| //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This coordinates the per-module state used while generating code. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "CodeGenModule.h" | 
 | #include "CGDebugInfo.h" | 
 | #include "CodeGenFunction.h" | 
 | #include "CGCall.h" | 
 | #include "CGObjCRuntime.h" | 
 | #include "Mangle.h" | 
 | #include "TargetInfo.h" | 
 | #include "clang/CodeGen/CodeGenOptions.h" | 
 | #include "clang/AST/ASTContext.h" | 
 | #include "clang/AST/CharUnits.h" | 
 | #include "clang/AST/DeclObjC.h" | 
 | #include "clang/AST/DeclCXX.h" | 
 | #include "clang/AST/RecordLayout.h" | 
 | #include "clang/Basic/Builtins.h" | 
 | #include "clang/Basic/Diagnostic.h" | 
 | #include "clang/Basic/SourceManager.h" | 
 | #include "clang/Basic/TargetInfo.h" | 
 | #include "clang/Basic/ConvertUTF.h" | 
 | #include "llvm/CallingConv.h" | 
 | #include "llvm/Module.h" | 
 | #include "llvm/Intrinsics.h" | 
 | #include "llvm/LLVMContext.h" | 
 | #include "llvm/ADT/Triple.h" | 
 | #include "llvm/Target/TargetData.h" | 
 | #include "llvm/Support/CallSite.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | using namespace clang; | 
 | using namespace CodeGen; | 
 |  | 
 |  | 
 | CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO, | 
 |                              llvm::Module &M, const llvm::TargetData &TD, | 
 |                              Diagnostic &diags) | 
 |   : BlockModule(C, M, TD, Types, *this), Context(C), | 
 |     Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M), | 
 |     TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags), | 
 |     Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()), | 
 |     MangleCtx(C, diags), VTables(*this), Runtime(0), | 
 |     CFConstantStringClassRef(0), | 
 |     VMContext(M.getContext()) { | 
 |  | 
 |   if (!Features.ObjC1) | 
 |     Runtime = 0; | 
 |   else if (!Features.NeXTRuntime) | 
 |     Runtime = CreateGNUObjCRuntime(*this); | 
 |   else if (Features.ObjCNonFragileABI) | 
 |     Runtime = CreateMacNonFragileABIObjCRuntime(*this); | 
 |   else | 
 |     Runtime = CreateMacObjCRuntime(*this); | 
 |  | 
 |   // If debug info generation is enabled, create the CGDebugInfo object. | 
 |   DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0; | 
 | } | 
 |  | 
 | CodeGenModule::~CodeGenModule() { | 
 |   delete Runtime; | 
 |   delete DebugInfo; | 
 | } | 
 |  | 
 | void CodeGenModule::createObjCRuntime() { | 
 |   if (!Features.NeXTRuntime) | 
 |     Runtime = CreateGNUObjCRuntime(*this); | 
 |   else if (Features.ObjCNonFragileABI) | 
 |     Runtime = CreateMacNonFragileABIObjCRuntime(*this); | 
 |   else | 
 |     Runtime = CreateMacObjCRuntime(*this); | 
 | } | 
 |  | 
 | void CodeGenModule::Release() { | 
 |   EmitDeferred(); | 
 |   EmitCXXGlobalInitFunc(); | 
 |   EmitCXXGlobalDtorFunc(); | 
 |   if (Runtime) | 
 |     if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction()) | 
 |       AddGlobalCtor(ObjCInitFunction); | 
 |   EmitCtorList(GlobalCtors, "llvm.global_ctors"); | 
 |   EmitCtorList(GlobalDtors, "llvm.global_dtors"); | 
 |   EmitAnnotations(); | 
 |   EmitLLVMUsed(); | 
 | } | 
 |  | 
 | bool CodeGenModule::isTargetDarwin() const { | 
 |   return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin; | 
 | } | 
 |  | 
 | /// ErrorUnsupported - Print out an error that codegen doesn't support the | 
 | /// specified stmt yet. | 
 | void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type, | 
 |                                      bool OmitOnError) { | 
 |   if (OmitOnError && getDiags().hasErrorOccurred()) | 
 |     return; | 
 |   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, | 
 |                                                "cannot compile this %0 yet"); | 
 |   std::string Msg = Type; | 
 |   getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) | 
 |     << Msg << S->getSourceRange(); | 
 | } | 
 |  | 
 | /// ErrorUnsupported - Print out an error that codegen doesn't support the | 
 | /// specified decl yet. | 
 | void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type, | 
 |                                      bool OmitOnError) { | 
 |   if (OmitOnError && getDiags().hasErrorOccurred()) | 
 |     return; | 
 |   unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error, | 
 |                                                "cannot compile this %0 yet"); | 
 |   std::string Msg = Type; | 
 |   getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; | 
 | } | 
 |  | 
 | LangOptions::VisibilityMode | 
 | CodeGenModule::getDeclVisibilityMode(const Decl *D) const { | 
 |   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) | 
 |     if (VD->getStorageClass() == VarDecl::PrivateExtern) | 
 |       return LangOptions::Hidden; | 
 |  | 
 |   if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) { | 
 |     switch (attr->getVisibility()) { | 
 |     default: assert(0 && "Unknown visibility!"); | 
 |     case VisibilityAttr::DefaultVisibility: | 
 |       return LangOptions::Default; | 
 |     case VisibilityAttr::HiddenVisibility: | 
 |       return LangOptions::Hidden; | 
 |     case VisibilityAttr::ProtectedVisibility: | 
 |       return LangOptions::Protected; | 
 |     } | 
 |   } | 
 |  | 
 |   // This decl should have the same visibility as its parent. | 
 |   if (const DeclContext *DC = D->getDeclContext())  | 
 |     return getDeclVisibilityMode(cast<Decl>(DC)); | 
 |  | 
 |   return getLangOptions().getVisibilityMode(); | 
 | } | 
 |  | 
 | void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, | 
 |                                         const Decl *D) const { | 
 |   // Internal definitions always have default visibility. | 
 |   if (GV->hasLocalLinkage()) { | 
 |     GV->setVisibility(llvm::GlobalValue::DefaultVisibility); | 
 |     return; | 
 |   } | 
 |  | 
 |   switch (getDeclVisibilityMode(D)) { | 
 |   default: assert(0 && "Unknown visibility!"); | 
 |   case LangOptions::Default: | 
 |     return GV->setVisibility(llvm::GlobalValue::DefaultVisibility); | 
 |   case LangOptions::Hidden: | 
 |     return GV->setVisibility(llvm::GlobalValue::HiddenVisibility); | 
 |   case LangOptions::Protected: | 
 |     return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGenModule::getMangledName(MangleBuffer &Buffer, GlobalDecl GD) { | 
 |   const NamedDecl *ND = cast<NamedDecl>(GD.getDecl()); | 
 |  | 
 |   if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND)) | 
 |     return getMangledCXXCtorName(Buffer, D, GD.getCtorType()); | 
 |   if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND)) | 
 |     return getMangledCXXDtorName(Buffer, D, GD.getDtorType()); | 
 |  | 
 |   return getMangledName(Buffer, ND); | 
 | } | 
 |  | 
 | /// \brief Retrieves the mangled name for the given declaration. | 
 | /// | 
 | /// If the given declaration requires a mangled name, returns an | 
 | /// const char* containing the mangled name.  Otherwise, returns | 
 | /// the unmangled name. | 
 | /// | 
 | void CodeGenModule::getMangledName(MangleBuffer &Buffer, | 
 |                                    const NamedDecl *ND) { | 
 |   if (!getMangleContext().shouldMangleDeclName(ND)) { | 
 |     assert(ND->getIdentifier() && "Attempt to mangle unnamed decl."); | 
 |     Buffer.setString(ND->getNameAsCString()); | 
 |     return; | 
 |   } | 
 |  | 
 |   getMangleContext().mangleName(ND, Buffer.getBuffer()); | 
 | } | 
 |  | 
 | llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) { | 
 |   return getModule().getNamedValue(Name); | 
 | } | 
 |  | 
 | /// AddGlobalCtor - Add a function to the list that will be called before | 
 | /// main() runs. | 
 | void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) { | 
 |   // FIXME: Type coercion of void()* types. | 
 |   GlobalCtors.push_back(std::make_pair(Ctor, Priority)); | 
 | } | 
 |  | 
 | /// AddGlobalDtor - Add a function to the list that will be called | 
 | /// when the module is unloaded. | 
 | void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) { | 
 |   // FIXME: Type coercion of void()* types. | 
 |   GlobalDtors.push_back(std::make_pair(Dtor, Priority)); | 
 | } | 
 |  | 
 | void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) { | 
 |   // Ctor function type is void()*. | 
 |   llvm::FunctionType* CtorFTy = | 
 |     llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), | 
 |                             std::vector<const llvm::Type*>(), | 
 |                             false); | 
 |   llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); | 
 |  | 
 |   // Get the type of a ctor entry, { i32, void ()* }. | 
 |   llvm::StructType* CtorStructTy = | 
 |     llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext), | 
 |                           llvm::PointerType::getUnqual(CtorFTy), NULL); | 
 |  | 
 |   // Construct the constructor and destructor arrays. | 
 |   std::vector<llvm::Constant*> Ctors; | 
 |   for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) { | 
 |     std::vector<llvm::Constant*> S; | 
 |     S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), | 
 |                 I->second, false)); | 
 |     S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)); | 
 |     Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S)); | 
 |   } | 
 |  | 
 |   if (!Ctors.empty()) { | 
 |     llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size()); | 
 |     new llvm::GlobalVariable(TheModule, AT, false, | 
 |                              llvm::GlobalValue::AppendingLinkage, | 
 |                              llvm::ConstantArray::get(AT, Ctors), | 
 |                              GlobalName); | 
 |   } | 
 | } | 
 |  | 
 | void CodeGenModule::EmitAnnotations() { | 
 |   if (Annotations.empty()) | 
 |     return; | 
 |  | 
 |   // Create a new global variable for the ConstantStruct in the Module. | 
 |   llvm::Constant *Array = | 
