| //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This coordinates the per-module state used while generating code. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "CGDebugInfo.h" |
| #include "CodeGenModule.h" |
| #include "CodeGenFunction.h" |
| #include "CGCall.h" |
| #include "CGObjCRuntime.h" |
| #include "Mangle.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/Basic/Diagnostic.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Module.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Target/TargetData.h" |
| using namespace clang; |
| using namespace CodeGen; |
| |
| |
| CodeGenModule::CodeGenModule(ASTContext &C, const LangOptions &LO, |
| llvm::Module &M, const llvm::TargetData &TD, |
| Diagnostic &diags, bool GenerateDebugInfo) |
| : BlockModule(C, M, TD, Types, *this), Context(C), Features(LO), TheModule(M), |
| TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0), |
| MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) { |
| |
| if (Features.ObjC1) { |
| if (Features.NeXTRuntime) { |
| Runtime = Features.ObjCNonFragileABI ? CreateMacNonFragileABIObjCRuntime(*this) |
| : CreateMacObjCRuntime(*this); |
| } else { |
| Runtime = CreateGNUObjCRuntime(*this); |
| } |
| } |
| |
| // If debug info generation is enabled, create the CGDebugInfo object. |
| DebugInfo = GenerateDebugInfo ? new CGDebugInfo(this) : 0; |
| } |
| |
| CodeGenModule::~CodeGenModule() { |
| delete Runtime; |
| delete DebugInfo; |
| } |
| |
| void CodeGenModule::Release() { |
| EmitDeferred(); |
| EmitAliases(); |
| if (Runtime) |
| if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) |
| AddGlobalCtor(ObjCInitFunction); |
| EmitCtorList(GlobalCtors, "llvm.global_ctors"); |
| EmitCtorList(GlobalDtors, "llvm.global_dtors"); |
| EmitAnnotations(); |
| EmitLLVMUsed(); |
| BindRuntimeGlobals(); |
| } |
| |
| void CodeGenModule::BindRuntimeGlobals() { |
| // Deal with protecting runtime function names. |
| for (unsigned i = 0, e = RuntimeGlobals.size(); i < e; ++i) { |
| llvm::GlobalValue *GV = RuntimeGlobals[i].first; |
| const std::string &Name = RuntimeGlobals[i].second; |
| |
| // Discard unused runtime declarations. |
| if (GV->isDeclaration() && GV->use_empty()) { |
| GV->eraseFromParent(); |
| continue; |
| } |
| |
| // See if there is a conflict against a function. |
| llvm::GlobalValue *Conflict = TheModule.getNamedValue(Name); |
| if (Conflict) { |
| // Decide which version to take. If the conflict is a definition |
| // we are forced to take that, otherwise assume the runtime |
| // knows best. |
| |
| // FIXME: This will fail phenomenally when the conflict is the |
| // wrong type of value. Just bail on it for now. This should |
| // really reuse something inside the LLVM Linker code. |
| assert(GV->getValueID() == Conflict->getValueID() && |
| "Unable to resolve conflict between globals of different types."); |
| if (!Conflict->isDeclaration()) { |
| llvm::Value *Casted = |
| llvm::ConstantExpr::getBitCast(Conflict, GV->getType()); |
| GV->replaceAllUsesWith(Casted); |
| GV->eraseFromParent(); |
| } else { |
| GV->takeName(Conflict); |
| llvm::Value *Casted = |
| llvm::ConstantExpr::getBitCast(GV, Conflict->getType()); |
| Conflict->replaceAllUsesWith(Casted); |
| Conflict->eraseFromParent(); |
| } |
| } else |
| GV->setName(Name); |
| } |
| } |
| |
| /// ErrorUnsupported - Print out an error that codegen doesn't support the |
| /// specified stmt yet. |
| void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, |
| bool OmitOnError) { |
| if (OmitOnError && getDiags().hasErrorOccurred()) |
| return; |
| unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, |
| "cannot compile this %0 yet"); |
| std::string Msg = Type; |
| getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) |
| << Msg << S->getSourceRange(); |
| } |
| |
| /// ErrorUnsupported - Print out an error that codegen doesn't support the |
| /// specified decl yet. |
| void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, |
| bool OmitOnError) { |
| if (OmitOnError && getDiags().hasErrorOccurred()) |
| return; |
| unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, |
| "cannot compile this %0 yet"); |
| std::string Msg = Type; |
| getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; |
| } |
| |
| /// setGlobalVisibility - Set the visibility for the given LLVM |
| /// GlobalValue according to the given clang AST visibility value. |
| static void setGlobalVisibility(llvm::GlobalValue *GV, |
| VisibilityAttr::VisibilityTypes Vis) { |
| switch (Vis) { |
| default: assert(0 && "Unknown visibility!"); |
| case VisibilityAttr::DefaultVisibility: |
| GV->setVisibility(llvm::GlobalValue::DefaultVisibility); |
| break; |
| case VisibilityAttr::HiddenVisibility: |
| GV->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| break; |
| case VisibilityAttr::ProtectedVisibility: |
| GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); |
| break; |
| } |
| } |
| |
| /// \brief Retrieves the mangled name for the given declaration. |
| /// |
| /// If the given declaration requires a mangled name, returns an |
| /// IdentifierInfo* containing the mangled name. Otherwise, returns |
| /// the name of the declaration as an identifier. |
| /// |
| /// FIXME: Returning an IdentifierInfo* here is a total hack. We |
| /// really need some kind of string abstraction that either stores a |
| /// mangled name or stores an IdentifierInfo*. This will require |
| /// changes to the GlobalDeclMap, too. (I disagree, I think what we |
| /// actually need is for Sema to provide some notion of which Decls |
| /// refer to the same semantic decl. We shouldn't need to mangle the |
| /// names and see what comes out the same to figure this out. - DWD) |
| /// |
