blob: e59bdde43d579d25b5170262a86743445108df6f [file] [log] [blame]
//===- CIndex.cpp - Clang-C Source Indexing Library -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the main API hooks in the Clang-C Source Indexing
// library.
//
//===----------------------------------------------------------------------===//
#include "CIndexer.h"
#include "CXCursor.h"
#include "CXSourceLocation.h"
#include "CIndexDiagnostic.h"
#include "clang/Basic/Version.h"
#include "clang/AST/DeclVisitor.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Frontend/ASTUnit.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/PreprocessingRecord.h"
#include "clang/Lex/Preprocessor.h"
#include "llvm/Support/CrashRecoveryContext.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Timer.h"
#include "llvm/System/Program.h"
#include "llvm/System/Signals.h"
// Needed to define L_TMPNAM on some systems.
#include <cstdio>
using namespace clang;
using namespace clang::cxcursor;
using namespace clang::cxstring;
//===----------------------------------------------------------------------===//
// Crash Reporting.
//===----------------------------------------------------------------------===//
#ifdef USE_CRASHTRACER
#include "clang/Analysis/Support/SaveAndRestore.h"
// Integrate with crash reporter.
static const char *__crashreporter_info__ = 0;
asm(".desc ___crashreporter_info__, 0x10");
#define NUM_CRASH_STRINGS 32
static unsigned crashtracer_counter = 0;
static unsigned crashtracer_counter_id[NUM_CRASH_STRINGS] = { 0 };
static const char *crashtracer_strings[NUM_CRASH_STRINGS] = { 0 };
static const char *agg_crashtracer_strings[NUM_CRASH_STRINGS] = { 0 };
static unsigned SetCrashTracerInfo(const char *str,
llvm::SmallString<1024> &AggStr) {
unsigned slot = 0;
while (crashtracer_strings[slot]) {
if (++slot == NUM_CRASH_STRINGS)
slot = 0;
}
crashtracer_strings[slot] = str;
crashtracer_counter_id[slot] = ++crashtracer_counter;
// We need to create an aggregate string because multiple threads
// may be in this method at one time. The crash reporter string
// will attempt to overapproximate the set of in-flight invocations
// of this function. Race conditions can still cause this goal
// to not be achieved.
{
llvm::raw_svector_ostream Out(AggStr);
for (unsigned i = 0; i < NUM_CRASH_STRINGS; ++i)
if (crashtracer_strings[i]) Out << crashtracer_strings[i] << '\n';
}
__crashreporter_info__ = agg_crashtracer_strings[slot] = AggStr.c_str();
return slot;
}
static void ResetCrashTracerInfo(unsigned slot) {
unsigned max_slot = 0;
unsigned max_value = 0;
crashtracer_strings[slot] = agg_crashtracer_strings[slot] = 0;
for (unsigned i = 0 ; i < NUM_CRASH_STRINGS; ++i)
if (agg_crashtracer_strings[i] &&
crashtracer_counter_id[i] > max_value) {
max_slot = i;
max_value = crashtracer_counter_id[i];
}
__crashreporter_info__ = agg_crashtracer_strings[max_slot];
}
namespace {
class ArgsCrashTracerInfo {
llvm::SmallString<1024> CrashString;
llvm::SmallString<1024> AggregateString;
unsigned crashtracerSlot;
public:
ArgsCrashTracerInfo(llvm::SmallVectorImpl<const char*> &Args)
: crashtracerSlot(0)
{
{
llvm::raw_svector_ostream Out(CrashString);
Out << "ClangCIndex [" << getClangFullVersion() << "]"
<< "[createTranslationUnitFromSourceFile]: clang";
for (llvm::SmallVectorImpl<const char*>::iterator I=Args.begin(),
E=Args.end(); I!=E; ++I)
Out << ' ' << *I;
}
crashtracerSlot = SetCrashTracerInfo(CrashString.c_str(),
AggregateString);
}
~ArgsCrashTracerInfo() {
ResetCrashTracerInfo(crashtracerSlot);
}
};
}
#endif
/// \brief The result of comparing two source ranges.
enum RangeComparisonResult {
/// \brief Either the ranges overlap or one of the ranges is invalid.
RangeOverlap,
/// \brief The first range ends before the second range starts.
RangeBefore,
/// \brief The first range starts after the second range ends.
RangeAfter
};
/// \brief Compare two source ranges to determine their relative position in
/// the translation unit.
static RangeComparisonResult RangeCompare(SourceManager &SM,
SourceRange R1,
SourceRange R2) {
assert(R1.isValid() && "First range is invalid?");
assert(R2.isValid() && "Second range is invalid?");
if (R1.getEnd() != R2.getBegin() &&
SM.isBeforeInTranslationUnit(R1.getEnd(), R2.getBegin()))
return RangeBefore;
if (R2.getEnd() != R1.getBegin() &&
SM.isBeforeInTranslationUnit(R2.getEnd(), R1.getBegin()))
return RangeAfter;
return RangeOverlap;
}
/// \brief Determine if a source location falls within, before, or after a
/// a given source range.
static RangeComparisonResult LocationCompare(SourceManager &SM,
SourceLocation L, SourceRange R) {
assert(R.isValid() && "First range is invalid?");
assert(L.isValid() && "Second range is invalid?");
if (L == R.getBegin() || L == R.getEnd())
return RangeOverlap;
if (SM.isBeforeInTranslationUnit(L, R.getBegin()))
return RangeBefore;
if (SM.isBeforeInTranslationUnit(R.getEnd(), L))
return RangeAfter;
return RangeOverlap;
}
/// \brief Translate a Clang source range into a CIndex source range.
///
/// Clang internally represents ranges where the end location points to the
/// start of the token at the end. However, for external clients it is more
/// useful to have a CXSourceRange be a proper half-open interval. This routine
/// does the appropriate translation.
CXSourceRange cxloc::translateSourceRange(const SourceManager &SM,
const LangOptions &LangOpts,
const CharSourceRange &R) {
// We want the last character in this location, so we will adjust the
// location accordingly.
// FIXME: How do do this with a macro instantiation location?
SourceLocation EndLoc = R.getEnd();
if (R.isTokenRange() && !EndLoc.isInvalid() && EndLoc.isFileID()) {
unsigned Length = Lexer::MeasureTokenLength(EndLoc, SM, LangOpts);
EndLoc = EndLoc.getFileLocWithOffset(Length);
}
CXSourceRange Result = { { (void *)&SM, (void *)&LangOpts },
R.getBegin().getRawEncoding(),
EndLoc.getRawEncoding() };
return Result;
}
//===----------------------------------------------------------------------===//
// Cursor visitor.
//===----------------------------------------------------------------------===//
namespace {
// Cursor visitor.
class CursorVisitor : public DeclVisitor<CursorVisitor, bool>,
public TypeLocVisitor<CursorVisitor, bool>,
public StmtVisitor<CursorVisitor, bool>
{
/// \brief The translation unit we are traversing.
ASTUnit *TU;
/// \brief The parent cursor whose children we are traversing.
CXCursor Parent;
/// \brief The declaration that serves at the parent of any statement or
/// expression nodes.
Decl *StmtParent;
/// \brief The visitor function.
CXCursorVisitor Visitor;
/// \brief The opaque client data, to be passed along to the visitor.
CXClientData ClientData;
// MaxPCHLevel - the maximum PCH level of declarations that we will pass on
// to the visitor. Declarations with a PCH level greater than this value will
// be suppressed.
unsigned MaxPCHLevel;
/// \brief When valid, a source range to which the cursor should restrict
/// its search.
SourceRange RegionOfInterest;
using DeclVisitor<CursorVisitor, bool>::Visit;
using TypeLocVisitor<CursorVisitor, bool>::Visit;
using StmtVisitor<CursorVisitor, bool>::Visit;
/// \brief Determine whether this particular source range comes before, comes
/// after, or overlaps the region of interest.
///
/// \param R a half-open source range retrieved from the abstract syntax tree.
RangeComparisonResult CompareRegionOfInterest(SourceRange R);
class SetParentRAII {
CXCursor &Parent;
Decl *&StmtParent;
CXCursor OldParent;
public:
SetParentRAII(CXCursor &Parent, Decl *&StmtParent, CXCursor NewParent)
: Parent(Parent), StmtParent(StmtParent), OldParent(Parent)
{
Parent = NewParent;
if (clang_isDeclaration(Parent.kind))
StmtParent = getCursorDecl(Parent);
}
~SetParentRAII() {
Parent = OldParent;
if (clang_isDeclaration(Parent.kind))
StmtParent = getCursorDecl(Parent);
}
};
public:
CursorVisitor(ASTUnit *TU, CXCursorVisitor Visitor, CXClientData ClientData,
unsigned MaxPCHLevel,
SourceRange RegionOfInterest = SourceRange())
: TU(TU), Visitor(Visitor), ClientData(ClientData),
MaxPCHLevel(MaxPCHLevel), RegionOfInterest(RegionOfInterest)
{
Parent.kind = CXCursor_NoDeclFound;
Parent.data[0] = 0;
Parent.data[1] = 0;
Parent.data[2] = 0;
StmtParent = 0;
}
bool Visit(CXCursor Cursor, bool CheckedRegionOfInterest = false);
std::pair<PreprocessingRecord::iterator, PreprocessingRecord::iterator>
getPreprocessedEntities();
bool VisitChildren(CXCursor Parent);
// Declaration visitors
bool VisitAttributes(Decl *D);
bool VisitBlockDecl(BlockDecl *B);
bool VisitDeclContext(DeclContext *DC);
bool VisitTranslationUnitDecl(TranslationUnitDecl *D);
bool VisitTypedefDecl(TypedefDecl *D);
bool VisitTagDecl(TagDecl *D);
bool VisitEnumConstantDecl(EnumConstantDecl *D);
bool VisitDeclaratorDecl(DeclaratorDecl *DD);
bool VisitFunctionDecl(FunctionDecl *ND);
bool VisitFieldDecl(FieldDecl *D);
bool VisitVarDecl(VarDecl *);
bool VisitObjCMethodDecl(ObjCMethodDecl *ND);
bool VisitObjCContainerDecl(ObjCContainerDecl *D);
bool VisitObjCCategoryDecl(ObjCCategoryDecl *ND);
bool VisitObjCProtocolDecl(ObjCProtocolDecl *PID);
bool VisitObjCPropertyDecl(ObjCPropertyDecl *PD);
bool VisitObjCInterfaceDecl(ObjCInterfaceDecl *D);
bool VisitObjCImplDecl(ObjCImplDecl *D);
bool VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D);
bool VisitObjCImplementationDecl(ObjCImplementationDecl *D);
// FIXME: ObjCPropertyDecl requires TypeSourceInfo, getter/setter locations,
// etc.
// FIXME: ObjCCompatibleAliasDecl requires aliased-class locations.
bool VisitObjCForwardProtocolDecl(ObjCForwardProtocolDecl *D);
bool VisitObjCClassDecl(ObjCClassDecl *D);
bool VisitLinkageSpecDecl(LinkageSpecDecl *D);
bool VisitNamespaceDecl(NamespaceDecl *D);
// Type visitors
// FIXME: QualifiedTypeLoc doesn't provide any location information
bool VisitBuiltinTypeLoc(BuiltinTypeLoc TL);
bool VisitTypedefTypeLoc(TypedefTypeLoc TL);
bool VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL);
bool VisitTagTypeLoc(TagTypeLoc TL);
// FIXME: TemplateTypeParmTypeLoc doesn't provide any location information
bool VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL);
bool VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL);
bool VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL);
bool VisitPointerTypeLoc(PointerTypeLoc TL);
bool VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL);
bool VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL);
bool VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL);
bool VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL);
bool VisitFunctionTypeLoc(FunctionTypeLoc TL);
bool VisitArrayTypeLoc(ArrayTypeLoc TL);
// FIXME: Implement for TemplateSpecializationTypeLoc
// FIXME: Implement visitors here when the unimplemented TypeLocs get
// implemented
bool VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL);
bool VisitTypeOfTypeLoc(TypeOfTypeLoc TL);
// Statement visitors
bool VisitStmt(Stmt *S);
bool VisitDeclStmt(DeclStmt *S);
// FIXME: LabelStmt label?
bool VisitIfStmt(IfStmt *S);
bool VisitSwitchStmt(SwitchStmt *S);
bool VisitCaseStmt(CaseStmt *S);
bool VisitWhileStmt(WhileStmt *S);
bool VisitForStmt(ForStmt *S);
// bool VisitSwitchCase(SwitchCase *S);
// Expression visitors
// FIXME: DeclRefExpr with template arguments, nested-name-specifier
// FIXME: MemberExpr with template arguments, nested-name-specifier
bool VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E);
bool VisitBlockExpr(BlockExpr *B);
bool VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
bool VisitExplicitCastExpr(ExplicitCastExpr *E);
bool VisitObjCMessageExpr(ObjCMessageExpr *E);
bool VisitObjCEncodeExpr(ObjCEncodeExpr *E);
bool VisitOffsetOfExpr(OffsetOfExpr *E);
bool VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E);
// FIXME: AddrLabelExpr (once we have cursors for labels)
bool VisitTypesCompatibleExpr(TypesCompatibleExpr *E);
bool VisitVAArgExpr(VAArgExpr *E);
// FIXME: InitListExpr (for the designators)
// FIXME: DesignatedInitExpr
};
} // end anonymous namespace
static SourceRange getRawCursorExtent(CXCursor C);
RangeComparisonResult CursorVisitor::CompareRegionOfInterest(SourceRange R) {
return RangeCompare(TU->getSourceManager(), R, RegionOfInterest);
}
/// \brief Visit the given cursor and, if requested by the visitor,
/// its children.