 |   llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(), | 
 |                                                 Annotations.size()), | 
 |                            Annotations); | 
 |   llvm::GlobalValue *gv = | 
 |   new llvm::GlobalVariable(TheModule, Array->getType(), false, | 
 |                            llvm::GlobalValue::AppendingLinkage, Array, | 
 |                            "llvm.global.annotations"); | 
 |   gv->setSection("llvm.metadata"); | 
 | } | 
 |  | 
 | static CodeGenModule::GVALinkage | 
 | GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD, | 
 |                       const LangOptions &Features) { | 
 |   CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal; | 
 |  | 
 |   Linkage L = FD->getLinkage(); | 
 |   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && | 
 |       FD->getType()->getLinkage() == UniqueExternalLinkage) | 
 |     L = UniqueExternalLinkage; | 
 |    | 
 |   switch (L) { | 
 |   case NoLinkage: | 
 |   case InternalLinkage: | 
 |   case UniqueExternalLinkage: | 
 |     return CodeGenModule::GVA_Internal; | 
 |      | 
 |   case ExternalLinkage: | 
 |     switch (FD->getTemplateSpecializationKind()) { | 
 |     case TSK_Undeclared: | 
 |     case TSK_ExplicitSpecialization: | 
 |       External = CodeGenModule::GVA_StrongExternal; | 
 |       break; | 
 |  | 
 |     case TSK_ExplicitInstantiationDefinition: | 
 |       return CodeGenModule::GVA_ExplicitTemplateInstantiation; | 
 |  | 
 |     case TSK_ExplicitInstantiationDeclaration: | 
 |     case TSK_ImplicitInstantiation: | 
 |       External = CodeGenModule::GVA_TemplateInstantiation; | 
 |       break; | 
 |     } | 
 |   } | 
 |  | 
 |   if (!FD->isInlined()) | 
 |     return External; | 
 |      | 
 |   if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) { | 
 |     // GNU or C99 inline semantics. Determine whether this symbol should be | 
 |     // externally visible. | 
 |     if (FD->isInlineDefinitionExternallyVisible()) | 
 |       return External; | 
 |  | 
 |     // C99 inline semantics, where the symbol is not externally visible. | 
 |     return CodeGenModule::GVA_C99Inline; | 
 |   } | 
 |  | 
 |   // C++0x [temp.explicit]p9: | 
 |   //   [ Note: The intent is that an inline function that is the subject of  | 
 |   //   an explicit instantiation declaration will still be implicitly  | 
 |   //   instantiated when used so that the body can be considered for  | 
 |   //   inlining, but that no out-of-line copy of the inline function would be | 
 |   //   generated in the translation unit. -- end note ] | 
 |   if (FD->getTemplateSpecializationKind()  | 
 |                                        == TSK_ExplicitInstantiationDeclaration) | 
 |     return CodeGenModule::GVA_C99Inline; | 
 |  | 
 |   // If this is a virtual method and its class has a key method in another | 
 |   // translation unit, we know that this method will be present in that | 
 |   // translation unit. In this translation unit we will use this method | 
 |   // only for inlining and analysis. This is the semantics of c99 inline. | 
 |   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
 |     const CXXRecordDecl *RD = MD->getParent(); | 
 |     if (MD->isVirtual() && | 
 | 	CodeGenVTables::isKeyFunctionInAnotherTU(Context, RD)) | 
 |       return CodeGenModule::GVA_C99Inline; | 
 |   }   | 
 |  | 
 |   return CodeGenModule::GVA_CXXInline; | 
 | } | 
 |  | 
 | llvm::GlobalValue::LinkageTypes | 
 | CodeGenModule::getFunctionLinkage(const FunctionDecl *D) { | 
 |   GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features); | 
 |  | 
 |   if (Linkage == GVA_Internal) { | 
 |     return llvm::Function::InternalLinkage; | 
 |   } else if (D->hasAttr<DLLExportAttr>()) { | 
 |     return llvm::Function::DLLExportLinkage; | 
 |   } else if (D->hasAttr<WeakAttr>()) { | 
 |     return llvm::Function::WeakAnyLinkage; | 
 |   } else if (Linkage == GVA_C99Inline) { | 
 |     // In C99 mode, 'inline' functions are guaranteed to have a strong | 
 |     // definition somewhere else, so we can use available_externally linkage. | 
 |     return llvm::Function::AvailableExternallyLinkage; | 
 |   } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) { | 
 |     // In C++, the compiler has to emit a definition in every translation unit | 
 |     // that references the function.  We should use linkonce_odr because | 
 |     // a) if all references in this translation unit are optimized away, we | 
 |     // don't need to codegen it.  b) if the function persists, it needs to be | 
 |     // merged with other definitions. c) C++ has the ODR, so we know the | 
 |     // definition is dependable. | 
 |     return llvm::Function::LinkOnceODRLinkage; | 
 |   } else if (Linkage == GVA_ExplicitTemplateInstantiation) { | 
 |     // An explicit instantiation of a template has weak linkage, since | 
 |     // explicit instantiations can occur in multiple translation units | 
 |     // and must all be equivalent. However, we are not allowed to | 
 |     // throw away these explicit instantiations. | 
 |     return llvm::Function::WeakODRLinkage; | 
 |   } else { | 
 |     assert(Linkage == GVA_StrongExternal); | 
 |     // Otherwise, we have strong external linkage. | 
 |     return llvm::Function::ExternalLinkage; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /// SetFunctionDefinitionAttributes - Set attributes for a global. | 
 | /// | 
 | /// FIXME: This is currently only done for aliases and functions, but not for | 
 | /// variables (these details are set in EmitGlobalVarDefinition for variables). | 
 | void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D, | 
 |                                                     llvm::GlobalValue *GV) { | 
 |   GV->setLinkage(getFunctionLinkage(D)); | 
 |   SetCommonAttributes(D, GV); | 
 | } | 
 |  | 
 | void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, | 
 |                                               const CGFunctionInfo &Info, | 
 |                                               llvm::Function *F) { | 
 |   unsigned CallingConv; | 
 |   AttributeListType AttributeList; | 
 |   ConstructAttributeList(Info, D, AttributeList, CallingConv); | 
 |   F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(), | 
 |                                           AttributeList.size())); | 
 |   F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); | 
 | } | 
 |  | 
 | void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, | 
 |                                                            llvm::Function *F) { | 
 |   if (!Features.Exceptions && !Features.ObjCNonFragileABI) | 
 |     F->addFnAttr(llvm::Attribute::NoUnwind); | 
 |  | 
 |   if (D->hasAttr<AlwaysInlineAttr>()) | 
 |     F->addFnAttr(llvm::Attribute::AlwaysInline); | 
 |  | 
 |   if (D->hasAttr<NoInlineAttr>()) | 
 |     F->addFnAttr(llvm::Attribute::NoInline); | 
 |  | 
 |   if (Features.getStackProtectorMode() == LangOptions::SSPOn) | 
 |     F->addFnAttr(llvm::Attribute::StackProtect); | 
 |   else if (Features.getStackProtectorMode() == LangOptions::SSPReq) | 
 |     F->addFnAttr(llvm::Attribute::StackProtectReq); | 
 |    | 
 |   if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) { | 
 |     unsigned width = Context.Target.getCharWidth(); | 
 |     F->setAlignment(AA->getAlignment() / width); | 
 |     while ((AA = AA->getNext<AlignedAttr>())) | 
 |       F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width)); | 
 |   } | 
 |   // C++ ABI requires 2-byte alignment for member functions. | 
 |   if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) | 
 |     F->setAlignment(2); | 
 | } | 
 |  | 
 | void CodeGenModule::SetCommonAttributes(const Decl *D, | 
 |                                         llvm::GlobalValue *GV) { | 
 |   setGlobalVisibility(GV, D); | 
 |  | 
 |   if (D->hasAttr<UsedAttr>()) | 
 |     AddUsedGlobal(GV); | 
 |  | 
 |   if (const SectionAttr *SA = D->getAttr<SectionAttr>()) | 
 |     GV->setSection(SA->getName()); | 
 |  | 
 |   getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this); | 
 | } | 
 |  | 
 | void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, | 
 |                                                   llvm::Function *F, | 
 |                                                   const CGFunctionInfo &FI) { | 
 |   SetLLVMFunctionAttributes(D, FI, F); | 
 |   SetLLVMFunctionAttributesForDefinition(D, F); | 
 |  | 
 |   F->setLinkage(llvm::Function::InternalLinkage); | 
 |  | 
 |   SetCommonAttributes(D, F); | 
 | } | 
 |  | 
 | void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, | 
 |                                           llvm::Function *F, | 
 |                                           bool IsIncompleteFunction) { | 
 |   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); | 
 |  | 
 |   if (!IsIncompleteFunction) | 
 |     SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F); | 
 |  | 
 |   // Only a few attributes are set on declarations; these may later be | 
 |   // overridden by a definition. | 
 |  | 
 |   if (FD->hasAttr<DLLImportAttr>()) { | 
 |     F->setLinkage(llvm::Function::DLLImportLinkage); | 
 |   } else if (FD->hasAttr<WeakAttr>() || | 
 |              FD->hasAttr<WeakImportAttr>()) { | 
 |     // "extern_weak" is overloaded in LLVM; we probably should have | 
 |     // separate linkage types for this. | 
 |     F->setLinkage(llvm::Function::ExternalWeakLinkage); | 
 |   } else { | 
 |     F->setLinkage(llvm::Function::ExternalLinkage); | 
 |   } | 
 |  | 
 |   if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) | 
 |     F->setSection(SA->getName()); | 
 | } | 
 |  | 
 | void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) { | 
 |   assert(!GV->isDeclaration() && | 
 |          "Only globals with definition can force usage."); | 
 |   LLVMUsed.push_back(GV); | 