| /// FIXME: Performance here is going to be terribly until we start |
| /// caching mangled names. However, we should fix the problem above |
| /// first. |
| const char *CodeGenModule::getMangledName(const NamedDecl *ND) { |
| llvm::SmallString<256> Name; |
| llvm::raw_svector_ostream Out(Name); |
| if (!mangleName(ND, Context, Out)) { |
| assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); |
| return ND->getIdentifier()->getName(); |
| } |
| |
| Name += '\0'; |
| return MangledNames.GetOrCreateValue(Name.begin(), Name.end()) |
| .getKeyData(); |
| } |
| |
| /// AddGlobalCtor - Add a function to the list that will be called before |
| /// main() runs. |
| void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { |
| // FIXME: Type coercion of void()* types. |
| GlobalCtors.push_back(std::make_pair(Ctor, Priority)); |
| } |
| |
| /// AddGlobalDtor - Add a function to the list that will be called |
| /// when the module is unloaded. |
| void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { |
| // FIXME: Type coercion of void()* types. |
| GlobalDtors.push_back(std::make_pair(Dtor, Priority)); |
| } |
| |
| void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { |
| // Ctor function type is void()*. |
| llvm::FunctionType* CtorFTy = |
| llvm::FunctionType::get(llvm::Type::VoidTy, |
| std::vector<const llvm::Type*>(), |
| false); |
| llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); |
| |
| // Get the type of a ctor entry, { i32, void ()* }. |
| llvm::StructType* CtorStructTy = |
| llvm::StructType::get(llvm::Type::Int32Ty, |
| llvm::PointerType::getUnqual(CtorFTy), NULL); |
| |
| // Construct the constructor and destructor arrays. |
| std::vector<llvm::Constant*> Ctors; |
| for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { |
| std::vector<llvm::Constant*> S; |
| S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false)); |
| S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); |
| Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); |
| } |
| |
| if (!Ctors.empty()) { |
| llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); |
| new llvm::GlobalVariable(AT, false, |
| llvm::GlobalValue::AppendingLinkage, |
| llvm::ConstantArray::get(AT, Ctors), |
| GlobalName, |
| &TheModule); |
| } |
| } |
| |
| void CodeGenModule::EmitAnnotations() { |
| if (Annotations.empty()) |
| return; |
| |
| // Create a new global variable for the ConstantStruct in the Module. |
| llvm::Constant *Array = |
| llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), |
| Annotations.size()), |
| Annotations); |
| llvm::GlobalValue *gv = |
| new llvm::GlobalVariable(Array->getType(), false, |
| llvm::GlobalValue::AppendingLinkage, Array, |
| "llvm.global.annotations", &TheModule); |
| gv->setSection("llvm.metadata"); |
| } |
| |
| void CodeGenModule::SetGlobalValueAttributes(const Decl *D, |
| bool IsInternal, |
| bool IsInline, |
| llvm::GlobalValue *GV, |
| bool ForDefinition) { |
| // FIXME: Set up linkage and many other things. Note, this is a simple |
| // approximation of what we really want. |
| if (!ForDefinition) { |
| // Only a few attributes are set on declarations. |
| if (D->getAttr<DLLImportAttr>()) { |
| // The dllimport attribute is overridden by a subsequent declaration as |
| // dllexport. |
| if (!D->getAttr<DLLExportAttr>()) { |
| // dllimport attribute can be applied only to function decls, not to |
| // definitions. |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| if (!FD->getBody()) |
| GV->setLinkage(llvm::Function::DLLImportLinkage); |
| } else |
| GV->setLinkage(llvm::Function::DLLImportLinkage); |
| } |
| } else if (D->getAttr<WeakAttr>() || |
| D->getAttr<WeakImportAttr>()) { |
| // "extern_weak" is overloaded in LLVM; we probably should have |
| // separate linkage types for this. |
| GV->setLinkage(llvm::Function::ExternalWeakLinkage); |
| } |
| } else { |
| if (IsInternal) { |
| GV->setLinkage(llvm::Function::InternalLinkage); |
| } else { |
| if (D->getAttr<DLLExportAttr>()) { |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| // The dllexport attribute is ignored for undefined symbols. |
| if (FD->getBody()) |
| GV->setLinkage(llvm::Function::DLLExportLinkage); |
| } else |
| GV->setLinkage(llvm::Function::DLLExportLinkage); |
| } else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>() || |
| IsInline) |
| GV->setLinkage(llvm::Function::WeakLinkage); |
| } |
| } |
| |
| // FIXME: Figure out the relative priority of the attribute, |
| // -fvisibility, and private_extern. |
| if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) |
| setGlobalVisibility(GV, attr->getVisibility()); |
| // FIXME: else handle -fvisibility |
| |
| // Prefaced with special LLVM marker to indicate that the name |
| // should not be munged. |
| if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) |
| GV->setName("\01" + ALA->getLabel()); |
| |
| if (const SectionAttr *SA = D->getAttr<SectionAttr>()) |
| GV->setSection(SA->getName()); |
| |
| // Only add to llvm.used when we see a definition, otherwise we |
| // might add multiple times or risk the value being replaced by a |
| // subsequent RAUW. |
| if (ForDefinition) { |
| if (D->getAttr<UsedAttr>()) |
| AddUsedGlobal(GV); |
| } |
| } |
| |
| void CodeGenModule::SetFunctionAttributes(const Decl *D, |
| const CGFunctionInfo &Info, |
| llvm::Function *F) { |
| AttributeListType AttributeList; |
| ConstructAttributeList(Info, D, AttributeList); |
| |
| F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), |
| AttributeList.size())); |
| |
| // Set the appropriate calling convention for the Function. |
| if (D->getAttr<FastCallAttr>()) |
| F->setCallingConv(llvm::CallingConv::X86_FastCall); |
| |
| if (D->getAttr<StdCallAttr>()) |
