| //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Implements C++ name mangling according to the Itanium C++ ABI, |
| // which is used in GCC 3.2 and newer (and many compilers that are |
| // ABI-compatible with GCC): |
| // |
| // http://www.codesourcery.com/public/cxx-abi/abi.html |
| // |
| //===----------------------------------------------------------------------===// |
| #include "clang/AST/Mangle.h" |
| #include "clang/AST/ASTContext.h" |
| #include "clang/AST/Decl.h" |
| #include "clang/AST/DeclCXX.h" |
| #include "clang/AST/DeclObjC.h" |
| #include "clang/AST/DeclTemplate.h" |
| #include "clang/AST/ExprCXX.h" |
| #include "clang/AST/ExprObjC.h" |
| #include "clang/AST/TypeLoc.h" |
| #include "clang/Basic/ABI.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/Basic/TargetInfo.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Support/ErrorHandling.h" |
| |
| #define MANGLE_CHECKER 0 |
| |
| #if MANGLE_CHECKER |
| #include <cxxabi.h> |
| #endif |
| |
| using namespace clang; |
| |
| namespace { |
| |
| /// \brief Retrieve the declaration context that should be used when mangling |
| /// the given declaration. |
| static const DeclContext *getEffectiveDeclContext(const Decl *D) { |
| // The ABI assumes that lambda closure types that occur within |
| // default arguments live in the context of the function. However, due to |
| // the way in which Clang parses and creates function declarations, this is |
| // not the case: the lambda closure type ends up living in the context |
| // where the function itself resides, because the function declaration itself |
| // had not yet been created. Fix the context here. |
| if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) { |
| if (RD->isLambda()) |
| if (ParmVarDecl *ContextParam |
| = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) |
| return ContextParam->getDeclContext(); |
| } |
| |
| return D->getDeclContext(); |
| } |
| |
| static const DeclContext *getEffectiveParentContext(const DeclContext *DC) { |
| return getEffectiveDeclContext(cast<Decl>(DC)); |
| } |
| |
| static const CXXRecordDecl *GetLocalClassDecl(const NamedDecl *ND) { |
| const DeclContext *DC = dyn_cast<DeclContext>(ND); |
| if (!DC) |
| DC = getEffectiveDeclContext(ND); |
| while (!DC->isNamespace() && !DC->isTranslationUnit()) { |
| const DeclContext *Parent = getEffectiveDeclContext(cast<Decl>(DC)); |
| if (isa<FunctionDecl>(Parent)) |
| return dyn_cast<CXXRecordDecl>(DC); |
| DC = Parent; |
| } |
| return 0; |
| } |
| |
| static const FunctionDecl *getStructor(const FunctionDecl *fn) { |
| if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate()) |
| return ftd->getTemplatedDecl(); |
| |
| return fn; |
| } |
| |
| static const NamedDecl *getStructor(const NamedDecl *decl) { |
| const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl); |
| return (fn ? getStructor(fn) : decl); |
| } |
| |
| static const unsigned UnknownArity = ~0U; |
| |
| class ItaniumMangleContext : public MangleContext { |
| llvm::DenseMap<const TagDecl *, uint64_t> AnonStructIds; |
| unsigned Discriminator; |
| llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier; |
| |
| public: |
| explicit ItaniumMangleContext(ASTContext &Context, |
| DiagnosticsEngine &Diags) |
| : MangleContext(Context, Diags) { } |
| |
| uint64_t getAnonymousStructId(const TagDecl *TD) { |
| std::pair<llvm::DenseMap<const TagDecl *, |
| uint64_t>::iterator, bool> Result = |
| AnonStructIds.insert(std::make_pair(TD, AnonStructIds.size())); |
| return Result.first->second; |
| } |
| |
| void startNewFunction() { |
| MangleContext::startNewFunction(); |
| mangleInitDiscriminator(); |
| } |
| |
| /// @name Mangler Entry Points |
| /// @{ |
| |
| bool shouldMangleDeclName(const NamedDecl *D); |
| void mangleName(const NamedDecl *D, raw_ostream &); |
