| //===--- ASTImporter.cpp - Importing ASTs from other Contexts ---*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the ASTImporter class which imports AST nodes from one |
| // context into another context. |
| // |
| //===----------------------------------------------------------------------===// |
| #include "clang/AST/ASTImporter.h" |
| |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/ASTDiagnostic.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclVisitor.h" |
| #include "clang/AST/StmtVisitor.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/AST/TypeVisitor.h" |
| #include "clang/Basic/FileManager.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "llvm/Support/MemoryBuffer.h" |
| #include <deque> |
| |
| using namespace clang; |
| |
| namespace { |
| class ASTNodeImporter : public TypeVisitor<ASTNodeImporter, QualType>, |
| public DeclVisitor<ASTNodeImporter, Decl *>, |
| public StmtVisitor<ASTNodeImporter, Stmt *> { |
| ASTImporter &Importer; |
| |
| public: |
| explicit ASTNodeImporter(ASTImporter &Importer) : Importer(Importer) { } |
| |
| using TypeVisitor<ASTNodeImporter, QualType>::Visit; |
| using DeclVisitor<ASTNodeImporter, Decl *>::Visit; |
| using StmtVisitor<ASTNodeImporter, Stmt *>::Visit; |
| |
| // Importing types |
| QualType VisitType(Type *T); |
| QualType VisitBuiltinType(BuiltinType *T); |
| QualType VisitComplexType(ComplexType *T); |
| QualType VisitPointerType(PointerType *T); |
| QualType VisitBlockPointerType(BlockPointerType *T); |
| QualType VisitLValueReferenceType(LValueReferenceType *T); |
| QualType VisitRValueReferenceType(RValueReferenceType *T); |
| QualType VisitMemberPointerType(MemberPointerType *T); |
| QualType VisitConstantArrayType(ConstantArrayType *T); |
| QualType VisitIncompleteArrayType(IncompleteArrayType *T); |
| QualType VisitVariableArrayType(VariableArrayType *T); |
| // FIXME: DependentSizedArrayType |
| // FIXME: DependentSizedExtVectorType |
| QualType VisitVectorType(VectorType *T); |
| QualType VisitExtVectorType(ExtVectorType *T); |
| QualType VisitFunctionNoProtoType(FunctionNoProtoType *T); |
| QualType VisitFunctionProtoType(FunctionProtoType *T); |
| // FIXME: UnresolvedUsingType |
| QualType VisitTypedefType(TypedefType *T); |
| QualType VisitTypeOfExprType(TypeOfExprType *T); |
| // FIXME: DependentTypeOfExprType |
| QualType VisitTypeOfType(TypeOfType *T); |
| QualType VisitDecltypeType(DecltypeType *T); |
| // FIXME: DependentDecltypeType |
| QualType VisitRecordType(RecordType *T); |
| QualType VisitEnumType(EnumType *T); |
| QualType VisitElaboratedType(ElaboratedType *T); |
| // FIXME: TemplateTypeParmType |
| // FIXME: SubstTemplateTypeParmType |
| // FIXME: TemplateSpecializationType |
| QualType VisitQualifiedNameType(QualifiedNameType *T); |
| // FIXME: TypenameType |
| QualType VisitObjCInterfaceType(ObjCInterfaceType *T); |
| QualType VisitObjCObjectPointerType(ObjCObjectPointerType *T); |
| |
| // Importing declarations |
| bool ImportDeclParts(NamedDecl *D, DeclContext *&DC, |
| DeclContext *&LexicalDC, DeclarationName &Name, |
| SourceLocation &Loc); |
| bool IsStructuralMatch(RecordDecl *FromRecord, RecordDecl *ToRecord); |
| bool IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToRecord); |
| Decl *VisitDecl(Decl *D); |
| Decl *VisitTypedefDecl(TypedefDecl *D); |
| Decl *VisitEnumDecl(EnumDecl *D); |
| Decl *VisitRecordDecl(RecordDecl *D); |
| Decl *VisitEnumConstantDecl(EnumConstantDecl *D); |
| Decl *VisitFunctionDecl(FunctionDecl *D); |
| Decl *VisitFieldDecl(FieldDecl *D); |
| Decl *VisitVarDecl(VarDecl *D); |
| Decl *VisitParmVarDecl(ParmVarDecl *D); |
| Decl *VisitObjCInterfaceDecl(ObjCInterfaceDecl *D); |
| |
| // Importing statements |
| Stmt *VisitStmt(Stmt *S); |
| |
| // Importing expressions |
| Expr *VisitExpr(Expr *E); |
| Expr *VisitIntegerLiteral(IntegerLiteral *E); |
| Expr *VisitImplicitCastExpr(ImplicitCastExpr *E); |
| }; |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Structural Equivalence |
| //---------------------------------------------------------------------------- |
| |
| namespace { |
| struct StructuralEquivalenceContext { |
| /// \brief AST contexts for which we are checking structural equivalence. |
| ASTContext &C1, &C2; |
| |
| /// \brief Diagnostic object used to emit diagnostics. |
| Diagnostic &Diags; |
| |
| /// \brief The set of "tentative" equivalences between two canonical |
| /// declarations, mapping from a declaration in the first context to the |
| /// declaration in the second context that we believe to be equivalent. |
| llvm::DenseMap<Decl *, Decl *> TentativeEquivalences; |
| |
| /// \brief Queue of declarations in the first context whose equivalence |
| /// with a declaration in the second context still needs to be verified. |
| std::deque<Decl *> DeclsToCheck; |
| |
| /// \brief Declaration (from, to) pairs that are known not to be equivalent |
| /// (which we have already complained about). |
| llvm::DenseSet<std::pair<Decl *, Decl *> > &NonEquivalentDecls; |
| |
| /// \brief Whether we're being strict about the spelling of types when |
| /// unifying two types. |
| bool StrictTypeSpelling; |
| |
| StructuralEquivalenceContext(ASTContext &C1, ASTContext &C2, |
| Diagnostic &Diags, |
| llvm::DenseSet<std::pair<Decl *, Decl *> > &NonEquivalentDecls, |
| bool StrictTypeSpelling = false) |
| : C1(C1), C2(C2), Diags(Diags), NonEquivalentDecls(NonEquivalentDecls), |
| StrictTypeSpelling(StrictTypeSpelling) { } |
| |
| /// \brief Determine whether the two declarations are structurally |
| /// equivalent. |
| bool IsStructurallyEquivalent(Decl *D1, Decl *D2); |
| |
| /// \brief Determine whether the two types are structurally equivalent. |
| bool IsStructurallyEquivalent(QualType T1, QualType T2); |
| |
| private: |
| /// \brief Finish checking all of the structural equivalences. |
| /// |
| /// \returns true if an error occurred, false otherwise. |
| bool Finish(); |
| |
| public: |
| DiagnosticBuilder Diag1(SourceLocation Loc, unsigned DiagID) { |
| return Diags.Report(FullSourceLoc(Loc, C1.getSourceManager()), DiagID); |
| } |
| |
| DiagnosticBuilder Diag2(SourceLocation Loc, unsigned DiagID) { |
| return Diags.Report(FullSourceLoc(Loc, C2.getSourceManager()), DiagID); |
| } |
| }; |
| } |
| |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| QualType T1, QualType T2); |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| Decl *D1, Decl *D2); |
| |
| /// \brief Determine if two APInts have the same value, after zero-extending |
| /// one of them (if needed!) to ensure that the bit-widths match. |
| static bool IsSameValue(const llvm::APInt &I1, const llvm::APInt &I2) { |
| if (I1.getBitWidth() == I2.getBitWidth()) |
| return I1 == I2; |
| |
| if (I1.getBitWidth() > I2.getBitWidth()) |
| return I1 == llvm::APInt(I2).zext(I1.getBitWidth()); |
| |
| return llvm::APInt(I1).zext(I2.getBitWidth()) == I2; |
| } |
| |
| /// \brief Determine if two APSInts have the same value, zero- or sign-extending |
| /// as needed. |
| static bool IsSameValue(const llvm::APSInt &I1, const llvm::APSInt &I2) { |
| if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned()) |
| return I1 == I2; |
| |
| // Check for a bit-width mismatch. |
| if (I1.getBitWidth() > I2.getBitWidth()) |
| return IsSameValue(I1, llvm::APSInt(I2).extend(I1.getBitWidth())); |
| else if (I2.getBitWidth() > I1.getBitWidth()) |
| return IsSameValue(llvm::APSInt(I1).extend(I2.getBitWidth()), I2); |
| |
| // We have a signedness mismatch. Turn the signed value into an unsigned |
| // value. |
| if (I1.isSigned()) { |
| if (I1.isNegative()) |
| return false; |
| |
| return llvm::APSInt(I1, true) == I2; |
| } |
| |
| if (I2.isNegative()) |
| return false; |
| |
| return I1 == llvm::APSInt(I2, true); |
| } |
| |
| /// \brief Determine structural equivalence of two expressions. |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| Expr *E1, Expr *E2) { |
| if (!E1 || !E2) |
| return E1 == E2; |
| |
| // FIXME: Actually perform a structural comparison! |
| return true; |
| } |
| |
| /// \brief Determine whether two identifiers are equivalent. |
| static bool IsStructurallyEquivalent(const IdentifierInfo *Name1, |
| const IdentifierInfo *Name2) { |
| if (!Name1 || !Name2) |
| return Name1 == Name2; |
| |
| return Name1->getName() == Name2->getName(); |
| } |
| |
| /// \brief Determine whether two nested-name-specifiers are equivalent. |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| NestedNameSpecifier *NNS1, |
| NestedNameSpecifier *NNS2) { |
| // FIXME: Implement! |
| return true; |
| } |
| |
| /// \brief Determine whether two template arguments are equivalent. |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| const TemplateArgument &Arg1, |
| const TemplateArgument &Arg2) { |
| // FIXME: Implement! |
| return true; |
| } |
| |
| /// \brief Determine structural equivalence for the common part of array |
| /// types. |
| static bool IsArrayStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| const ArrayType *Array1, |
| const ArrayType *Array2) { |
| if (!IsStructurallyEquivalent(Context, |
| Array1->getElementType(), |
| Array2->getElementType())) |
| return false; |
| if (Array1->getSizeModifier() != Array2->getSizeModifier()) |
| return false; |
| if (Array1->getIndexTypeQualifiers() != Array2->getIndexTypeQualifiers()) |
| return false; |
| |
| return true; |
| } |
| |
| /// \brief Determine structural equivalence of two types. |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| QualType T1, QualType T2) { |
| if (T1.isNull() || T2.isNull()) |
| return T1.isNull() && T2.isNull(); |
| |
| if (!Context.StrictTypeSpelling) { |
| // We aren't being strict about token-to-token equivalence of types, |
| // so map down to the canonical type. |
| T1 = Context.C1.getCanonicalType(T1); |
| T2 = Context.C2.getCanonicalType(T2); |
| } |
| |
| if (T1.getQualifiers() != T2.getQualifiers()) |
| return false; |
| |
| Type::TypeClass TC = T1->getTypeClass(); |
| |
| if (T1->getTypeClass() != T2->getTypeClass()) { |
| // Compare function types with prototypes vs. without prototypes as if |