///
/// \param Cursor the cursor to visit.
///
/// \param CheckRegionOfInterest if true, then the caller already checked that
/// this cursor is within the region of interest.
///
/// \returns true if the visitation should be aborted, false if it
/// should continue.
bool CursorVisitor::Visit(CXCursor Cursor, bool CheckedRegionOfInterest) {
if (clang_isInvalid(Cursor.kind))
return false;
if (clang_isDeclaration(Cursor.kind)) {
Decl *D = getCursorDecl(Cursor);
assert(D && "Invalid declaration cursor");
if (D->getPCHLevel() > MaxPCHLevel)
return false;
if (D->isImplicit())
return false;
}
// If we have a range of interest, and this cursor doesn't intersect with it,
// we're done.
if (RegionOfInterest.isValid() && !CheckedRegionOfInterest) {
SourceRange Range = getRawCursorExtent(Cursor);
if (Range.isInvalid() || CompareRegionOfInterest(Range))
return false;
}
switch (Visitor(Cursor, Parent, ClientData)) {
case CXChildVisit_Break:
return true;
case CXChildVisit_Continue:
return false;
case CXChildVisit_Recurse:
return VisitChildren(Cursor);
}
return false;
}
std::pair<PreprocessingRecord::iterator, PreprocessingRecord::iterator>
CursorVisitor::getPreprocessedEntities() {
PreprocessingRecord &PPRec
= *TU->getPreprocessor().getPreprocessingRecord();
bool OnlyLocalDecls
= !TU->isMainFileAST() && TU->getOnlyLocalDecls();
// There is no region of interest; we have to walk everything.
if (RegionOfInterest.isInvalid())
return std::make_pair(PPRec.begin(OnlyLocalDecls),
PPRec.end(OnlyLocalDecls));
// Find the file in which the region of interest lands.
SourceManager &SM = TU->getSourceManager();
std::pair<FileID, unsigned> Begin
= SM.getDecomposedInstantiationLoc(RegionOfInterest.getBegin());
std::pair<FileID, unsigned> End
= SM.getDecomposedInstantiationLoc(RegionOfInterest.getEnd());
// The region of interest spans files; we have to walk everything.
if (Begin.first != End.first)
return std::make_pair(PPRec.begin(OnlyLocalDecls),
PPRec.end(OnlyLocalDecls));
ASTUnit::PreprocessedEntitiesByFileMap &ByFileMap
= TU->getPreprocessedEntitiesByFile();
if (ByFileMap.empty()) {
// Build the mapping from files to sets of preprocessed entities.
for (PreprocessingRecord::iterator E = PPRec.begin(OnlyLocalDecls),
EEnd = PPRec.end(OnlyLocalDecls);
E != EEnd; ++E) {
std::pair<FileID, unsigned> P
= SM.getDecomposedInstantiationLoc((*E)->getSourceRange().getBegin());
ByFileMap[P.first].push_back(*E);
}
}
return std::make_pair(ByFileMap[Begin.first].begin(),
ByFileMap[Begin.first].end());
}
/// \brief Visit the children of the given cursor.
///
/// \returns true if the visitation should be aborted, false if it
/// should continue.
bool CursorVisitor::VisitChildren(CXCursor Cursor) {
if (clang_isReference(Cursor.kind)) {
// By definition, references have no children.
return false;
}
// Set the Parent field to Cursor, then back to its old value once we're
// done.
SetParentRAII SetParent(Parent, StmtParent, Cursor);
if (clang_isDeclaration(Cursor.kind)) {
Decl *D = getCursorDecl(Cursor);
assert(D && "Invalid declaration cursor");
return VisitAttributes(D) || Visit(D);
}
if (clang_isStatement(Cursor.kind))
return Visit(getCursorStmt(Cursor));
if (clang_isExpression(Cursor.kind))
return Visit(getCursorExpr(Cursor));
if (clang_isTranslationUnit(Cursor.kind)) {
ASTUnit *CXXUnit = getCursorASTUnit(Cursor);
if (!CXXUnit->isMainFileAST() && CXXUnit->getOnlyLocalDecls() &&
RegionOfInterest.isInvalid()) {
for (ASTUnit::top_level_iterator TL = CXXUnit->top_level_begin(),
TLEnd = CXXUnit->top_level_end();
TL != TLEnd; ++TL) {
if (Visit(MakeCXCursor(*TL, CXXUnit), true))
return true;
}
} else if (VisitDeclContext(
CXXUnit->getASTContext().getTranslationUnitDecl()))
return true;
// Walk the preprocessing record.
if (CXXUnit->getPreprocessor().getPreprocessingRecord()) {
// FIXME: Once we have the ability to deserialize a preprocessing record,
// do so.
PreprocessingRecord::iterator E, EEnd;
for (llvm::tie(E, EEnd) = getPreprocessedEntities(); E != EEnd; ++E) {
if (MacroInstantiation *MI = dyn_cast<MacroInstantiation>(*E)) {
if (Visit(MakeMacroInstantiationCursor(MI, CXXUnit)))
return true;
continue;
}
if (MacroDefinition *MD = dyn_cast<MacroDefinition>(*E)) {
if (Visit(MakeMacroDefinitionCursor(MD, CXXUnit)))
return true;
continue;
}
}
}
return false;
}
// Nothing to visit at the moment.
return false;
}
bool CursorVisitor::VisitBlockDecl(BlockDecl *B) {
if (Visit(B->getSignatureAsWritten()->getTypeLoc()))
return true;
if (Stmt *Body = B->getBody())
return Visit(MakeCXCursor(Body, StmtParent, TU));
return false;
}
bool CursorVisitor::VisitDeclContext(DeclContext *DC) {
for (DeclContext::decl_iterator
I = DC->decls_begin(), E = DC->decls_end(); I != E; ++I) {
Decl *D = *I;
if (D->getLexicalDeclContext() != DC)
continue;
CXCursor Cursor = MakeCXCursor(D, TU);
if (RegionOfInterest.isValid()) {
SourceRange Range = getRawCursorExtent(Cursor);
if (Range.isInvalid())
continue;
switch (CompareRegionOfInterest(Range)) {
case RangeBefore:
// This declaration comes before the region of interest; skip it.
continue;
case RangeAfter:
// This declaration comes after the region of interest; we're done.
return false;
case RangeOverlap:
// This declaration overlaps the region of interest; visit it.
break;
}
}
if (Visit(Cursor, true))
return true;
}
return false;
}
bool CursorVisitor::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
llvm_unreachable("Translation units are visited directly by Visit()");
return false;
}
bool CursorVisitor::VisitTypedefDecl(TypedefDecl *D) {
if (TypeSourceInfo *TSInfo = D->getTypeSourceInfo())
return Visit(TSInfo->getTypeLoc());
return false;
}
bool CursorVisitor::VisitTagDecl(TagDecl *D) {
return VisitDeclContext(D);
}
bool CursorVisitor::VisitEnumConstantDecl(EnumConstantDecl *D) {
if (Expr *Init = D->getInitExpr())
return Visit(MakeCXCursor(Init, StmtParent, TU));
return false;
}
bool CursorVisitor::VisitDeclaratorDecl(DeclaratorDecl *DD) {
if (TypeSourceInfo *TSInfo = DD->getTypeSourceInfo())
if (Visit(TSInfo->getTypeLoc()))
return true;
return false;
}
bool CursorVisitor::VisitFunctionDecl(FunctionDecl *ND) {
if (VisitDeclaratorDecl(ND))
return true;
if (ND->isThisDeclarationADefinition() &&
Visit(MakeCXCursor(ND->getBody(), StmtParent, TU)))
return true;
return false;
}
bool CursorVisitor::VisitFieldDecl(FieldDecl *D) {
if (VisitDeclaratorDecl(D))
return true;
if (Expr *BitWidth = D->getBitWidth())
return Visit(MakeCXCursor(BitWidth, StmtParent, TU));
return false;
}
bool CursorVisitor::VisitVarDecl(VarDecl *D) {
if (VisitDeclaratorDecl(D))
return true;
if (Expr *Init = D->getInit())
return Visit(MakeCXCursor(Init, StmtParent, TU));
return false;
}
bool CursorVisitor::VisitObjCMethodDecl(ObjCMethodDecl *ND) {
if (TypeSourceInfo *TSInfo = ND->getResultTypeSourceInfo())
if (Visit(TSInfo->getTypeLoc()))
return true;
for (ObjCMethodDecl::param_iterator P = ND->param_begin(),
PEnd = ND->param_end();
P != PEnd; ++P) {
if (Visit(MakeCXCursor(*P, TU)))
return true;
}
if (ND->isThisDeclarationADefinition() &&
Visit(MakeCXCursor(ND->getBody(), StmtParent, TU)))
return true;
return false;
}
bool CursorVisitor::VisitObjCContainerDecl(ObjCContainerDecl *D) {
return VisitDeclContext(D);
}
bool CursorVisitor::VisitObjCCategoryDecl(ObjCCategoryDecl *ND) {
if (Visit(MakeCursorObjCClassRef(ND->getClassInterface(), ND->getLocation(),
TU)))
return true;
ObjCCategoryDecl::protocol_loc_iterator PL = ND->protocol_loc_begin();
for (ObjCCategoryDecl::protocol_iterator I = ND->protocol_begin(),
E = ND->protocol_end(); I != E; ++I, ++PL)
if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU)))
return true;
return VisitObjCContainerDecl(ND);
}
bool CursorVisitor::VisitObjCProtocolDecl(ObjCProtocolDecl *PID) {
ObjCProtocolDecl::protocol_loc_iterator PL = PID->protocol_loc_begin();
for (ObjCProtocolDecl::protocol_iterator I = PID->protocol_begin(),
E = PID->protocol_end(); I != E; ++I, ++PL)
if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU)))
return true;
return VisitObjCContainerDecl(PID);
}
bool CursorVisitor::VisitObjCPropertyDecl(ObjCPropertyDecl *PD) {
if (Visit(PD->getTypeSourceInfo()->getTypeLoc()))
return true;
// FIXME: This implements a workaround with @property declarations also being
// installed in the DeclContext for the @interface. Eventually this code
// should be removed.
ObjCCategoryDecl *CDecl = dyn_cast<ObjCCategoryDecl>(PD->getDeclContext());
if (!CDecl || !CDecl->IsClassExtension())
return false;
ObjCInterfaceDecl *ID = CDecl->getClassInterface();
if (!ID)
return false;
IdentifierInfo *PropertyId = PD->getIdentifier();
ObjCPropertyDecl *prevDecl =
ObjCPropertyDecl::findPropertyDecl(cast<DeclContext>(ID), PropertyId);
if (!prevDecl)
return false;
// Visit synthesized methods since they will be skipped when visiting
// the @interface.
if (ObjCMethodDecl *MD = prevDecl->getGetterMethodDecl())
if (MD->isSynthesized())
if (Visit(MakeCXCursor(MD, TU)))
return true;
if (ObjCMethodDecl *MD = prevDecl->getSetterMethodDecl())
if (MD->isSynthesized())
if (Visit(MakeCXCursor(MD, TU)))
return true;
return false;
}
bool CursorVisitor::VisitObjCInterfaceDecl(ObjCInterfaceDecl *D) {
// Issue callbacks for super class.
if (D->getSuperClass() &&
Visit(MakeCursorObjCSuperClassRef(D->getSuperClass(),
D->getSuperClassLoc(),
TU)))
return true;
ObjCInterfaceDecl::protocol_loc_iterator PL = D->protocol_loc_begin();
for (ObjCInterfaceDecl::protocol_iterator I = D->protocol_begin(),
E = D->protocol_end(); I != E; ++I, ++PL)
if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU)))
return true;
return VisitObjCContainerDecl(D);
}
bool CursorVisitor::VisitObjCImplDecl(ObjCImplDecl *D) {
return VisitObjCContainerDecl(D);
}
bool CursorVisitor::VisitObjCCategoryImplDecl(ObjCCategoryImplDecl *D) {
// 'ID' could be null when dealing with invalid code.
if (ObjCInterfaceDecl *ID = D->getClassInterface())
if (Visit(MakeCursorObjCClassRef(ID, D->getLocation(), TU)))
return true;
return VisitObjCImplDecl(D);
}
bool CursorVisitor::VisitObjCImplementationDecl(ObjCImplementationDecl *D) {
#if 0
// Issue callbacks for super class.
