| //===---- SemaInherit.cpp - C++ Inheritance ---------------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file provides Sema routines for C++ inheritance semantics, |
| // including searching the inheritance hierarchy and (eventually) |
| // access checking. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "SemaInherit.h" |
| #include "Sema.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/Type.h" |
| #include "clang/AST/TypeOrdering.h" |
| #include <algorithm> |
| #include <memory> |
| #include <set> |
| #include <string> |
| |
| using namespace clang; |
| |
| /// isAmbiguous - Determines whether the set of paths provided is |
| /// ambiguous, i.e., there are two or more paths that refer to |
| /// different base class subobjects of the same type. BaseType must be |
| /// an unqualified, canonical class type. |
| bool BasePaths::isAmbiguous(QualType BaseType) { |
| assert(BaseType->isCanonical() && "Base type must be the canonical type"); |
| assert(BaseType.getCVRQualifiers() == 0 && "Base type must be unqualified"); |
| std::pair<bool, unsigned>& Subobjects = ClassSubobjects[BaseType]; |
| return Subobjects.second + (Subobjects.first? 1 : 0) > 1; |
| } |
| |
| /// clear - Clear out all prior path information. |
| void BasePaths::clear() { |
| Paths.clear(); |
| ClassSubobjects.clear(); |
| ScratchPath.clear(); |
| DetectedVirtual = 0; |
| } |
| |
| /// @brief Swaps the contents of this BasePaths structure with the |
| /// contents of Other. |
| void BasePaths::swap(BasePaths &Other) { |
| std::swap(Origin, Other.Origin); |
| Paths.swap(Other.Paths); |
| ClassSubobjects.swap(Other.ClassSubobjects); |
| std::swap(FindAmbiguities, Other.FindAmbiguities); |
| std::swap(RecordPaths, Other.RecordPaths); |
| std::swap(DetectVirtual, Other.DetectVirtual); |
| std::swap(DetectedVirtual, Other.DetectedVirtual); |
| } |
| |
| /// IsDerivedFrom - Determine whether the type Derived is derived from |
| /// the type Base, ignoring qualifiers on Base and Derived. This |
| /// routine does not assess whether an actual conversion from a |
| /// Derived* to a Base* is legal, because it does not account for |
| /// ambiguous conversions or conversions to private/protected bases. |
| bool Sema::IsDerivedFrom(QualType Derived, QualType Base) { |
| BasePaths Paths(/*FindAmbiguities=*/false, /*RecordPaths=*/false, |
| /*DetectVirtual=*/false); |
| return IsDerivedFrom(Derived, Base, Paths); |
| } |
| |
| /// IsDerivedFrom - Determine whether the type Derived is derived from |
| /// the type Base, ignoring qualifiers on Base and Derived. This |
| /// routine does not assess whether an actual conversion from a |
| /// Derived* to a Base* is legal, because it does not account for |
| /// ambiguous conversions or conversions to private/protected |
| /// bases. This routine will use Paths to determine if there are |
| /// ambiguous paths (if @c Paths.isFindingAmbiguities()) and record |
| /// information about all of the paths (if @c Paths.isRecordingPaths()). |
| bool Sema::IsDerivedFrom(QualType Derived, QualType Base, BasePaths &Paths) { |
| Derived = Context.getCanonicalType(Derived).getUnqualifiedType(); |
| Base = Context.getCanonicalType(Base).getUnqualifiedType(); |
| |
| if (!Derived->isRecordType() || !Base->isRecordType()) |
| return false; |
| |
| if (Derived == Base) |
| return false; |
| |
| Paths.setOrigin(Derived); |
| return LookupInBases(cast<CXXRecordType>(Derived->getAsRecordType())->getDecl(), |
| MemberLookupCriteria(Base), Paths); |
| } |
| |
| /// LookupInBases - Look for something that meets the specified |
| /// Criteria within the base classes of Class (or any of its base |
| /// classes, transitively). This routine populates BasePaths with the |
| /// list of paths that one can take to find the entity that meets the |