| // both did not have prototypes. |
| if (T1->getTypeClass() == Type::FunctionProto && |
| T2->getTypeClass() == Type::FunctionNoProto) |
| TC = Type::FunctionNoProto; |
| else if (T1->getTypeClass() == Type::FunctionNoProto && |
| T2->getTypeClass() == Type::FunctionProto) |
| TC = Type::FunctionNoProto; |
| else |
| return false; |
| } |
| |
| switch (TC) { |
| case Type::Builtin: |
| // FIXME: Deal with Char_S/Char_U. |
| if (cast<BuiltinType>(T1)->getKind() != cast<BuiltinType>(T2)->getKind()) |
| return false; |
| break; |
| |
| case Type::Complex: |
| if (!IsStructurallyEquivalent(Context, |
| cast<ComplexType>(T1)->getElementType(), |
| cast<ComplexType>(T2)->getElementType())) |
| return false; |
| break; |
| |
| case Type::Pointer: |
| if (!IsStructurallyEquivalent(Context, |
| cast<PointerType>(T1)->getPointeeType(), |
| cast<PointerType>(T2)->getPointeeType())) |
| return false; |
| break; |
| |
| case Type::BlockPointer: |
| if (!IsStructurallyEquivalent(Context, |
| cast<BlockPointerType>(T1)->getPointeeType(), |
| cast<BlockPointerType>(T2)->getPointeeType())) |
| return false; |
| break; |
| |
| case Type::LValueReference: |
| case Type::RValueReference: { |
| const ReferenceType *Ref1 = cast<ReferenceType>(T1); |
| const ReferenceType *Ref2 = cast<ReferenceType>(T2); |
| if (Ref1->isSpelledAsLValue() != Ref2->isSpelledAsLValue()) |
| return false; |
| if (Ref1->isInnerRef() != Ref2->isInnerRef()) |
| return false; |
| if (!IsStructurallyEquivalent(Context, |
| Ref1->getPointeeTypeAsWritten(), |
| Ref2->getPointeeTypeAsWritten())) |
| return false; |
| break; |
| } |
| |
| case Type::MemberPointer: { |
| const MemberPointerType *MemPtr1 = cast<MemberPointerType>(T1); |
| const MemberPointerType *MemPtr2 = cast<MemberPointerType>(T2); |
| if (!IsStructurallyEquivalent(Context, |
| MemPtr1->getPointeeType(), |
| MemPtr2->getPointeeType())) |
| return false; |
| if (!IsStructurallyEquivalent(Context, |
| QualType(MemPtr1->getClass(), 0), |
| QualType(MemPtr2->getClass(), 0))) |
| return false; |
| break; |
| } |
| |
| case Type::ConstantArray: { |
| const ConstantArrayType *Array1 = cast<ConstantArrayType>(T1); |
| const ConstantArrayType *Array2 = cast<ConstantArrayType>(T2); |
| if (!IsSameValue(Array1->getSize(), Array2->getSize())) |
| return false; |
| |
| if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) |
| return false; |
| break; |
| } |
| |
| case Type::IncompleteArray: |
| if (!IsArrayStructurallyEquivalent(Context, |
| cast<ArrayType>(T1), |
| cast<ArrayType>(T2))) |
| return false; |
| break; |
| |
| case Type::VariableArray: { |
| const VariableArrayType *Array1 = cast<VariableArrayType>(T1); |
| const VariableArrayType *Array2 = cast<VariableArrayType>(T2); |
| if (!IsStructurallyEquivalent(Context, |
| Array1->getSizeExpr(), Array2->getSizeExpr())) |
| return false; |
| |
| if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) |
| return false; |
| |
| break; |
| } |
| |
| case Type::DependentSizedArray: { |
| const DependentSizedArrayType *Array1 = cast<DependentSizedArrayType>(T1); |
| const DependentSizedArrayType *Array2 = cast<DependentSizedArrayType>(T2); |
| if (!IsStructurallyEquivalent(Context, |
| Array1->getSizeExpr(), Array2->getSizeExpr())) |
| return false; |
| |
| if (!IsArrayStructurallyEquivalent(Context, Array1, Array2)) |
| return false; |
| |
| break; |
| } |
| |
| case Type::DependentSizedExtVector: { |
| const DependentSizedExtVectorType *Vec1 |
| = cast<DependentSizedExtVectorType>(T1); |
| const DependentSizedExtVectorType *Vec2 |
| = cast<DependentSizedExtVectorType>(T2); |
| if (!IsStructurallyEquivalent(Context, |
| Vec1->getSizeExpr(), Vec2->getSizeExpr())) |
| return false; |
| if (!IsStructurallyEquivalent(Context, |
| Vec1->getElementType(), |
| Vec2->getElementType())) |
| return false; |
| break; |
| } |
| |
| case Type::Vector: |
| case Type::ExtVector: { |
| const VectorType *Vec1 = cast<VectorType>(T1); |
| const VectorType *Vec2 = cast<VectorType>(T2); |
| if (!IsStructurallyEquivalent(Context, |
| Vec1->getElementType(), |
| Vec2->getElementType())) |
| return false; |
| if (Vec1->getNumElements() != Vec2->getNumElements()) |
| return false; |
| if (Vec1->isAltiVec() != Vec2->isAltiVec()) |
| return false; |
| if (Vec1->isPixel() != Vec2->isPixel()) |
| return false; |
| } |
| |
| case Type::FunctionProto: { |
| const FunctionProtoType *Proto1 = cast<FunctionProtoType>(T1); |
| const FunctionProtoType *Proto2 = cast<FunctionProtoType>(T2); |
| if (Proto1->getNumArgs() != Proto2->getNumArgs()) |
| return false; |
| for (unsigned I = 0, N = Proto1->getNumArgs(); I != N; ++I) { |
| if (!IsStructurallyEquivalent(Context, |
| Proto1->getArgType(I), |
| Proto2->getArgType(I))) |
| return false; |
| } |
| if (Proto1->isVariadic() != Proto2->isVariadic()) |
| return false; |
| if (Proto1->hasExceptionSpec() != Proto2->hasExceptionSpec()) |
| return false; |
| if (Proto1->hasAnyExceptionSpec() != Proto2->hasAnyExceptionSpec()) |
| return false; |
| if (Proto1->getNumExceptions() != Proto2->getNumExceptions()) |
| return false; |
| for (unsigned I = 0, N = Proto1->getNumExceptions(); I != N; ++I) { |
| if (!IsStructurallyEquivalent(Context, |
| Proto1->getExceptionType(I), |
| Proto2->getExceptionType(I))) |
| return false; |
| } |
| if (Proto1->getTypeQuals() != Proto2->getTypeQuals()) |
| return false; |
| |
| // Fall through to check the bits common with FunctionNoProtoType. |
| } |
| |
| case Type::FunctionNoProto: { |
| const FunctionType *Function1 = cast<FunctionType>(T1); |
| const FunctionType *Function2 = cast<FunctionType>(T2); |
| if (!IsStructurallyEquivalent(Context, |
| Function1->getResultType(), |
| Function2->getResultType())) |
| return false; |
| if (Function1->getNoReturnAttr() != Function2->getNoReturnAttr()) |
| return false; |
| if (Function1->getCallConv() != Function2->getCallConv()) |
| return false; |
| break; |
| } |
| |
| case Type::UnresolvedUsing: |
| if (!IsStructurallyEquivalent(Context, |
| cast<UnresolvedUsingType>(T1)->getDecl(), |
| cast<UnresolvedUsingType>(T2)->getDecl())) |
| return false; |
| |
| break; |
| |
| case Type::Typedef: |
| if (!IsStructurallyEquivalent(Context, |
| cast<TypedefType>(T1)->getDecl(), |
| cast<TypedefType>(T2)->getDecl())) |
| return false; |
| break; |
| |
| case Type::TypeOfExpr: |
| if (!IsStructurallyEquivalent(Context, |
| cast<TypeOfExprType>(T1)->getUnderlyingExpr(), |
| cast<TypeOfExprType>(T2)->getUnderlyingExpr())) |
| return false; |
| break; |
| |
| case Type::TypeOf: |
| if (!IsStructurallyEquivalent(Context, |
| cast<TypeOfType>(T1)->getUnderlyingType(), |
| cast<TypeOfType>(T2)->getUnderlyingType())) |
| return false; |
| break; |
| |
| case Type::Decltype: |
| if (!IsStructurallyEquivalent(Context, |
| cast<DecltypeType>(T1)->getUnderlyingExpr(), |
| cast<DecltypeType>(T2)->getUnderlyingExpr())) |
| return false; |
| break; |
| |
| case Type::Record: |
| case Type::Enum: |
| if (!IsStructurallyEquivalent(Context, |
| cast<TagType>(T1)->getDecl(), |
| cast<TagType>(T2)->getDecl())) |
| return false; |
| break; |
| |
| case Type::Elaborated: { |
| const ElaboratedType *Elab1 = cast<ElaboratedType>(T1); |
| const ElaboratedType *Elab2 = cast<ElaboratedType>(T2); |
| if (Elab1->getTagKind() != Elab2->getTagKind()) |
| return false; |
| if (!IsStructurallyEquivalent(Context, |
| Elab1->getUnderlyingType(), |
| Elab2->getUnderlyingType())) |
| return false; |
| break; |
| } |
| |
| case Type::TemplateTypeParm: { |
| const TemplateTypeParmType *Parm1 = cast<TemplateTypeParmType>(T1); |
| const TemplateTypeParmType *Parm2 = cast<TemplateTypeParmType>(T2); |
| if (Parm1->getDepth() != Parm2->getDepth()) |
| return false; |
| if (Parm1->getIndex() != Parm2->getIndex()) |
| return false; |
| if (Parm1->isParameterPack() != Parm2->isParameterPack()) |
| return false; |
| |
| // Names of template type parameters are never significant. |
| break; |
| } |
| |
| case Type::SubstTemplateTypeParm: { |
| const SubstTemplateTypeParmType *Subst1 |
| = cast<SubstTemplateTypeParmType>(T1); |
| const SubstTemplateTypeParmType *Subst2 |
| = cast<SubstTemplateTypeParmType>(T2); |
| if (!IsStructurallyEquivalent(Context, |
| QualType(Subst1->getReplacedParameter(), 0), |
| QualType(Subst2->getReplacedParameter(), 0))) |
| return false; |
| if (!IsStructurallyEquivalent(Context, |
| Subst1->getReplacementType(), |
| Subst2->getReplacementType())) |
| return false; |
| break; |
| } |
| |
| case Type::TemplateSpecialization: { |
| const TemplateSpecializationType *Spec1 |
| = cast<TemplateSpecializationType>(T1); |
| const TemplateSpecializationType *Spec2 |
| = cast<TemplateSpecializationType>(T2); |
| if (!IsStructurallyEquivalent(Context, |
| Spec1->getTemplateName(), |
| Spec2->getTemplateName())) |
| return false; |
| if (Spec1->getNumArgs() != Spec2->getNumArgs()) |
| return false; |
| for (unsigned I = 0, N = Spec1->getNumArgs(); I != N; ++I) { |
| if (!IsStructurallyEquivalent(Context, |
| Spec1->getArg(I), Spec2->getArg(I))) |
| return false; |
| } |
| break; |
| } |
| |
| case Type::QualifiedName: { |
| const QualifiedNameType *Qual1 = cast<QualifiedNameType>(T1); |
| const QualifiedNameType *Qual2 = cast<QualifiedNameType>(T2); |
| if (!IsStructurallyEquivalent(Context, |
| Qual1->getQualifier(), |
| Qual2->getQualifier())) |
| return false; |
| if (!IsStructurallyEquivalent(Context, |
| Qual1->getNamedType(), |
| Qual2->getNamedType())) |
| return false; |
| break; |
| } |
| |
| case Type::Typename: { |
| const TypenameType *Typename1 = cast<TypenameType>(T1); |
| const TypenameType *Typename2 = cast<TypenameType>(T2); |
| if (!IsStructurallyEquivalent(Context, |
| Typename1->getQualifier(), |
| Typename2->getQualifier())) |
| return false; |
| if (!IsStructurallyEquivalent(Typename1->getIdentifier(), |
| Typename2->getIdentifier())) |
| return false; |
| if (!IsStructurallyEquivalent(Context, |
| QualType(Typename1->getTemplateId(), 0), |
| QualType(Typename2->getTemplateId(), 0))) |
| return false; |
| |
| break; |