// FIXME: No source location information!
if (D->getSuperClass() &&
Visit(MakeCursorObjCSuperClassRef(D->getSuperClass(),
D->getSuperClassLoc(),
TU)))
return true;
#endif
return VisitObjCImplDecl(D);
}
bool CursorVisitor::VisitObjCForwardProtocolDecl(ObjCForwardProtocolDecl *D) {
ObjCForwardProtocolDecl::protocol_loc_iterator PL = D->protocol_loc_begin();
for (ObjCForwardProtocolDecl::protocol_iterator I = D->protocol_begin(),
E = D->protocol_end();
I != E; ++I, ++PL)
if (Visit(MakeCursorObjCProtocolRef(*I, *PL, TU)))
return true;
return false;
}
bool CursorVisitor::VisitObjCClassDecl(ObjCClassDecl *D) {
for (ObjCClassDecl::iterator C = D->begin(), CEnd = D->end(); C != CEnd; ++C)
if (Visit(MakeCursorObjCClassRef(C->getInterface(), C->getLocation(), TU)))
return true;
return false;
}
bool CursorVisitor::VisitNamespaceDecl(NamespaceDecl *D) {
return VisitDeclContext(D);
}
bool CursorVisitor::VisitLinkageSpecDecl(LinkageSpecDecl *D) {
return VisitDeclContext(D);
}
bool CursorVisitor::VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
ASTContext &Context = TU->getASTContext();
// Some builtin types (such as Objective-C's "id", "sel", and
// "Class") have associated declarations. Create cursors for those.
QualType VisitType;
switch (TL.getType()->getAs<BuiltinType>()->getKind()) {
case BuiltinType::Void:
case BuiltinType::Bool:
case BuiltinType::Char_U:
case BuiltinType::UChar:
case BuiltinType::Char16:
case BuiltinType::Char32:
case BuiltinType::UShort:
case BuiltinType::UInt:
case BuiltinType::ULong:
case BuiltinType::ULongLong:
case BuiltinType::UInt128:
case BuiltinType::Char_S:
case BuiltinType::SChar:
case BuiltinType::WChar:
case BuiltinType::Short:
case BuiltinType::Int:
case BuiltinType::Long:
case BuiltinType::LongLong:
case BuiltinType::Int128:
case BuiltinType::Float:
case BuiltinType::Double:
case BuiltinType::LongDouble:
case BuiltinType::NullPtr:
case BuiltinType::Overload:
case BuiltinType::Dependent:
break;
case BuiltinType::UndeducedAuto: // FIXME: Deserves a cursor?
break;
case BuiltinType::ObjCId:
VisitType = Context.getObjCIdType();
break;
case BuiltinType::ObjCClass:
VisitType = Context.getObjCClassType();
break;
case BuiltinType::ObjCSel:
VisitType = Context.getObjCSelType();
break;
}
if (!VisitType.isNull()) {
if (const TypedefType *Typedef = VisitType->getAs<TypedefType>())
return Visit(MakeCursorTypeRef(Typedef->getDecl(), TL.getBuiltinLoc(),
TU));
}
return false;
}
bool CursorVisitor::VisitTypedefTypeLoc(TypedefTypeLoc TL) {
return Visit(MakeCursorTypeRef(TL.getTypedefDecl(), TL.getNameLoc(), TU));
}
bool CursorVisitor::VisitUnresolvedUsingTypeLoc(UnresolvedUsingTypeLoc TL) {
return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU));
}
bool CursorVisitor::VisitTagTypeLoc(TagTypeLoc TL) {
return Visit(MakeCursorTypeRef(TL.getDecl(), TL.getNameLoc(), TU));
}
bool CursorVisitor::VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
if (Visit(MakeCursorObjCClassRef(TL.getIFaceDecl(), TL.getNameLoc(), TU)))
return true;
return false;
}
bool CursorVisitor::VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
if (TL.hasBaseTypeAsWritten() && Visit(TL.getBaseLoc()))
return true;
for (unsigned I = 0, N = TL.getNumProtocols(); I != N; ++I) {
if (Visit(MakeCursorObjCProtocolRef(TL.getProtocol(I), TL.getProtocolLoc(I),
TU)))
return true;
}
return false;
}
bool CursorVisitor::VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitPointerTypeLoc(PointerTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
return Visit(TL.getPointeeLoc());
}
bool CursorVisitor::VisitFunctionTypeLoc(FunctionTypeLoc TL) {
if (Visit(TL.getResultLoc()))
return true;
for (unsigned I = 0, N = TL.getNumArgs(); I != N; ++I)
if (Decl *D = TL.getArg(I))
if (Visit(MakeCXCursor(D, TU)))
return true;
return false;
}
bool CursorVisitor::VisitArrayTypeLoc(ArrayTypeLoc TL) {
if (Visit(TL.getElementLoc()))
return true;
if (Expr *Size = TL.getSizeExpr())
return Visit(MakeCXCursor(Size, StmtParent, TU));
return false;
}
bool CursorVisitor::VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
return Visit(MakeCXCursor(TL.getUnderlyingExpr(), StmtParent, TU));
}
bool CursorVisitor::VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
if (TypeSourceInfo *TSInfo = TL.getUnderlyingTInfo())
return Visit(TSInfo->getTypeLoc());
return false;
}
bool CursorVisitor::VisitStmt(Stmt *S) {
for (Stmt::child_iterator Child = S->child_begin(), ChildEnd = S->child_end();
Child != ChildEnd; ++Child) {
if (Stmt *C = *Child)
if (Visit(MakeCXCursor(C, StmtParent, TU)))
return true;
}
return false;
}
bool CursorVisitor::VisitCaseStmt(CaseStmt *S) {
// Specially handle CaseStmts because they can be nested, e.g.:
//
// case 1:
// case 2:
//
// In this case the second CaseStmt is the child of the first. Walking
// these recursively can blow out the stack.
CXCursor Cursor = MakeCXCursor(S, StmtParent, TU);
while (true) {
// Set the Parent field to Cursor, then back to its old value once we're
// done.
SetParentRAII SetParent(Parent, StmtParent, Cursor);
if (Stmt *LHS = S->getLHS())
if (Visit(MakeCXCursor(LHS, StmtParent, TU)))
return true;
if (Stmt *RHS = S->getRHS())
if (Visit(MakeCXCursor(RHS, StmtParent, TU)))
return true;
if (Stmt *SubStmt = S->getSubStmt()) {
if (!isa<CaseStmt>(SubStmt))
return Visit(MakeCXCursor(SubStmt, StmtParent, TU));
// Specially handle 'CaseStmt' so that we don't blow out the stack.
CaseStmt *CS = cast<CaseStmt>(SubStmt);
Cursor = MakeCXCursor(CS, StmtParent, TU);
if (RegionOfInterest.isValid()) {
SourceRange Range = CS->getSourceRange();
if (Range.isInvalid() || CompareRegionOfInterest(Range))
return false;
}
switch (Visitor(Cursor, Parent, ClientData)) {
case CXChildVisit_Break: return true;
case CXChildVisit_Continue: return false;
case CXChildVisit_Recurse:
// Perform tail-recursion manually.
S = CS;
continue;
}
}
return false;
}
}
bool CursorVisitor::VisitDeclStmt(DeclStmt *S) {
for (DeclStmt::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
D != DEnd; ++D) {
if (*D && Visit(MakeCXCursor(*D, TU)))
return true;
}
return false;
}
bool CursorVisitor::VisitIfStmt(IfStmt *S) {
if (VarDecl *Var = S->getConditionVariable()) {
if (Visit(MakeCXCursor(Var, TU)))
return true;
}
if (S->getCond() && Visit(MakeCXCursor(S->getCond(), StmtParent, TU)))
return true;
if (S->getThen() && Visit(MakeCXCursor(S->getThen(), StmtParent, TU)))
return true;
if (S->getElse() && Visit(MakeCXCursor(S->getElse(), StmtParent, TU)))
return true;
return false;
}
bool CursorVisitor::VisitSwitchStmt(SwitchStmt *S) {
if (VarDecl *Var = S->getConditionVariable()) {
if (Visit(MakeCXCursor(Var, TU)))
return true;
}
if (S->getCond() && Visit(MakeCXCursor(S->getCond(), StmtParent, TU)))
return true;
if (S->getBody() && Visit(MakeCXCursor(S->getBody(), StmtParent, TU)))
return true;
return false;
}
bool CursorVisitor::VisitWhileStmt(WhileStmt *S) {
if (VarDecl *Var = S->getConditionVariable()) {
if (Visit(MakeCXCursor(Var, TU)))
return true;
}
if (S->getCond() && Visit(MakeCXCursor(S->getCond(), StmtParent, TU)))
return true;
if (S->getBody() && Visit(MakeCXCursor(S->getBody(), StmtParent, TU)))
return true;
return false;
}
bool CursorVisitor::VisitForStmt(ForStmt *S) {
if (S->getInit() && Visit(MakeCXCursor(S->getInit(), StmtParent, TU)))
return true;
if (VarDecl *Var = S->getConditionVariable()) {
if (Visit(MakeCXCursor(Var, TU)))
return true;
}
if (S->getCond() && Visit(MakeCXCursor(S->getCond(), StmtParent, TU)))
return true;
if (S->getInc() && Visit(MakeCXCursor(S->getInc(), StmtParent, TU)))
return true;
if (S->getBody() && Visit(MakeCXCursor(S->getBody(), StmtParent, TU)))
return true;
return false;
}
bool CursorVisitor::VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
if (Visit(MakeCXCursor(E->getArg(0), StmtParent, TU)))
return true;
if (Visit(MakeCXCursor(E->getCallee(), StmtParent, TU)))
return true;
for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I)
if (Visit(MakeCXCursor(E->getArg(I), StmtParent, TU)))
return true;
return false;
}
bool CursorVisitor::VisitBlockExpr(BlockExpr *B) {
return Visit(B->getBlockDecl());
}
bool CursorVisitor::VisitOffsetOfExpr(OffsetOfExpr *E) {
// FIXME: Visit fields as well?
if (Visit(E->getTypeSourceInfo()->getTypeLoc()))
return true;
return VisitExpr(E);
}
bool CursorVisitor::VisitSizeOfAlignOfExpr(SizeOfAlignOfExpr *E) {
if (E->isArgumentType()) {
if (TypeSourceInfo *TSInfo = E->getArgumentTypeInfo())
return Visit(TSInfo->getTypeLoc());
return false;
}
return VisitExpr(E);
}
bool CursorVisitor::VisitExplicitCastExpr(ExplicitCastExpr *E) {
if (TypeSourceInfo *TSInfo = E->getTypeInfoAsWritten())
if (Visit(TSInfo->getTypeLoc()))
return true;
return VisitCastExpr(E);
}
bool CursorVisitor::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
if (TypeSourceInfo *TSInfo = E->getTypeSourceInfo())
if (Visit(TSInfo->getTypeLoc()))
return true;
return VisitExpr(E);
}
bool CursorVisitor::VisitTypesCompatibleExpr(TypesCompatibleExpr *E) {
return Visit(E->getArgTInfo1()->getTypeLoc()) ||
Visit(E->getArgTInfo2()->getTypeLoc());
}
bool CursorVisitor::VisitVAArgExpr(VAArgExpr *E) {
if (Visit(E->getWrittenTypeInfo()->getTypeLoc()))
return true;
return Visit(MakeCXCursor(E->getSubExpr(), StmtParent, TU));
}
bool CursorVisitor::VisitObjCMessageExpr(ObjCMessageExpr *E) {
if (TypeSourceInfo *TSInfo = E->getClassReceiverTypeInfo())
if (Visit(TSInfo->getTypeLoc()))
return true;
return VisitExpr(E);
}
bool CursorVisitor::VisitObjCEncodeExpr(ObjCEncodeExpr *E) {
return Visit(E->getEncodedTypeSourceInfo()->getTypeLoc());
}
bool CursorVisitor::VisitAttributes(Decl *D) {
for (AttrVec::const_iterator i = D->attr_begin(), e = D->attr_end();
i != e; ++i)
if (Visit(MakeCXCursor(*i, D, TU)))
return true;
return false;
}
extern "C" {
CXIndex clang_createIndex(int excludeDeclarationsFromPCH,
int displayDiagnostics) {
// We use crash recovery to make some of our APIs more reliable, implicitly
// enable it.
llvm::CrashRecoveryContext::Enable();
CIndexer *CIdxr = new CIndexer();
if (excludeDeclarationsFromPCH)
CIdxr->setOnlyLocalDecls();
if (displayDiagnostics)
CIdxr->setDisplayDiagnostics();
return CIdxr;
}
void clang_disposeIndex(CXIndex CIdx) {
if (CIdx)
delete static_cast<CIndexer *>(CIdx);
if (getenv("LIBCLANG_TIMING"))
llvm::TimerGroup::printAll(llvm::errs());
}
void clang_setUseExternalASTGeneration(CXIndex CIdx, int value) {
if (CIdx) {
CIndexer *CXXIdx = static_cast<CIndexer *>(CIdx);
CXXIdx->setUseExternalASTGeneration(value);
}
}
CXTranslationUnit clang_createTranslationUnit(CXIndex CIdx,
const char *ast_filename) {
if (!CIdx)
return 0;
CIndexer *CXXIdx = static_cast<CIndexer *>(CIdx);
llvm::IntrusiveRefCntPtr<Diagnostic> Diags;
return ASTUnit::LoadFromASTFile(ast_filename, Diags,
CXXIdx->getOnlyLocalDecls(),
0, 0, true);
}
unsigned clang_defaultEditingTranslationUnitOptions() {
return CXTranslationUnit_PrecompiledPreamble;
}
CXTranslationUnit
clang_createTranslationUnitFromSourceFile(CXIndex CIdx,
const char *source_filename,
int num_command_line_args,
const char **command_line_args,
unsigned num_unsaved_files,
struct CXUnsavedFile *unsaved_files) {
return clang_parseTranslationUnit(CIdx, source_filename,
command_line_args, num_command_line_args,
unsaved_files, num_unsaved_files,
CXTranslationUnit_DetailedPreprocessingRecord);
}
struct ParseTranslationUnitInfo {
CXIndex CIdx;
const char *source_filename;
const char **command_line_args;
int num_command_line_args;
struct CXUnsavedFile *unsaved_files;
unsigned num_unsaved_files;
unsigned options;
CXTranslationUnit result;
};
static void clang_parseTranslationUnit_Impl(void *UserData) {
ParseTranslationUnitInfo *PTUI =
static_cast<ParseTranslationUnitInfo*>(UserData);
CXIndex CIdx = PTUI->CIdx;
const char *source_filename = PTUI->source_filename;
const char **command_line_args = PTUI->command_line_args;
int num_command_line_args = PTUI->num_command_line_args;
struct CXUnsavedFile *unsaved_files = PTUI->unsaved_files;
unsigned num_unsaved_files = PTUI->num_unsaved_files;
unsigned options = PTUI->options;
PTUI->result = 0;
if (!CIdx)
return;
CIndexer *CXXIdx = static_cast<CIndexer *>(CIdx);
bool PrecompilePreamble = options & CXTranslationUnit_PrecompiledPreamble;
bool CompleteTranslationUnit
= ((options & CXTranslationUnit_Incomplete) == 0);
bool CacheCodeCompetionResults
= options & CXTranslationUnit_CacheCompletionResults;
// Configure the diagnostics.