| /// search criteria, and returns true if any such entity is found. The |
| /// various options passed to the BasePath constructor will affect the |
| /// behavior of this lookup, e.g., whether it finds ambiguities, |
| /// records paths, or attempts to detect the use of virtual base |
| /// classes. |
| bool Sema::LookupInBases(CXXRecordDecl *Class, |
| const MemberLookupCriteria& Criteria, |
| BasePaths &Paths) { |
| bool FoundPath = false; |
| |
| for (CXXRecordDecl::base_class_const_iterator BaseSpec = Class->bases_begin(), |
| BaseSpecEnd = Class->bases_end(); |
| BaseSpec != BaseSpecEnd; ++BaseSpec) { |
| // Find the record of the base class subobjects for this type. |
| QualType BaseType = Context.getCanonicalType(BaseSpec->getType()); |
| BaseType = BaseType.getUnqualifiedType(); |
| |
| // Determine whether we need to visit this base class at all, |
| // updating the count of subobjects appropriately. |
| std::pair<bool, unsigned>& Subobjects = Paths.ClassSubobjects[BaseType]; |
| bool VisitBase = true; |
| bool SetVirtual = false; |
| if (BaseSpec->isVirtual()) { |
| VisitBase = !Subobjects.first; |
| Subobjects.first = true; |
| if (Paths.isDetectingVirtual() && Paths.DetectedVirtual == 0) { |
| // If this is the first virtual we find, remember it. If it turns out |
| // there is no base path here, we'll reset it later. |
| Paths.DetectedVirtual = cast<CXXRecordType>(BaseType->getAsRecordType()); |
| SetVirtual = true; |
| } |
| } else |
| ++Subobjects.second; |
| |
| if (Paths.isRecordingPaths()) { |
| // Add this base specifier to the current path. |
| BasePathElement Element; |
| Element.Base = &*BaseSpec; |
| if (BaseSpec->isVirtual()) |
| Element.SubobjectNumber = 0; |
| else |
| Element.SubobjectNumber = Subobjects.second; |
| Paths.ScratchPath.push_back(Element); |
| } |
| |
| CXXRecordDecl *BaseRecord |
| = cast<CXXRecordDecl>(BaseSpec->getType()->getAsRecordType()->getDecl()); |
| |
| // Either look at the base class type or look into the base class |
| // type to see if we've found a member that meets the search |
| // criteria. |
| bool FoundPathToThisBase = false; |
| if (Criteria.LookupBase) { |
| FoundPathToThisBase |
| = (Context.getCanonicalType(BaseSpec->getType()) == Criteria.Base); |
| } else { |
| Paths.ScratchPath.Decls = BaseRecord->lookup(Criteria.Name); |
| while (Paths.ScratchPath.Decls.first != Paths.ScratchPath.Decls.second) { |
| if (isAcceptableLookupResult(*Paths.ScratchPath.Decls.first, |
| Criteria.NameKind, Criteria.IDNS)) { |
| FoundPathToThisBase = true; |
| break; |
| } |
| ++Paths.ScratchPath.Decls.first; |
| } |
| } |
| |
| if (FoundPathToThisBase) { |
| // We've found a path that terminates that this base. |
| FoundPath = true; |
| if (Paths.isRecordingPaths()) { |
| // We have a path. Make a copy of it before moving on. |
| Paths.Paths.push_back(Paths.ScratchPath); |
| } else if (!Paths.isFindingAmbiguities()) { |
| // We found a path and we don't care about ambiguities; |
| // return immediately. |
| return FoundPath; |
| } |
| } |
| // C++ [class.member.lookup]p2: |
| // A member name f in one sub-object B hides a member name f in |
| // a sub-object A if A is a base class sub-object of B. Any |
| // declarations that are so hidden are eliminated from |
| // consideration. |
| else if (VisitBase && LookupInBases(BaseRecord, Criteria, Paths)) { |
| // There is a path to a base class that meets the criteria. If we're not |
| // collecting paths or finding ambiguities, we're done. |
| FoundPath = true; |
| if (!Paths.isFindingAmbiguities()) |
| return FoundPath; |
| } |
| |
| // Pop this base specifier off the current path (if we're |
| // collecting paths). |
| if (Paths.isRecordingPaths()) |
| Paths.ScratchPath.pop_back(); |