| } |
| |
| case Type::ObjCInterface: { |
| const ObjCInterfaceType *Iface1 = cast<ObjCInterfaceType>(T1); |
| const ObjCInterfaceType *Iface2 = cast<ObjCInterfaceType>(T2); |
| if (!IsStructurallyEquivalent(Context, |
| Iface1->getDecl(), Iface2->getDecl())) |
| return false; |
| if (Iface1->getNumProtocols() != Iface2->getNumProtocols()) |
| return false; |
| for (unsigned I = 0, N = Iface1->getNumProtocols(); I != N; ++I) { |
| if (!IsStructurallyEquivalent(Context, |
| Iface1->getProtocol(I), |
| Iface2->getProtocol(I))) |
| return false; |
| } |
| break; |
| } |
| |
| case Type::ObjCObjectPointer: { |
| const ObjCObjectPointerType *Ptr1 = cast<ObjCObjectPointerType>(T1); |
| const ObjCObjectPointerType *Ptr2 = cast<ObjCObjectPointerType>(T2); |
| if (!IsStructurallyEquivalent(Context, |
| Ptr1->getPointeeType(), |
| Ptr2->getPointeeType())) |
| return false; |
| if (Ptr1->getNumProtocols() != Ptr2->getNumProtocols()) |
| return false; |
| for (unsigned I = 0, N = Ptr1->getNumProtocols(); I != N; ++I) { |
| if (!IsStructurallyEquivalent(Context, |
| Ptr1->getProtocol(I), |
| Ptr2->getProtocol(I))) |
| return false; |
| } |
| break; |
| } |
| |
| } // end switch |
| |
| return true; |
| } |
| |
| /// \brief Determine structural equivalence of two records. |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| RecordDecl *D1, RecordDecl *D2) { |
| if (D1->isUnion() != D2->isUnion()) { |
| Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) |
| << Context.C2.getTypeDeclType(D2); |
| Context.Diag1(D1->getLocation(), diag::note_odr_tag_kind_here) |
| << D1->getDeclName() << (unsigned)D1->getTagKind(); |
| return false; |
| } |
| |
| // Compare the definitions of these two records. If either or both are |
| // incomplete, we assume that they are equivalent. |
| D1 = D1->getDefinition(); |
| D2 = D2->getDefinition(); |
| if (!D1 || !D2) |
| return true; |
| |
| if (CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(D1)) { |
| if (CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(D2)) { |
| if (D1CXX->getNumBases() != D2CXX->getNumBases()) { |
| Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) |
| << Context.C2.getTypeDeclType(D2); |
| Context.Diag2(D2->getLocation(), diag::note_odr_number_of_bases) |
| << D2CXX->getNumBases(); |
| Context.Diag1(D1->getLocation(), diag::note_odr_number_of_bases) |
| << D1CXX->getNumBases(); |
| return false; |
| } |
| |
| // Check the base classes. |
| for (CXXRecordDecl::base_class_iterator Base1 = D1CXX->bases_begin(), |
| BaseEnd1 = D1CXX->bases_end(), |
| Base2 = D2CXX->bases_begin(); |
| Base1 != BaseEnd1; |
| ++Base1, ++Base2) { |
| if (!IsStructurallyEquivalent(Context, |
| Base1->getType(), Base2->getType())) { |
| Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) |
| << Context.C2.getTypeDeclType(D2); |
| Context.Diag2(Base2->getSourceRange().getBegin(), diag::note_odr_base) |
| << Base2->getType() |
| << Base2->getSourceRange(); |
| Context.Diag1(Base1->getSourceRange().getBegin(), diag::note_odr_base) |
| << Base1->getType() |
| << Base1->getSourceRange(); |
| return false; |
| } |
| |
| // Check virtual vs. non-virtual inheritance mismatch. |
| if (Base1->isVirtual() != Base2->isVirtual()) { |
| Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) |
| << Context.C2.getTypeDeclType(D2); |
| Context.Diag2(Base2->getSourceRange().getBegin(), |
| diag::note_odr_virtual_base) |
| << Base2->isVirtual() << Base2->getSourceRange(); |
| Context.Diag1(Base1->getSourceRange().getBegin(), diag::note_odr_base) |
| << Base1->isVirtual() |
| << Base1->getSourceRange(); |
| return false; |
| } |
| } |
| } else if (D1CXX->getNumBases() > 0) { |
| Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) |
| << Context.C2.getTypeDeclType(D2); |
| const CXXBaseSpecifier *Base1 = D1CXX->bases_begin(); |
| Context.Diag1(Base1->getSourceRange().getBegin(), diag::note_odr_base) |
| << Base1->getType() |
| << Base1->getSourceRange(); |
| Context.Diag2(D2->getLocation(), diag::note_odr_missing_base); |
| return false; |
| } |
| } |
| |
| // Check the fields for consistency. |
| CXXRecordDecl::field_iterator Field2 = D2->field_begin(), |
| Field2End = D2->field_end(); |
| for (CXXRecordDecl::field_iterator Field1 = D1->field_begin(), |
| Field1End = D1->field_end(); |
| Field1 != Field1End; |
| ++Field1, ++Field2) { |
| if (Field2 == Field2End) { |
| Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) |
| << Context.C2.getTypeDeclType(D2); |
| Context.Diag1(Field1->getLocation(), diag::note_odr_field) |
| << Field1->getDeclName() << Field1->getType(); |
| Context.Diag2(D2->getLocation(), diag::note_odr_missing_field); |
| return false; |
| } |
| |
| if (!IsStructurallyEquivalent(Context, |
| Field1->getType(), Field2->getType())) { |
| Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) |
| << Context.C2.getTypeDeclType(D2); |
| Context.Diag2(Field2->getLocation(), diag::note_odr_field) |
| << Field2->getDeclName() << Field2->getType(); |
| Context.Diag1(Field1->getLocation(), diag::note_odr_field) |
| << Field1->getDeclName() << Field1->getType(); |
| return false; |
| } |
| |
| if (Field1->isBitField() != Field2->isBitField()) { |
| Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) |
| << Context.C2.getTypeDeclType(D2); |
| if (Field1->isBitField()) { |
| llvm::APSInt Bits; |
| Field1->getBitWidth()->isIntegerConstantExpr(Bits, Context.C1); |
| Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field) |
| << Field1->getDeclName() << Field1->getType() |
| << Bits.toString(10, false); |
| Context.Diag2(Field2->getLocation(), diag::note_odr_not_bit_field) |
| << Field2->getDeclName(); |
| } else { |
| llvm::APSInt Bits; |
| Field2->getBitWidth()->isIntegerConstantExpr(Bits, Context.C2); |
| Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field) |
| << Field2->getDeclName() << Field2->getType() |
| << Bits.toString(10, false); |
| Context.Diag1(Field1->getLocation(), |
| diag::note_odr_not_bit_field) |
| << Field1->getDeclName(); |
| } |
| return false; |
| } |
| |
| if (Field1->isBitField()) { |
| // Make sure that the bit-fields are the same length. |
| llvm::APSInt Bits1, Bits2; |
| if (!Field1->getBitWidth()->isIntegerConstantExpr(Bits1, Context.C1)) |
| return false; |
| if (!Field2->getBitWidth()->isIntegerConstantExpr(Bits2, Context.C2)) |
| return false; |
| |
| if (!IsSameValue(Bits1, Bits2)) { |
| Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) |
| << Context.C2.getTypeDeclType(D2); |
| Context.Diag2(Field2->getLocation(), diag::note_odr_bit_field) |
| << Field2->getDeclName() << Field2->getType() |
| << Bits2.toString(10, false); |
| Context.Diag1(Field1->getLocation(), diag::note_odr_bit_field) |
| << Field1->getDeclName() << Field1->getType() |
| << Bits1.toString(10, false); |
| return false; |
| } |
| } |
| } |
| |
| if (Field2 != Field2End) { |
| Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) |
| << Context.C2.getTypeDeclType(D2); |
| Context.Diag2(Field2->getLocation(), diag::note_odr_field) |
| << Field2->getDeclName() << Field2->getType(); |
| Context.Diag1(D1->getLocation(), diag::note_odr_missing_field); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// \brief Determine structural equivalence of two enums. |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| EnumDecl *D1, EnumDecl *D2) { |
| EnumDecl::enumerator_iterator EC2 = D2->enumerator_begin(), |
| EC2End = D2->enumerator_end(); |
| for (EnumDecl::enumerator_iterator EC1 = D1->enumerator_begin(), |
| EC1End = D1->enumerator_end(); |
| EC1 != EC1End; ++EC1, ++EC2) { |
| if (EC2 == EC2End) { |
| Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) |
| << Context.C2.getTypeDeclType(D2); |
| Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator) |
| << EC1->getDeclName() |
| << EC1->getInitVal().toString(10); |
| Context.Diag2(D2->getLocation(), diag::note_odr_missing_enumerator); |
| return false; |
| } |
| |
| llvm::APSInt Val1 = EC1->getInitVal(); |
| llvm::APSInt Val2 = EC2->getInitVal(); |
| if (!IsSameValue(Val1, Val2) || |
| !IsStructurallyEquivalent(EC1->getIdentifier(), EC2->getIdentifier())) { |
| Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) |
| << Context.C2.getTypeDeclType(D2); |
| Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator) |
| << EC2->getDeclName() |
| << EC2->getInitVal().toString(10); |
| Context.Diag1(EC1->getLocation(), diag::note_odr_enumerator) |
| << EC1->getDeclName() |
| << EC1->getInitVal().toString(10); |
| return false; |
| } |
| } |
| |
| if (EC2 != EC2End) { |
| Context.Diag2(D2->getLocation(), diag::warn_odr_tag_type_inconsistent) |
| << Context.C2.getTypeDeclType(D2); |
| Context.Diag2(EC2->getLocation(), diag::note_odr_enumerator) |
| << EC2->getDeclName() |
| << EC2->getInitVal().toString(10); |
| Context.Diag1(D1->getLocation(), diag::note_odr_missing_enumerator); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// \brief Determine structural equivalence of two declarations. |
| static bool IsStructurallyEquivalent(StructuralEquivalenceContext &Context, |
| Decl *D1, Decl *D2) { |
| // FIXME: Check for known structural equivalences via a callback of some sort. |
| |
| // Check whether we already know that these two declarations are not |
| // structurally equivalent. |
| if (Context.NonEquivalentDecls.count(std::make_pair(D1->getCanonicalDecl(), |
| D2->getCanonicalDecl()))) |
| return false; |
| |
| // Determine whether we've already produced a tentative equivalence for D1. |
| Decl *&EquivToD1 = Context.TentativeEquivalences[D1->getCanonicalDecl()]; |
| if (EquivToD1) |
| return EquivToD1 == D2->getCanonicalDecl(); |
| |
| // Produce a tentative equivalence D1 <-> D2, which will be checked later. |
| EquivToD1 = D2->getCanonicalDecl(); |
| Context.DeclsToCheck.push_back(D1->getCanonicalDecl()); |
| return true; |
| } |
| |
| bool StructuralEquivalenceContext::IsStructurallyEquivalent(Decl *D1, |
| Decl *D2) { |
| if (!::IsStructurallyEquivalent(*this, D1, D2)) |
| return false; |
| |
| return !Finish(); |
| } |
| |
| bool StructuralEquivalenceContext::IsStructurallyEquivalent(QualType T1, |