DiagnosticOptions DiagOpts;
llvm::IntrusiveRefCntPtr<Diagnostic> Diags;
Diags = CompilerInstance::createDiagnostics(DiagOpts, 0, 0);
llvm::SmallVector<ASTUnit::RemappedFile, 4> RemappedFiles;
for (unsigned I = 0; I != num_unsaved_files; ++I) {
llvm::StringRef Data(unsaved_files[I].Contents, unsaved_files[I].Length);
const llvm::MemoryBuffer *Buffer
= llvm::MemoryBuffer::getMemBufferCopy(Data, unsaved_files[I].Filename);
RemappedFiles.push_back(std::make_pair(unsaved_files[I].Filename,
Buffer));
}
if (!CXXIdx->getUseExternalASTGeneration()) {
llvm::SmallVector<const char *, 16> Args;
// The 'source_filename' argument is optional. If the caller does not
// specify it then it is assumed that the source file is specified
// in the actual argument list.
if (source_filename)
Args.push_back(source_filename);
// Since the Clang C library is primarily used by batch tools dealing with
// (often very broken) source code, where spell-checking can have a
// significant negative impact on performance (particularly when
// precompiled headers are involved), we disable it by default.
// Note that we place this argument early in the list, so that it can be
// overridden by the caller with "-fspell-checking".
Args.push_back("-fno-spell-checking");
Args.insert(Args.end(), command_line_args,
command_line_args + num_command_line_args);
// Do we need the detailed preprocessing record?
if (options & CXTranslationUnit_DetailedPreprocessingRecord) {
Args.push_back("-Xclang");
Args.push_back("-detailed-preprocessing-record");
}
unsigned NumErrors = Diags->getNumErrors();
#ifdef USE_CRASHTRACER
ArgsCrashTracerInfo ACTI(Args);
#endif
llvm::OwningPtr<ASTUnit> Unit(
ASTUnit::LoadFromCommandLine(Args.data(), Args.data() + Args.size(),
Diags,
CXXIdx->getClangResourcesPath(),
CXXIdx->getOnlyLocalDecls(),
RemappedFiles.data(),
RemappedFiles.size(),
/*CaptureDiagnostics=*/true,
PrecompilePreamble,
CompleteTranslationUnit,
CacheCodeCompetionResults));
if (NumErrors != Diags->getNumErrors()) {
// Make sure to check that 'Unit' is non-NULL.
if (CXXIdx->getDisplayDiagnostics() && Unit.get()) {
for (ASTUnit::stored_diag_iterator D = Unit->stored_diag_begin(),
DEnd = Unit->stored_diag_end();
D != DEnd; ++D) {
CXStoredDiagnostic Diag(*D, Unit->getASTContext().getLangOptions());
CXString Msg = clang_formatDiagnostic(&Diag,
clang_defaultDiagnosticDisplayOptions());
fprintf(stderr, "%s\n", clang_getCString(Msg));
clang_disposeString(Msg);
}
#ifdef LLVM_ON_WIN32
// On Windows, force a flush, since there may be multiple copies of
// stderr and stdout in the file system, all with different buffers
// but writing to the same device.
fflush(stderr);
#endif
}
}
PTUI->result = Unit.take();
return;
}
// Build up the arguments for invoking 'clang'.
std::vector<const char *> argv;
// First add the complete path to the 'clang' executable.
llvm::sys::Path ClangPath = static_cast<CIndexer *>(CIdx)->getClangPath();
argv.push_back(ClangPath.c_str());
// Add the '-emit-ast' option as our execution mode for 'clang'.
argv.push_back("-emit-ast");
// The 'source_filename' argument is optional. If the caller does not
// specify it then it is assumed that the source file is specified
// in the actual argument list.
if (source_filename)
argv.push_back(source_filename);
// Generate a temporary name for the AST file.
argv.push_back("-o");
char astTmpFile[L_tmpnam];
argv.push_back(tmpnam(astTmpFile));
// Since the Clang C library is primarily used by batch tools dealing with
// (often very broken) source code, where spell-checking can have a
// significant negative impact on performance (particularly when
// precompiled headers are involved), we disable it by default.
// Note that we place this argument early in the list, so that it can be
// overridden by the caller with "-fspell-checking".
argv.push_back("-fno-spell-checking");
// Remap any unsaved files to temporary files.
std::vector<llvm::sys::Path> TemporaryFiles;
std::vector<std::string> RemapArgs;
if (RemapFiles(num_unsaved_files, unsaved_files, RemapArgs, TemporaryFiles))
return;
// The pointers into the elements of RemapArgs are stable because we
// won't be adding anything to RemapArgs after this point.
for (unsigned i = 0, e = RemapArgs.size(); i != e; ++i)
argv.push_back(RemapArgs[i].c_str());
// Process the compiler options, stripping off '-o', '-c', '-fsyntax-only'.
for (int i = 0; i < num_command_line_args; ++i)
if (const char *arg = command_line_args[i]) {
if (strcmp(arg, "-o") == 0) {
++i; // Also skip the matching argument.
continue;
}
if (strcmp(arg, "-emit-ast") == 0 ||
strcmp(arg, "-c") == 0 ||
strcmp(arg, "-fsyntax-only") == 0) {
continue;
}
// Keep the argument.
argv.push_back(arg);
}
// Generate a temporary name for the diagnostics file.
char tmpFileResults[L_tmpnam];
char *tmpResultsFileName = tmpnam(tmpFileResults);
llvm::sys::Path DiagnosticsFile(tmpResultsFileName);
TemporaryFiles.push_back(DiagnosticsFile);
argv.push_back("-fdiagnostics-binary");
// Do we need the detailed preprocessing record?
if (options & CXTranslationUnit_DetailedPreprocessingRecord) {
argv.push_back("-Xclang");
argv.push_back("-detailed-preprocessing-record");
}
// Add the null terminator.
argv.push_back(NULL);
// Invoke 'clang'.
llvm::sys::Path DevNull; // leave empty, causes redirection to /dev/null
// on Unix or NUL (Windows).
std::string ErrMsg;
const llvm::sys::Path *Redirects[] = { &DevNull, &DevNull, &DiagnosticsFile,
NULL };
llvm::sys::Program::ExecuteAndWait(ClangPath, &argv[0], /* env */ NULL,
/* redirects */ &Redirects[0],
/* secondsToWait */ 0, /* memoryLimits */ 0, &ErrMsg);
if (!ErrMsg.empty()) {
std::string AllArgs;
for (std::vector<const char*>::iterator I = argv.begin(), E = argv.end();
I != E; ++I) {
AllArgs += ' ';
if (*I)
AllArgs += *I;
}
Diags->Report(diag::err_fe_invoking) << AllArgs << ErrMsg;
}
ASTUnit *ATU = ASTUnit::LoadFromASTFile(astTmpFile, Diags,
CXXIdx->getOnlyLocalDecls(),
RemappedFiles.data(),
RemappedFiles.size(),
/*CaptureDiagnostics=*/true);
if (ATU) {
LoadSerializedDiagnostics(DiagnosticsFile,
num_unsaved_files, unsaved_files,
ATU->getFileManager(),
ATU->getSourceManager(),
ATU->getStoredDiagnostics());
} else if (CXXIdx->getDisplayDiagnostics()) {
// We failed to load the ASTUnit, but we can still deserialize the
// diagnostics and emit them.
FileManager FileMgr;
Diagnostic Diag;
SourceManager SourceMgr(Diag);
// FIXME: Faked LangOpts!
LangOptions LangOpts;
llvm::SmallVector<StoredDiagnostic, 4> Diags;
LoadSerializedDiagnostics(DiagnosticsFile,
num_unsaved_files, unsaved_files,
FileMgr, SourceMgr, Diags);
for (llvm::SmallVector<StoredDiagnostic, 4>::iterator D = Diags.begin(),
DEnd = Diags.end();
D != DEnd; ++D) {
CXStoredDiagnostic Diag(*D, LangOpts);
CXString Msg = clang_formatDiagnostic(&Diag,
clang_defaultDiagnosticDisplayOptions());
fprintf(stderr, "%s\n", clang_getCString(Msg));
clang_disposeString(Msg);
}
#ifdef LLVM_ON_WIN32
// On Windows, force a flush, since there may be multiple copies of
// stderr and stdout in the file system, all with different buffers
// but writing to the same device.
fflush(stderr);
#endif
}
if (ATU) {
// Make the translation unit responsible for destroying all temporary files.
for (unsigned i = 0, e = TemporaryFiles.size(); i != e; ++i)
ATU->addTemporaryFile(TemporaryFiles[i]);
ATU->addTemporaryFile(llvm::sys::Path(ATU->getASTFileName()));
} else {
// Destroy all of the temporary files now; they can't be referenced any
// longer.
llvm::sys::Path(astTmpFile).eraseFromDisk();
for (unsigned i = 0, e = TemporaryFiles.size(); i != e; ++i)
TemporaryFiles[i].eraseFromDisk();
}
PTUI->result = ATU;
}
CXTranslationUnit clang_parseTranslationUnit(CXIndex CIdx,
const char *source_filename,
const char **command_line_args,
int num_command_line_args,
struct CXUnsavedFile *unsaved_files,
unsigned num_unsaved_files,
unsigned options) {
ParseTranslationUnitInfo PTUI = { CIdx, source_filename, command_line_args,
num_command_line_args, unsaved_files, num_unsaved_files,
options, 0 };
llvm::CrashRecoveryContext CRC;
if (!CRC.RunSafely(clang_parseTranslationUnit_Impl, &PTUI)) {
fprintf(stderr, "libclang: crash detected during parsing: {\n");
fprintf(stderr, " 'source_filename' : '%s'\n", source_filename);
fprintf(stderr, " 'command_line_args' : [");
for (int i = 0; i != num_command_line_args; ++i) {
if (i)
fprintf(stderr, ", ");
fprintf(stderr, "'%s'", command_line_args[i]);
}
fprintf(stderr, "],\n");
fprintf(stderr, " 'unsaved_files' : [");
for (unsigned i = 0; i != num_unsaved_files; ++i) {
if (i)
fprintf(stderr, ", ");
fprintf(stderr, "('%s', '...', %ld)", unsaved_files[i].Filename,
unsaved_files[i].Length);
}
fprintf(stderr, "],\n");
fprintf(stderr, " 'options' : %d,\n", options);
fprintf(stderr, "}\n");
return 0;
}
return PTUI.result;
}
unsigned clang_defaultSaveOptions(CXTranslationUnit TU) {
return CXSaveTranslationUnit_None;
}
int clang_saveTranslationUnit(CXTranslationUnit TU, const char *FileName,
unsigned options) {
if (!TU)
return 1;
return static_cast<ASTUnit *>(TU)->Save(FileName);
}
void clang_disposeTranslationUnit(CXTranslationUnit CTUnit) {
if (CTUnit) {
// If the translation unit has been marked as unsafe to free, just discard
// it.