| F->setCallingConv(llvm::CallingConv::X86_StdCall); |
| } |
| |
| /// SetFunctionAttributesForDefinition - Set function attributes |
| /// specific to a function definition. |
| void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D, |
| llvm::Function *F) { |
| if (isa<ObjCMethodDecl>(D)) { |
| SetGlobalValueAttributes(D, true, false, F, true); |
| } else { |
| const FunctionDecl *FD = cast<FunctionDecl>(D); |
| SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static, |
| FD->isInline(), F, true); |
| } |
| |
| if (!Features.Exceptions && !Features.ObjCNonFragileABI) |
| F->addFnAttr(llvm::Attribute::NoUnwind); |
| |
| if (D->getAttr<AlwaysInlineAttr>()) |
| F->addFnAttr(llvm::Attribute::AlwaysInline); |
| |
| if (D->getAttr<NoinlineAttr>()) |
| F->addFnAttr(llvm::Attribute::NoInline); |
| } |
| |
| void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD, |
| llvm::Function *F) { |
| SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F); |
| |
| SetFunctionAttributesForDefinition(MD, F); |
| } |
| |
| void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD, |
| llvm::Function *F) { |
| SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F); |
| |
| SetGlobalValueAttributes(FD, FD->getStorageClass() == FunctionDecl::Static, |
| FD->isInline(), F, false); |
| } |
| |
| |
| void CodeGenModule::EmitAliases() { |
| for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { |
| const FunctionDecl *D = Aliases[i]; |
| const AliasAttr *AA = D->getAttr<AliasAttr>(); |
| |
| // This is something of a hack, if the FunctionDecl got overridden |
| // then its attributes will be moved to the new declaration. In |
| // this case the current decl has no alias attribute, but we will |
| // eventually see it. |
| if (!AA) |
| continue; |
| |
| const std::string& aliaseeName = AA->getAliasee(); |
| llvm::Function *aliasee = getModule().getFunction(aliaseeName); |
| if (!aliasee) { |
| // FIXME: This isn't unsupported, this is just an error, which |
| // sema should catch, but... |
| ErrorUnsupported(D, "alias referencing a missing function"); |
| continue; |
| } |
| |
| llvm::GlobalValue *GA = |
| new llvm::GlobalAlias(aliasee->getType(), |
| llvm::Function::ExternalLinkage, |
| getMangledName(D), aliasee, |
| &getModule()); |
| |
| llvm::GlobalValue *&Entry = GlobalDeclMap[getMangledName(D)]; |
| if (Entry) { |
| // If we created a dummy function for this then replace it. |
| GA->takeName(Entry); |
| |
| llvm::Value *Casted = |
| llvm::ConstantExpr::getBitCast(GA, Entry->getType()); |
| Entry->replaceAllUsesWith(Casted); |
| Entry->eraseFromParent(); |
| |
| Entry = GA; |
| } |
| |
| // Alias should never be internal or inline. |
| SetGlobalValueAttributes(D, false, false, GA, true); |
| } |
| } |
| |
| void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { |
| assert(!GV->isDeclaration() && |
| "Only globals with definition can force usage."); |
| llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); |
| LLVMUsed.push_back(llvm::ConstantExpr::getBitCast(GV, i8PTy)); |
| } |
| |
| void CodeGenModule::EmitLLVMUsed() { |
| // Don't create llvm.used if there is no need. |
| if (LLVMUsed.empty()) |
| return; |
| |
| llvm::ArrayType *ATy = llvm::ArrayType::get(LLVMUsed[0]->getType(), |
| LLVMUsed.size()); |
| llvm::GlobalVariable *GV = |
| new llvm::GlobalVariable(ATy, false, |
| llvm::GlobalValue::AppendingLinkage, |
| llvm::ConstantArray::get(ATy, LLVMUsed), |
| "llvm.used", &getModule()); |
| |
| GV->setSection("llvm.metadata"); |
| } |
| |
| void CodeGenModule::EmitDeferred() { |
| // Emit code for any deferred decl which was used. Since a |
| // previously unused static decl may become used during the |
| // generation of code for a static function, iterate until no |
| // changes are made. |
| bool Changed; |
| do { |
| Changed = false; |
| |
| for (std::list<const ValueDecl*>::iterator i = DeferredDecls.begin(), |
| e = DeferredDecls.end(); i != e; ) { |
| const ValueDecl *D = *i; |
| |
| // Check if we have used a decl with the same name |
| // FIXME: The AST should have some sort of aggregate decls or |
| // global symbol map. |
| // FIXME: This is missing some important cases. For example, we |
| // need to check for uses in an alias. |
| if (!GlobalDeclMap.count(getMangledName(D))) { |
| ++i; |
| continue; |
| } |
| |
| // Emit the definition. |
| EmitGlobalDefinition(D); |
| |
| // Erase the used decl from the list. |
| i = DeferredDecls.erase(i); |
| |
| // Remember that we made a change. |
| Changed = true; |
| } |
| } while (Changed); |
| } |
| |
| /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the |
| /// annotation information for a given GlobalValue. The annotation struct is |
| /// {i8 *, i8 *, i8 *, i32}. The first field is a constant expression, the |
| /// GlobalValue being annotated. The second field is the constant string |
| /// created from the AnnotateAttr's annotation. The third field is a constant |
| /// string containing the name of the translation unit. The fourth field is |
| /// the line number in the file of the annotated value declaration. |
| /// |
| /// FIXME: this does not unique the annotation string constants, as llvm-gcc |
| /// appears to. |
| /// |
| llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, |
| const AnnotateAttr *AA, |
| unsigned LineNo) { |
| llvm::Module *M = &getModule(); |
| |
| // get [N x i8] constants for the annotation string, and the filename string |
| // which are the 2nd and 3rd elements of the global annotation structure. |
| const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); |
| llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true); |
| llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(), |
| true); |
| |