| QualType T2) { |
| if (!::IsStructurallyEquivalent(*this, T1, T2)) |
| return false; |
| |
| return !Finish(); |
| } |
| |
| bool StructuralEquivalenceContext::Finish() { |
| while (!DeclsToCheck.empty()) { |
| // Check the next declaration. |
| Decl *D1 = DeclsToCheck.front(); |
| DeclsToCheck.pop_front(); |
| |
| Decl *D2 = TentativeEquivalences[D1]; |
| assert(D2 && "Unrecorded tentative equivalence?"); |
| |
| bool Equivalent = true; |
| |
| // FIXME: Switch on all declaration kinds. For now, we're just going to |
| // check the obvious ones. |
| if (RecordDecl *Record1 = dyn_cast<RecordDecl>(D1)) { |
| if (RecordDecl *Record2 = dyn_cast<RecordDecl>(D2)) { |
| // Check for equivalent structure names. |
| IdentifierInfo *Name1 = Record1->getIdentifier(); |
| if (!Name1 && Record1->getTypedefForAnonDecl()) |
| Name1 = Record1->getTypedefForAnonDecl()->getIdentifier(); |
| IdentifierInfo *Name2 = Record2->getIdentifier(); |
| if (!Name2 && Record2->getTypedefForAnonDecl()) |
| Name2 = Record2->getTypedefForAnonDecl()->getIdentifier(); |
| if (!::IsStructurallyEquivalent(Name1, Name2) || |
| !::IsStructurallyEquivalent(*this, Record1, Record2)) |
| Equivalent = false; |
| } else { |
| // Record/non-record mismatch. |
| Equivalent = false; |
| } |
| } else if (EnumDecl *Enum1 = dyn_cast<EnumDecl>(D1)) { |
| if (EnumDecl *Enum2 = dyn_cast<EnumDecl>(D2)) { |
| // Check for equivalent enum names. |
| IdentifierInfo *Name1 = Enum1->getIdentifier(); |
| if (!Name1 && Enum1->getTypedefForAnonDecl()) |
| Name1 = Enum1->getTypedefForAnonDecl()->getIdentifier(); |
| IdentifierInfo *Name2 = Enum2->getIdentifier(); |
| if (!Name2 && Enum2->getTypedefForAnonDecl()) |
| Name2 = Enum2->getTypedefForAnonDecl()->getIdentifier(); |
| if (!::IsStructurallyEquivalent(Name1, Name2) || |
| !::IsStructurallyEquivalent(*this, Enum1, Enum2)) |
| Equivalent = false; |
| } else { |
| // Enum/non-enum mismatch |
| Equivalent = false; |
| } |
| } else if (TypedefDecl *Typedef1 = dyn_cast<TypedefDecl>(D1)) { |
| if (TypedefDecl *Typedef2 = dyn_cast<TypedefDecl>(D2)) { |
| if (!::IsStructurallyEquivalent(Typedef1->getIdentifier(), |
| Typedef2->getIdentifier()) || |
| !::IsStructurallyEquivalent(*this, |
| Typedef1->getUnderlyingType(), |
| Typedef2->getUnderlyingType())) |
| Equivalent = false; |
| } else { |
| // Typedef/non-typedef mismatch. |
| Equivalent = false; |
| } |
| } |
| |
| if (!Equivalent) { |
| // Note that these two declarations are not equivalent (and we already |
| // know about it). |
| NonEquivalentDecls.insert(std::make_pair(D1->getCanonicalDecl(), |
| D2->getCanonicalDecl())); |
| return true; |
| } |
| // FIXME: Check other declaration kinds! |
| } |
| |
| return false; |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Import Types |
| //---------------------------------------------------------------------------- |
| |
| QualType ASTNodeImporter::VisitType(Type *T) { |
| Importer.FromDiag(SourceLocation(), diag::err_unsupported_ast_node) |
| << T->getTypeClassName(); |
| return QualType(); |
| } |
| |
| QualType ASTNodeImporter::VisitBuiltinType(BuiltinType *T) { |
| switch (T->getKind()) { |
| case BuiltinType::Void: return Importer.getToContext().VoidTy; |
| case BuiltinType::Bool: return Importer.getToContext().BoolTy; |
| |
| case BuiltinType::Char_U: |
| // The context we're importing from has an unsigned 'char'. If we're |
| // importing into a context with a signed 'char', translate to |
| // 'unsigned char' instead. |
| if (Importer.getToContext().getLangOptions().CharIsSigned) |
| return Importer.getToContext().UnsignedCharTy; |
| |
| return Importer.getToContext().CharTy; |
| |
| case BuiltinType::UChar: return Importer.getToContext().UnsignedCharTy; |
| |
| case BuiltinType::Char16: |
| // FIXME: Make sure that the "to" context supports C++! |
| return Importer.getToContext().Char16Ty; |
| |
| case BuiltinType::Char32: |
| // FIXME: Make sure that the "to" context supports C++! |
| return Importer.getToContext().Char32Ty; |
| |
| case BuiltinType::UShort: return Importer.getToContext().UnsignedShortTy; |
| case BuiltinType::UInt: return Importer.getToContext().UnsignedIntTy; |
| case BuiltinType::ULong: return Importer.getToContext().UnsignedLongTy; |
| case BuiltinType::ULongLong: |
| return Importer.getToContext().UnsignedLongLongTy; |
| case BuiltinType::UInt128: return Importer.getToContext().UnsignedInt128Ty; |
| |
| case BuiltinType::Char_S: |
| // The context we're importing from has an unsigned 'char'. If we're |
| // importing into a context with a signed 'char', translate to |
| // 'unsigned char' instead. |
| if (!Importer.getToContext().getLangOptions().CharIsSigned) |
| return Importer.getToContext().SignedCharTy; |
| |
| return Importer.getToContext().CharTy; |
| |
| case BuiltinType::SChar: return Importer.getToContext().SignedCharTy; |
| case BuiltinType::WChar: |
| // FIXME: If not in C++, shall we translate to the C equivalent of |
| // wchar_t? |
| return Importer.getToContext().WCharTy; |
| |
| case BuiltinType::Short : return Importer.getToContext().ShortTy; |
| case BuiltinType::Int : return Importer.getToContext().IntTy; |
| case BuiltinType::Long : return Importer.getToContext().LongTy; |
| case BuiltinType::LongLong : return Importer.getToContext().LongLongTy; |
| case BuiltinType::Int128 : return Importer.getToContext().Int128Ty; |
| case BuiltinType::Float: return Importer.getToContext().FloatTy; |
| case BuiltinType::Double: return Importer.getToContext().DoubleTy; |
| case BuiltinType::LongDouble: return Importer.getToContext().LongDoubleTy; |
| |
| case BuiltinType::NullPtr: |
| // FIXME: Make sure that the "to" context supports C++0x! |
| return Importer.getToContext().NullPtrTy; |
| |
| case BuiltinType::Overload: return Importer.getToContext().OverloadTy; |
| case BuiltinType::Dependent: return Importer.getToContext().DependentTy; |
| case BuiltinType::UndeducedAuto: |
| // FIXME: Make sure that the "to" context supports C++0x! |
| return Importer.getToContext().UndeducedAutoTy; |
| |
| case BuiltinType::ObjCId: |
| // FIXME: Make sure that the "to" context supports Objective-C! |
| return Importer.getToContext().ObjCBuiltinIdTy; |
| |
| case BuiltinType::ObjCClass: |
| return Importer.getToContext().ObjCBuiltinClassTy; |
| |
| case BuiltinType::ObjCSel: |
| return Importer.getToContext().ObjCBuiltinSelTy; |
| } |
| |
| return QualType(); |
| } |
| |
| QualType ASTNodeImporter::VisitComplexType(ComplexType *T) { |
| QualType ToElementType = Importer.Import(T->getElementType()); |
| if (ToElementType.isNull()) |
| return QualType(); |
| |
| return Importer.getToContext().getComplexType(ToElementType); |
| } |
| |
| QualType ASTNodeImporter::VisitPointerType(PointerType *T) { |
| QualType ToPointeeType = Importer.Import(T->getPointeeType()); |
| if (ToPointeeType.isNull()) |
| return QualType(); |
| |
| return Importer.getToContext().getPointerType(ToPointeeType); |
| } |
| |
| QualType ASTNodeImporter::VisitBlockPointerType(BlockPointerType *T) { |
| // FIXME: Check for blocks support in "to" context. |
| QualType ToPointeeType = Importer.Import(T->getPointeeType()); |
| if (ToPointeeType.isNull()) |
| return QualType(); |
| |
| return Importer.getToContext().getBlockPointerType(ToPointeeType); |
| } |
| |
| QualType ASTNodeImporter::VisitLValueReferenceType(LValueReferenceType *T) { |
| // FIXME: Check for C++ support in "to" context. |
| QualType ToPointeeType = Importer.Import(T->getPointeeTypeAsWritten()); |
| if (ToPointeeType.isNull()) |
| return QualType(); |
| |
| return Importer.getToContext().getLValueReferenceType(ToPointeeType); |
| } |
| |
| QualType ASTNodeImporter::VisitRValueReferenceType(RValueReferenceType *T) { |
| // FIXME: Check for C++0x support in "to" context. |
| QualType ToPointeeType = Importer.Import(T->getPointeeTypeAsWritten()); |
| if (ToPointeeType.isNull()) |
| return QualType(); |
| |
| return Importer.getToContext().getRValueReferenceType(ToPointeeType); |
| } |
| |
| QualType ASTNodeImporter::VisitMemberPointerType(MemberPointerType *T) { |
| // FIXME: Check for C++ support in "to" context. |
| QualType ToPointeeType = Importer.Import(T->getPointeeType()); |
| if (ToPointeeType.isNull()) |
| return QualType(); |
| |
| QualType ClassType = Importer.Import(QualType(T->getClass(), 0)); |
| return Importer.getToContext().getMemberPointerType(ToPointeeType, |
| ClassType.getTypePtr()); |
| } |
| |
| QualType ASTNodeImporter::VisitConstantArrayType(ConstantArrayType *T) { |
| QualType ToElementType = Importer.Import(T->getElementType()); |
| if (ToElementType.isNull()) |
| return QualType(); |
| |
| return Importer.getToContext().getConstantArrayType(ToElementType, |
| T->getSize(), |
| T->getSizeModifier(), |
| T->getIndexTypeCVRQualifiers()); |
| } |
| |
| QualType ASTNodeImporter::VisitIncompleteArrayType(IncompleteArrayType *T) { |
| QualType ToElementType = Importer.Import(T->getElementType()); |
| if (ToElementType.isNull()) |
| return QualType(); |
| |
| return Importer.getToContext().getIncompleteArrayType(ToElementType, |
| T->getSizeModifier(), |
| T->getIndexTypeCVRQualifiers()); |
| } |
| |
| QualType ASTNodeImporter::VisitVariableArrayType(VariableArrayType *T) { |
| QualType ToElementType = Importer.Import(T->getElementType()); |
| if (ToElementType.isNull()) |
| return QualType(); |
| |
| Expr *Size = Importer.Import(T->getSizeExpr()); |
| if (!Size) |
| return QualType(); |
| |
| SourceRange Brackets = Importer.Import(T->getBracketsRange()); |
| return Importer.getToContext().getVariableArrayType(ToElementType, Size, |
| T->getSizeModifier(), |
| T->getIndexTypeCVRQualifiers(), |
| Brackets); |
| } |
| |
| QualType ASTNodeImporter::VisitVectorType(VectorType *T) { |
| QualType ToElementType = Importer.Import(T->getElementType()); |
| if (ToElementType.isNull()) |
| return QualType(); |
| |
| return Importer.getToContext().getVectorType(ToElementType, |
| T->getNumElements(), |
| T->isAltiVec(), |
| T->isPixel()); |
| } |
| |
| QualType ASTNodeImporter::VisitExtVectorType(ExtVectorType *T) { |