if (static_cast<ASTUnit *>(CTUnit)->isUnsafeToFree())
return;
delete static_cast<ASTUnit *>(CTUnit);
}
}
unsigned clang_defaultReparseOptions(CXTranslationUnit TU) {
return CXReparse_None;
}
struct ReparseTranslationUnitInfo {
CXTranslationUnit TU;
unsigned num_unsaved_files;
struct CXUnsavedFile *unsaved_files;
unsigned options;
int result;
};
static void clang_reparseTranslationUnit_Impl(void *UserData) {
ReparseTranslationUnitInfo *RTUI =
static_cast<ReparseTranslationUnitInfo*>(UserData);
CXTranslationUnit TU = RTUI->TU;
unsigned num_unsaved_files = RTUI->num_unsaved_files;
struct CXUnsavedFile *unsaved_files = RTUI->unsaved_files;
unsigned options = RTUI->options;
(void) options;
RTUI->result = 1;
if (!TU)
return;
llvm::SmallVector<ASTUnit::RemappedFile, 4> RemappedFiles;
for (unsigned I = 0; I != num_unsaved_files; ++I) {
llvm::StringRef Data(unsaved_files[I].Contents, unsaved_files[I].Length);
const llvm::MemoryBuffer *Buffer
= llvm::MemoryBuffer::getMemBufferCopy(Data, unsaved_files[I].Filename);
RemappedFiles.push_back(std::make_pair(unsaved_files[I].Filename,
Buffer));
}
if (!static_cast<ASTUnit *>(TU)->Reparse(RemappedFiles.data(),
RemappedFiles.size()))
RTUI->result = 0;
}
int clang_reparseTranslationUnit(CXTranslationUnit TU,
unsigned num_unsaved_files,
struct CXUnsavedFile *unsaved_files,
unsigned options) {
ReparseTranslationUnitInfo RTUI = { TU, num_unsaved_files, unsaved_files,
options, 0 };
llvm::CrashRecoveryContext CRC;
if (!CRC.RunSafely(clang_reparseTranslationUnit_Impl, &RTUI)) {
fprintf(stderr, "libclang: crash detected during reparsing\n");
static_cast<ASTUnit *>(TU)->setUnsafeToFree(true);
return 1;
}
return RTUI.result;
}
CXString clang_getTranslationUnitSpelling(CXTranslationUnit CTUnit) {
if (!CTUnit)
return createCXString("");
ASTUnit *CXXUnit = static_cast<ASTUnit *>(CTUnit);
return createCXString(CXXUnit->getOriginalSourceFileName(), true);
}
CXCursor clang_getTranslationUnitCursor(CXTranslationUnit TU) {
CXCursor Result = { CXCursor_TranslationUnit, { 0, 0, TU } };
return Result;
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// CXSourceLocation and CXSourceRange Operations.
//===----------------------------------------------------------------------===//
extern "C" {
CXSourceLocation clang_getNullLocation() {
CXSourceLocation Result = { { 0, 0 }, 0 };
return Result;
}
unsigned clang_equalLocations(CXSourceLocation loc1, CXSourceLocation loc2) {
return (loc1.ptr_data[0] == loc2.ptr_data[0] &&
loc1.ptr_data[1] == loc2.ptr_data[1] &&
loc1.int_data == loc2.int_data);
}
CXSourceLocation clang_getLocation(CXTranslationUnit tu,
CXFile file,
unsigned line,
unsigned column) {
if (!tu || !file)
return clang_getNullLocation();
ASTUnit *CXXUnit = static_cast<ASTUnit *>(tu);
SourceLocation SLoc
= CXXUnit->getSourceManager().getLocation(
static_cast<const FileEntry *>(file),
line, column);
return cxloc::translateSourceLocation(CXXUnit->getASTContext(), SLoc);
}
CXSourceRange clang_getNullRange() {
CXSourceRange Result = { { 0, 0 }, 0, 0 };
return Result;
}
CXSourceRange clang_getRange(CXSourceLocation begin, CXSourceLocation end) {
if (begin.ptr_data[0] != end.ptr_data[0] ||
begin.ptr_data[1] != end.ptr_data[1])
return clang_getNullRange();
CXSourceRange Result = { { begin.ptr_data[0], begin.ptr_data[1] },
begin.int_data, end.int_data };
return Result;
}
void clang_getInstantiationLocation(CXSourceLocation location,
CXFile *file,
unsigned *line,
unsigned *column,
unsigned *offset) {
SourceLocation Loc = SourceLocation::getFromRawEncoding(location.int_data);
if (!location.ptr_data[0] || Loc.isInvalid()) {
if (file)
*file = 0;
if (line)
*line = 0;
if (column)
*column = 0;
if (offset)
*offset = 0;
return;
}
const SourceManager &SM =
*static_cast<const SourceManager*>(location.ptr_data[0]);
SourceLocation InstLoc = SM.getInstantiationLoc(Loc);
if (file)
*file = (void *)SM.getFileEntryForID(SM.getFileID(InstLoc));
if (line)
*line = SM.getInstantiationLineNumber(InstLoc);
if (column)
*column = SM.getInstantiationColumnNumber(InstLoc);
if (offset)
*offset = SM.getDecomposedLoc(InstLoc).second;
}
CXSourceLocation clang_getRangeStart(CXSourceRange range) {
CXSourceLocation Result = { { range.ptr_data[0], range.ptr_data[1] },
range.begin_int_data };
return Result;
}
CXSourceLocation clang_getRangeEnd(CXSourceRange range) {
CXSourceLocation Result = { { range.ptr_data[0], range.ptr_data[1] },
range.end_int_data };
return Result;
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// CXFile Operations.
//===----------------------------------------------------------------------===//
extern "C" {
CXString clang_getFileName(CXFile SFile) {
if (!SFile)
return createCXString(NULL);
FileEntry *FEnt = static_cast<FileEntry *>(SFile);
return createCXString(FEnt->getName());
}
time_t clang_getFileTime(CXFile SFile) {
if (!SFile)
return 0;
FileEntry *FEnt = static_cast<FileEntry *>(SFile);
return FEnt->getModificationTime();
}
CXFile clang_getFile(CXTranslationUnit tu, const char *file_name) {
if (!tu)
return 0;
ASTUnit *CXXUnit = static_cast<ASTUnit *>(tu);
FileManager &FMgr = CXXUnit->getFileManager();
const FileEntry *File = FMgr.getFile(file_name, file_name+strlen(file_name));
return const_cast<FileEntry *>(File);
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// CXCursor Operations.
//===----------------------------------------------------------------------===//
static Decl *getDeclFromExpr(Stmt *E) {
if (DeclRefExpr *RefExpr = dyn_cast<DeclRefExpr>(E))
return RefExpr->getDecl();
if (MemberExpr *ME = dyn_cast<MemberExpr>(E))
return ME->getMemberDecl();
if (ObjCIvarRefExpr *RE = dyn_cast<ObjCIvarRefExpr>(E))
return RE->getDecl();
if (CallExpr *CE = dyn_cast<CallExpr>(E))
return getDeclFromExpr(CE->getCallee());
if (CastExpr *CE = dyn_cast<CastExpr>(E))
return getDeclFromExpr(CE->getSubExpr());
if (ObjCMessageExpr *OME = dyn_cast<ObjCMessageExpr>(E))
return OME->getMethodDecl();
return 0;
}
static SourceLocation getLocationFromExpr(Expr *E) {
if (ObjCMessageExpr *Msg = dyn_cast<ObjCMessageExpr>(E))
return /*FIXME:*/Msg->getLeftLoc();
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
return DRE->getLocation();
if (MemberExpr *Member = dyn_cast<MemberExpr>(E))
return Member->getMemberLoc();
if (ObjCIvarRefExpr *Ivar = dyn_cast<ObjCIvarRefExpr>(E))
return Ivar->getLocation();
return E->getLocStart();
}
extern "C" {
unsigned clang_visitChildren(CXCursor parent,
CXCursorVisitor visitor,
CXClientData client_data) {
ASTUnit *CXXUnit = getCursorASTUnit(parent);
CursorVisitor CursorVis(CXXUnit, visitor, client_data,
CXXUnit->getMaxPCHLevel());
return CursorVis.VisitChildren(parent);
}
static CXString getDeclSpelling(Decl *D) {
NamedDecl *ND = dyn_cast_or_null<NamedDecl>(D);
if (!ND)
return createCXString("");
if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(ND))
return createCXString(OMD->getSelector().getAsString());
if (ObjCCategoryImplDecl *CIMP = dyn_cast<ObjCCategoryImplDecl>(ND))
// No, this isn't the same as the code below. getIdentifier() is non-virtual
// and returns different names. NamedDecl returns the class name and
// ObjCCategoryImplDecl returns the category name.
return createCXString(CIMP->getIdentifier()->getNameStart());
llvm::SmallString<1024> S;
llvm::raw_svector_ostream os(S);
ND->printName(os);
return createCXString(os.str());
}
CXString clang_getCursorSpelling(CXCursor C) {
if (clang_isTranslationUnit(C.kind))
return clang_getTranslationUnitSpelling(C.data[2]);
if (clang_isReference(C.kind)) {
switch (C.kind) {
case CXCursor_ObjCSuperClassRef: {
ObjCInterfaceDecl *Super = getCursorObjCSuperClassRef(C).first;
return createCXString(Super->getIdentifier()->getNameStart());
}
case CXCursor_ObjCClassRef: {
ObjCInterfaceDecl *Class = getCursorObjCClassRef(C).first;
return createCXString(Class->getIdentifier()->getNameStart());
}
case CXCursor_ObjCProtocolRef: {
ObjCProtocolDecl *OID = getCursorObjCProtocolRef(C).first;
assert(OID && "getCursorSpelling(): Missing protocol decl");
return createCXString(OID->getIdentifier()->getNameStart());
}
case CXCursor_TypeRef: {
TypeDecl *Type = getCursorTypeRef(C).first;
assert(Type && "Missing type decl");
return createCXString(getCursorContext(C).getTypeDeclType(Type).
getAsString());
}
default:
return createCXString("<not implemented>");
}
}
if (clang_isExpression(C.kind)) {
Decl *D = getDeclFromExpr(getCursorExpr(C));
if (D)
return getDeclSpelling(D);
return createCXString("");
}
if (C.kind == CXCursor_MacroInstantiation)
return createCXString(getCursorMacroInstantiation(C)->getName()
->getNameStart());
if (C.kind == CXCursor_MacroDefinition)
return createCXString(getCursorMacroDefinition(C)->getName()
->getNameStart());
if (clang_isDeclaration(C.kind))
return getDeclSpelling(getCursorDecl(C));
return createCXString("");
}
CXString clang_getCursorKindSpelling(enum CXCursorKind Kind) {
switch (Kind) {
case CXCursor_FunctionDecl:
return createCXString("FunctionDecl");
case CXCursor_TypedefDecl:
return createCXString("TypedefDecl");
case CXCursor_EnumDecl:
return createCXString("EnumDecl");
case CXCursor_EnumConstantDecl:
return createCXString("EnumConstantDecl");
case CXCursor_StructDecl:
return createCXString("StructDecl");
case CXCursor_UnionDecl:
return createCXString("UnionDecl");
case CXCursor_ClassDecl:
return createCXString("ClassDecl");
case CXCursor_FieldDecl:
return createCXString("FieldDecl");
case CXCursor_VarDecl:
return createCXString("VarDecl");
case CXCursor_ParmDecl:
return createCXString("ParmDecl");
case CXCursor_ObjCInterfaceDecl:
return createCXString("ObjCInterfaceDecl");
case CXCursor_ObjCCategoryDecl:
return createCXString("ObjCCategoryDecl");
case CXCursor_ObjCProtocolDecl:
return createCXString("ObjCProtocolDecl");
case CXCursor_ObjCPropertyDecl:
return createCXString("ObjCPropertyDecl");
case CXCursor_ObjCIvarDecl:
return createCXString("ObjCIvarDecl");
case CXCursor_ObjCInstanceMethodDecl:
return createCXString("ObjCInstanceMethodDecl");
case CXCursor_ObjCClassMethodDecl:
return createCXString("ObjCClassMethodDecl");
case CXCursor_ObjCImplementationDecl:
return createCXString("ObjCImplementationDecl");
case CXCursor_ObjCCategoryImplDecl:
return createCXString("ObjCCategoryImplDecl");
case CXCursor_CXXMethod:
return createCXString("CXXMethod");
case CXCursor_UnexposedDecl:
return createCXString("UnexposedDecl");
case CXCursor_ObjCSuperClassRef:
return createCXString("ObjCSuperClassRef");
case CXCursor_ObjCProtocolRef:
return createCXString("ObjCProtocolRef");
case CXCursor_ObjCClassRef:
return createCXString("ObjCClassRef");
case CXCursor_TypeRef:
return createCXString("TypeRef");
case CXCursor_UnexposedExpr:
return createCXString("UnexposedExpr");
case CXCursor_BlockExpr:
return createCXString("BlockExpr");
case CXCursor_DeclRefExpr:
return createCXString("DeclRefExpr");
case CXCursor_MemberRefExpr:
return createCXString("MemberRefExpr");
case CXCursor_CallExpr:
return createCXString("CallExpr");
case CXCursor_ObjCMessageExpr:
return createCXString("ObjCMessageExpr");
case CXCursor_UnexposedStmt:
return createCXString("UnexposedStmt");
case CXCursor_InvalidFile:
return createCXString("InvalidFile");
case CXCursor_InvalidCode:
return createCXString("InvalidCode");
case CXCursor_NoDeclFound:
return createCXString("NoDeclFound");
case CXCursor_NotImplemented:
return createCXString("NotImplemented");
case CXCursor_TranslationUnit:
return createCXString("TranslationUnit");
case CXCursor_UnexposedAttr:
return createCXString("UnexposedAttr");
case CXCursor_IBActionAttr:
return createCXString("attribute(ibaction)");
case CXCursor_IBOutletAttr:
return createCXString("attribute(iboutlet)");
case CXCursor_IBOutletCollectionAttr:
return createCXString("attribute(iboutletcollection)");
case CXCursor_PreprocessingDirective:
return createCXString("preprocessing directive");
case CXCursor_MacroDefinition:
return createCXString("macro definition");
case CXCursor_MacroInstantiation:
return createCXString("macro instantiation");
case CXCursor_Namespace:
return createCXString("Namespace");
case CXCursor_LinkageSpec:
return createCXString("LinkageSpec");
}
llvm_unreachable("Unhandled CXCursorKind");
return createCXString(NULL);
}
enum CXChildVisitResult GetCursorVisitor(CXCursor cursor,
CXCursor parent,
CXClientData client_data) {
CXCursor *BestCursor = static_cast<CXCursor *>(client_data);
*BestCursor = cursor;
return CXChildVisit_Recurse;
}
CXCursor clang_getCursor(CXTranslationUnit TU, CXSourceLocation Loc) {
if (!TU)
return clang_getNullCursor();
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU);
ASTUnit::ConcurrencyCheck Check(*CXXUnit);
// Translate the given source location to make it point at the beginning of
// the token under the cursor.