 | } | 
 |  | 
 | void CodeGenModule::EmitLLVMUsed() { | 
 |   // Don't create llvm.used if there is no need. | 
 |   if (LLVMUsed.empty()) | 
 |     return; | 
 |  | 
 |   const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext); | 
 |  | 
 |   // Convert LLVMUsed to what ConstantArray needs. | 
 |   std::vector<llvm::Constant*> UsedArray; | 
 |   UsedArray.resize(LLVMUsed.size()); | 
 |   for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) { | 
 |     UsedArray[i] = | 
 |      llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), | 
 |                                       i8PTy); | 
 |   } | 
 |  | 
 |   if (UsedArray.empty()) | 
 |     return; | 
 |   llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size()); | 
 |  | 
 |   llvm::GlobalVariable *GV = | 
 |     new llvm::GlobalVariable(getModule(), ATy, false, | 
 |                              llvm::GlobalValue::AppendingLinkage, | 
 |                              llvm::ConstantArray::get(ATy, UsedArray), | 
 |                              "llvm.used"); | 
 |  | 
 |   GV->setSection("llvm.metadata"); | 
 | } | 
 |  | 
 | void CodeGenModule::EmitDeferred() { | 
 |   // Emit code for any potentially referenced deferred decls.  Since a | 
 |   // previously unused static decl may become used during the generation of code | 
 |   // for a static function, iterate until no  changes are made. | 
 |  | 
 |   while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) { | 
 |     if (!DeferredVTables.empty()) { | 
 |       const CXXRecordDecl *RD = DeferredVTables.back(); | 
 |       DeferredVTables.pop_back(); | 
 |       getVTables().GenerateClassData(getVTableLinkage(RD), RD); | 
 |       continue; | 
 |     } | 
 |  | 
 |     GlobalDecl D = DeferredDeclsToEmit.back(); | 
 |     DeferredDeclsToEmit.pop_back(); | 
 |  | 
 |     // Look it up to see if it was defined with a stronger definition (e.g. an | 
 |     // extern inline function with a strong function redefinition).  If so, | 
 |     // just ignore the deferred decl. | 
 |     MangleBuffer Name; | 
 |     getMangledName(Name, D); | 
 |     llvm::GlobalValue *CGRef = GetGlobalValue(Name); | 
 |     assert(CGRef && "Deferred decl wasn't referenced?"); | 
 |  | 
 |     if (!CGRef->isDeclaration()) | 
 |       continue; | 
 |  | 
 |     // Otherwise, emit the definition and move on to the next one. | 
 |     EmitGlobalDefinition(D); | 
 |   } | 
 | } | 
 |  | 
 | /// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the | 
 | /// annotation information for a given GlobalValue.  The annotation struct is | 
 | /// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the | 
 | /// GlobalValue being annotated.  The second field is the constant string | 
 | /// created from the AnnotateAttr's annotation.  The third field is a constant | 
 | /// string containing the name of the translation unit.  The fourth field is | 
 | /// the line number in the file of the annotated value declaration. | 
 | /// | 
 | /// FIXME: this does not unique the annotation string constants, as llvm-gcc | 
 | ///        appears to. | 
 | /// | 
 | llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, | 
 |                                                 const AnnotateAttr *AA, | 
 |                                                 unsigned LineNo) { | 
 |   llvm::Module *M = &getModule(); | 
 |  | 
 |   // get [N x i8] constants for the annotation string, and the filename string | 
 |   // which are the 2nd and 3rd elements of the global annotation structure. | 
 |   const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext); | 
 |   llvm::Constant *anno = llvm::ConstantArray::get(VMContext, | 
 |                                                   AA->getAnnotation(), true); | 
 |   llvm::Constant *unit = llvm::ConstantArray::get(VMContext, | 
 |                                                   M->getModuleIdentifier(), | 
 |                                                   true); | 
 |  | 
 |   // Get the two global values corresponding to the ConstantArrays we just | 
 |   // created to hold the bytes of the strings. | 
 |   llvm::GlobalValue *annoGV = | 
 |     new llvm::GlobalVariable(*M, anno->getType(), false, | 
 |                              llvm::GlobalValue::PrivateLinkage, anno, | 
 |                              GV->getName()); | 
 |   // translation unit name string, emitted into the llvm.metadata section. | 
 |   llvm::GlobalValue *unitGV = | 
 |     new llvm::GlobalVariable(*M, unit->getType(), false, | 
 |                              llvm::GlobalValue::PrivateLinkage, unit, | 
 |                              ".str"); | 
 |  | 
 |   // Create the ConstantStruct for the global annotation. | 
 |   llvm::Constant *Fields[4] = { | 
 |     llvm::ConstantExpr::getBitCast(GV, SBP), | 
 |     llvm::ConstantExpr::getBitCast(annoGV, SBP), | 
 |     llvm::ConstantExpr::getBitCast(unitGV, SBP), | 
 |     llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo) | 
 |   }; | 
 |   return llvm::ConstantStruct::get(VMContext, Fields, 4, false); | 
 | } | 
 |  | 
 | bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) { | 
 |   // Never defer when EmitAllDecls is specified or the decl has | 
 |   // attribute used. | 
 |   if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>()) | 
 |     return false; | 
 |  | 
 |   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { | 
 |     // Constructors and destructors should never be deferred. | 
 |     if (FD->hasAttr<ConstructorAttr>() || | 
 |         FD->hasAttr<DestructorAttr>()) | 
 |       return false; | 
 |  | 
 |     // The key function for a class must never be deferred. | 
 |     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) { | 
 |       const CXXRecordDecl *RD = MD->getParent(); | 
 |       if (MD->isOutOfLine() && RD->isDynamicClass()) { | 
 |         const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD); | 
 |         if (KeyFunction &&  | 
 |             KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl()) | 
 |           return false; | 
 |       } | 
 |     } | 
 |  | 
 |     GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features); | 
 |  | 
 |     // static, static inline, always_inline, and extern inline functions can | 
 |     // always be deferred.  Normal inline functions can be deferred in C99/C++. | 
 |     // Implicit template instantiations can also be deferred in C++. | 
 |     if (Linkage == GVA_Internal || Linkage == GVA_C99Inline || | 
 |         Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) | 
 |       return true; | 
 |     return false; | 
 |   } | 
 |  | 
 |   const VarDecl *VD = cast<VarDecl>(Global); | 
 |   assert(VD->isFileVarDecl() && "Invalid decl"); | 
 |  | 
 |   // We never want to defer structs that have non-trivial constructors or  | 
 |   // destructors. | 
 |    | 
 |   // FIXME: Handle references. | 
 |   if (const RecordType *RT = VD->getType()->getAs<RecordType>()) { | 
 |     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { | 
 |       if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) | 
 |         return false; | 
 |     } | 
 |   } | 
 |        | 
 |   // Static data may be deferred, but out-of-line static data members | 
 |   // cannot be. | 
 |   Linkage L = VD->getLinkage(); | 
 |   if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus && | 
 |       VD->getType()->getLinkage() == UniqueExternalLinkage) | 
 |     L = UniqueExternalLinkage; | 
 |  | 
 |   switch (L) { | 
 |   case NoLinkage: | 
 |   case InternalLinkage: | 
 |   case UniqueExternalLinkage: | 
 |     // Initializer has side effects? | 
 |     if (VD->getInit() && VD->getInit()->HasSideEffects(Context)) | 
 |       return false; | 
 |     return !(VD->isStaticDataMember() && VD->isOutOfLine()); | 
 |  | 
 |   case ExternalLinkage: | 
 |     break; | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { | 
 |   const AliasAttr *AA = VD->getAttr<AliasAttr>(); | 
 |   assert(AA && "No alias?"); | 
 |  | 
 |   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); | 
 |  | 
 |   // See if there is already something with the target's name in the module. | 
 |   llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); | 
 |  | 
 |   llvm::Constant *Aliasee; | 
 |   if (isa<llvm::FunctionType>(DeclTy)) | 
 |     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); | 
 |   else | 
 |     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), | 
 |                                     llvm::PointerType::getUnqual(DeclTy), 0); | 
 |   if (!Entry) { | 
 |     llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee); | 
 |     F->setLinkage(llvm::Function::ExternalWeakLinkage);     | 
 |     WeakRefReferences.insert(F); | 
 |   } | 
 |  | 
 |   return Aliasee; | 
 | } | 
 |  | 
 | void CodeGenModule::EmitGlobal(GlobalDecl GD) { | 
 |   const ValueDecl *Global = cast<ValueDecl>(GD.getDecl()); | 
 |  | 
 |   // Weak references don't produce any output by themselves. | 
 |   if (Global->hasAttr<WeakRefAttr>()) | 
 |     return; | 
 |  | 
 |   // If this is an alias definition (which otherwise looks like a declaration) | 
 |   // emit it now. | 
 |   if (Global->hasAttr<AliasAttr>()) | 
 |     return EmitAliasDefinition(GD); | 
 |  | 
 |   // Ignore declarations, they will be emitted on their first use. | 
 |   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) { | 
 |     // Forward declarations are emitted lazily on first use. | 
 |     if (!FD->isThisDeclarationADefinition()) | 
 |       return; | 
 |   } else { | 
 |     const VarDecl *VD = cast<VarDecl>(Global); | 
 |     assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); | 
 |  | 
 |     if (VD->isThisDeclarationADefinition() != VarDecl::Definition) | 
 |       return; | 
 |   } | 
 |  | 
 |   // Defer code generation when possible if this is a static definition, inline | 