| QualType ToElementType = Importer.Import(T->getElementType()); |
| if (ToElementType.isNull()) |
| return QualType(); |
| |
| return Importer.getToContext().getExtVectorType(ToElementType, |
| T->getNumElements()); |
| } |
| |
| QualType ASTNodeImporter::VisitFunctionNoProtoType(FunctionNoProtoType *T) { |
| // FIXME: What happens if we're importing a function without a prototype |
| // into C++? Should we make it variadic? |
| QualType ToResultType = Importer.Import(T->getResultType()); |
| if (ToResultType.isNull()) |
| return QualType(); |
| |
| return Importer.getToContext().getFunctionNoProtoType(ToResultType, |
| T->getNoReturnAttr(), |
| T->getCallConv()); |
| } |
| |
| QualType ASTNodeImporter::VisitFunctionProtoType(FunctionProtoType *T) { |
| QualType ToResultType = Importer.Import(T->getResultType()); |
| if (ToResultType.isNull()) |
| return QualType(); |
| |
| // Import argument types |
| llvm::SmallVector<QualType, 4> ArgTypes; |
| for (FunctionProtoType::arg_type_iterator A = T->arg_type_begin(), |
| AEnd = T->arg_type_end(); |
| A != AEnd; ++A) { |
| QualType ArgType = Importer.Import(*A); |
| if (ArgType.isNull()) |
| return QualType(); |
| ArgTypes.push_back(ArgType); |
| } |
| |
| // Import exception types |
| llvm::SmallVector<QualType, 4> ExceptionTypes; |
| for (FunctionProtoType::exception_iterator E = T->exception_begin(), |
| EEnd = T->exception_end(); |
| E != EEnd; ++E) { |
| QualType ExceptionType = Importer.Import(*E); |
| if (ExceptionType.isNull()) |
| return QualType(); |
| ExceptionTypes.push_back(ExceptionType); |
| } |
| |
| return Importer.getToContext().getFunctionType(ToResultType, ArgTypes.data(), |
| ArgTypes.size(), |
| T->isVariadic(), |
| T->getTypeQuals(), |
| T->hasExceptionSpec(), |
| T->hasAnyExceptionSpec(), |
| ExceptionTypes.size(), |
| ExceptionTypes.data(), |
| T->getNoReturnAttr(), |
| T->getCallConv()); |
| } |
| |
| QualType ASTNodeImporter::VisitTypedefType(TypedefType *T) { |
| TypedefDecl *ToDecl |
| = dyn_cast_or_null<TypedefDecl>(Importer.Import(T->getDecl())); |
| if (!ToDecl) |
| return QualType(); |
| |
| return Importer.getToContext().getTypeDeclType(ToDecl); |
| } |
| |
| QualType ASTNodeImporter::VisitTypeOfExprType(TypeOfExprType *T) { |
| Expr *ToExpr = Importer.Import(T->getUnderlyingExpr()); |
| if (!ToExpr) |
| return QualType(); |
| |
| return Importer.getToContext().getTypeOfExprType(ToExpr); |
| } |
| |
| QualType ASTNodeImporter::VisitTypeOfType(TypeOfType *T) { |
| QualType ToUnderlyingType = Importer.Import(T->getUnderlyingType()); |
| if (ToUnderlyingType.isNull()) |
| return QualType(); |
| |
| return Importer.getToContext().getTypeOfType(ToUnderlyingType); |
| } |
| |
| QualType ASTNodeImporter::VisitDecltypeType(DecltypeType *T) { |
| Expr *ToExpr = Importer.Import(T->getUnderlyingExpr()); |
| if (!ToExpr) |
| return QualType(); |
| |
| return Importer.getToContext().getDecltypeType(ToExpr); |
| } |
| |
| QualType ASTNodeImporter::VisitRecordType(RecordType *T) { |
| RecordDecl *ToDecl |
| = dyn_cast_or_null<RecordDecl>(Importer.Import(T->getDecl())); |
| if (!ToDecl) |
| return QualType(); |
| |
| return Importer.getToContext().getTagDeclType(ToDecl); |
| } |
| |
| QualType ASTNodeImporter::VisitEnumType(EnumType *T) { |
| EnumDecl *ToDecl |
| = dyn_cast_or_null<EnumDecl>(Importer.Import(T->getDecl())); |
| if (!ToDecl) |
| return QualType(); |
| |
| return Importer.getToContext().getTagDeclType(ToDecl); |
| } |
| |
| QualType ASTNodeImporter::VisitElaboratedType(ElaboratedType *T) { |
| QualType ToUnderlyingType = Importer.Import(T->getUnderlyingType()); |
| if (ToUnderlyingType.isNull()) |
| return QualType(); |
| |
| return Importer.getToContext().getElaboratedType(ToUnderlyingType, |
| T->getTagKind()); |
| } |
| |
| QualType ASTNodeImporter::VisitQualifiedNameType(QualifiedNameType *T) { |
| NestedNameSpecifier *ToQualifier = Importer.Import(T->getQualifier()); |
| if (!ToQualifier) |
| return QualType(); |
| |
| QualType ToNamedType = Importer.Import(T->getNamedType()); |
| if (ToNamedType.isNull()) |
| return QualType(); |
| |
| return Importer.getToContext().getQualifiedNameType(ToQualifier, ToNamedType); |
| } |
| |
| QualType ASTNodeImporter::VisitObjCInterfaceType(ObjCInterfaceType *T) { |
| ObjCInterfaceDecl *Class |
| = dyn_cast_or_null<ObjCInterfaceDecl>(Importer.Import(T->getDecl())); |
| if (!Class) |
| return QualType(); |
| |
| llvm::SmallVector<ObjCProtocolDecl *, 4> Protocols; |
| for (ObjCInterfaceType::qual_iterator P = T->qual_begin(), |
| PEnd = T->qual_end(); |
| P != PEnd; ++P) { |
| ObjCProtocolDecl *Protocol |
| = dyn_cast_or_null<ObjCProtocolDecl>(Importer.Import(*P)); |
| if (!Protocol) |
| return QualType(); |
| Protocols.push_back(Protocol); |
| } |
| |
| return Importer.getToContext().getObjCInterfaceType(Class, |
| Protocols.data(), |
| Protocols.size()); |
| } |
| |
| QualType ASTNodeImporter::VisitObjCObjectPointerType(ObjCObjectPointerType *T) { |
| QualType ToPointeeType = Importer.Import(T->getPointeeType()); |
| if (ToPointeeType.isNull()) |
| return QualType(); |
| |
| llvm::SmallVector<ObjCProtocolDecl *, 4> Protocols; |
| for (ObjCObjectPointerType::qual_iterator P = T->qual_begin(), |
| PEnd = T->qual_end(); |
| P != PEnd; ++P) { |
| ObjCProtocolDecl *Protocol |
| = dyn_cast_or_null<ObjCProtocolDecl>(Importer.Import(*P)); |
| if (!Protocol) |
| return QualType(); |
| Protocols.push_back(Protocol); |
| } |
| |
| return Importer.getToContext().getObjCObjectPointerType(ToPointeeType, |
| Protocols.data(), |
| Protocols.size()); |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Import Declarations |
| //---------------------------------------------------------------------------- |
| bool ASTNodeImporter::ImportDeclParts(NamedDecl *D, DeclContext *&DC, |
| DeclContext *&LexicalDC, |
| DeclarationName &Name, |
| SourceLocation &Loc) { |
| // Import the context of this declaration. |
| DC = Importer.ImportContext(D->getDeclContext()); |
| if (!DC) |
| return true; |
| |
| LexicalDC = DC; |
| if (D->getDeclContext() != D->getLexicalDeclContext()) { |
| LexicalDC = Importer.ImportContext(D->getLexicalDeclContext()); |
| if (!LexicalDC) |
| return true; |
| } |
| |
| // Import the name of this declaration. |
| Name = Importer.Import(D->getDeclName()); |
| if (D->getDeclName() && !Name) |
| return true; |
| |
| // Import the location of this declaration. |
| Loc = Importer.Import(D->getLocation()); |
| return false; |
| } |
| |
| bool ASTNodeImporter::IsStructuralMatch(RecordDecl *FromRecord, |
| RecordDecl *ToRecord) { |
| StructuralEquivalenceContext SEC(Importer.getFromContext(), |
| Importer.getToContext(), |
| Importer.getDiags(), |
| Importer.getNonEquivalentDecls()); |
| return SEC.IsStructurallyEquivalent(FromRecord, ToRecord); |
| } |
| |
| bool ASTNodeImporter::IsStructuralMatch(EnumDecl *FromEnum, EnumDecl *ToEnum) { |
| StructuralEquivalenceContext SEC(Importer.getFromContext(), |
| Importer.getToContext(), |
| Importer.getDiags(), |
| Importer.getNonEquivalentDecls()); |
| return SEC.IsStructurallyEquivalent(FromEnum, ToEnum); |
| } |
| |
| Decl *ASTNodeImporter::VisitDecl(Decl *D) { |
| Importer.FromDiag(D->getLocation(), diag::err_unsupported_ast_node) |
| << D->getDeclKindName(); |
| return 0; |
| } |
| |
| Decl *ASTNodeImporter::VisitTypedefDecl(TypedefDecl *D) { |
| // Import the major distinguishing characteristics of this typedef. |
| DeclContext *DC, *LexicalDC; |
| DeclarationName Name; |
| SourceLocation Loc; |
| if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) |
| return 0; |
| |
| // If this typedef is not in block scope, determine whether we've |
| // seen a typedef with the same name (that we can merge with) or any |
| // other entity by that name (which name lookup could conflict with). |
| if (!DC->isFunctionOrMethod()) { |
| llvm::SmallVector<NamedDecl *, 4> ConflictingDecls; |
| unsigned IDNS = Decl::IDNS_Ordinary; |
| for (DeclContext::lookup_result Lookup = DC->lookup(Name); |
| Lookup.first != Lookup.second; |
| ++Lookup.first) { |
| if (!(*Lookup.first)->isInIdentifierNamespace(IDNS)) |
| continue; |
| if (TypedefDecl *FoundTypedef = dyn_cast<TypedefDecl>(*Lookup.first)) { |
| if (Importer.IsStructurallyEquivalent(D->getUnderlyingType(), |
| FoundTypedef->getUnderlyingType())) |
| return Importer.Imported(D, FoundTypedef); |
| } |
| |
| ConflictingDecls.push_back(*Lookup.first); |
| } |
| |
| if (!ConflictingDecls.empty()) { |
| Name = Importer.HandleNameConflict(Name, DC, IDNS, |
| ConflictingDecls.data(), |
| ConflictingDecls.size()); |
| if (!Name) |
| return 0; |
| } |
| } |
| |
| // Import the underlying type of this typedef; |
| QualType T = Importer.Import(D->getUnderlyingType()); |
| if (T.isNull()) |
| return 0; |
| |
| // Create the new typedef node. |
| TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); |
| TypedefDecl *ToTypedef = TypedefDecl::Create(Importer.getToContext(), DC, |
| Loc, Name.getAsIdentifierInfo(), |
| TInfo); |
| ToTypedef->setLexicalDeclContext(LexicalDC); |
| Importer.Imported(D, ToTypedef); |
| LexicalDC->addDecl(ToTypedef); |
| |
| return ToTypedef; |
| } |
| |
| Decl *ASTNodeImporter::VisitEnumDecl(EnumDecl *D) { |
| // Import the major distinguishing characteristics of this enum. |
| DeclContext *DC, *LexicalDC; |
| DeclarationName Name; |
| SourceLocation Loc; |
| if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) |
| return 0; |
| |
| // Figure out what enum name we're looking for. |
| unsigned IDNS = Decl::IDNS_Tag; |
| DeclarationName SearchName = Name; |
| if (!SearchName && D->getTypedefForAnonDecl()) { |
| SearchName = Importer.Import(D->getTypedefForAnonDecl()->getDeclName()); |
| IDNS = Decl::IDNS_Ordinary; |
| } else if (Importer.getToContext().getLangOptions().CPlusPlus) |
| IDNS |= Decl::IDNS_Ordinary; |
| |
| // We may already have an enum of the same name; try to find and match it. |
| if (!DC->isFunctionOrMethod() && SearchName) { |
| llvm::SmallVector<NamedDecl *, 4> ConflictingDecls; |
| for (DeclContext::lookup_result Lookup = DC->lookup(Name); |