SourceLocation SLoc = cxloc::translateSourceLocation(Loc);
// Guard against an invalid SourceLocation, or we may assert in one
// of the following calls.
if (SLoc.isInvalid())
return clang_getNullCursor();
SLoc = Lexer::GetBeginningOfToken(SLoc, CXXUnit->getSourceManager(),
CXXUnit->getASTContext().getLangOptions());
CXCursor Result = MakeCXCursorInvalid(CXCursor_NoDeclFound);
if (SLoc.isValid()) {
// FIXME: Would be great to have a "hint" cursor, then walk from that
// hint cursor upward until we find a cursor whose source range encloses
// the region of interest, rather than starting from the translation unit.
CXCursor Parent = clang_getTranslationUnitCursor(CXXUnit);
CursorVisitor CursorVis(CXXUnit, GetCursorVisitor, &Result,
Decl::MaxPCHLevel, SourceLocation(SLoc));
CursorVis.VisitChildren(Parent);
}
return Result;
}
CXCursor clang_getNullCursor(void) {
return MakeCXCursorInvalid(CXCursor_InvalidFile);
}
unsigned clang_equalCursors(CXCursor X, CXCursor Y) {
return X == Y;
}
unsigned clang_isInvalid(enum CXCursorKind K) {
return K >= CXCursor_FirstInvalid && K <= CXCursor_LastInvalid;
}
unsigned clang_isDeclaration(enum CXCursorKind K) {
return K >= CXCursor_FirstDecl && K <= CXCursor_LastDecl;
}
unsigned clang_isReference(enum CXCursorKind K) {
return K >= CXCursor_FirstRef && K <= CXCursor_LastRef;
}
unsigned clang_isExpression(enum CXCursorKind K) {
return K >= CXCursor_FirstExpr && K <= CXCursor_LastExpr;
}
unsigned clang_isStatement(enum CXCursorKind K) {
return K >= CXCursor_FirstStmt && K <= CXCursor_LastStmt;
}
unsigned clang_isTranslationUnit(enum CXCursorKind K) {
return K == CXCursor_TranslationUnit;
}
unsigned clang_isPreprocessing(enum CXCursorKind K) {
return K >= CXCursor_FirstPreprocessing && K <= CXCursor_LastPreprocessing;
}
unsigned clang_isUnexposed(enum CXCursorKind K) {
switch (K) {
case CXCursor_UnexposedDecl:
case CXCursor_UnexposedExpr:
case CXCursor_UnexposedStmt:
case CXCursor_UnexposedAttr:
return true;
default:
return false;
}
}
CXCursorKind clang_getCursorKind(CXCursor C) {
return C.kind;
}
CXSourceLocation clang_getCursorLocation(CXCursor C) {
if (clang_isReference(C.kind)) {
switch (C.kind) {
case CXCursor_ObjCSuperClassRef: {
std::pair<ObjCInterfaceDecl *, SourceLocation> P
= getCursorObjCSuperClassRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_ObjCProtocolRef: {
std::pair<ObjCProtocolDecl *, SourceLocation> P
= getCursorObjCProtocolRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_ObjCClassRef: {
std::pair<ObjCInterfaceDecl *, SourceLocation> P
= getCursorObjCClassRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
case CXCursor_TypeRef: {
std::pair<TypeDecl *, SourceLocation> P = getCursorTypeRef(C);
return cxloc::translateSourceLocation(P.first->getASTContext(), P.second);
}
default:
// FIXME: Need a way to enumerate all non-reference cases.
llvm_unreachable("Missed a reference kind");
}
}
if (clang_isExpression(C.kind))
return cxloc::translateSourceLocation(getCursorContext(C),
getLocationFromExpr(getCursorExpr(C)));
if (C.kind == CXCursor_PreprocessingDirective) {
SourceLocation L = cxcursor::getCursorPreprocessingDirective(C).getBegin();
return cxloc::translateSourceLocation(getCursorContext(C), L);
}
if (C.kind == CXCursor_MacroInstantiation) {
SourceLocation L
= cxcursor::getCursorMacroInstantiation(C)->getSourceRange().getBegin();
return cxloc::translateSourceLocation(getCursorContext(C), L);
}
if (C.kind == CXCursor_MacroDefinition) {
SourceLocation L = cxcursor::getCursorMacroDefinition(C)->getLocation();
return cxloc::translateSourceLocation(getCursorContext(C), L);
}
if (C.kind < CXCursor_FirstDecl || C.kind > CXCursor_LastDecl)
return clang_getNullLocation();
Decl *D = getCursorDecl(C);
SourceLocation Loc = D->getLocation();
if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(D))
Loc = Class->getClassLoc();
return cxloc::translateSourceLocation(getCursorContext(C), Loc);
}
} // end extern "C"
static SourceRange getRawCursorExtent(CXCursor C) {
if (clang_isReference(C.kind)) {
switch (C.kind) {
case CXCursor_ObjCSuperClassRef:
return getCursorObjCSuperClassRef(C).second;
case CXCursor_ObjCProtocolRef:
return getCursorObjCProtocolRef(C).second;
case CXCursor_ObjCClassRef:
return getCursorObjCClassRef(C).second;
case CXCursor_TypeRef:
return getCursorTypeRef(C).second;
default:
// FIXME: Need a way to enumerate all non-reference cases.
llvm_unreachable("Missed a reference kind");
}
}
if (clang_isExpression(C.kind))
return getCursorExpr(C)->getSourceRange();
if (clang_isStatement(C.kind))
return getCursorStmt(C)->getSourceRange();
if (C.kind == CXCursor_PreprocessingDirective)
return cxcursor::getCursorPreprocessingDirective(C);
if (C.kind == CXCursor_MacroInstantiation)
return cxcursor::getCursorMacroInstantiation(C)->getSourceRange();
if (C.kind == CXCursor_MacroDefinition)
return cxcursor::getCursorMacroDefinition(C)->getSourceRange();
if (C.kind >= CXCursor_FirstDecl && C.kind <= CXCursor_LastDecl)
return getCursorDecl(C)->getSourceRange();
return SourceRange();
}
extern "C" {
CXSourceRange clang_getCursorExtent(CXCursor C) {
SourceRange R = getRawCursorExtent(C);
if (R.isInvalid())
return clang_getNullRange();
return cxloc::translateSourceRange(getCursorContext(C), R);
}
CXCursor clang_getCursorReferenced(CXCursor C) {
if (clang_isInvalid(C.kind))
return clang_getNullCursor();
ASTUnit *CXXUnit = getCursorASTUnit(C);
if (clang_isDeclaration(C.kind))
return C;
if (clang_isExpression(C.kind)) {
Decl *D = getDeclFromExpr(getCursorExpr(C));
if (D)
return MakeCXCursor(D, CXXUnit);
return clang_getNullCursor();
}
if (C.kind == CXCursor_MacroInstantiation) {
if (MacroDefinition *Def = getCursorMacroInstantiation(C)->getDefinition())
return MakeMacroDefinitionCursor(Def, CXXUnit);
}
if (!clang_isReference(C.kind))
return clang_getNullCursor();
switch (C.kind) {
case CXCursor_ObjCSuperClassRef:
return MakeCXCursor(getCursorObjCSuperClassRef(C).first, CXXUnit);
case CXCursor_ObjCProtocolRef: {
return MakeCXCursor(getCursorObjCProtocolRef(C).first, CXXUnit);
case CXCursor_ObjCClassRef:
return MakeCXCursor(getCursorObjCClassRef(C).first, CXXUnit);
case CXCursor_TypeRef:
return MakeCXCursor(getCursorTypeRef(C).first, CXXUnit);
default:
// We would prefer to enumerate all non-reference cursor kinds here.
llvm_unreachable("Unhandled reference cursor kind");
break;
}
}
return clang_getNullCursor();
}
CXCursor clang_getCursorDefinition(CXCursor C) {
if (clang_isInvalid(C.kind))
return clang_getNullCursor();
ASTUnit *CXXUnit = getCursorASTUnit(C);
bool WasReference = false;
if (clang_isReference(C.kind) || clang_isExpression(C.kind)) {
C = clang_getCursorReferenced(C);
WasReference = true;
}
if (C.kind == CXCursor_MacroInstantiation)
return clang_getCursorReferenced(C);
if (!clang_isDeclaration(C.kind))
return clang_getNullCursor();
Decl *D = getCursorDecl(C);
if (!D)
return clang_getNullCursor();
switch (D->getKind()) {
// Declaration kinds that don't really separate the notions of
// declaration and definition.
case Decl::Namespace:
case Decl::Typedef:
case Decl::TemplateTypeParm:
case Decl::EnumConstant:
case Decl::Field:
case Decl::ObjCIvar:
case Decl::ObjCAtDefsField:
case Decl::ImplicitParam:
case Decl::ParmVar:
case Decl::NonTypeTemplateParm:
case Decl::TemplateTemplateParm:
case Decl::ObjCCategoryImpl:
case Decl::ObjCImplementation:
case Decl::AccessSpec:
case Decl::LinkageSpec:
case Decl::ObjCPropertyImpl:
case Decl::FileScopeAsm:
case Decl::StaticAssert:
case Decl::Block:
return C;
// Declaration kinds that don't make any sense here, but are
// nonetheless harmless.
case Decl::TranslationUnit:
break;
// Declaration kinds for which the definition is not resolvable.
case Decl::UnresolvedUsingTypename:
case Decl::UnresolvedUsingValue:
break;
case Decl::UsingDirective:
return MakeCXCursor(cast<UsingDirectiveDecl>(D)->getNominatedNamespace(),
CXXUnit);
case Decl::NamespaceAlias:
return MakeCXCursor(cast<NamespaceAliasDecl>(D)->getNamespace(), CXXUnit);
case Decl::Enum:
case Decl::Record:
case Decl::CXXRecord:
case Decl::ClassTemplateSpecialization:
case Decl::ClassTemplatePartialSpecialization:
if (TagDecl *Def = cast<TagDecl>(D)->getDefinition())
return MakeCXCursor(Def, CXXUnit);
return clang_getNullCursor();
case Decl::Function:
case Decl::CXXMethod:
case Decl::CXXConstructor:
case Decl::CXXDestructor:
case Decl::CXXConversion: {
const FunctionDecl *Def = 0;
if (cast<FunctionDecl>(D)->getBody(Def))
return MakeCXCursor(const_cast<FunctionDecl *>(Def), CXXUnit);
return clang_getNullCursor();
}
case Decl::Var: {
// Ask the variable if it has a definition.
if (VarDecl *Def = cast<VarDecl>(D)->getDefinition())
return MakeCXCursor(Def, CXXUnit);
return clang_getNullCursor();
}
case Decl::FunctionTemplate: {
const FunctionDecl *Def = 0;
if (cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->getBody(Def))
return MakeCXCursor(Def->getDescribedFunctionTemplate(), CXXUnit);
return clang_getNullCursor();
}
case Decl::ClassTemplate: {
if (RecordDecl *Def = cast<ClassTemplateDecl>(D)->getTemplatedDecl()
->getDefinition())
return MakeCXCursor(
cast<CXXRecordDecl>(Def)->getDescribedClassTemplate(),
CXXUnit);
return clang_getNullCursor();
}
case Decl::Using: {
UsingDecl *Using = cast<UsingDecl>(D);
CXCursor Def = clang_getNullCursor();
for (UsingDecl::shadow_iterator S = Using->shadow_begin(),
SEnd = Using->shadow_end();
S != SEnd; ++S) {
if (Def != clang_getNullCursor()) {
// FIXME: We have no way to return multiple results.
return clang_getNullCursor();
}
Def = clang_getCursorDefinition(MakeCXCursor((*S)->getTargetDecl(),
CXXUnit));
}
return Def;
}
case Decl::UsingShadow:
return clang_getCursorDefinition(
MakeCXCursor(cast<UsingShadowDecl>(D)->getTargetDecl(),
CXXUnit));
case Decl::ObjCMethod: {
ObjCMethodDecl *Method = cast<ObjCMethodDecl>(D);
if (Method->isThisDeclarationADefinition())
return C;
// Dig out the method definition in the associated
// @implementation, if we have it.