 |   // function etc.  These we only want to emit if they are used. | 
 |   if (!MayDeferGeneration(Global)) { | 
 |     // Emit the definition if it can't be deferred. | 
 |     EmitGlobalDefinition(GD); | 
 |     return; | 
 |   } | 
 |    | 
 |   // If the value has already been used, add it directly to the | 
 |   // DeferredDeclsToEmit list. | 
 |   MangleBuffer MangledName; | 
 |   getMangledName(MangledName, GD); | 
 |   if (GetGlobalValue(MangledName)) | 
 |     DeferredDeclsToEmit.push_back(GD); | 
 |   else { | 
 |     // Otherwise, remember that we saw a deferred decl with this name.  The | 
 |     // first use of the mangled name will cause it to move into | 
 |     // DeferredDeclsToEmit. | 
 |     DeferredDecls[MangledName] = GD; | 
 |   } | 
 | } | 
 |  | 
 | void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) { | 
 |   const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); | 
 |  | 
 |   PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),  | 
 |                                  Context.getSourceManager(), | 
 |                                  "Generating code for declaration"); | 
 |    | 
 |   if (isa<CXXMethodDecl>(D)) | 
 |     getVTables().EmitVTableRelatedData(GD); | 
 |  | 
 |   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) | 
 |     return EmitCXXConstructor(CD, GD.getCtorType()); | 
 |    | 
 |   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D)) | 
 |     return EmitCXXDestructor(DD, GD.getDtorType()); | 
 |  | 
 |   if (isa<FunctionDecl>(D)) | 
 |     return EmitGlobalFunctionDefinition(GD); | 
 |    | 
 |   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) | 
 |     return EmitGlobalVarDefinition(VD); | 
 |    | 
 |   assert(0 && "Invalid argument to EmitGlobalDefinition()"); | 
 | } | 
 |  | 
 | /// GetOrCreateLLVMFunction - If the specified mangled name is not in the | 
 | /// module, create and return an llvm Function with the specified type. If there | 
 | /// is something in the module with the specified name, return it potentially | 
 | /// bitcasted to the right type. | 
 | /// | 
 | /// If D is non-null, it specifies a decl that correspond to this.  This is used | 
 | /// to set the attributes on the function when it is first created. | 
 | llvm::Constant * | 
 | CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName, | 
 |                                        const llvm::Type *Ty, | 
 |                                        GlobalDecl D) { | 
 |   // Lookup the entry, lazily creating it if necessary. | 
 |   llvm::GlobalValue *Entry = GetGlobalValue(MangledName); | 
 |   if (Entry) { | 
 |     if (WeakRefReferences.count(Entry)) { | 
 |       const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl()); | 
 |       if (FD && !FD->hasAttr<WeakAttr>()) | 
 |         Entry->setLinkage(llvm::Function::ExternalLinkage); | 
 |  | 
 |       WeakRefReferences.erase(Entry); | 
 |     } | 
 |  | 
 |     if (Entry->getType()->getElementType() == Ty) | 
 |       return Entry; | 
 |  | 
 |     // Make sure the result is of the correct type. | 
 |     const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); | 
 |     return llvm::ConstantExpr::getBitCast(Entry, PTy); | 
 |   } | 
 |  | 
 |   // This function doesn't have a complete type (for example, the return | 
 |   // type is an incomplete struct). Use a fake type instead, and make | 
 |   // sure not to try to set attributes. | 
 |   bool IsIncompleteFunction = false; | 
 |   if (!isa<llvm::FunctionType>(Ty)) { | 
 |     Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), | 
 |                                  std::vector<const llvm::Type*>(), false); | 
 |     IsIncompleteFunction = true; | 
 |   } | 
 |   llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty), | 
 |                                              llvm::Function::ExternalLinkage, | 
 |                                              MangledName, &getModule()); | 
 |   assert(F->getName() == MangledName && "name was uniqued!"); | 
 |   if (D.getDecl()) | 
 |     SetFunctionAttributes(D, F, IsIncompleteFunction); | 
 |  | 
 |   // This is the first use or definition of a mangled name.  If there is a | 
 |   // deferred decl with this name, remember that we need to emit it at the end | 
 |   // of the file. | 
 |   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); | 
 |   if (DDI != DeferredDecls.end()) { | 
 |     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit | 
 |     // list, and remove it from DeferredDecls (since we don't need it anymore). | 
 |     DeferredDeclsToEmit.push_back(DDI->second); | 
 |     DeferredDecls.erase(DDI); | 
 |   } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) { | 
 |     // If this the first reference to a C++ inline function in a class, queue up | 
 |     // the deferred function body for emission.  These are not seen as | 
 |     // top-level declarations. | 
 |     if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) | 
 |       DeferredDeclsToEmit.push_back(D); | 
 |     // A called constructor which has no definition or declaration need be | 
 |     // synthesized. | 
 |     else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { | 
 |       if (CD->isImplicit()) { | 
 |         assert(CD->isUsed() && "Sema doesn't consider constructor as used."); | 
 |         DeferredDeclsToEmit.push_back(D); | 
 |       } | 
 |     } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) { | 
 |       if (DD->isImplicit()) { | 
 |         assert(DD->isUsed() && "Sema doesn't consider destructor as used."); | 
 |         DeferredDeclsToEmit.push_back(D); | 
 |       } | 
 |     } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { | 
 |       if (MD->isCopyAssignment() && MD->isImplicit()) { | 
 |         assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used."); | 
 |         DeferredDeclsToEmit.push_back(D); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   return F; | 
 | } | 
 |  | 
 | /// GetAddrOfFunction - Return the address of the given function.  If Ty is | 
 | /// non-null, then this function will use the specified type if it has to | 
 | /// create it (this occurs when we see a definition of the function). | 
 | llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, | 
 |                                                  const llvm::Type *Ty) { | 
 |   // If there was no specific requested type, just convert it now. | 
 |   if (!Ty) | 
 |     Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType()); | 
 |   MangleBuffer MangledName; | 
 |   getMangledName(MangledName, GD); | 
 |   return GetOrCreateLLVMFunction(MangledName, Ty, GD); | 
 | } | 
 |  | 
 | /// CreateRuntimeFunction - Create a new runtime function with the specified | 
 | /// type and name. | 
 | llvm::Constant * | 
 | CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy, | 
 |                                      llvm::StringRef Name) { | 
 |   return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl()); | 
 | } | 
 |  | 
 | static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) { | 
 |   if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType()) | 
 |     return false; | 
 |   if (Context.getLangOptions().CPlusPlus && | 
 |       Context.getBaseElementType(D->getType())->getAs<RecordType>()) { | 
 |     // FIXME: We should do something fancier here! | 
 |     return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, | 
 | /// create and return an llvm GlobalVariable with the specified type.  If there | 
 | /// is something in the module with the specified name, return it potentially | 
 | /// bitcasted to the right type. | 
 | /// | 
 | /// If D is non-null, it specifies a decl that correspond to this.  This is used | 
 | /// to set the attributes on the global when it is first created. | 
 | llvm::Constant * | 
 | CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName, | 
 |                                      const llvm::PointerType *Ty, | 
 |                                      const VarDecl *D) { | 
 |   // Lookup the entry, lazily creating it if necessary. | 
 |   llvm::GlobalValue *Entry = GetGlobalValue(MangledName); | 
 |   if (Entry) { | 
 |     if (WeakRefReferences.count(Entry)) { | 
 |       if (D && !D->hasAttr<WeakAttr>()) | 
 |         Entry->setLinkage(llvm::Function::ExternalLinkage); | 
 |  | 
 |       WeakRefReferences.erase(Entry); | 
 |     } | 
 |  | 
 |     if (Entry->getType() == Ty) | 
 |       return Entry; | 
 |  | 
 |     // Make sure the result is of the correct type. | 
 |     return llvm::ConstantExpr::getBitCast(Entry, Ty); | 
 |   } | 
 |  | 
 |   // This is the first use or definition of a mangled name.  If there is a | 
 |   // deferred decl with this name, remember that we need to emit it at the end | 
 |   // of the file. | 
 |   llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName); | 
 |   if (DDI != DeferredDecls.end()) { | 
 |     // Move the potentially referenced deferred decl to the DeferredDeclsToEmit | 
 |     // list, and remove it from DeferredDecls (since we don't need it anymore). | 
 |     DeferredDeclsToEmit.push_back(DDI->second); | 
 |     DeferredDecls.erase(DDI); | 
 |   } | 
 |  | 
 |   llvm::GlobalVariable *GV = | 
 |     new llvm::GlobalVariable(getModule(), Ty->getElementType(), false, | 
 |                              llvm::GlobalValue::ExternalLinkage, | 
 |                              0, MangledName, 0, | 
 |                              false, Ty->getAddressSpace()); | 
 |  | 
 |   // Handle things which are present even on external declarations. | 
 |   if (D) { | 
 |     // FIXME: This code is overly simple and should be merged with other global | 
 |     // handling. | 
 |     GV->setConstant(DeclIsConstantGlobal(Context, D)); | 
 |  | 
 |     // FIXME: Merge with other attribute handling code. | 
 |     if (D->getStorageClass() == VarDecl::PrivateExtern) | 