| Lookup.first != Lookup.second; |
| ++Lookup.first) { |
| if (!(*Lookup.first)->isInIdentifierNamespace(IDNS)) |
| continue; |
| |
| Decl *Found = *Lookup.first; |
| if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Found)) { |
| if (const TagType *Tag = Typedef->getUnderlyingType()->getAs<TagType>()) |
| Found = Tag->getDecl(); |
| } |
| |
| if (EnumDecl *FoundEnum = dyn_cast<EnumDecl>(Found)) { |
| if (IsStructuralMatch(D, FoundEnum)) |
| return Importer.Imported(D, FoundEnum); |
| } |
| |
| ConflictingDecls.push_back(*Lookup.first); |
| } |
| |
| if (!ConflictingDecls.empty()) { |
| Name = Importer.HandleNameConflict(Name, DC, IDNS, |
| ConflictingDecls.data(), |
| ConflictingDecls.size()); |
| } |
| } |
| |
| // Create the enum declaration. |
| EnumDecl *D2 = EnumDecl::Create(Importer.getToContext(), DC, Loc, |
| Name.getAsIdentifierInfo(), |
| Importer.Import(D->getTagKeywordLoc()), |
| 0); |
| D2->setLexicalDeclContext(LexicalDC); |
| Importer.Imported(D, D2); |
| LexicalDC->addDecl(D2); |
| |
| // Import the integer type. |
| QualType ToIntegerType = Importer.Import(D->getIntegerType()); |
| if (ToIntegerType.isNull()) |
| return 0; |
| D2->setIntegerType(ToIntegerType); |
| |
| // Import the definition |
| if (D->isDefinition()) { |
| QualType T = Importer.Import(Importer.getFromContext().getTypeDeclType(D)); |
| if (T.isNull()) |
| return 0; |
| |
| QualType ToPromotionType = Importer.Import(D->getPromotionType()); |
| if (ToPromotionType.isNull()) |
| return 0; |
| |
| D2->startDefinition(); |
| for (DeclContext::decl_iterator FromMem = D->decls_begin(), |
| FromMemEnd = D->decls_end(); |
| FromMem != FromMemEnd; |
| ++FromMem) |
| Importer.Import(*FromMem); |
| |
| D2->completeDefinition(T, ToPromotionType); |
| } |
| |
| return D2; |
| } |
| |
| Decl *ASTNodeImporter::VisitRecordDecl(RecordDecl *D) { |
| // If this record has a definition in the translation unit we're coming from, |
| // but this particular declaration is not that definition, import the |
| // definition and map to that. |
| TagDecl *Definition = D->getDefinition(); |
| if (Definition && Definition != D) { |
| Decl *ImportedDef = Importer.Import(Definition); |
| if (!ImportedDef) |
| return 0; |
| |
| return Importer.Imported(D, ImportedDef); |
| } |
| |
| // Import the major distinguishing characteristics of this record. |
| DeclContext *DC, *LexicalDC; |
| DeclarationName Name; |
| SourceLocation Loc; |
| if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) |
| return 0; |
| |
| // Figure out what structure name we're looking for. |
| unsigned IDNS = Decl::IDNS_Tag; |
| DeclarationName SearchName = Name; |
| if (!SearchName && D->getTypedefForAnonDecl()) { |
| SearchName = Importer.Import(D->getTypedefForAnonDecl()->getDeclName()); |
| IDNS = Decl::IDNS_Ordinary; |
| } else if (Importer.getToContext().getLangOptions().CPlusPlus) |
| IDNS |= Decl::IDNS_Ordinary; |
| |
| // We may already have a record of the same name; try to find and match it. |
| RecordDecl *AdoptDecl = 0; |
| if (!DC->isFunctionOrMethod() && SearchName) { |
| llvm::SmallVector<NamedDecl *, 4> ConflictingDecls; |
| for (DeclContext::lookup_result Lookup = DC->lookup(Name); |
| Lookup.first != Lookup.second; |
| ++Lookup.first) { |
| if (!(*Lookup.first)->isInIdentifierNamespace(IDNS)) |
| continue; |
| |
| Decl *Found = *Lookup.first; |
| if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Found)) { |
| if (const TagType *Tag = Typedef->getUnderlyingType()->getAs<TagType>()) |
| Found = Tag->getDecl(); |
| } |
| |
| if (RecordDecl *FoundRecord = dyn_cast<RecordDecl>(Found)) { |
| if (RecordDecl *FoundDef = FoundRecord->getDefinition()) { |
| if (!D->isDefinition() || IsStructuralMatch(D, FoundDef)) { |
| // The record types structurally match, or the "from" translation |
| // unit only had a forward declaration anyway; call it the same |
| // function. |
| // FIXME: For C++, we should also merge methods here. |
| return Importer.Imported(D, FoundDef); |
| } |
| } else { |
| // We have a forward declaration of this type, so adopt that forward |
| // declaration rather than building a new one. |
| AdoptDecl = FoundRecord; |
| continue; |
| } |
| } |
| |
| ConflictingDecls.push_back(*Lookup.first); |
| } |
| |
| if (!ConflictingDecls.empty()) { |
| Name = Importer.HandleNameConflict(Name, DC, IDNS, |
| ConflictingDecls.data(), |
| ConflictingDecls.size()); |
| } |
| } |
| |
| // Create the record declaration. |
| RecordDecl *D2 = AdoptDecl; |
| if (!D2) { |
| if (CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(D)) { |
| CXXRecordDecl *D2CXX = CXXRecordDecl::Create(Importer.getToContext(), |
| D->getTagKind(), |
| DC, Loc, |
| Name.getAsIdentifierInfo(), |
| Importer.Import(D->getTagKeywordLoc())); |
| D2 = D2CXX; |
| |
| if (D->isDefinition()) { |
| // Add base classes. |
| llvm::SmallVector<CXXBaseSpecifier *, 4> Bases; |
| for (CXXRecordDecl::base_class_iterator |
| Base1 = D1CXX->bases_begin(), |
| FromBaseEnd = D1CXX->bases_end(); |
| Base1 != FromBaseEnd; |
| ++Base1) { |
| QualType T = Importer.Import(Base1->getType()); |
| if (T.isNull()) |
| return 0; |
| |
| Bases.push_back( |
| new (Importer.getToContext()) |
| CXXBaseSpecifier(Importer.Import(Base1->getSourceRange()), |
| Base1->isVirtual(), |
| Base1->isBaseOfClass(), |
| Base1->getAccessSpecifierAsWritten(), |
| T)); |
| } |
| if (!Bases.empty()) |
| D2CXX->setBases(Bases.data(), Bases.size()); |
| } |
| } else { |
| D2 = RecordDecl::Create(Importer.getToContext(), D->getTagKind(), |
| DC, Loc, |
| Name.getAsIdentifierInfo(), |
| Importer.Import(D->getTagKeywordLoc())); |
| } |
| D2->setLexicalDeclContext(LexicalDC); |
| LexicalDC->addDecl(D2); |
| } |
| |
| Importer.Imported(D, D2); |
| |
| if (D->isDefinition()) { |
| D2->startDefinition(); |
| for (DeclContext::decl_iterator FromMem = D->decls_begin(), |
| FromMemEnd = D->decls_end(); |
| FromMem != FromMemEnd; |
| ++FromMem) |
| Importer.Import(*FromMem); |
| |
| D2->completeDefinition(); |
| } |
| |
| return D2; |
| } |
| |
| Decl *ASTNodeImporter::VisitEnumConstantDecl(EnumConstantDecl *D) { |
| // Import the major distinguishing characteristics of this enumerator. |
| DeclContext *DC, *LexicalDC; |
| DeclarationName Name; |
| SourceLocation Loc; |
| if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) |
| return 0; |
| |
| QualType T = Importer.Import(D->getType()); |
| if (T.isNull()) |
| return 0; |
| |
| // Determine whether there are any other declarations with the same name and |
| // in the same context. |
| if (!LexicalDC->isFunctionOrMethod()) { |
| llvm::SmallVector<NamedDecl *, 4> ConflictingDecls; |
| unsigned IDNS = Decl::IDNS_Ordinary; |
| for (DeclContext::lookup_result Lookup = DC->lookup(Name); |
| Lookup.first != Lookup.second; |
| ++Lookup.first) { |
| if (!(*Lookup.first)->isInIdentifierNamespace(IDNS)) |
| continue; |
| |
| ConflictingDecls.push_back(*Lookup.first); |
| } |
| |
| if (!ConflictingDecls.empty()) { |
| Name = Importer.HandleNameConflict(Name, DC, IDNS, |
| ConflictingDecls.data(), |
| ConflictingDecls.size()); |
| if (!Name) |
| return 0; |
| } |
| } |
| |
| Expr *Init = Importer.Import(D->getInitExpr()); |
| if (D->getInitExpr() && !Init) |
| return 0; |
| |
| EnumConstantDecl *ToEnumerator |
| = EnumConstantDecl::Create(Importer.getToContext(), cast<EnumDecl>(DC), Loc, |
| Name.getAsIdentifierInfo(), T, |
| Init, D->getInitVal()); |
| ToEnumerator->setLexicalDeclContext(LexicalDC); |
| Importer.Imported(D, ToEnumerator); |
| LexicalDC->addDecl(ToEnumerator); |
| return ToEnumerator; |
| } |
| |
| Decl *ASTNodeImporter::VisitFunctionDecl(FunctionDecl *D) { |
| // Import the major distinguishing characteristics of this function. |
| DeclContext *DC, *LexicalDC; |
| DeclarationName Name; |
| SourceLocation Loc; |
| if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) |
| return 0; |
| |
| // Try to find a function in our own ("to") context with the same name, same |
| // type, and in the same context as the function we're importing. |
| if (!LexicalDC->isFunctionOrMethod()) { |
| llvm::SmallVector<NamedDecl *, 4> ConflictingDecls; |
| unsigned IDNS = Decl::IDNS_Ordinary; |
| for (DeclContext::lookup_result Lookup = DC->lookup(Name); |
| Lookup.first != Lookup.second; |
| ++Lookup.first) { |
| if (!(*Lookup.first)->isInIdentifierNamespace(IDNS)) |
| continue; |
| |
| if (FunctionDecl *FoundFunction = dyn_cast<FunctionDecl>(*Lookup.first)) { |
| if (isExternalLinkage(FoundFunction->getLinkage()) && |
| isExternalLinkage(D->getLinkage())) { |
| if (Importer.IsStructurallyEquivalent(D->getType(), |
| FoundFunction->getType())) { |
| // FIXME: Actually try to merge the body and other attributes. |
| return Importer.Imported(D, FoundFunction); |
| } |
| |
| // FIXME: Check for overloading more carefully, e.g., by boosting |
| // Sema::IsOverload out to the AST library. |
| |
| // Function overloading is okay in C++. |
| if (Importer.getToContext().getLangOptions().CPlusPlus) |
| continue; |
| |
| // Complain about inconsistent function types. |
| Importer.ToDiag(Loc, diag::err_odr_function_type_inconsistent) |
| << Name << D->getType() << FoundFunction->getType(); |
| Importer.ToDiag(FoundFunction->getLocation(), |
| diag::note_odr_value_here) |
| << FoundFunction->getType(); |
| } |
| } |
| |
| ConflictingDecls.push_back(*Lookup.first); |
| } |
| |
| if (!ConflictingDecls.empty()) { |
| Name = Importer.HandleNameConflict(Name, DC, IDNS, |
| ConflictingDecls.data(), |
| ConflictingDecls.size()); |
| if (!Name) |
| return 0; |
| } |
| } |
| |
| // Import the type. |
| QualType T = Importer.Import(D->getType()); |
| if (T.isNull()) |
| return 0; |
| |
| // Import the function parameters. |
| llvm::SmallVector<ParmVarDecl *, 8> Parameters; |
| for (FunctionDecl::param_iterator P = D->param_begin(), PEnd = D->param_end(); |
| P != PEnd; ++P) { |
| ParmVarDecl *ToP = cast_or_null<ParmVarDecl>(Importer.Import(*P)); |
| if (!ToP) |
| return 0; |
| |
| Parameters.push_back(ToP); |
| } |
| |
| // Create the imported function. |
| TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); |