| // Get the two global values corresponding to the ConstantArrays we just |
| // created to hold the bytes of the strings. |
| llvm::GlobalValue *annoGV = |
| new llvm::GlobalVariable(anno->getType(), false, |
| llvm::GlobalValue::InternalLinkage, anno, |
| GV->getName() + ".str", M); |
| // translation unit name string, emitted into the llvm.metadata section. |
| llvm::GlobalValue *unitGV = |
| new llvm::GlobalVariable(unit->getType(), false, |
| llvm::GlobalValue::InternalLinkage, unit, ".str", M); |
| |
| // Create the ConstantStruct that is the global annotion. |
| llvm::Constant *Fields[4] = { |
| llvm::ConstantExpr::getBitCast(GV, SBP), |
| llvm::ConstantExpr::getBitCast(annoGV, SBP), |
| llvm::ConstantExpr::getBitCast(unitGV, SBP), |
| llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo) |
| }; |
| return llvm::ConstantStruct::get(Fields, 4, false); |
| } |
| |
| bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { |
| // Never defer when EmitAllDecls is specified or the decl has |
| // attribute used. |
| if (Features.EmitAllDecls || Global->getAttr<UsedAttr>()) |
| return false; |
| |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { |
| // Constructors and destructors should never be deferred. |
| if (FD->getAttr<ConstructorAttr>() || FD->getAttr<DestructorAttr>()) |
| return false; |
| |
| if (FD->getStorageClass() != FunctionDecl::Static) |
| return false; |
| } else { |
| const VarDecl *VD = cast<VarDecl>(Global); |
| assert(VD->isFileVarDecl() && "Invalid decl."); |
| |
| if (VD->getStorageClass() != VarDecl::Static) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void CodeGenModule::EmitGlobal(const ValueDecl *Global) { |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { |
| // Aliases are deferred until code for everything else has been |
| // emitted. |
| if (FD->getAttr<AliasAttr>()) { |
| assert(!FD->isThisDeclarationADefinition() && |
| "Function alias cannot have a definition!"); |
| Aliases.push_back(FD); |
| return; |
| } |
| |
| // Forward declarations are emitted lazily on first use. |
| if (!FD->isThisDeclarationADefinition()) |
| return; |
| } else { |
| const VarDecl *VD = cast<VarDecl>(Global); |
| assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); |
| |
| // Forward declarations are emitted lazily on first use. |
| if (!VD->getInit() && VD->hasExternalStorage()) |
| return; |
| } |
| |
| // Defer code generation when possible. |
| if (MayDeferGeneration(Global)) { |
| DeferredDecls.push_back(Global); |
| return; |
| } |
| |
| // Otherwise emit the definition. |
| EmitGlobalDefinition(Global); |
| } |
| |
| void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) { |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| EmitGlobalFunctionDefinition(FD); |
| } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| EmitGlobalVarDefinition(VD); |
| } else { |
| assert(0 && "Invalid argument to EmitGlobalDefinition()"); |
| } |
| } |
| |
| llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D) { |
| assert(D->hasGlobalStorage() && "Not a global variable"); |
| |
| QualType ASTTy = D->getType(); |
| const llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy); |
| const llvm::Type *PTy = llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); |
| |
| // Lookup the entry, lazily creating it if necessary. |
| llvm::GlobalValue *&Entry = GlobalDeclMap[getMangledName(D)]; |
| if (!Entry) { |
| llvm::GlobalVariable *GV = |
| new llvm::GlobalVariable(Ty, false, |
| llvm::GlobalValue::ExternalLinkage, |
| 0, getMangledName(D), &getModule(), |
| 0, ASTTy.getAddressSpace()); |
| Entry = GV; |
| |
| // Handle things which are present even on external declarations. |
| |
| // FIXME: This code is overly simple and should be merged with |
| // other global handling. |
| |
| GV->setConstant(D->getType().isConstant(Context)); |
| |
| // FIXME: Merge with other attribute handling code. |
| |
| if (D->getStorageClass() == VarDecl::PrivateExtern) |
| setGlobalVisibility(GV, VisibilityAttr::HiddenVisibility); |
| |
| if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>()) |
| GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); |
| |
| if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) { |
| // Prefaced with special LLVM marker to indicate that the name |
| // should not be munged. |
| GV->setName("\01" + ALA->getLabel()); |
| } |
| } |
| |
| // Make sure the result is of the correct type. |
| return llvm::ConstantExpr::getBitCast(Entry, PTy); |
| } |
| |
| void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { |
| llvm::Constant *Init = 0; |
| QualType ASTTy = D->getType(); |
| const llvm::Type *VarTy = getTypes().ConvertTypeForMem(ASTTy); |
| |
| if (D->getInit() == 0) { |
| // This is a tentative definition; tentative definitions are |
| // implicitly initialized with { 0 } |
| const llvm::Type* InitTy; |
| if (ASTTy->isIncompleteArrayType()) { |
| // An incomplete array is normally [ TYPE x 0 ], but we need |
| // to fix it to [ TYPE x 1 ]. |
| const llvm::ArrayType* ATy = cast<llvm::ArrayType>(VarTy); |
| InitTy = llvm::ArrayType::get(ATy->getElementType(), 1); |
| } else { |
| InitTy = VarTy; |
| } |
| Init = llvm::Constant::getNullValue(InitTy); |
| } else { |
| Init = EmitConstantExpr(D->getInit()); |
| if (!Init) { |
| ErrorUnsupported(D, "static initializer"); |
| QualType T = D->getInit()->getType(); |
| Init = llvm::UndefValue::get(getTypes().ConvertType(T)); |
| } |
| } |
| const llvm::Type* InitType = Init->getType(); |
| |
| llvm::GlobalValue *&Entry = GlobalDeclMap[getMangledName(D)]; |
| llvm::GlobalVariable *GV = cast_or_null<llvm::GlobalVariable>(Entry); |
| |
| if (!GV) { |
| GV = new llvm::GlobalVariable(InitType, false, |
| llvm::GlobalValue::ExternalLinkage, |
| 0, getMangledName(D), |