| // If we set a virtual earlier, and this isn't a path, forget it again. |
| if (SetVirtual && !FoundPath) { |
| Paths.DetectedVirtual = 0; |
| } |
| } |
| |
| return FoundPath; |
| } |
| |
| /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base |
| /// conversion (where Derived and Base are class types) is |
| /// well-formed, meaning that the conversion is unambiguous (and |
| /// FIXME: that all of the base classes are accessible). Returns true |
| /// and emits a diagnostic if the code is ill-formed, returns false |
| /// otherwise. Loc is the location where this routine should point to |
| /// if there is an error, and Range is the source range to highlight |
| /// if there is an error. |
| bool |
| Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base, |
| SourceLocation Loc, SourceRange Range) { |
| // First, determine whether the path from Derived to Base is |
| // ambiguous. This is slightly more expensive than checking whether |
| // the Derived to Base conversion exists, because here we need to |
| // explore multiple paths to determine if there is an ambiguity. |
| BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, |
| /*DetectVirtual=*/false); |
| bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths); |
| assert(DerivationOkay && |
| "Can only be used with a derived-to-base conversion"); |
| (void)DerivationOkay; |
| |
| if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) |
| return false; |
| |
| // We know that the derived-to-base conversion is ambiguous, and |
| // we're going to produce a diagnostic. Perform the derived-to-base |
| // search just one more time to compute all of the possible paths so |
| // that we can print them out. This is more expensive than any of |
| // the previous derived-to-base checks we've done, but at this point |
| // performance isn't as much of an issue. |
| Paths.clear(); |
| Paths.setRecordingPaths(true); |
| bool StillOkay = IsDerivedFrom(Derived, Base, Paths); |
| assert(StillOkay && "Can only be used with a derived-to-base conversion"); |
| (void)StillOkay; |
| |
| // Build up a textual representation of the ambiguous paths, e.g., |
| // D -> B -> A, that will be used to illustrate the ambiguous |
| // conversions in the diagnostic. We only print one of the paths |
| // to each base class subobject. |
| std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths); |
| |
| Diag(Loc, diag::err_ambiguous_derived_to_base_conv) |
| << Derived << Base << PathDisplayStr << Range; |
| return true; |
| } |
| |
| /// @brief Builds a string representing ambiguous paths from a |
| /// specific derived class to different subobjects of the same base |
| /// class. |
| /// |
| /// This function builds a string that can be used in error messages |
| /// to show the different paths that one can take through the |
| /// inheritance hierarchy to go from the derived class to different |
| /// subobjects of a base class. The result looks something like this: |
| /// @code |
| /// struct D -> struct B -> struct A |
| /// struct D -> struct C -> struct A |
| /// @endcode |
| std::string Sema::getAmbiguousPathsDisplayString(BasePaths &Paths) { |
| std::string PathDisplayStr; |
| std::set<unsigned> DisplayedPaths; |
| for (BasePaths::paths_iterator Path = Paths.begin(); |
| Path != Paths.end(); ++Path) { |
| if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) { |
| // We haven't displayed a path to this particular base |
| // class subobject yet. |
| PathDisplayStr += "\n "; |
| PathDisplayStr += Paths.getOrigin().getAsString(); |
| for (BasePath::const_iterator Element = Path->begin(); |
| Element != Path->end(); ++Element) |
| PathDisplayStr += " -> " + Element->Base->getType().getAsString(); |
| } |
| } |
| |
| return PathDisplayStr; |
| } |