| FunctionDecl *ToEnumerator |
| = FunctionDecl::Create(Importer.getToContext(), DC, Loc, |
| Name, T, TInfo, D->getStorageClass(), |
| D->isInlineSpecified(), |
| D->hasWrittenPrototype()); |
| ToEnumerator->setLexicalDeclContext(LexicalDC); |
| Importer.Imported(D, ToEnumerator); |
| LexicalDC->addDecl(ToEnumerator); |
| |
| // Set the parameters. |
| for (unsigned I = 0, N = Parameters.size(); I != N; ++I) { |
| Parameters[I]->setOwningFunction(ToEnumerator); |
| ToEnumerator->addDecl(Parameters[I]); |
| } |
| ToEnumerator->setParams(Parameters.data(), Parameters.size()); |
| |
| // FIXME: Other bits to merge? |
| |
| return ToEnumerator; |
| } |
| |
| Decl *ASTNodeImporter::VisitFieldDecl(FieldDecl *D) { |
| // Import the major distinguishing characteristics of a variable. |
| DeclContext *DC, *LexicalDC; |
| DeclarationName Name; |
| SourceLocation Loc; |
| if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) |
| return 0; |
| |
| // Import the type. |
| QualType T = Importer.Import(D->getType()); |
| if (T.isNull()) |
| return 0; |
| |
| TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); |
| Expr *BitWidth = Importer.Import(D->getBitWidth()); |
| if (!BitWidth && D->getBitWidth()) |
| return 0; |
| |
| FieldDecl *ToField = FieldDecl::Create(Importer.getToContext(), DC, |
| Loc, Name.getAsIdentifierInfo(), |
| T, TInfo, BitWidth, D->isMutable()); |
| ToField->setLexicalDeclContext(LexicalDC); |
| Importer.Imported(D, ToField); |
| LexicalDC->addDecl(ToField); |
| return ToField; |
| } |
| |
| Decl *ASTNodeImporter::VisitVarDecl(VarDecl *D) { |
| // Import the major distinguishing characteristics of a variable. |
| DeclContext *DC, *LexicalDC; |
| DeclarationName Name; |
| SourceLocation Loc; |
| if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) |
| return 0; |
| |
| // Try to find a variable in our own ("to") context with the same name and |
| // in the same context as the variable we're importing. |
| if (D->isFileVarDecl()) { |
| VarDecl *MergeWithVar = 0; |
| llvm::SmallVector<NamedDecl *, 4> ConflictingDecls; |
| unsigned IDNS = Decl::IDNS_Ordinary; |
| for (DeclContext::lookup_result Lookup = DC->lookup(Name); |
| Lookup.first != Lookup.second; |
| ++Lookup.first) { |
| if (!(*Lookup.first)->isInIdentifierNamespace(IDNS)) |
| continue; |
| |
| if (VarDecl *FoundVar = dyn_cast<VarDecl>(*Lookup.first)) { |
| // We have found a variable that we may need to merge with. Check it. |
| if (isExternalLinkage(FoundVar->getLinkage()) && |
| isExternalLinkage(D->getLinkage())) { |
| if (Importer.IsStructurallyEquivalent(D->getType(), |
| FoundVar->getType())) { |
| MergeWithVar = FoundVar; |
| break; |
| } |
| |
| const ArrayType *FoundArray |
| = Importer.getToContext().getAsArrayType(FoundVar->getType()); |
| const ArrayType *TArray |
| = Importer.getToContext().getAsArrayType(D->getType()); |
| if (FoundArray && TArray) { |
| if (isa<IncompleteArrayType>(FoundArray) && |
| isa<ConstantArrayType>(TArray)) { |
| // Import the type. |
| QualType T = Importer.Import(D->getType()); |
| if (T.isNull()) |
| return 0; |
| |
| FoundVar->setType(T); |
| MergeWithVar = FoundVar; |
| break; |
| } else if (isa<IncompleteArrayType>(TArray) && |
| isa<ConstantArrayType>(FoundArray)) { |
| MergeWithVar = FoundVar; |
| break; |
| } |
| } |
| |
| Importer.ToDiag(Loc, diag::err_odr_variable_type_inconsistent) |
| << Name << D->getType() << FoundVar->getType(); |
| Importer.ToDiag(FoundVar->getLocation(), diag::note_odr_value_here) |
| << FoundVar->getType(); |
| } |
| } |
| |
| ConflictingDecls.push_back(*Lookup.first); |
| } |
| |
| if (MergeWithVar) { |
| // An equivalent variable with external linkage has been found. Link |
| // the two declarations, then merge them. |
| Importer.Imported(D, MergeWithVar); |
| |
| if (VarDecl *DDef = D->getDefinition()) { |
| if (VarDecl *ExistingDef = MergeWithVar->getDefinition()) { |
| Importer.ToDiag(ExistingDef->getLocation(), |
| diag::err_odr_variable_multiple_def) |
| << Name; |
| Importer.FromDiag(DDef->getLocation(), diag::note_odr_defined_here); |
| } else { |
| Expr *Init = Importer.Import(DDef->getInit()); |
| MergeWithVar->setInit(Init); |
| } |
| } |
| |
| return MergeWithVar; |
| } |
| |
| if (!ConflictingDecls.empty()) { |
| Name = Importer.HandleNameConflict(Name, DC, IDNS, |
| ConflictingDecls.data(), |
| ConflictingDecls.size()); |
| if (!Name) |
| return 0; |
| } |
| } |
| |
| // Import the type. |
| QualType T = Importer.Import(D->getType()); |
| if (T.isNull()) |
| return 0; |
| |
| // Create the imported variable. |
| TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); |
| VarDecl *ToVar = VarDecl::Create(Importer.getToContext(), DC, Loc, |
| Name.getAsIdentifierInfo(), T, TInfo, |
| D->getStorageClass()); |
| ToVar->setLexicalDeclContext(LexicalDC); |
| Importer.Imported(D, ToVar); |
| LexicalDC->addDecl(ToVar); |
| |
| // Merge the initializer. |
| // FIXME: Can we really import any initializer? Alternatively, we could force |
| // ourselves to import every declaration of a variable and then only use |
| // getInit() here. |
| ToVar->setInit(Importer.Import(const_cast<Expr *>(D->getAnyInitializer()))); |
| |
| // FIXME: Other bits to merge? |
| |
| return ToVar; |
| } |
| |
| Decl *ASTNodeImporter::VisitParmVarDecl(ParmVarDecl *D) { |
| // Parameters are created in the translation unit's context, then moved |
| // into the function declaration's context afterward. |
| DeclContext *DC = Importer.getToContext().getTranslationUnitDecl(); |
| |
| // Import the name of this declaration. |
| DeclarationName Name = Importer.Import(D->getDeclName()); |
| if (D->getDeclName() && !Name) |
| return 0; |
| |
| // Import the location of this declaration. |
| SourceLocation Loc = Importer.Import(D->getLocation()); |
| |
| // Import the parameter's type. |
| QualType T = Importer.Import(D->getType()); |
| if (T.isNull()) |
| return 0; |
| |
| // Create the imported parameter. |
| TypeSourceInfo *TInfo = Importer.Import(D->getTypeSourceInfo()); |
| ParmVarDecl *ToParm = ParmVarDecl::Create(Importer.getToContext(), DC, |
| Loc, Name.getAsIdentifierInfo(), |
| T, TInfo, D->getStorageClass(), |
| /*FIXME: Default argument*/ 0); |
| return Importer.Imported(D, ToParm); |
| } |
| |
| Decl *ASTNodeImporter::VisitObjCInterfaceDecl(ObjCInterfaceDecl *D) { |
| // Import the major distinguishing characteristics of an @interface. |
| DeclContext *DC, *LexicalDC; |
| DeclarationName Name; |
| SourceLocation Loc; |
| if (ImportDeclParts(D, DC, LexicalDC, Name, Loc)) |
| return 0; |
| |
| ObjCInterfaceDecl *MergeWithIface = 0; |
| for (DeclContext::lookup_result Lookup = DC->lookup(Name); |
| Lookup.first != Lookup.second; |
| ++Lookup.first) { |
| if (!(*Lookup.first)->isInIdentifierNamespace(Decl::IDNS_Ordinary)) |
| continue; |
| |
| if ((MergeWithIface = dyn_cast<ObjCInterfaceDecl>(*Lookup.first))) |
| break; |
| } |
| |
| ObjCInterfaceDecl *ToIface = MergeWithIface; |
| if (!ToIface || ToIface->isForwardDecl()) { |
| if (!ToIface) { |
| ToIface = ObjCInterfaceDecl::Create(Importer.getToContext(), |
| DC, Loc, |
| Name.getAsIdentifierInfo(), |
| Importer.Import(D->getClassLoc()), |
| D->isForwardDecl(), |
| D->isImplicitInterfaceDecl()); |
| ToIface->setLexicalDeclContext(LexicalDC); |
| LexicalDC->addDecl(ToIface); |
| } |
| Importer.Imported(D, ToIface); |
| |
| // Import superclass |
| // FIXME: If we're merging, make sure that both decls have the same |
| // superclass. |
| if (D->getSuperClass()) { |
| ObjCInterfaceDecl *Super |
| = cast_or_null<ObjCInterfaceDecl>(Importer.Import(D->getSuperClass())); |
| if (!Super) |
| return 0; |
| |
| ToIface->setSuperClass(Super); |
| ToIface->setSuperClassLoc(Importer.Import(D->getSuperClassLoc())); |
| } |
| |
| // Import protocols |
| llvm::SmallVector<ObjCProtocolDecl *, 4> Protocols; |
| llvm::SmallVector<SourceLocation, 4> ProtocolLocs; |
| ObjCInterfaceDecl::protocol_loc_iterator |
| FromProtoLoc = D->protocol_loc_begin(); |
| for (ObjCInterfaceDecl::protocol_iterator FromProto = D->protocol_begin(), |
| FromProtoEnd = D->protocol_end(); |
| FromProto != FromProtoEnd; |
| ++FromProto, ++FromProtoLoc) { |
| ObjCProtocolDecl *ToProto |
| = cast_or_null<ObjCProtocolDecl>(Importer.Import(*FromProto)); |
| if (!ToProto) |
| return 0; |
| Protocols.push_back(ToProto); |
| ProtocolLocs.push_back(Importer.Import(*FromProtoLoc)); |
| } |
| |
| // FIXME: If we're merging, make sure that the protocol list is the same. |
| ToIface->setProtocolList(Protocols.data(), Protocols.size(), |
| ProtocolLocs.data(), Importer.getToContext()); |
| |
| // FIXME: Import categories |
| |
| // Import @end range |
| ToIface->setAtEndRange(Importer.Import(D->getAtEndRange())); |
| } else { |
| Importer.Imported(D, ToIface); |
| } |
| |
| // Import all of the members of this class. |
| for (DeclContext::decl_iterator FromMem = D->decls_begin(), |
| FromMemEnd = D->decls_end(); |
| FromMem != FromMemEnd; |
| ++FromMem) |
| Importer.Import(*FromMem); |
| |
| // If we have an @implementation, import it as well. |
| if (D->getImplementation()) { |
| ObjCImplementationDecl *Impl |
| = cast<ObjCImplementationDecl>(Importer.Import(D->getImplementation())); |
| if (!Impl) |
| return 0; |
| |
| ToIface->setImplementation(Impl); |
| } |
| |
| return 0; |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Import Statements |
| //---------------------------------------------------------------------------- |
| |
| Stmt *ASTNodeImporter::VisitStmt(Stmt *S) { |
| Importer.FromDiag(S->getLocStart(), diag::err_unsupported_ast_node) |
| << S->getStmtClassName(); |
| return 0; |
| } |
| |
| //---------------------------------------------------------------------------- |
| // Import Expressions |
| //---------------------------------------------------------------------------- |
| Expr *ASTNodeImporter::VisitExpr(Expr *E) { |
| Importer.FromDiag(E->getLocStart(), diag::err_unsupported_ast_node) |
| << E->getStmtClassName(); |
| return 0; |
| } |
| |
| Expr *ASTNodeImporter::VisitIntegerLiteral(IntegerLiteral *E) { |