| &getModule(), 0, ASTTy.getAddressSpace()); |
| |
| } else if (GV->hasInitializer() && !GV->getInitializer()->isNullValue()) { |
| // If we already have this global and it has an initializer, then |
| // we are in the rare situation where we emitted the defining |
| // declaration of the global and are now being asked to emit a |
| // definition which would be common. This occurs, for example, in |
| // the following situation because statics can be emitted out of |
| // order: |
| // |
| // static int x; |
| // static int *y = &x; |
| // static int x = 10; |
| // int **z = &y; |
| // |
| // Bail here so we don't blow away the definition. Note that if we |
| // can't distinguish here if we emitted a definition with a null |
| // initializer, but this case is safe. |
| assert(!D->getInit() && "Emitting multiple definitions of a decl!"); |
| return; |
| |
| } else if (GV->getType() != |
| llvm::PointerType::get(InitType, ASTTy.getAddressSpace())) { |
| // We have a definition after a prototype with the wrong type. |
| // We must make a new GlobalVariable* and update everything that used OldGV |
| // (a declaration or tentative definition) with the new GlobalVariable* |
| // (which will be a definition). |
| // |
| // This happens if there is a prototype for a global (e.g. "extern int x[];") |
| // and then a definition of a different type (e.g. "int x[10];"). This also |
| // happens when an initializer has a different type from the type of the |
| // global (this happens with unions). |
| // |
| // FIXME: This also ends up happening if there's a definition followed by |
| // a tentative definition! (Although Sema rejects that construct |
| // at the moment.) |
| |
| // Save the old global |
| llvm::GlobalVariable *OldGV = GV; |
| |
| // Make a new global with the correct type |
| GV = new llvm::GlobalVariable(InitType, false, |
| llvm::GlobalValue::ExternalLinkage, |
| 0, getMangledName(D), |
| &getModule(), 0, ASTTy.getAddressSpace()); |
| // Steal the name of the old global |
| GV->takeName(OldGV); |
| |
| // Replace all uses of the old global with the new global |
| llvm::Constant *NewPtrForOldDecl = |
| llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); |
| OldGV->replaceAllUsesWith(NewPtrForOldDecl); |
| |
| // Erase the old global, since it is no longer used. |
| OldGV->eraseFromParent(); |
| } |
| |
| Entry = GV; |
| |
| if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { |
| SourceManager &SM = Context.getSourceManager(); |
| AddAnnotation(EmitAnnotateAttr(GV, AA, |
| SM.getInstantiationLineNumber(D->getLocation()))); |
| } |
| |
| GV->setInitializer(Init); |
| GV->setConstant(D->getType().isConstant(Context)); |
| GV->setAlignment(getContext().getDeclAlignInBytes(D)); |
| |
| if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) |
| setGlobalVisibility(GV, attr->getVisibility()); |
| // FIXME: else handle -fvisibility |
| |
| if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) { |
| // Prefaced with special LLVM marker to indicate that the name |
| // should not be munged. |
| GV->setName("\01" + ALA->getLabel()); |
| } |
| |
| // Set the llvm linkage type as appropriate. |
| if (D->getStorageClass() == VarDecl::Static) |
| GV->setLinkage(llvm::Function::InternalLinkage); |
| else if (D->getAttr<DLLImportAttr>()) |
| GV->setLinkage(llvm::Function::DLLImportLinkage); |
| else if (D->getAttr<DLLExportAttr>()) |
| GV->setLinkage(llvm::Function::DLLExportLinkage); |
| else if (D->getAttr<WeakAttr>() || D->getAttr<WeakImportAttr>()) |
| GV->setLinkage(llvm::GlobalVariable::WeakLinkage); |
| else { |
| // FIXME: This isn't right. This should handle common linkage and other |
| // stuff. |
| switch (D->getStorageClass()) { |
| case VarDecl::Static: assert(0 && "This case handled above"); |
| case VarDecl::Auto: |
| case VarDecl::Register: |
| assert(0 && "Can't have auto or register globals"); |
| case VarDecl::None: |
| if (!D->getInit()) |
| GV->setLinkage(llvm::GlobalVariable::CommonLinkage); |
| else |
| GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); |
| break; |
| case VarDecl::Extern: |
| // FIXME: common |
| break; |
| |
| case VarDecl::PrivateExtern: |
| GV->setVisibility(llvm::GlobalValue::HiddenVisibility); |
| // FIXME: common |
| break; |
| } |
| } |
| |
| if (const SectionAttr *SA = D->getAttr<SectionAttr>()) |
| GV->setSection(SA->getName()); |
| |
| if (D->getAttr<UsedAttr>()) |
| AddUsedGlobal(GV); |
| |
| // Emit global variable debug information. |
| CGDebugInfo *DI = getDebugInfo(); |
| if(DI) { |
| DI->setLocation(D->getLocation()); |
| DI->EmitGlobalVariable(GV, D); |
| } |
| } |
| |
| llvm::GlobalValue * |
| CodeGenModule::EmitForwardFunctionDefinition(const FunctionDecl *D, |
| const llvm::Type *Ty) { |
| bool DoSetAttributes = true; |
| if (!Ty) { |
| Ty = getTypes().ConvertType(D->getType()); |
| if (!isa<llvm::FunctionType>(Ty)) { |
| // This function doesn't have a complete type (for example, the return |
| // type is an incomplete struct). Use a fake type instead, and make |
| // sure not to try to set attributes. |
| Ty = llvm::FunctionType::get(llvm::Type::VoidTy, |
| std::vector<const llvm::Type*>(), false); |
| DoSetAttributes = false; |
| } |
| } |
| llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), |
| llvm::Function::ExternalLinkage, |
| getMangledName(D), |
| &getModule()); |
| if (DoSetAttributes) |
| SetFunctionAttributes(D, F); |
| return F; |
| } |
| |
| llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D) { |
| QualType ASTTy = D->getType(); |
| const llvm::Type *Ty = getTypes().ConvertTypeForMem(ASTTy); |
| const llvm::Type *PTy = llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); |
| |
| // Lookup the entry, lazily creating it if necessary. |