// FIXME: The ASTs should make finding the definition easier.
if (ObjCInterfaceDecl *Class
= dyn_cast<ObjCInterfaceDecl>(Method->getDeclContext()))
if (ObjCImplementationDecl *ClassImpl = Class->getImplementation())
if (ObjCMethodDecl *Def = ClassImpl->getMethod(Method->getSelector(),
Method->isInstanceMethod()))
if (Def->isThisDeclarationADefinition())
return MakeCXCursor(Def, CXXUnit);
return clang_getNullCursor();
}
case Decl::ObjCCategory:
if (ObjCCategoryImplDecl *Impl
= cast<ObjCCategoryDecl>(D)->getImplementation())
return MakeCXCursor(Impl, CXXUnit);
return clang_getNullCursor();
case Decl::ObjCProtocol:
if (!cast<ObjCProtocolDecl>(D)->isForwardDecl())
return C;
return clang_getNullCursor();
case Decl::ObjCInterface:
// There are two notions of a "definition" for an Objective-C
// class: the interface and its implementation. When we resolved a
// reference to an Objective-C class, produce the @interface as
// the definition; when we were provided with the interface,
// produce the @implementation as the definition.
if (WasReference) {
if (!cast<ObjCInterfaceDecl>(D)->isForwardDecl())
return C;
} else if (ObjCImplementationDecl *Impl
= cast<ObjCInterfaceDecl>(D)->getImplementation())
return MakeCXCursor(Impl, CXXUnit);
return clang_getNullCursor();
case Decl::ObjCProperty:
// FIXME: We don't really know where to find the
// ObjCPropertyImplDecls that implement this property.
return clang_getNullCursor();
case Decl::ObjCCompatibleAlias:
if (ObjCInterfaceDecl *Class
= cast<ObjCCompatibleAliasDecl>(D)->getClassInterface())
if (!Class->isForwardDecl())
return MakeCXCursor(Class, CXXUnit);
return clang_getNullCursor();
case Decl::ObjCForwardProtocol: {
ObjCForwardProtocolDecl *Forward = cast<ObjCForwardProtocolDecl>(D);
if (Forward->protocol_size() == 1)
return clang_getCursorDefinition(
MakeCXCursor(*Forward->protocol_begin(),
CXXUnit));
// FIXME: Cannot return multiple definitions.
return clang_getNullCursor();
}
case Decl::ObjCClass: {
ObjCClassDecl *Class = cast<ObjCClassDecl>(D);
if (Class->size() == 1) {
ObjCInterfaceDecl *IFace = Class->begin()->getInterface();
if (!IFace->isForwardDecl())
return MakeCXCursor(IFace, CXXUnit);
return clang_getNullCursor();
}
// FIXME: Cannot return multiple definitions.
return clang_getNullCursor();
}
case Decl::Friend:
if (NamedDecl *Friend = cast<FriendDecl>(D)->getFriendDecl())
return clang_getCursorDefinition(MakeCXCursor(Friend, CXXUnit));
return clang_getNullCursor();
case Decl::FriendTemplate:
if (NamedDecl *Friend = cast<FriendTemplateDecl>(D)->getFriendDecl())
return clang_getCursorDefinition(MakeCXCursor(Friend, CXXUnit));
return clang_getNullCursor();
}
return clang_getNullCursor();
}
unsigned clang_isCursorDefinition(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return 0;
return clang_getCursorDefinition(C) == C;
}
void clang_getDefinitionSpellingAndExtent(CXCursor C,
const char **startBuf,
const char **endBuf,
unsigned *startLine,
unsigned *startColumn,
unsigned *endLine,
unsigned *endColumn) {
assert(getCursorDecl(C) && "CXCursor has null decl");
NamedDecl *ND = static_cast<NamedDecl *>(getCursorDecl(C));
FunctionDecl *FD = dyn_cast<FunctionDecl>(ND);
CompoundStmt *Body = dyn_cast<CompoundStmt>(FD->getBody());
SourceManager &SM = FD->getASTContext().getSourceManager();
*startBuf = SM.getCharacterData(Body->getLBracLoc());
*endBuf = SM.getCharacterData(Body->getRBracLoc());
*startLine = SM.getSpellingLineNumber(Body->getLBracLoc());
*startColumn = SM.getSpellingColumnNumber(Body->getLBracLoc());
*endLine = SM.getSpellingLineNumber(Body->getRBracLoc());
*endColumn = SM.getSpellingColumnNumber(Body->getRBracLoc());
}
void clang_enableStackTraces(void) {
llvm::sys::PrintStackTraceOnErrorSignal();
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// Token-based Operations.
//===----------------------------------------------------------------------===//
/* CXToken layout:
* int_data[0]: a CXTokenKind
* int_data[1]: starting token location
* int_data[2]: token length
* int_data[3]: reserved
* ptr_data: for identifiers and keywords, an IdentifierInfo*.
* otherwise unused.
*/
extern "C" {
CXTokenKind clang_getTokenKind(CXToken CXTok) {
return static_cast<CXTokenKind>(CXTok.int_data[0]);
}
CXString clang_getTokenSpelling(CXTranslationUnit TU, CXToken CXTok) {
switch (clang_getTokenKind(CXTok)) {
case CXToken_Identifier:
case CXToken_Keyword:
// We know we have an IdentifierInfo*, so use that.
return createCXString(static_cast<IdentifierInfo *>(CXTok.ptr_data)
->getNameStart());
case CXToken_Literal: {
// We have stashed the starting pointer in the ptr_data field. Use it.
const char *Text = static_cast<const char *>(CXTok.ptr_data);
return createCXString(llvm::StringRef(Text, CXTok.int_data[2]));
}
case CXToken_Punctuation:
case CXToken_Comment:
break;
}
// We have to find the starting buffer pointer the hard way, by
// deconstructing the source location.
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU);
if (!CXXUnit)
return createCXString("");
SourceLocation Loc = SourceLocation::getFromRawEncoding(CXTok.int_data[1]);
std::pair<FileID, unsigned> LocInfo
= CXXUnit->getSourceManager().getDecomposedLoc(Loc);
bool Invalid = false;
llvm::StringRef Buffer
= CXXUnit->getSourceManager().getBufferData(LocInfo.first, &Invalid);
if (Invalid)
return createCXString("");
return createCXString(Buffer.substr(LocInfo.second, CXTok.int_data[2]));
}
CXSourceLocation clang_getTokenLocation(CXTranslationUnit TU, CXToken CXTok) {
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU);
if (!CXXUnit)
return clang_getNullLocation();
return cxloc::translateSourceLocation(CXXUnit->getASTContext(),
SourceLocation::getFromRawEncoding(CXTok.int_data[1]));
}
CXSourceRange clang_getTokenExtent(CXTranslationUnit TU, CXToken CXTok) {
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU);
if (!CXXUnit)
return clang_getNullRange();
return cxloc::translateSourceRange(CXXUnit->getASTContext(),
SourceLocation::getFromRawEncoding(CXTok.int_data[1]));
}
void clang_tokenize(CXTranslationUnit TU, CXSourceRange Range,
CXToken **Tokens, unsigned *NumTokens) {
if (Tokens)
*Tokens = 0;
if (NumTokens)
*NumTokens = 0;
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU);
if (!CXXUnit || !Tokens || !NumTokens)
return;
ASTUnit::ConcurrencyCheck Check(*CXXUnit);
SourceRange R = cxloc::translateCXSourceRange(Range);
if (R.isInvalid())
return;
SourceManager &SourceMgr = CXXUnit->getSourceManager();
std::pair<FileID, unsigned> BeginLocInfo
= SourceMgr.getDecomposedLoc(R.getBegin());
std::pair<FileID, unsigned> EndLocInfo
= SourceMgr.getDecomposedLoc(R.getEnd());
// Cannot tokenize across files.
if (BeginLocInfo.first != EndLocInfo.first)
return;
// Create a lexer
bool Invalid = false;
llvm::StringRef Buffer
= SourceMgr.getBufferData(BeginLocInfo.first, &Invalid);
if (Invalid)
return;
Lexer Lex(SourceMgr.getLocForStartOfFile(BeginLocInfo.first),
CXXUnit->getASTContext().getLangOptions(),
Buffer.begin(), Buffer.data() + BeginLocInfo.second, Buffer.end());
Lex.SetCommentRetentionState(true);
// Lex tokens until we hit the end of the range.
const char *EffectiveBufferEnd = Buffer.data() + EndLocInfo.second;
llvm::SmallVector<CXToken, 32> CXTokens;
Token Tok;
do {
// Lex the next token
Lex.LexFromRawLexer(Tok);
if (Tok.is(tok::eof))
break;
// Initialize the CXToken.
CXToken CXTok;
// - Common fields
CXTok.int_data[1] = Tok.getLocation().getRawEncoding();
CXTok.int_data[2] = Tok.getLength();
CXTok.int_data[3] = 0;
// - Kind-specific fields
if (Tok.isLiteral()) {
CXTok.int_data[0] = CXToken_Literal;
CXTok.ptr_data = (void *)Tok.getLiteralData();
} else if (Tok.is(tok::identifier)) {
// Lookup the identifier to determine whether we have a keyword.
std::pair<FileID, unsigned> LocInfo
= SourceMgr.getDecomposedLoc(Tok.getLocation());
bool Invalid = false;
llvm::StringRef Buf
= CXXUnit->getSourceManager().getBufferData(LocInfo.first, &Invalid);
if (Invalid)
return;
const char *StartPos = Buf.data() + LocInfo.second;
IdentifierInfo *II
= CXXUnit->getPreprocessor().LookUpIdentifierInfo(Tok, StartPos);
if (II->getObjCKeywordID() != tok::objc_not_keyword) {
CXTok.int_data[0] = CXToken_Keyword;
}
else {
CXTok.int_data[0] = II->getTokenID() == tok::identifier?
CXToken_Identifier
: CXToken_Keyword;
}
CXTok.ptr_data = II;
} else if (Tok.is(tok::comment)) {
CXTok.int_data[0] = CXToken_Comment;
CXTok.ptr_data = 0;
} else {
CXTok.int_data[0] = CXToken_Punctuation;
CXTok.ptr_data = 0;
}
CXTokens.push_back(CXTok);
} while (Lex.getBufferLocation() <= EffectiveBufferEnd);
if (CXTokens.empty())
return;
*Tokens = (CXToken *)malloc(sizeof(CXToken) * CXTokens.size());
memmove(*Tokens, CXTokens.data(), sizeof(CXToken) * CXTokens.size());
*NumTokens = CXTokens.size();
}
void clang_disposeTokens(CXTranslationUnit TU,
CXToken *Tokens, unsigned NumTokens) {
free(Tokens);
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// Token annotation APIs.
//===----------------------------------------------------------------------===//
typedef llvm::DenseMap<unsigned, CXCursor> AnnotateTokensData;
static enum CXChildVisitResult AnnotateTokensVisitor(CXCursor cursor,
CXCursor parent,
CXClientData client_data);
namespace {
class AnnotateTokensWorker {
AnnotateTokensData &Annotated;
CXToken *Tokens;
CXCursor *Cursors;
unsigned NumTokens;
unsigned TokIdx;
CursorVisitor AnnotateVis;
SourceManager &SrcMgr;
bool MoreTokens() const { return TokIdx < NumTokens; }
unsigned NextToken() const { return TokIdx; }
void AdvanceToken() { ++TokIdx; }
SourceLocation GetTokenLoc(unsigned tokI) {
return SourceLocation::getFromRawEncoding(Tokens[tokI].int_data[1]);
}
public:
AnnotateTokensWorker(AnnotateTokensData &annotated,
CXToken *tokens, CXCursor *cursors, unsigned numTokens,
ASTUnit *CXXUnit, SourceRange RegionOfInterest)
: Annotated(annotated), Tokens(tokens), Cursors(cursors),
NumTokens(numTokens), TokIdx(0),
AnnotateVis(CXXUnit, AnnotateTokensVisitor, this,
Decl::MaxPCHLevel, RegionOfInterest),
SrcMgr(CXXUnit->getSourceManager()) {}
void VisitChildren(CXCursor C) { AnnotateVis.VisitChildren(C); }
enum CXChildVisitResult Visit(CXCursor cursor, CXCursor parent);
void AnnotateTokens(CXCursor parent);
};
}
void AnnotateTokensWorker::AnnotateTokens(CXCursor parent) {
// Walk the AST within the region of interest, annotating tokens
// along the way.