 |       GV->setVisibility(llvm::GlobalValue::HiddenVisibility); | 
 |  | 
 |     if (D->hasAttr<WeakAttr>() || | 
 |         D->hasAttr<WeakImportAttr>()) | 
 |       GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); | 
 |  | 
 |     GV->setThreadLocal(D->isThreadSpecified()); | 
 |   } | 
 |  | 
 |   return GV; | 
 | } | 
 |  | 
 |  | 
 | /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the | 
 | /// given global variable.  If Ty is non-null and if the global doesn't exist, | 
 | /// then it will be greated with the specified type instead of whatever the | 
 | /// normal requested type would be. | 
 | llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, | 
 |                                                   const llvm::Type *Ty) { | 
 |   assert(D->hasGlobalStorage() && "Not a global variable"); | 
 |   QualType ASTTy = D->getType(); | 
 |   if (Ty == 0) | 
 |     Ty = getTypes().ConvertTypeForMem(ASTTy); | 
 |  | 
 |   const llvm::PointerType *PTy = | 
 |     llvm::PointerType::get(Ty, ASTTy.getAddressSpace()); | 
 |  | 
 |   MangleBuffer MangledName; | 
 |   getMangledName(MangledName, D); | 
 |   return GetOrCreateLLVMGlobal(MangledName, PTy, D); | 
 | } | 
 |  | 
 | /// CreateRuntimeVariable - Create a new runtime global variable with the | 
 | /// specified type and name. | 
 | llvm::Constant * | 
 | CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty, | 
 |                                      llvm::StringRef Name) { | 
 |   return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0); | 
 | } | 
 |  | 
 | void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { | 
 |   assert(!D->getInit() && "Cannot emit definite definitions here!"); | 
 |  | 
 |   if (MayDeferGeneration(D)) { | 
 |     // If we have not seen a reference to this variable yet, place it | 
 |     // into the deferred declarations table to be emitted if needed | 
 |     // later. | 
 |     MangleBuffer MangledName; | 
 |     getMangledName(MangledName, D); | 
 |     if (!GetGlobalValue(MangledName)) { | 
 |       DeferredDecls[MangledName] = D; | 
 |       return; | 
 |     } | 
 |   } | 
 |  | 
 |   // The tentative definition is the only definition. | 
 |   EmitGlobalVarDefinition(D); | 
 | } | 
 |  | 
 | llvm::GlobalVariable::LinkageTypes  | 
 | CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { | 
 |   if (RD->isInAnonymousNamespace() || !RD->hasLinkage()) | 
 |     return llvm::GlobalVariable::InternalLinkage; | 
 |  | 
 |   if (const CXXMethodDecl *KeyFunction | 
 |                                     = RD->getASTContext().getKeyFunction(RD)) { | 
 |     // If this class has a key function, use that to determine the linkage of | 
 |     // the vtable. | 
 |     const FunctionDecl *Def = 0; | 
 |     if (KeyFunction->getBody(Def)) | 
 |       KeyFunction = cast<CXXMethodDecl>(Def); | 
 |      | 
 |     switch (KeyFunction->getTemplateSpecializationKind()) { | 
 |       case TSK_Undeclared: | 
 |       case TSK_ExplicitSpecialization: | 
 |         if (KeyFunction->isInlined()) | 
 |           return llvm::GlobalVariable::WeakODRLinkage; | 
 |          | 
 |         return llvm::GlobalVariable::ExternalLinkage; | 
 |          | 
 |       case TSK_ImplicitInstantiation: | 
 |       case TSK_ExplicitInstantiationDefinition: | 
 |         return llvm::GlobalVariable::WeakODRLinkage; | 
 |          | 
 |       case TSK_ExplicitInstantiationDeclaration: | 
 |         // FIXME: Use available_externally linkage. However, this currently | 
 |         // breaks LLVM's build due to undefined symbols. | 
 |         //      return llvm::GlobalVariable::AvailableExternallyLinkage; | 
 |         return llvm::GlobalVariable::WeakODRLinkage; | 
 |     } | 
 |   } | 
 |    | 
 |   switch (RD->getTemplateSpecializationKind()) { | 
 |   case TSK_Undeclared: | 
 |   case TSK_ExplicitSpecialization: | 
 |   case TSK_ImplicitInstantiation: | 
 |   case TSK_ExplicitInstantiationDefinition: | 
 |     return llvm::GlobalVariable::WeakODRLinkage; | 
 |      | 
 |   case TSK_ExplicitInstantiationDeclaration: | 
 |     // FIXME: Use available_externally linkage. However, this currently | 
 |     // breaks LLVM's build due to undefined symbols. | 
 |     //   return llvm::GlobalVariable::AvailableExternallyLinkage; | 
 |     return llvm::GlobalVariable::WeakODRLinkage; | 
 |   } | 
 |    | 
 |   // Silence GCC warning. | 
 |   return llvm::GlobalVariable::WeakODRLinkage; | 
 | } | 
 |  | 
 | static CodeGenModule::GVALinkage | 
 | GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) { | 
 |   // If this is a static data member, compute the kind of template | 
 |   // specialization. Otherwise, this variable is not part of a | 
 |   // template. | 
 |   TemplateSpecializationKind TSK = TSK_Undeclared; | 
 |   if (VD->isStaticDataMember()) | 
 |     TSK = VD->getTemplateSpecializationKind(); | 
 |  | 
 |   Linkage L = VD->getLinkage(); | 
 |   if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus && | 
 |       VD->getType()->getLinkage() == UniqueExternalLinkage) | 
 |     L = UniqueExternalLinkage; | 
 |  | 
 |   switch (L) { | 
 |   case NoLinkage: | 
 |   case InternalLinkage: | 
 |   case UniqueExternalLinkage: | 
 |     return CodeGenModule::GVA_Internal; | 
 |  | 
 |   case ExternalLinkage: | 
 |     switch (TSK) { | 
 |     case TSK_Undeclared: | 
 |     case TSK_ExplicitSpecialization: | 
 |       return CodeGenModule::GVA_StrongExternal; | 
 |  | 
 |     case TSK_ExplicitInstantiationDeclaration: | 
 |       llvm_unreachable("Variable should not be instantiated"); | 
 |       // Fall through to treat this like any other instantiation. | 
 |          | 
 |     case TSK_ExplicitInstantiationDefinition: | 
 |       return CodeGenModule::GVA_ExplicitTemplateInstantiation; | 
 |  | 
 |     case TSK_ImplicitInstantiation: | 
 |       return CodeGenModule::GVA_TemplateInstantiation;       | 
 |     } | 
 |   } | 
 |  | 
 |   return CodeGenModule::GVA_StrongExternal; | 
 | } | 
 |  | 
 | CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const { | 
 |     return CharUnits::fromQuantity( | 
 |       TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth()); | 
 | } | 
 |  | 
 | void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) { | 
 |   llvm::Constant *Init = 0; | 
 |   QualType ASTTy = D->getType(); | 
 |   bool NonConstInit = false; | 
 |  | 
 |   const Expr *InitExpr = D->getAnyInitializer(); | 
 |    | 
 |   if (!InitExpr) { | 
 |     // This is a tentative definition; tentative definitions are | 
 |     // implicitly initialized with { 0 }. | 
 |     // | 
 |     // Note that tentative definitions are only emitted at the end of | 
 |     // a translation unit, so they should never have incomplete | 
 |     // type. In addition, EmitTentativeDefinition makes sure that we | 
 |     // never attempt to emit a tentative definition if a real one | 
 |     // exists. A use may still exists, however, so we still may need | 
 |     // to do a RAUW. | 
 |     assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); | 
 |     Init = EmitNullConstant(D->getType()); | 
 |   } else { | 
 |     Init = EmitConstantExpr(InitExpr, D->getType()); | 
 |  | 
 |     if (!Init) { | 
 |       QualType T = InitExpr->getType(); | 
 |       if (getLangOptions().CPlusPlus) { | 
 |         EmitCXXGlobalVarDeclInitFunc(D); | 
 |         Init = EmitNullConstant(T); | 
 |         NonConstInit = true; | 
 |       } else { | 
 |         ErrorUnsupported(D, "static initializer"); | 
 |         Init = llvm::UndefValue::get(getTypes().ConvertType(T)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   const llvm::Type* InitType = Init->getType(); | 
 |   llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType); | 
 |  | 
 |   // Strip off a bitcast if we got one back. | 
 |   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { | 
 |     assert(CE->getOpcode() == llvm::Instruction::BitCast || | 
 |            // all zero index gep. | 
 |            CE->getOpcode() == llvm::Instruction::GetElementPtr); | 
 |     Entry = CE->getOperand(0); | 
 |   } | 
 |  | 
 |   // Entry is now either a Function or GlobalVariable. | 
 |   llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry); | 
 |  | 
 |   // We have a definition after a declaration with the wrong type. | 
 |   // We must make a new GlobalVariable* and update everything that used OldGV | 
 |   // (a declaration or tentative definition) with the new GlobalVariable* | 
 |   // (which will be a definition). | 
 |   // | 
 |   // This happens if there is a prototype for a global (e.g. | 
 |   // "extern int x[];") and then a definition of a different type (e.g. | 
 |   // "int x[10];"). This also happens when an initializer has a different type | 
 |   // from the type of the global (this happens with unions). | 
 |   if (GV == 0 || | 
 |       GV->getType()->getElementType() != InitType || | 
 |       GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) { | 
 |  | 
 |     // Move the old entry aside so that we'll create a new one. | 
 |     Entry->setName(llvm::StringRef()); | 
 |  | 
 |     // Make a new global with the correct type, this is now guaranteed to work. | 
 |     GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType)); | 
 |  | 
 |     // Replace all uses of the old global with the new global | 
 |     llvm::Constant *NewPtrForOldDecl = | 
 |         llvm::ConstantExpr::getBitCast(GV, Entry->getType()); | 
 |     Entry->replaceAllUsesWith(NewPtrForOldDecl); | 
 |  | 
 |     // Erase the old global, since it is no longer used. | 
 |     cast<llvm::GlobalValue>(Entry)->eraseFromParent(); | 
 |   } | 
 |  | 
 |   if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) { | 
 |     SourceManager &SM = Context.getSourceManager(); | 
 |     AddAnnotation(EmitAnnotateAttr(GV, AA, | 
 |                               SM.getInstantiationLineNumber(D->getLocation()))); | 