| llvm::GlobalValue *&Entry = GlobalDeclMap[getMangledName(D)]; |
| if (!Entry) |
| Entry = EmitForwardFunctionDefinition(D, 0); |
| |
| return llvm::ConstantExpr::getBitCast(Entry, PTy); |
| } |
| |
| void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) { |
| const llvm::FunctionType *Ty = |
| cast<llvm::FunctionType>(getTypes().ConvertType(D->getType())); |
| |
| // As a special case, make sure that definitions of K&R function |
| // "type foo()" aren't declared as varargs (which forces the backend |
| // to do unnecessary work). |
| if (Ty->isVarArg() && Ty->getNumParams() == 0 && Ty->isVarArg()) |
| Ty = llvm::FunctionType::get(Ty->getReturnType(), |
| std::vector<const llvm::Type*>(), |
| false); |
| |
| llvm::GlobalValue *&Entry = GlobalDeclMap[getMangledName(D)]; |
| if (!Entry) { |
| Entry = EmitForwardFunctionDefinition(D, Ty); |
| } else { |
| // If the types mismatch then we have to rewrite the definition. |
| if (Entry->getType() != llvm::PointerType::getUnqual(Ty)) { |
| // Otherwise, we have a definition after a prototype with the |
| // wrong type. F is the Function* for the one with the wrong |
| // type, we must make a new Function* and update everything that |
| // used F (a declaration) with the new Function* (which will be |
| // a definition). |
| // |
| // This happens if there is a prototype for a function |
| // (e.g. "int f()") and then a definition of a different type |
| // (e.g. "int f(int x)"). Start by making a new function of the |
| // correct type, RAUW, then steal the name. |
| llvm::GlobalValue *NewFn = EmitForwardFunctionDefinition(D, Ty); |
| NewFn->takeName(Entry); |
| |
| // Replace uses of F with the Function we will endow with a body. |
| llvm::Constant *NewPtrForOldDecl = |
| llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); |
| Entry->replaceAllUsesWith(NewPtrForOldDecl); |
| |
| // Ok, delete the old function now, which is dead. |
| assert(Entry->isDeclaration() && "Shouldn't replace non-declaration"); |
| Entry->eraseFromParent(); |
| |
| Entry = NewFn; |
| } |
| } |
| |
| llvm::Function *Fn = cast<llvm::Function>(Entry); |
| CodeGenFunction(*this).GenerateCode(D, Fn); |
| |
| SetFunctionAttributesForDefinition(D, Fn); |
| |
| if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) { |
| AddGlobalCtor(Fn, CA->getPriority()); |
| } else if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) { |
| AddGlobalDtor(Fn, DA->getPriority()); |
| } |
| } |
| |
| llvm::Function * |
| CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, |
| const std::string &Name) { |
| llvm::Function *Fn = llvm::Function::Create(FTy, |
| llvm::Function::ExternalLinkage, |
| "", &TheModule); |
| RuntimeGlobals.push_back(std::make_pair(Fn, Name)); |
| return Fn; |
| } |
| |
| llvm::GlobalVariable * |
| CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, |
| const std::string &Name) { |
| llvm::GlobalVariable *GV = |
| new llvm::GlobalVariable(Ty, /*Constant=*/false, |
| llvm::GlobalValue::ExternalLinkage, |
| 0, "", &TheModule); |
| RuntimeGlobals.push_back(std::make_pair(GV, Name)); |
| return GV; |
| } |
| |
| void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { |
| // Make sure that this type is translated. |
| Types.UpdateCompletedType(TD); |
| } |
| |
| |
| /// getBuiltinLibFunction |
| llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) { |
| if (BuiltinID > BuiltinFunctions.size()) |
| BuiltinFunctions.resize(BuiltinID); |
| |
| // Cache looked up functions. Since builtin id #0 is invalid we don't reserve |
| // a slot for it. |
| assert(BuiltinID && "Invalid Builtin ID"); |
| llvm::Value *&FunctionSlot = BuiltinFunctions[BuiltinID-1]; |
| if (FunctionSlot) |
| return FunctionSlot; |
| |
| assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || |
| Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && |
| "isn't a lib fn"); |
| |
| // Get the name, skip over the __builtin_ prefix (if necessary). |
| const char *Name = Context.BuiltinInfo.GetName(BuiltinID); |
| if (Context.BuiltinInfo.isLibFunction(BuiltinID)) |
| Name += 10; |
| |
| // Get the type for the builtin. |
| Builtin::Context::GetBuiltinTypeError Error; |
| QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error); |
| assert(Error == Builtin::Context::GE_None && "Can't get builtin type"); |
| |
| const llvm::FunctionType *Ty = |
| cast<llvm::FunctionType>(getTypes().ConvertType(Type)); |
| |
| // FIXME: This has a serious problem with code like this: |
| // void abs() {} |
| // ... __builtin_abs(x); |
| // The two versions of abs will collide. The fix is for the builtin to win, |
| // and for the existing one to be turned into a constantexpr cast of the |
| // builtin. In the case where the existing one is a static function, it |
| // should just be renamed. |
| if (llvm::Function *Existing = getModule().getFunction(Name)) { |
| if (Existing->getFunctionType() == Ty && Existing->hasExternalLinkage()) |
| return FunctionSlot = Existing; |
| assert(Existing == 0 && "FIXME: Name collision"); |
| } |
| |
| llvm::GlobalValue *&ExistingFn = |
| GlobalDeclMap[getContext().Idents.get(Name).getName()]; |
| if (ExistingFn) |
| return FunctionSlot = llvm::ConstantExpr::getBitCast(ExistingFn, Ty); |
| |
| // FIXME: param attributes for sext/zext etc. |
| return FunctionSlot = ExistingFn = |
| llvm::Function::Create(Ty, llvm::Function::ExternalLinkage, Name, |
| &getModule()); |
| } |
| |
| llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, |
| unsigned NumTys) { |
| return llvm::Intrinsic::getDeclaration(&getModule(), |
| (llvm::Intrinsic::ID)IID, Tys, NumTys); |
| } |
| |
| llvm::Function *CodeGenModule::getMemCpyFn() { |
| if (MemCpyFn) return MemCpyFn; |
| const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); |