| void mangleThunk(const CXXMethodDecl *MD, |
| const ThunkInfo &Thunk, |
| raw_ostream &); |
| void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type, |
| const ThisAdjustment &ThisAdjustment, |
| raw_ostream &); |
| void mangleReferenceTemporary(const VarDecl *D, |
| raw_ostream &); |
| void mangleCXXVTable(const CXXRecordDecl *RD, |
| raw_ostream &); |
| void mangleCXXVTT(const CXXRecordDecl *RD, |
| raw_ostream &); |
| void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset, |
| const CXXRecordDecl *Type, |
| raw_ostream &); |
| void mangleCXXRTTI(QualType T, raw_ostream &); |
| void mangleCXXRTTIName(QualType T, raw_ostream &); |
| void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type, |
| raw_ostream &); |
| void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type, |
| raw_ostream &); |
| |
| void mangleItaniumGuardVariable(const VarDecl *D, raw_ostream &); |
| |
| void mangleInitDiscriminator() { |
| Discriminator = 0; |
| } |
| |
| bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) { |
| // Lambda closure types with external linkage (indicated by a |
| // non-zero lambda mangling number) have their own numbering scheme, so |
| // they do not need a discriminator. |
| if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND)) |
| if (RD->isLambda() && RD->getLambdaManglingNumber() > 0) |
| return false; |
| |
| unsigned &discriminator = Uniquifier[ND]; |
| if (!discriminator) |
| discriminator = ++Discriminator; |
| if (discriminator == 1) |
| return false; |
| disc = discriminator-2; |
| return true; |
| } |
| /// @} |
| }; |
| |
| /// CXXNameMangler - Manage the mangling of a single name. |
| class CXXNameMangler { |
| ItaniumMangleContext &Context; |
| raw_ostream &Out; |
| |
| /// The "structor" is the top-level declaration being mangled, if |
| /// that's not a template specialization; otherwise it's the pattern |
| /// for that specialization. |
| const NamedDecl *Structor; |
| unsigned StructorType; |
| |
| /// SeqID - The next subsitution sequence number. |
| unsigned SeqID; |
| |
| class FunctionTypeDepthState { |
| unsigned Bits; |
| |
| enum { InResultTypeMask = 1 }; |
| |
| public: |
| FunctionTypeDepthState() : Bits(0) {} |
| |
| /// The number of function types we're inside. |
| unsigned getDepth() const { |
| return Bits >> 1; |
| } |
| |
| /// True if we're in the return type of the innermost function type. |
| bool isInResultType() const { |
| return Bits & InResultTypeMask; |
| } |
| |
| FunctionTypeDepthState push() { |
| FunctionTypeDepthState tmp = *this; |
| Bits = (Bits & ~InResultTypeMask) + 2; |
| return tmp; |
| } |
| |
| void enterResultType() { |
| Bits |= InResultTypeMask; |
| } |
| |
| void leaveResultType() { |
| Bits &= ~InResultTypeMask; |
| } |
| |
| void pop(FunctionTypeDepthState saved) { |
| assert(getDepth() == saved.getDepth() + 1); |
| Bits = saved.Bits; |
| } |
| |
| } FunctionTypeDepth; |
| |
| llvm::DenseMap<uintptr_t, unsigned> Substitutions; |
| |
| ASTContext &getASTContext() const { return Context.getASTContext(); } |
| |
| public: |
| CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_, |
| const NamedDecl *D = 0) |
| : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0), |
| SeqID(0) { |
| // These can't be mangled without a ctor type or dtor type. |
| assert(!D || (!isa<CXXDestructorDecl>(D) && |
| !isa<CXXConstructorDecl>(D))); |
| } |
| CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_, |
| const CXXConstructorDecl *D, CXXCtorType Type) |
| : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), |
| SeqID(0) { } |
| CXXNameMangler(ItaniumMangleContext &C, raw_ostream &Out_, |
| const CXXDestructorDecl *D, CXXDtorType Type) |
| : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type), |
| SeqID(0) { } |
| |
| #if MANGLE_CHECKER |
| ~CXXNameMangler() { |