 |   } | 
 |  | 
 |   GV->setInitializer(Init); | 
 |  | 
 |   // If it is safe to mark the global 'constant', do so now. | 
 |   GV->setConstant(false); | 
 |   if (!NonConstInit && DeclIsConstantGlobal(Context, D)) | 
 |     GV->setConstant(true); | 
 |  | 
 |   GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); | 
 |  | 
 |   // Set the llvm linkage type as appropriate. | 
 |   GVALinkage Linkage = GetLinkageForVariable(getContext(), D); | 
 |   if (Linkage == GVA_Internal) | 
 |     GV->setLinkage(llvm::Function::InternalLinkage); | 
 |   else if (D->hasAttr<DLLImportAttr>()) | 
 |     GV->setLinkage(llvm::Function::DLLImportLinkage); | 
 |   else if (D->hasAttr<DLLExportAttr>()) | 
 |     GV->setLinkage(llvm::Function::DLLExportLinkage); | 
 |   else if (D->hasAttr<WeakAttr>()) { | 
 |     if (GV->isConstant()) | 
 |       GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage); | 
 |     else | 
 |       GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); | 
 |   } else if (Linkage == GVA_TemplateInstantiation || | 
 |              Linkage == GVA_ExplicitTemplateInstantiation) | 
 |     // FIXME: It seems like we can provide more specific linkage here | 
 |     // (LinkOnceODR, WeakODR). | 
 |     GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);    | 
 |   else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon && | 
 |            !D->hasExternalStorage() && !D->getInit() && | 
 |            !D->getAttr<SectionAttr>()) { | 
 |     GV->setLinkage(llvm::GlobalVariable::CommonLinkage); | 
 |     // common vars aren't constant even if declared const. | 
 |     GV->setConstant(false); | 
 |   } else | 
 |     GV->setLinkage(llvm::GlobalVariable::ExternalLinkage); | 
 |  | 
 |   SetCommonAttributes(D, GV); | 
 |  | 
 |   // Emit global variable debug information. | 
 |   if (CGDebugInfo *DI = getDebugInfo()) { | 
 |     DI->setLocation(D->getLocation()); | 
 |     DI->EmitGlobalVariable(GV, D); | 
 |   } | 
 | } | 
 |  | 
 | /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we | 
 | /// implement a function with no prototype, e.g. "int foo() {}".  If there are | 
 | /// existing call uses of the old function in the module, this adjusts them to | 
 | /// call the new function directly. | 
 | /// | 
 | /// This is not just a cleanup: the always_inline pass requires direct calls to | 
 | /// functions to be able to inline them.  If there is a bitcast in the way, it | 
 | /// won't inline them.  Instcombine normally deletes these calls, but it isn't | 
 | /// run at -O0. | 
 | static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, | 
 |                                                       llvm::Function *NewFn) { | 
 |   // If we're redefining a global as a function, don't transform it. | 
 |   llvm::Function *OldFn = dyn_cast<llvm::Function>(Old); | 
 |   if (OldFn == 0) return; | 
 |  | 
 |   const llvm::Type *NewRetTy = NewFn->getReturnType(); | 
 |   llvm::SmallVector<llvm::Value*, 4> ArgList; | 
 |  | 
 |   for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end(); | 
 |        UI != E; ) { | 
 |     // TODO: Do invokes ever occur in C code?  If so, we should handle them too. | 
 |     llvm::Value::use_iterator I = UI++; // Increment before the CI is erased. | 
 |     llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I); | 
 |     llvm::CallSite CS(CI); | 
 |     if (!CI || !CS.isCallee(I)) continue; | 
 |  | 
 |     // If the return types don't match exactly, and if the call isn't dead, then | 
 |     // we can't transform this call. | 
 |     if (CI->getType() != NewRetTy && !CI->use_empty()) | 
 |       continue; | 
 |  | 
 |     // If the function was passed too few arguments, don't transform.  If extra | 
 |     // arguments were passed, we silently drop them.  If any of the types | 
 |     // mismatch, we don't transform. | 
 |     unsigned ArgNo = 0; | 
 |     bool DontTransform = false; | 
 |     for (llvm::Function::arg_iterator AI = NewFn->arg_begin(), | 
 |          E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) { | 
 |       if (CS.arg_size() == ArgNo || | 
 |           CS.getArgument(ArgNo)->getType() != AI->getType()) { | 
 |         DontTransform = true; | 
 |         break; | 
 |       } | 
 |     } | 
 |     if (DontTransform) | 
 |       continue; | 
 |  | 
 |     // Okay, we can transform this.  Create the new call instruction and copy | 
 |     // over the required information. | 
 |     ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo); | 
 |     llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(), | 
 |                                                      ArgList.end(), "", CI); | 
 |     ArgList.clear(); | 
 |     if (!NewCall->getType()->isVoidTy()) | 
 |       NewCall->takeName(CI); | 
 |     NewCall->setAttributes(CI->getAttributes()); | 
 |     NewCall->setCallingConv(CI->getCallingConv()); | 
 |  | 
 |     // Finally, remove the old call, replacing any uses with the new one. | 
 |     if (!CI->use_empty()) | 
 |       CI->replaceAllUsesWith(NewCall); | 
 |  | 
 |     // Copy debug location attached to CI. | 
 |     if (!CI->getDebugLoc().isUnknown()) | 
 |       NewCall->setDebugLoc(CI->getDebugLoc()); | 
 |     CI->eraseFromParent(); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) { | 
 |   const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl()); | 
 |   const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD); | 
 |   getMangleContext().mangleInitDiscriminator(); | 
 |   // Get or create the prototype for the function. | 
 |   llvm::Constant *Entry = GetAddrOfFunction(GD, Ty); | 
 |  | 
 |   // Strip off a bitcast if we got one back. | 
 |   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { | 
 |     assert(CE->getOpcode() == llvm::Instruction::BitCast); | 
 |     Entry = CE->getOperand(0); | 
 |   } | 
 |  | 
 |  | 
 |   if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) { | 
 |     llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry); | 
 |  | 
 |     // If the types mismatch then we have to rewrite the definition. | 
 |     assert(OldFn->isDeclaration() && | 
 |            "Shouldn't replace non-declaration"); | 
 |  | 
 |     // F is the Function* for the one with the wrong type, we must make a new | 
 |     // Function* and update everything that used F (a declaration) with the new | 
 |     // Function* (which will be a definition). | 
 |     // | 
 |     // This happens if there is a prototype for a function | 
 |     // (e.g. "int f()") and then a definition of a different type | 
 |     // (e.g. "int f(int x)").  Move the old function aside so that it | 
 |     // doesn't interfere with GetAddrOfFunction. | 
 |     OldFn->setName(llvm::StringRef()); | 
 |     llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty)); | 
 |  | 
 |     // If this is an implementation of a function without a prototype, try to | 
 |     // replace any existing uses of the function (which may be calls) with uses | 
 |     // of the new function | 
 |     if (D->getType()->isFunctionNoProtoType()) { | 
 |       ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn); | 
 |       OldFn->removeDeadConstantUsers(); | 
 |     } | 
 |  | 
 |     // Replace uses of F with the Function we will endow with a body. | 
 |     if (!Entry->use_empty()) { | 
 |       llvm::Constant *NewPtrForOldDecl = | 
 |         llvm::ConstantExpr::getBitCast(NewFn, Entry->getType()); | 
 |       Entry->replaceAllUsesWith(NewPtrForOldDecl); | 
 |     } | 
 |  | 
 |     // Ok, delete the old function now, which is dead. | 
 |     OldFn->eraseFromParent(); | 
 |  | 
 |     Entry = NewFn; | 
 |   } | 
 |  | 
 |   llvm::Function *Fn = cast<llvm::Function>(Entry); | 
 |  | 
 |   CodeGenFunction(*this).GenerateCode(D, Fn); | 
 |  | 
 |   SetFunctionDefinitionAttributes(D, Fn); | 
 |   SetLLVMFunctionAttributesForDefinition(D, Fn); | 
 |  | 
 |   if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) | 
 |     AddGlobalCtor(Fn, CA->getPriority()); | 
 |   if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) | 
 |     AddGlobalDtor(Fn, DA->getPriority()); | 
 | } | 
 |  | 
 | void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { | 
 |   const ValueDecl *D = cast<ValueDecl>(GD.getDecl()); | 
 |   const AliasAttr *AA = D->getAttr<AliasAttr>(); | 
 |   assert(AA && "Not an alias?"); | 
 |  | 
 |   MangleBuffer MangledName; | 
 |   getMangledName(MangledName, GD); | 
 |  | 
 |   // If there is a definition in the module, then it wins over the alias. | 
 |   // This is dubious, but allow it to be safe.  Just ignore the alias. | 
 |   llvm::GlobalValue *Entry = GetGlobalValue(MangledName); | 
 |   if (Entry && !Entry->isDeclaration()) | 
 |     return; | 
 |  | 
 |   const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); | 
 |  | 
 |   // Create a reference to the named value.  This ensures that it is emitted | 
 |   // if a deferred decl. | 
 |   llvm::Constant *Aliasee; | 
 |   if (isa<llvm::FunctionType>(DeclTy)) | 
 |     Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl()); | 
 |   else | 
 |     Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), | 
 |                                     llvm::PointerType::getUnqual(DeclTy), 0); | 
 |  | 
 |   // Create the new alias itself, but don't set a name yet. | 
 |   llvm::GlobalValue *GA = | 
 |     new llvm::GlobalAlias(Aliasee->getType(), | 
 |                           llvm::Function::ExternalLinkage, | 
 |                           "", Aliasee, &getModule()); | 
 |  | 
 |   if (Entry) { | 
 |     assert(Entry->isDeclaration()); | 
 |  | 
 |     // If there is a declaration in the module, then we had an extern followed | 
 |     // by the alias, as in: | 
 |     //   extern int test6(); | 
 |     //   ... | 
 |     //   int test6() __attribute__((alias("test7"))); | 
 |     // | 