| return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1); |
| } |
| |
| llvm::Function *CodeGenModule::getMemMoveFn() { |
| if (MemMoveFn) return MemMoveFn; |
| const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); |
| return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1); |
| } |
| |
| llvm::Function *CodeGenModule::getMemSetFn() { |
| if (MemSetFn) return MemSetFn; |
| const llvm::Type *IntPtr = TheTargetData.getIntPtrType(); |
| return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1); |
| } |
| |
| static void appendFieldAndPadding(CodeGenModule &CGM, |
| std::vector<llvm::Constant*>& Fields, |
| FieldDecl *FieldD, FieldDecl *NextFieldD, |
| llvm::Constant* Field, |
| RecordDecl* RD, const llvm::StructType *STy) |
| { |
| // Append the field. |
| Fields.push_back(Field); |
| |
| int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD); |
| |
| int NextStructFieldNo; |
| if (!NextFieldD) { |
| NextStructFieldNo = STy->getNumElements(); |
| } else { |
| NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD); |
| } |
| |
| // Append padding |
| for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) { |
| llvm::Constant *C = |
| llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1)); |
| |
| Fields.push_back(C); |
| } |
| } |
| |
| // We still need to work out the details of handling UTF-16. |
| // See: <rdr://2996215> |
| llvm::Constant *CodeGenModule:: |
| GetAddrOfConstantCFString(const std::string &str) { |
| llvm::StringMapEntry<llvm::Constant *> &Entry = |
| CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); |
| |
| if (Entry.getValue()) |
| return Entry.getValue(); |
| |
| llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty); |
| llvm::Constant *Zeros[] = { Zero, Zero }; |
| |
| if (!CFConstantStringClassRef) { |
| const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); |
| Ty = llvm::ArrayType::get(Ty, 0); |
| |
| // FIXME: This is fairly broken if |
| // __CFConstantStringClassReference is already defined, in that it |
| // will get renamed and the user will most likely see an opaque |
| // error message. This is a general issue with relying on |
| // particular names. |
| llvm::GlobalVariable *GV = |
| new llvm::GlobalVariable(Ty, false, |
| llvm::GlobalVariable::ExternalLinkage, 0, |
| "__CFConstantStringClassReference", |
| &getModule()); |
| |
| // Decay array -> ptr |
| CFConstantStringClassRef = |
| llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); |
| } |
| |
| QualType CFTy = getContext().getCFConstantStringType(); |
| RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl(); |
| |
| const llvm::StructType *STy = |
| cast<llvm::StructType>(getTypes().ConvertType(CFTy)); |
| |
| std::vector<llvm::Constant*> Fields; |
| RecordDecl::field_iterator Field = CFRD->field_begin(); |
| |
| // Class pointer. |
| FieldDecl *CurField = *Field++; |
| FieldDecl *NextField = *Field++; |
| appendFieldAndPadding(*this, Fields, CurField, NextField, |
| CFConstantStringClassRef, CFRD, STy); |
| |
| // Flags. |
| CurField = NextField; |
| NextField = *Field++; |
| const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); |
| appendFieldAndPadding(*this, Fields, CurField, NextField, |
| llvm::ConstantInt::get(Ty, 0x07C8), CFRD, STy); |
| |
| // String pointer. |
| CurField = NextField; |
| NextField = *Field++; |
| llvm::Constant *C = llvm::ConstantArray::get(str); |
| C = new llvm::GlobalVariable(C->getType(), true, |
| llvm::GlobalValue::InternalLinkage, |
| C, ".str", &getModule()); |
| appendFieldAndPadding(*this, Fields, CurField, NextField, |
| llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2), |
| CFRD, STy); |
| |
| // String length. |
| CurField = NextField; |
| NextField = 0; |
| Ty = getTypes().ConvertType(getContext().LongTy); |
| appendFieldAndPadding(*this, Fields, CurField, NextField, |
| llvm::ConstantInt::get(Ty, str.length()), CFRD, STy); |
| |
| // The struct. |
| C = llvm::ConstantStruct::get(STy, Fields); |
| llvm::GlobalVariable *GV = |
| new llvm::GlobalVariable(C->getType(), true, |
| llvm::GlobalVariable::InternalLinkage, |
| C, "", &getModule()); |
| |
| GV->setSection("__DATA,__cfstring"); |
| Entry.setValue(GV); |
| |
| return GV; |
| } |
| |
| /// GetStringForStringLiteral - Return the appropriate bytes for a |
| /// string literal, properly padded to match the literal type. |
| std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { |
| const char *StrData = E->getStrData(); |
| unsigned Len = E->getByteLength(); |
| |
| const ConstantArrayType *CAT = |
| getContext().getAsConstantArrayType(E->getType()); |
| assert(CAT && "String isn't pointer or array!"); |
| |
| // Resize the string to the right size. |
| std::string Str(StrData, StrData+Len); |
| uint64_t RealLen = CAT->getSize().getZExtValue(); |
| |
| if (E->isWide()) |
| RealLen *= getContext().Target.getWCharWidth()/8; |
| |
| Str.resize(RealLen, '\0'); |
| |
| return Str; |
| } |
| |
| /// GetAddrOfConstantStringFromLiteral - Return a pointer to a |
| /// constant array for the given string literal. |
| llvm::Constant * |
| CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { |
| // FIXME: This can be more efficient. |
| return GetAddrOfConstantString(GetStringForStringLiteral(S)); |
| } |
| |
| /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant |
| /// array for the given ObjCEncodeExpr node. |
| llvm::Constant * |
| CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { |
| std::string Str; |
| getContext().getObjCEncodingForType(E->getEncodedType(), Str); |
| |
| llvm::Constant *C = llvm::ConstantArray::get(Str); |
| C = new llvm::GlobalVariable(C->getType(), true, |
| llvm::GlobalValue::InternalLinkage, |
| C, ".str", &getModule()); |
| return C; |