VisitChildren(parent);
for (unsigned I = 0 ; I < TokIdx ; ++I) {
AnnotateTokensData::iterator Pos = Annotated.find(Tokens[I].int_data[1]);
if (Pos != Annotated.end())
Cursors[I] = Pos->second;
}
// Finish up annotating any tokens left.
if (!MoreTokens())
return;
const CXCursor &C = clang_getNullCursor();
for (unsigned I = TokIdx ; I < NumTokens ; ++I) {
AnnotateTokensData::iterator Pos = Annotated.find(Tokens[I].int_data[1]);
Cursors[I] = (Pos == Annotated.end()) ? C : Pos->second;
}
}
enum CXChildVisitResult
AnnotateTokensWorker::Visit(CXCursor cursor, CXCursor parent) {
CXSourceLocation Loc = clang_getCursorLocation(cursor);
// We can always annotate a preprocessing directive/macro instantiation.
if (clang_isPreprocessing(cursor.kind)) {
Annotated[Loc.int_data] = cursor;
return CXChildVisit_Recurse;
}
SourceRange cursorRange = getRawCursorExtent(cursor);
if (cursorRange.isInvalid())
return CXChildVisit_Continue;
SourceLocation L = SourceLocation::getFromRawEncoding(Loc.int_data);
// Adjust the annotated range based specific declarations.
const enum CXCursorKind cursorK = clang_getCursorKind(cursor);
if (cursorK >= CXCursor_FirstDecl && cursorK <= CXCursor_LastDecl) {
Decl *D = cxcursor::getCursorDecl(cursor);
// Don't visit synthesized ObjC methods, since they have no syntatic
// representation in the source.
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
if (MD->isSynthesized())
return CXChildVisit_Continue;
}
if (const DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
if (TypeSourceInfo *TI = DD->getTypeSourceInfo()) {
TypeLoc TL = TI->getTypeLoc();
SourceLocation TLoc = TL.getSourceRange().getBegin();
if (TLoc.isValid() &&
SrcMgr.isBeforeInTranslationUnit(TLoc, L))
cursorRange.setBegin(TLoc);
}
}
}
// If the location of the cursor occurs within a macro instantiation, record
// the spelling location of the cursor in our annotation map. We can then
// paper over the token labelings during a post-processing step to try and
// get cursor mappings for tokens that are the *arguments* of a macro
// instantiation.
if (L.isMacroID()) {
unsigned rawEncoding = SrcMgr.getSpellingLoc(L).getRawEncoding();
// Only invalidate the old annotation if it isn't part of a preprocessing
// directive. Here we assume that the default construction of CXCursor
// results in CXCursor.kind being an initialized value (i.e., 0). If
// this isn't the case, we can fix by doing lookup + insertion.
CXCursor &oldC = Annotated[rawEncoding];
if (!clang_isPreprocessing(oldC.kind))
oldC = cursor;
}
const enum CXCursorKind K = clang_getCursorKind(parent);
const CXCursor updateC =
(clang_isInvalid(K) || K == CXCursor_TranslationUnit ||
L.isMacroID())
? clang_getNullCursor() : parent;
while (MoreTokens()) {
const unsigned I = NextToken();
SourceLocation TokLoc = GetTokenLoc(I);
switch (LocationCompare(SrcMgr, TokLoc, cursorRange)) {
case RangeBefore:
Cursors[I] = updateC;
AdvanceToken();
continue;
case RangeAfter:
case RangeOverlap:
break;
}
break;
}
// Visit children to get their cursor information.
const unsigned BeforeChildren = NextToken();
VisitChildren(cursor);
const unsigned AfterChildren = NextToken();
// Adjust 'Last' to the last token within the extent of the cursor.
while (MoreTokens()) {
const unsigned I = NextToken();
SourceLocation TokLoc = GetTokenLoc(I);
switch (LocationCompare(SrcMgr, TokLoc, cursorRange)) {
case RangeBefore:
assert(0 && "Infeasible");
case RangeAfter:
break;
case RangeOverlap:
Cursors[I] = updateC;
AdvanceToken();
continue;
}
break;
}
const unsigned Last = NextToken();
// Scan the tokens that are at the beginning of the cursor, but are not
// capture by the child cursors.
// For AST elements within macros, rely on a post-annotate pass to
// to correctly annotate the tokens with cursors. Otherwise we can
// get confusing results of having tokens that map to cursors that really
// are expanded by an instantiation.
if (L.isMacroID())
cursor = clang_getNullCursor();
for (unsigned I = BeforeChildren; I != AfterChildren; ++I) {
if (!clang_isInvalid(clang_getCursorKind(Cursors[I])))
break;
Cursors[I] = cursor;
}
// Scan the tokens that are at the end of the cursor, but are not captured
// but the child cursors.
for (unsigned I = AfterChildren; I != Last; ++I)
Cursors[I] = cursor;
TokIdx = Last;
return CXChildVisit_Continue;
}
static enum CXChildVisitResult AnnotateTokensVisitor(CXCursor cursor,
CXCursor parent,
CXClientData client_data) {
return static_cast<AnnotateTokensWorker*>(client_data)->Visit(cursor, parent);
}
extern "C" {
void clang_annotateTokens(CXTranslationUnit TU,
CXToken *Tokens, unsigned NumTokens,
CXCursor *Cursors) {
if (NumTokens == 0 || !Tokens || !Cursors)
return;
ASTUnit *CXXUnit = static_cast<ASTUnit *>(TU);
if (!CXXUnit) {
// Any token we don't specifically annotate will have a NULL cursor.
const CXCursor &C = clang_getNullCursor();
for (unsigned I = 0; I != NumTokens; ++I)
Cursors[I] = C;
return;
}
ASTUnit::ConcurrencyCheck Check(*CXXUnit);
// Determine the region of interest, which contains all of the tokens.
SourceRange RegionOfInterest;
RegionOfInterest.setBegin(cxloc::translateSourceLocation(
clang_getTokenLocation(TU, Tokens[0])));
RegionOfInterest.setEnd(cxloc::translateSourceLocation(
clang_getTokenLocation(TU,
Tokens[NumTokens - 1])));
// A mapping from the source locations found when re-lexing or traversing the
// region of interest to the corresponding cursors.
AnnotateTokensData Annotated;
// Relex the tokens within the source range to look for preprocessing
// directives.
SourceManager &SourceMgr = CXXUnit->getSourceManager();
std::pair<FileID, unsigned> BeginLocInfo
= SourceMgr.getDecomposedLoc(RegionOfInterest.getBegin());
std::pair<FileID, unsigned> EndLocInfo
= SourceMgr.getDecomposedLoc(RegionOfInterest.getEnd());
llvm::StringRef Buffer;
bool Invalid = false;
if (BeginLocInfo.first == EndLocInfo.first &&
((Buffer = SourceMgr.getBufferData(BeginLocInfo.first, &Invalid)),true) &&
!Invalid) {
Lexer Lex(SourceMgr.getLocForStartOfFile(BeginLocInfo.first),
CXXUnit->getASTContext().getLangOptions(),
Buffer.begin(), Buffer.data() + BeginLocInfo.second,
Buffer.end());
Lex.SetCommentRetentionState(true);
// Lex tokens in raw mode until we hit the end of the range, to avoid
// entering #includes or expanding macros.
while (true) {
Token Tok;
Lex.LexFromRawLexer(Tok);
reprocess:
if (Tok.is(tok::hash) && Tok.isAtStartOfLine()) {
// We have found a preprocessing directive. Gobble it up so that we
// don't see it while preprocessing these tokens later, but keep track of
// all of the token locations inside this preprocessing directive so that
// we can annotate them appropriately.
//
// FIXME: Some simple tests here could identify macro definitions and
// #undefs, to provide specific cursor kinds for those.
std::vector<SourceLocation> Locations;
do {
Locations.push_back(Tok.getLocation());
Lex.LexFromRawLexer(Tok);
} while (!Tok.isAtStartOfLine() && !Tok.is(tok::eof));
using namespace cxcursor;
CXCursor Cursor
= MakePreprocessingDirectiveCursor(SourceRange(Locations.front(),
Locations.back()),
CXXUnit);
for (unsigned I = 0, N = Locations.size(); I != N; ++I) {
Annotated[Locations[I].getRawEncoding()] = Cursor;
}
if (Tok.isAtStartOfLine())
goto reprocess;
continue;
}
if (Tok.is(tok::eof))
break;
}
}
// Annotate all of the source locations in the region of interest that map to
// a specific cursor.
AnnotateTokensWorker W(Annotated, Tokens, Cursors, NumTokens,
CXXUnit, RegionOfInterest);
W.AnnotateTokens(clang_getTranslationUnitCursor(CXXUnit));
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// Operations for querying linkage of a cursor.
//===----------------------------------------------------------------------===//
extern "C" {
CXLinkageKind clang_getCursorLinkage(CXCursor cursor) {
if (!clang_isDeclaration(cursor.kind))
return CXLinkage_Invalid;
Decl *D = cxcursor::getCursorDecl(cursor);
if (NamedDecl *ND = dyn_cast_or_null<NamedDecl>(D))
switch (ND->getLinkage()) {
case NoLinkage: return CXLinkage_NoLinkage;
case InternalLinkage: return CXLinkage_Internal;
case UniqueExternalLinkage: return CXLinkage_UniqueExternal;
case ExternalLinkage: return CXLinkage_External;
};
return CXLinkage_Invalid;
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// Operations for querying language of a cursor.
//===----------------------------------------------------------------------===//
static CXLanguageKind getDeclLanguage(const Decl *D) {
switch (D->getKind()) {
default:
break;
case Decl::ImplicitParam:
case Decl::ObjCAtDefsField:
case Decl::ObjCCategory:
case Decl::ObjCCategoryImpl:
case Decl::ObjCClass:
case Decl::ObjCCompatibleAlias:
case Decl::ObjCForwardProtocol:
case Decl::ObjCImplementation:
case Decl::ObjCInterface:
case Decl::ObjCIvar:
case Decl::ObjCMethod:
case Decl::ObjCProperty:
case Decl::ObjCPropertyImpl:
case Decl::ObjCProtocol:
return CXLanguage_ObjC;
case Decl::CXXConstructor:
case Decl::CXXConversion:
case Decl::CXXDestructor:
case Decl::CXXMethod:
case Decl::CXXRecord:
case Decl::ClassTemplate:
case Decl::ClassTemplatePartialSpecialization:
case Decl::ClassTemplateSpecialization:
case Decl::Friend:
case Decl::FriendTemplate:
case Decl::FunctionTemplate:
case Decl::LinkageSpec:
case Decl::Namespace:
case Decl::NamespaceAlias:
case Decl::NonTypeTemplateParm:
case Decl::StaticAssert:
case Decl::TemplateTemplateParm:
case Decl::TemplateTypeParm:
case Decl::UnresolvedUsingTypename:
case Decl::UnresolvedUsingValue:
case Decl::Using:
case Decl::UsingDirective:
case Decl::UsingShadow:
return CXLanguage_CPlusPlus;
}
return CXLanguage_C;
}
extern "C" {
enum CXAvailabilityKind clang_getCursorAvailability(CXCursor cursor) {
if (clang_isDeclaration(cursor.kind))
if (Decl *D = cxcursor::getCursorDecl(cursor)) {
if (D->hasAttr<UnavailableAttr>() ||
(isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isDeleted()))
return CXAvailability_Available;
if (D->hasAttr<DeprecatedAttr>())
return CXAvailability_Deprecated;
}
return CXAvailability_Available;
}
CXLanguageKind clang_getCursorLanguage(CXCursor cursor) {
if (clang_isDeclaration(cursor.kind))
return getDeclLanguage(cxcursor::getCursorDecl(cursor));
return CXLanguage_Invalid;
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// C++ AST instrospection.
//===----------------------------------------------------------------------===//
extern "C" {
unsigned clang_CXXMethod_isStatic(CXCursor C) {
if (!clang_isDeclaration(C.kind))
return 0;
CXXMethodDecl *D = dyn_cast<CXXMethodDecl>(cxcursor::getCursorDecl(C));
return (D && D->isStatic()) ? 1 : 0;
}
} // end: extern "C"
//===----------------------------------------------------------------------===//
// CXString Operations.
//===----------------------------------------------------------------------===//
extern "C" {
const char *clang_getCString(CXString string) {
return string.Spelling;
}
void clang_disposeString(CXString string) {
if (string.MustFreeString && string.Spelling)
free((void*)string.Spelling);
}
} // end: extern "C"
namespace clang { namespace cxstring {
CXString createCXString(const char *String, bool DupString){
CXString Str;
if (DupString) {
Str.Spelling = strdup(String);
Str.MustFreeString = 1;
} else {
Str.Spelling = String;
Str.MustFreeString = 0;
}
return Str;
}
CXString createCXString(llvm::StringRef String, bool DupString) {
CXString Result;
if (DupString || (!String.empty() && String.data()[String.size()] != 0)) {
char *Spelling = (char *)malloc(String.size() + 1);
memmove(Spelling, String.data(), String.size());
Spelling[String.size()] = 0;
Result.Spelling = Spelling;
Result.MustFreeString = 1;
} else {
Result.Spelling = String.data();
Result.MustFreeString = 0;
}
return Result;
}
}}
//===----------------------------------------------------------------------===//
// Misc. utility functions.
//===----------------------------------------------------------------------===//
extern "C" {
CXString clang_getClangVersion() {
return createCXString(getClangFullVersion());
}
} // end: extern "C"