| QualType T = Importer.Import(E->getType()); |
| if (T.isNull()) |
| return 0; |
| |
| return new (Importer.getToContext()) |
| IntegerLiteral(E->getValue(), T, Importer.Import(E->getLocation())); |
| } |
| |
| Expr *ASTNodeImporter::VisitImplicitCastExpr(ImplicitCastExpr *E) { |
| QualType T = Importer.Import(E->getType()); |
| if (T.isNull()) |
| return 0; |
| |
| Expr *SubExpr = Importer.Import(E->getSubExpr()); |
| if (!SubExpr) |
| return 0; |
| |
| return new (Importer.getToContext()) ImplicitCastExpr(T, E->getCastKind(), |
| SubExpr, |
| E->isLvalueCast()); |
| } |
| |
| ASTImporter::ASTImporter(Diagnostic &Diags, |
| ASTContext &ToContext, FileManager &ToFileManager, |
| ASTContext &FromContext, FileManager &FromFileManager) |
| : ToContext(ToContext), FromContext(FromContext), |
| ToFileManager(ToFileManager), FromFileManager(FromFileManager), |
| Diags(Diags) { |
| ImportedDecls[FromContext.getTranslationUnitDecl()] |
| = ToContext.getTranslationUnitDecl(); |
| } |
| |
| ASTImporter::~ASTImporter() { } |
| |
| QualType ASTImporter::Import(QualType FromT) { |
| if (FromT.isNull()) |
| return QualType(); |
| |
| // Check whether we've already imported this type. |
| llvm::DenseMap<Type *, Type *>::iterator Pos |
| = ImportedTypes.find(FromT.getTypePtr()); |
| if (Pos != ImportedTypes.end()) |
| return ToContext.getQualifiedType(Pos->second, FromT.getQualifiers()); |
| |
| // Import the type |
| ASTNodeImporter Importer(*this); |
| QualType ToT = Importer.Visit(FromT.getTypePtr()); |
| if (ToT.isNull()) |
| return ToT; |
| |
| // Record the imported type. |
| ImportedTypes[FromT.getTypePtr()] = ToT.getTypePtr(); |
| |
| return ToContext.getQualifiedType(ToT, FromT.getQualifiers()); |
| } |
| |
| TypeSourceInfo *ASTImporter::Import(TypeSourceInfo *FromTSI) { |
| if (!FromTSI) |
| return FromTSI; |
| |
| // FIXME: For now we just create a "trivial" type source info based |
| // on the type and a seingle location. Implement a real version of |
| // this. |
| QualType T = Import(FromTSI->getType()); |
| if (T.isNull()) |
| return 0; |
| |
| return ToContext.getTrivialTypeSourceInfo(T, |
| FromTSI->getTypeLoc().getFullSourceRange().getBegin()); |
| } |
| |
| Decl *ASTImporter::Import(Decl *FromD) { |
| if (!FromD) |
| return 0; |
| |
| // Check whether we've already imported this declaration. |
| llvm::DenseMap<Decl *, Decl *>::iterator Pos = ImportedDecls.find(FromD); |
| if (Pos != ImportedDecls.end()) |
| return Pos->second; |
| |
| // Import the type |
| ASTNodeImporter Importer(*this); |
| Decl *ToD = Importer.Visit(FromD); |
| if (!ToD) |
| return 0; |
| |
| // Record the imported declaration. |
| ImportedDecls[FromD] = ToD; |
| |
| if (TagDecl *FromTag = dyn_cast<TagDecl>(FromD)) { |
| // Keep track of anonymous tags that have an associated typedef. |
| if (FromTag->getTypedefForAnonDecl()) |
| AnonTagsWithPendingTypedefs.push_back(FromTag); |
| } else if (TypedefDecl *FromTypedef = dyn_cast<TypedefDecl>(FromD)) { |
| // When we've finished transforming a typedef, see whether it was the |
| // typedef for an anonymous tag. |
| for (llvm::SmallVector<TagDecl *, 4>::iterator |
| FromTag = AnonTagsWithPendingTypedefs.begin(), |
| FromTagEnd = AnonTagsWithPendingTypedefs.end(); |
| FromTag != FromTagEnd; ++FromTag) { |
| if ((*FromTag)->getTypedefForAnonDecl() == FromTypedef) { |
| if (TagDecl *ToTag = cast_or_null<TagDecl>(Import(*FromTag))) { |
| // We found the typedef for an anonymous tag; link them. |
| ToTag->setTypedefForAnonDecl(cast<TypedefDecl>(ToD)); |
| AnonTagsWithPendingTypedefs.erase(FromTag); |
| break; |
| } |
| } |
| } |
| } |
| |
| return ToD; |
| } |
| |
| DeclContext *ASTImporter::ImportContext(DeclContext *FromDC) { |
| if (!FromDC) |
| return FromDC; |
| |
| return cast_or_null<DeclContext>(Import(cast<Decl>(FromDC))); |
| } |
| |
| Expr *ASTImporter::Import(Expr *FromE) { |
| if (!FromE) |
| return 0; |
| |
| return cast_or_null<Expr>(Import(cast<Stmt>(FromE))); |
| } |
| |
| Stmt *ASTImporter::Import(Stmt *FromS) { |
| if (!FromS) |
| return 0; |
| |
| // Check whether we've already imported this declaration. |
| llvm::DenseMap<Stmt *, Stmt *>::iterator Pos = ImportedStmts.find(FromS); |
| if (Pos != ImportedStmts.end()) |
| return Pos->second; |
| |
| // Import the type |
| ASTNodeImporter Importer(*this); |
| Stmt *ToS = Importer.Visit(FromS); |
| if (!ToS) |
| return 0; |
| |
| // Record the imported declaration. |
| ImportedStmts[FromS] = ToS; |
| return ToS; |
| } |
| |
| NestedNameSpecifier *ASTImporter::Import(NestedNameSpecifier *FromNNS) { |
| if (!FromNNS) |
| return 0; |
| |
| // FIXME: Implement! |
| return 0; |
| } |
| |
| SourceLocation ASTImporter::Import(SourceLocation FromLoc) { |
| if (FromLoc.isInvalid()) |
| return SourceLocation(); |
| |
| SourceManager &FromSM = FromContext.getSourceManager(); |
| |
| // For now, map everything down to its spelling location, so that we |
| // don't have to import macro instantiations. |
| // FIXME: Import macro instantiations! |
| FromLoc = FromSM.getSpellingLoc(FromLoc); |
| std::pair<FileID, unsigned> Decomposed = FromSM.getDecomposedLoc(FromLoc); |
| SourceManager &ToSM = ToContext.getSourceManager(); |
| return ToSM.getLocForStartOfFile(Import(Decomposed.first)) |
| .getFileLocWithOffset(Decomposed.second); |
| } |
| |
| SourceRange ASTImporter::Import(SourceRange FromRange) { |
| return SourceRange(Import(FromRange.getBegin()), Import(FromRange.getEnd())); |
| } |
| |
| FileID ASTImporter::Import(FileID FromID) { |
| llvm::DenseMap<unsigned, FileID>::iterator Pos |
| = ImportedFileIDs.find(FromID.getHashValue()); |
| if (Pos != ImportedFileIDs.end()) |
| return Pos->second; |
| |
| SourceManager &FromSM = FromContext.getSourceManager(); |
| SourceManager &ToSM = ToContext.getSourceManager(); |
| const SrcMgr::SLocEntry &FromSLoc = FromSM.getSLocEntry(FromID); |
| assert(FromSLoc.isFile() && "Cannot handle macro instantiations yet"); |
| |
| // Include location of this file. |
| SourceLocation ToIncludeLoc = Import(FromSLoc.getFile().getIncludeLoc()); |
| |
| // Map the FileID for to the "to" source manager. |
| FileID ToID; |
| const SrcMgr::ContentCache *Cache = FromSLoc.getFile().getContentCache(); |
| if (Cache->Entry) { |
| // FIXME: We probably want to use getVirtualFile(), so we don't hit the |
| // disk again |
| // FIXME: We definitely want to re-use the existing MemoryBuffer, rather |
| // than mmap the files several times. |
| const FileEntry *Entry = ToFileManager.getFile(Cache->Entry->getName()); |
| ToID = ToSM.createFileID(Entry, ToIncludeLoc, |
| FromSLoc.getFile().getFileCharacteristic()); |
| } else { |
| // FIXME: We want to re-use the existing MemoryBuffer! |
| const llvm::MemoryBuffer *FromBuf = Cache->getBuffer(); |
| llvm::MemoryBuffer *ToBuf |
| = llvm::MemoryBuffer::getMemBufferCopy(FromBuf->getBufferStart(), |
| FromBuf->getBufferEnd(), |
| FromBuf->getBufferIdentifier()); |
| ToID = ToSM.createFileIDForMemBuffer(ToBuf); |
| } |
| |
| |
| ImportedFileIDs[FromID.getHashValue()] = ToID; |
| return ToID; |
| } |
| |
| DeclarationName ASTImporter::Import(DeclarationName FromName) { |
| if (!FromName) |
| return DeclarationName(); |
| |
| switch (FromName.getNameKind()) { |
| case DeclarationName::Identifier: |
| return Import(FromName.getAsIdentifierInfo()); |
| |
| case DeclarationName::ObjCZeroArgSelector: |
| case DeclarationName::ObjCOneArgSelector: |
| case DeclarationName::ObjCMultiArgSelector: |
| return Import(FromName.getObjCSelector()); |
| |
| case DeclarationName::CXXConstructorName: { |
| QualType T = Import(FromName.getCXXNameType()); |
| if (T.isNull()) |
| return DeclarationName(); |
| |
| return ToContext.DeclarationNames.getCXXConstructorName( |
| ToContext.getCanonicalType(T)); |
| } |
| |
| case DeclarationName::CXXDestructorName: { |
| QualType T = Import(FromName.getCXXNameType()); |
| if (T.isNull()) |
| return DeclarationName(); |
| |
| return ToContext.DeclarationNames.getCXXDestructorName( |
| ToContext.getCanonicalType(T)); |
| } |
| |
| case DeclarationName::CXXConversionFunctionName: { |
| QualType T = Import(FromName.getCXXNameType()); |
| if (T.isNull()) |
| return DeclarationName(); |
| |
| return ToContext.DeclarationNames.getCXXConversionFunctionName( |
| ToContext.getCanonicalType(T)); |
| } |
| |
| case DeclarationName::CXXOperatorName: |
| return ToContext.DeclarationNames.getCXXOperatorName( |
| FromName.getCXXOverloadedOperator()); |
| |
| case DeclarationName::CXXLiteralOperatorName: |
| return ToContext.DeclarationNames.getCXXLiteralOperatorName( |
| Import(FromName.getCXXLiteralIdentifier())); |
| |
| case DeclarationName::CXXUsingDirective: |
| // FIXME: STATICS! |
| return DeclarationName::getUsingDirectiveName(); |
| } |
| |
| // Silence bogus GCC warning |
| return DeclarationName(); |
| } |
| |
| IdentifierInfo *ASTImporter::Import(IdentifierInfo *FromId) { |
| if (!FromId) |
| return 0; |
| |
| return &ToContext.Idents.get(FromId->getName()); |
| } |
| |
| DeclarationName ASTImporter::HandleNameConflict(DeclarationName Name, |
| DeclContext *DC, |
| unsigned IDNS, |
| NamedDecl **Decls, |
| unsigned NumDecls) { |
| return Name; |
| } |
| |
| DiagnosticBuilder ASTImporter::ToDiag(SourceLocation Loc, unsigned DiagID) { |
| return Diags.Report(FullSourceLoc(Loc, ToContext.getSourceManager()), |
| DiagID); |
| } |
| |
| DiagnosticBuilder ASTImporter::FromDiag(SourceLocation Loc, unsigned DiagID) { |
| return Diags.Report(FullSourceLoc(Loc, FromContext.getSourceManager()), |
| DiagID); |
| } |
| |
| Decl *ASTImporter::Imported(Decl *From, Decl *To) { |
| ImportedDecls[From] = To; |
| return To; |
| } |
| |
| bool ASTImporter::IsStructurallyEquivalent(QualType From, QualType To) { |
| llvm::DenseMap<Type *, Type *>::iterator Pos |
| = ImportedTypes.find(From.getTypePtr()); |
| if (Pos != ImportedTypes.end() && ToContext.hasSameType(Import(From), To)) |
| return true; |
| |
| StructuralEquivalenceContext SEC(FromContext, ToContext, Diags, |
| NonEquivalentDecls); |
| return SEC.IsStructurallyEquivalent(From, To); |
| } |