 |     // Remove it and replace uses of it with the alias. | 
 |     GA->takeName(Entry); | 
 |  | 
 |     Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, | 
 |                                                           Entry->getType())); | 
 |     Entry->eraseFromParent(); | 
 |   } else { | 
 |     GA->setName(MangledName.getString()); | 
 |   } | 
 |  | 
 |   // Set attributes which are particular to an alias; this is a | 
 |   // specialization of the attributes which may be set on a global | 
 |   // variable/function. | 
 |   if (D->hasAttr<DLLExportAttr>()) { | 
 |     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | 
 |       // The dllexport attribute is ignored for undefined symbols. | 
 |       if (FD->getBody()) | 
 |         GA->setLinkage(llvm::Function::DLLExportLinkage); | 
 |     } else { | 
 |       GA->setLinkage(llvm::Function::DLLExportLinkage); | 
 |     } | 
 |   } else if (D->hasAttr<WeakAttr>() || | 
 |              D->hasAttr<WeakRefAttr>() || | 
 |              D->hasAttr<WeakImportAttr>()) { | 
 |     GA->setLinkage(llvm::Function::WeakAnyLinkage); | 
 |   } | 
 |  | 
 |   SetCommonAttributes(D, GA); | 
 | } | 
 |  | 
 | /// getBuiltinLibFunction - Given a builtin id for a function like | 
 | /// "__builtin_fabsf", return a Function* for "fabsf". | 
 | llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, | 
 |                                                   unsigned BuiltinID) { | 
 |   assert((Context.BuiltinInfo.isLibFunction(BuiltinID) || | 
 |           Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) && | 
 |          "isn't a lib fn"); | 
 |  | 
 |   // Get the name, skip over the __builtin_ prefix (if necessary). | 
 |   const char *Name = Context.BuiltinInfo.GetName(BuiltinID); | 
 |   if (Context.BuiltinInfo.isLibFunction(BuiltinID)) | 
 |     Name += 10; | 
 |  | 
 |   const llvm::FunctionType *Ty = | 
 |     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); | 
 |  | 
 |   return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD)); | 
 | } | 
 |  | 
 | llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys, | 
 |                                             unsigned NumTys) { | 
 |   return llvm::Intrinsic::getDeclaration(&getModule(), | 
 |                                          (llvm::Intrinsic::ID)IID, Tys, NumTys); | 
 | } | 
 |  | 
 |  | 
 | llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType, | 
 |                                            const llvm::Type *SrcType, | 
 |                                            const llvm::Type *SizeType) { | 
 |   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; | 
 |   return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3); | 
 | } | 
 |  | 
 | llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType, | 
 |                                             const llvm::Type *SrcType, | 
 |                                             const llvm::Type *SizeType) { | 
 |   const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType }; | 
 |   return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3); | 
 | } | 
 |  | 
 | llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType, | 
 |                                            const llvm::Type *SizeType) { | 
 |   const llvm::Type *ArgTypes[2] = { DestType, SizeType }; | 
 |   return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2); | 
 | } | 
 |  | 
 | static llvm::StringMapEntry<llvm::Constant*> & | 
 | GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map, | 
 |                          const StringLiteral *Literal, | 
 |                          bool TargetIsLSB, | 
 |                          bool &IsUTF16, | 
 |                          unsigned &StringLength) { | 
 |   unsigned NumBytes = Literal->getByteLength(); | 
 |  | 
 |   // Check for simple case. | 
 |   if (!Literal->containsNonAsciiOrNull()) { | 
 |     StringLength = NumBytes; | 
 |     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), | 
 |                                                 StringLength)); | 
 |   } | 
 |  | 
 |   // Otherwise, convert the UTF8 literals into a byte string. | 
 |   llvm::SmallVector<UTF16, 128> ToBuf(NumBytes); | 
 |   const UTF8 *FromPtr = (UTF8 *)Literal->getStrData(); | 
 |   UTF16 *ToPtr = &ToBuf[0]; | 
 |  | 
 |   ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, | 
 |                                                &ToPtr, ToPtr + NumBytes, | 
 |                                                strictConversion); | 
 |  | 
 |   // Check for conversion failure. | 
 |   if (Result != conversionOK) { | 
 |     // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove | 
 |     // this duplicate code. | 
 |     assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed"); | 
 |     StringLength = NumBytes; | 
 |     return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(), | 
 |                                                 StringLength)); | 
 |   } | 
 |  | 
 |   // ConvertUTF8toUTF16 returns the length in ToPtr. | 
 |   StringLength = ToPtr - &ToBuf[0]; | 
 |  | 
 |   // Render the UTF-16 string into a byte array and convert to the target byte | 
 |   // order. | 
 |   // | 
 |   // FIXME: This isn't something we should need to do here. | 
 |   llvm::SmallString<128> AsBytes; | 
 |   AsBytes.reserve(StringLength * 2); | 
 |   for (unsigned i = 0; i != StringLength; ++i) { | 
 |     unsigned short Val = ToBuf[i]; | 
 |     if (TargetIsLSB) { | 
 |       AsBytes.push_back(Val & 0xFF); | 
 |       AsBytes.push_back(Val >> 8); | 
 |     } else { | 
 |       AsBytes.push_back(Val >> 8); | 
 |       AsBytes.push_back(Val & 0xFF); | 
 |     } | 
 |   } | 
 |   // Append one extra null character, the second is automatically added by our | 
 |   // caller. | 
 |   AsBytes.push_back(0); | 
 |  | 
 |   IsUTF16 = true; | 
 |   return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size())); | 
 | } | 
 |  | 
 | llvm::Constant * | 
 | CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { | 
 |   unsigned StringLength = 0; | 
 |   bool isUTF16 = false; | 
 |   llvm::StringMapEntry<llvm::Constant*> &Entry = | 
 |     GetConstantCFStringEntry(CFConstantStringMap, Literal, | 
 |                              getTargetData().isLittleEndian(), | 
 |                              isUTF16, StringLength); | 
 |  | 
 |   if (llvm::Constant *C = Entry.getValue()) | 
 |     return C; | 
 |  | 
 |   llvm::Constant *Zero = | 
 |       llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext)); | 
 |   llvm::Constant *Zeros[] = { Zero, Zero }; | 
 |  | 
 |   // If we don't already have it, get __CFConstantStringClassReference. | 
 |   if (!CFConstantStringClassRef) { | 
 |     const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); | 
 |     Ty = llvm::ArrayType::get(Ty, 0); | 
 |     llvm::Constant *GV = CreateRuntimeVariable(Ty, | 
 |                                            "__CFConstantStringClassReference"); | 
 |     // Decay array -> ptr | 
 |     CFConstantStringClassRef = | 
 |       llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); | 
 |   } | 
 |  | 
 |   QualType CFTy = getContext().getCFConstantStringType(); | 
 |  | 
 |   const llvm::StructType *STy = | 
 |     cast<llvm::StructType>(getTypes().ConvertType(CFTy)); | 
 |  | 
 |   std::vector<llvm::Constant*> Fields(4); | 
 |  | 
 |   // Class pointer. | 
 |   Fields[0] = CFConstantStringClassRef; | 
 |  | 
 |   // Flags. | 
 |   const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy); | 
 |   Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) : | 
 |     llvm::ConstantInt::get(Ty, 0x07C8); | 
 |  | 
 |   // String pointer. | 
 |   llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str()); | 
 |  | 
 |   llvm::GlobalValue::LinkageTypes Linkage; | 
 |   bool isConstant; | 
 |   if (isUTF16) { | 
 |     // FIXME: why do utf strings get "_" labels instead of "L" labels? | 
 |     Linkage = llvm::GlobalValue::InternalLinkage; | 
 |     // Note: -fwritable-strings doesn't make unicode CFStrings writable, but | 
 |     // does make plain ascii ones writable. | 
 |     isConstant = true; | 
 |   } else { | 
 |     Linkage = llvm::GlobalValue::PrivateLinkage; | 
 |     isConstant = !Features.WritableStrings; | 
 |   } | 
 |    | 
 |   llvm::GlobalVariable *GV = | 
 |     new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C, | 
 |                              ".str"); | 
 |   if (isUTF16) { | 
 |     CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy); | 
 |     GV->setAlignment(Align.getQuantity()); | 
 |   } | 
 |   Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2); | 
 |  | 
 |   // String length. | 
 |   Ty = getTypes().ConvertType(getContext().LongTy); | 
 |   Fields[3] = llvm::ConstantInt::get(Ty, StringLength); | 
 |  | 
 |   // The struct. | 
 |   C = llvm::ConstantStruct::get(STy, Fields); | 
 |   GV = new llvm::GlobalVariable(getModule(), C->getType(), true, | 
 |                                 llvm::GlobalVariable::PrivateLinkage, C, | 
 |                                 "_unnamed_cfstring_"); | 
 |   if (const char *Sect = getContext().Target.getCFStringSection()) | 
 |     GV->setSection(Sect); | 
 |   Entry.setValue(GV); | 
 |  | 
 |   return GV; | 
 | } | 
 |  | 
 | /// GetStringForStringLiteral - Return the appropriate bytes for a | 
 | /// string literal, properly padded to match the literal type. | 
 | std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) { | 
 |   const char *StrData = E->getStrData(); | 
 |   unsigned Len = E->getByteLength(); | 
 |  | 
 |   const ConstantArrayType *CAT = | 
 |     getContext().getAsConstantArrayType(E->getType()); | 
 |   assert(CAT && "String isn't pointer or array!"); | 
 |  | 
 |   // Resize the string to the right size. | 
 |   std::string Str(StrData, StrData+Len); | 
 |   uint64_t RealLen = CAT->getSize().getZExtValue(); | 
