->enumerator_end(); |
| EC != ECEnd; ++EC) { |
| // The specified value for the enumerator. |
| OwningExprResult Value = Owned((Expr *)0); |
| if (Expr *UninstValue = EC->getInitExpr()) |
| Value = InstantiateExpr(UninstValue, |
| ClassTemplateSpec->getTemplateArgs(), |
| ClassTemplateSpec->getNumTemplateArgs()); |
| |
| // Drop the initial value and continue. |
| bool isInvalid = false; |
| if (Value.isInvalid()) { |
| Value = Owned((Expr *)0); |
| isInvalid = true; |
| } |
| |
| EnumConstantDecl *NewEnumConst |
| = CheckEnumConstant(New, LastEnumConst, |
| EC->getLocation(), |
| EC->getIdentifier(), |
| move(Value)); |
| |
| if (isInvalid) { |
| if (NewEnumConst) |
| NewEnumConst->setInvalidDecl(); |
| New->setInvalidDecl(); |
| Invalid = true; |
| } |
| |
| if (NewEnumConst) { |
| New->addDecl(NewEnumConst); |
| Enumerators.push_back(NewEnumConst); |
| LastEnumConst = NewEnumConst; |
| } |
| } |
| |
| ActOnEnumBody(New->getLocation(), New, |
| &Enumerators[0], Enumerators.size()); |
| } |
| } |
| |
| // Finish checking fields. |
| ActOnFields(0, ClassTemplateSpec->getLocation(), ClassTemplateSpec, |
| &Fields[0], Fields.size(), SourceLocation(), SourceLocation(), |
| 0); |
| |
| // Add any implicitly-declared members that we might need. |
| AddImplicitlyDeclaredMembersToClass(ClassTemplateSpec); |
| |
| // Exit the scope of this instantiation. |
| CurContext = PreviousContext; |
| |
| return Invalid; |
| } |