| } |
| |
| |
| /// GenerateWritableString -- Creates storage for a string literal. |
| static llvm::Constant *GenerateStringLiteral(const std::string &str, |
| bool constant, |
| CodeGenModule &CGM, |
| const char *GlobalName) { |
| // Create Constant for this string literal. Don't add a '\0'. |
| llvm::Constant *C = llvm::ConstantArray::get(str, false); |
| |
| // Create a global variable for this string |
| return new llvm::GlobalVariable(C->getType(), constant, |
| llvm::GlobalValue::InternalLinkage, |
| C, GlobalName ? GlobalName : ".str", |
| &CGM.getModule()); |
| } |
| |
| /// GetAddrOfConstantString - Returns a pointer to a character array |
| /// containing the literal. This contents are exactly that of the |
| /// given string, i.e. it will not be null terminated automatically; |
| /// see GetAddrOfConstantCString. Note that whether the result is |
| /// actually a pointer to an LLVM constant depends on |
| /// Feature.WriteableStrings. |
| /// |
| /// The result has pointer to array type. |
| llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, |
| const char *GlobalName) { |
| // Don't share any string literals if writable-strings is turned on. |
| if (Features.WritableStrings) |
| return GenerateStringLiteral(str, false, *this, GlobalName); |
| |
| llvm::StringMapEntry<llvm::Constant *> &Entry = |
| ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); |
| |
| if (Entry.getValue()) |
| return Entry.getValue(); |
| |
| // Create a global variable for this. |
| llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); |
| Entry.setValue(C); |
| return C; |
| } |
| |
| /// GetAddrOfConstantCString - Returns a pointer to a character |
| /// array containing the literal and a terminating '\-' |
| /// character. The result has pointer to array type. |
| llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, |
| const char *GlobalName){ |
| return GetAddrOfConstantString(str + '\0', GlobalName); |
| } |
| |
| /// EmitObjCPropertyImplementations - Emit information for synthesized |
| /// properties for an implementation. |
| void CodeGenModule::EmitObjCPropertyImplementations(const |
| ObjCImplementationDecl *D) { |
| for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(), |
| e = D->propimpl_end(); i != e; ++i) { |
| ObjCPropertyImplDecl *PID = *i; |
| |
| // Dynamic is just for type-checking. |
| if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { |
| ObjCPropertyDecl *PD = PID->getPropertyDecl(); |
| |
| // Determine which methods need to be implemented, some may have |
| // been overridden. Note that ::isSynthesized is not the method |
| // we want, that just indicates if the decl came from a |
| // property. What we want to know is if the method is defined in |
| // this implementation. |
| if (!D->getInstanceMethod(PD->getGetterName())) |
| CodeGenFunction(*this).GenerateObjCGetter( |
| const_cast<ObjCImplementationDecl *>(D), PID); |
| if (!PD->isReadOnly() && |
| !D->getInstanceMethod(PD->getSetterName())) |
| CodeGenFunction(*this).GenerateObjCSetter( |
| const_cast<ObjCImplementationDecl *>(D), PID); |
| } |
| } |
| } |
| |
| /// EmitTopLevelDecl - Emit code for a single top level declaration. |
| void CodeGenModule::EmitTopLevelDecl(Decl *D) { |
| // If an error has occurred, stop code generation, but continue |
| // parsing and semantic analysis (to ensure all warnings and errors |
| // are emitted). |
| if (Diags.hasErrorOccurred()) |
| return; |
| |
| switch (D->getKind()) { |
| case Decl::Function: |
| case Decl::Var: |
| EmitGlobal(cast<ValueDecl>(D)); |
| break; |
| |
| case Decl::Namespace: |
| ErrorUnsupported(D, "namespace"); |
| break; |
| |
| // Objective-C Decls |
| |
| // Forward declarations, no (immediate) code generation. |
| case Decl::ObjCClass: |
| case Decl::ObjCCategory: |
| case Decl::ObjCForwardProtocol: |
| case Decl::ObjCInterface: |
| break; |
| |
| case Decl::ObjCProtocol: |
| Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); |
| break; |
| |
| case Decl::ObjCCategoryImpl: |
| // Categories have properties but don't support synthesize so we |
| // can ignore them here. |
| |
| Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); |
| break; |
| |
| case Decl::ObjCImplementation: { |
| ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); |
| EmitObjCPropertyImplementations(OMD); |
| Runtime->GenerateClass(OMD); |
| break; |
| } |
| case Decl::ObjCMethod: { |
| ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); |
| // If this is not a prototype, emit the body. |
| if (OMD->getBody()) |
| CodeGenFunction(*this).GenerateObjCMethod(OMD); |
| break; |
| } |
| case Decl::ObjCCompatibleAlias: |
| // compatibility-alias is a directive and has no code gen. |
| break; |
| |
| case Decl::LinkageSpec: { |
| LinkageSpecDecl *LSD = cast<LinkageSpecDecl>(D); |
| if (LSD->getLanguage() == LinkageSpecDecl::lang_cxx) |
| ErrorUnsupported(LSD, "linkage spec"); |
| // FIXME: implement C++ linkage, C linkage works mostly by C |
| // language reuse already. |
| break; |
| } |
| |
| case Decl::FileScopeAsm: { |
| FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); |
| std::string AsmString(AD->getAsmString()->getStrData(), |
| AD->getAsmString()->getByteLength()); |
| |
| const std::string &S = getModule().getModuleInlineAsm(); |
| if (S.empty()) |
| getModule().setModuleInlineAsm(AsmString); |
| else |
| getModule().setModuleInlineAsm(S + '\n' + AsmString); |
| break; |
| } |
| |
| default: |
| // Make sure we handled everything we should, every other kind is |
| // a non-top-level decl. FIXME: Would be nice to have an |
| // isTopLevelDeclKind function. Need to recode Decl::Kind to do |
| // that easily. |
| assert(isa<TypeDecl>(D) && "Unsupported decl kind"); |
| } |
| } |