 |  | 
 |   if (E->isWide()) | 
 |     RealLen *= getContext().Target.getWCharWidth()/8; | 
 |  | 
 |   Str.resize(RealLen, '\0'); | 
 |  | 
 |   return Str; | 
 | } | 
 |  | 
 | /// GetAddrOfConstantStringFromLiteral - Return a pointer to a | 
 | /// constant array for the given string literal. | 
 | llvm::Constant * | 
 | CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) { | 
 |   // FIXME: This can be more efficient. | 
 |   // FIXME: We shouldn't need to bitcast the constant in the wide string case. | 
 |   llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S)); | 
 |   if (S->isWide()) { | 
 |     llvm::Type *DestTy = | 
 |         llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType())); | 
 |     C = llvm::ConstantExpr::getBitCast(C, DestTy); | 
 |   } | 
 |   return C; | 
 | } | 
 |  | 
 | /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant | 
 | /// array for the given ObjCEncodeExpr node. | 
 | llvm::Constant * | 
 | CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { | 
 |   std::string Str; | 
 |   getContext().getObjCEncodingForType(E->getEncodedType(), Str); | 
 |  | 
 |   return GetAddrOfConstantCString(Str); | 
 | } | 
 |  | 
 |  | 
 | /// GenerateWritableString -- Creates storage for a string literal. | 
 | static llvm::Constant *GenerateStringLiteral(const std::string &str, | 
 |                                              bool constant, | 
 |                                              CodeGenModule &CGM, | 
 |                                              const char *GlobalName) { | 
 |   // Create Constant for this string literal. Don't add a '\0'. | 
 |   llvm::Constant *C = | 
 |       llvm::ConstantArray::get(CGM.getLLVMContext(), str, false); | 
 |  | 
 |   // Create a global variable for this string | 
 |   return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant, | 
 |                                   llvm::GlobalValue::PrivateLinkage, | 
 |                                   C, GlobalName); | 
 | } | 
 |  | 
 | /// GetAddrOfConstantString - Returns a pointer to a character array | 
 | /// containing the literal. This contents are exactly that of the | 
 | /// given string, i.e. it will not be null terminated automatically; | 
 | /// see GetAddrOfConstantCString. Note that whether the result is | 
 | /// actually a pointer to an LLVM constant depends on | 
 | /// Feature.WriteableStrings. | 
 | /// | 
 | /// The result has pointer to array type. | 
 | llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str, | 
 |                                                        const char *GlobalName) { | 
 |   bool IsConstant = !Features.WritableStrings; | 
 |  | 
 |   // Get the default prefix if a name wasn't specified. | 
 |   if (!GlobalName) | 
 |     GlobalName = ".str"; | 
 |  | 
 |   // Don't share any string literals if strings aren't constant. | 
 |   if (!IsConstant) | 
 |     return GenerateStringLiteral(str, false, *this, GlobalName); | 
 |  | 
 |   llvm::StringMapEntry<llvm::Constant *> &Entry = | 
 |     ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]); | 
 |  | 
 |   if (Entry.getValue()) | 
 |     return Entry.getValue(); | 
 |  | 
 |   // Create a global variable for this. | 
 |   llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName); | 
 |   Entry.setValue(C); | 
 |   return C; | 
 | } | 
 |  | 
 | /// GetAddrOfConstantCString - Returns a pointer to a character | 
 | /// array containing the literal and a terminating '\-' | 
 | /// character. The result has pointer to array type. | 
 | llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str, | 
 |                                                         const char *GlobalName){ | 
 |   return GetAddrOfConstantString(str + '\0', GlobalName); | 
 | } | 
 |  | 
 | /// EmitObjCPropertyImplementations - Emit information for synthesized | 
 | /// properties for an implementation. | 
 | void CodeGenModule::EmitObjCPropertyImplementations(const | 
 |                                                     ObjCImplementationDecl *D) { | 
 |   for (ObjCImplementationDecl::propimpl_iterator | 
 |          i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) { | 
 |     ObjCPropertyImplDecl *PID = *i; | 
 |  | 
 |     // Dynamic is just for type-checking. | 
 |     if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { | 
 |       ObjCPropertyDecl *PD = PID->getPropertyDecl(); | 
 |  | 
 |       // Determine which methods need to be implemented, some may have | 
 |       // been overridden. Note that ::isSynthesized is not the method | 
 |       // we want, that just indicates if the decl came from a | 
 |       // property. What we want to know is if the method is defined in | 
 |       // this implementation. | 
 |       if (!D->getInstanceMethod(PD->getGetterName())) | 
 |         CodeGenFunction(*this).GenerateObjCGetter( | 
 |                                  const_cast<ObjCImplementationDecl *>(D), PID); | 
 |       if (!PD->isReadOnly() && | 
 |           !D->getInstanceMethod(PD->getSetterName())) | 
 |         CodeGenFunction(*this).GenerateObjCSetter( | 
 |                                  const_cast<ObjCImplementationDecl *>(D), PID); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | /// EmitNamespace - Emit all declarations in a namespace. | 
 | void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) { | 
 |   for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end(); | 
 |        I != E; ++I) | 
 |     EmitTopLevelDecl(*I); | 
 | } | 
 |  | 
 | // EmitLinkageSpec - Emit all declarations in a linkage spec. | 
 | void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { | 
 |   if (LSD->getLanguage() != LinkageSpecDecl::lang_c && | 
 |       LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { | 
 |     ErrorUnsupported(LSD, "linkage spec"); | 
 |     return; | 
 |   } | 
 |  | 
 |   for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end(); | 
 |        I != E; ++I) | 
 |     EmitTopLevelDecl(*I); | 
 | } | 
 |  | 
 | /// EmitTopLevelDecl - Emit code for a single top level declaration. | 
 | void CodeGenModule::EmitTopLevelDecl(Decl *D) { | 
 |   // If an error has occurred, stop code generation, but continue | 
 |   // parsing and semantic analysis (to ensure all warnings and errors | 
 |   // are emitted). | 
 |   if (Diags.hasErrorOccurred()) | 
 |     return; | 
 |  | 
 |   // Ignore dependent declarations. | 
 |   if (D->getDeclContext() && D->getDeclContext()->isDependentContext()) | 
 |     return; | 
 |  | 
 |   switch (D->getKind()) { | 
 |   case Decl::CXXConversion: | 
 |   case Decl::CXXMethod: | 
 |   case Decl::Function: | 
 |     // Skip function templates | 
 |     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) | 
 |       return; | 
 |  | 
 |     EmitGlobal(cast<FunctionDecl>(D)); | 
 |     break; | 
 |        | 
 |   case Decl::Var: | 
 |     EmitGlobal(cast<VarDecl>(D)); | 
 |     break; | 
 |  | 
 |   // C++ Decls | 
 |   case Decl::Namespace: | 
 |     EmitNamespace(cast<NamespaceDecl>(D)); | 
 |     break; | 
 |     // No code generation needed. | 
 |   case Decl::UsingShadow: | 
 |   case Decl::Using: | 
 |   case Decl::UsingDirective: | 
 |   case Decl::ClassTemplate: | 
 |   case Decl::FunctionTemplate: | 
 |   case Decl::NamespaceAlias: | 
 |     break; | 
 |   case Decl::CXXConstructor: | 
 |     // Skip function templates | 
 |     if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate()) | 
 |       return; | 
 |        | 
 |     EmitCXXConstructors(cast<CXXConstructorDecl>(D)); | 
 |     break; | 
 |   case Decl::CXXDestructor: | 
 |     EmitCXXDestructors(cast<CXXDestructorDecl>(D)); | 
 |     break; | 
 |  | 
 |   case Decl::StaticAssert: | 
 |     // Nothing to do. | 
 |     break; | 
 |  | 
 |   // Objective-C Decls | 
 |  | 
 |   // Forward declarations, no (immediate) code generation. | 
 |   case Decl::ObjCClass: | 
 |   case Decl::ObjCForwardProtocol: | 
 |   case Decl::ObjCCategory: | 
 |   case Decl::ObjCInterface: | 
 |     break; | 
 |  | 
 |   case Decl::ObjCProtocol: | 
 |     Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D)); | 
 |     break; | 
 |  | 
 |   case Decl::ObjCCategoryImpl: | 
 |     // Categories have properties but don't support synthesize so we | 
 |     // can ignore them here. | 
 |     Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); | 
 |     break; | 
 |  | 
 |   case Decl::ObjCImplementation: { | 
 |     ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D); | 
 |     EmitObjCPropertyImplementations(OMD); | 
 |     Runtime->GenerateClass(OMD); | 
 |     break; | 
 |   } | 
 |   case Decl::ObjCMethod: { | 
 |     ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D); | 
 |     // If this is not a prototype, emit the body. | 
 |     if (OMD->getBody()) | 
 |       CodeGenFunction(*this).GenerateObjCMethod(OMD); | 
 |     break; | 
 |   } | 
 |   case Decl::ObjCCompatibleAlias: | 
 |     // compatibility-alias is a directive and has no code gen. | 
 |     break; | 
 |  | 
 |   case Decl::LinkageSpec: | 
 |     EmitLinkageSpec(cast<LinkageSpecDecl>(D)); | 
 |     break; | 
 |  | 
 |   case Decl::FileScopeAsm: { | 
 |     FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D); | 
 |     llvm::StringRef AsmString = AD->getAsmString()->getString(); | 
 |  | 
 |     const std::string &S = getModule().getModuleInlineAsm(); | 
 |     if (S.empty()) | 
 |       getModule().setModuleInlineAsm(AsmString); | 
 |     else | 
 |       getModule().setModuleInlineAsm(S + '\n' + AsmString.str()); | 
 |     break; | 
 |   } | 
 |  | 
 |   default: | 
 |     // Make sure we handled everything we should, every other kind is a | 
 |     // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind | 
 |     // function. Need to recode Decl::Kind to do that easily. | 
 |     assert(isa<TypeDecl>(D) && "Unsupported decl kind"); | 
 |   } | 
 | } |