| if (Out.str()[0] == '\01') |
| return; |
| |
| int status = 0; |
| char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status); |
| assert(status == 0 && "Could not demangle mangled name!"); |
| free(result); |
| } |
| #endif |
| raw_ostream &getStream() { return Out; } |
| |
| void mangle(const NamedDecl *D, StringRef Prefix = "_Z"); |
| void mangleCallOffset(int64_t NonVirtual, int64_t Virtual); |
| void mangleNumber(const llvm::APSInt &I); |
| void mangleNumber(int64_t Number); |
| void mangleFloat(const llvm::APFloat &F); |
| void mangleFunctionEncoding(const FunctionDecl *FD); |
| void mangleName(const NamedDecl *ND); |
| void mangleType(QualType T); |
| void mangleNameOrStandardSubstitution(const NamedDecl *ND); |
| |
| private: |
| bool mangleSubstitution(const NamedDecl *ND); |
| bool mangleSubstitution(QualType T); |
| bool mangleSubstitution(TemplateName Template); |
| bool mangleSubstitution(uintptr_t Ptr); |
| |
| void mangleExistingSubstitution(QualType type); |
| void mangleExistingSubstitution(TemplateName name); |
| |
| bool mangleStandardSubstitution(const NamedDecl *ND); |
| |
| void addSubstitution(const NamedDecl *ND) { |
| ND = cast<NamedDecl>(ND->getCanonicalDecl()); |
| |
| addSubstitution(reinterpret_cast<uintptr_t>(ND)); |
| } |
| void addSubstitution(QualType T); |
| void addSubstitution(TemplateName Template); |
| void addSubstitution(uintptr_t Ptr); |
| |
| void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, |
| NamedDecl *firstQualifierLookup, |
| bool recursive = false); |
| void mangleUnresolvedName(NestedNameSpecifier *qualifier, |
| NamedDecl *firstQualifierLookup, |
| DeclarationName name, |
| unsigned KnownArity = UnknownArity); |
| |
| void mangleName(const TemplateDecl *TD, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs); |
| void mangleUnqualifiedName(const NamedDecl *ND) { |
| mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity); |
| } |
| void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name, |
| unsigned KnownArity); |
| void mangleUnscopedName(const NamedDecl *ND); |
| void mangleUnscopedTemplateName(const TemplateDecl *ND); |
| void mangleUnscopedTemplateName(TemplateName); |
| void mangleSourceName(const IdentifierInfo *II); |
| void mangleLocalName(const NamedDecl *ND); |
| void mangleLambda(const CXXRecordDecl *Lambda); |
| void mangleNestedName(const NamedDecl *ND, const DeclContext *DC, |
| bool NoFunction=false); |
| void mangleNestedName(const TemplateDecl *TD, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs); |
| void manglePrefix(NestedNameSpecifier *qualifier); |
| void manglePrefix(const DeclContext *DC, bool NoFunction=false); |
| void manglePrefix(QualType type); |
| void mangleTemplatePrefix(const TemplateDecl *ND); |
| void mangleTemplatePrefix(TemplateName Template); |
| void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity); |
| void mangleQualifiers(Qualifiers Quals); |
| void mangleRefQualifier(RefQualifierKind RefQualifier); |
| |
| void mangleObjCMethodName(const ObjCMethodDecl *MD); |
| |
| // Declare manglers for every type class. |
| #define ABSTRACT_TYPE(CLASS, PARENT) |
| #define NON_CANONICAL_TYPE(CLASS, PARENT) |
| #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T); |
| #include "clang/AST/TypeNodes.def" |
| |
| void mangleType(const TagType*); |
| void mangleType(TemplateName); |
| void mangleBareFunctionType(const FunctionType *T, |
| bool MangleReturnType); |
| void mangleNeonVectorType(const VectorType *T); |
| |
| void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value); |
| void mangleMemberExpr(const Expr *base, bool isArrow, |
| NestedNameSpecifier *qualifier, |
| NamedDecl *firstQualifierLookup, |
| DeclarationName name, |
| unsigned knownArity); |
| void mangleExpression(const Expr *E, unsigned Arity = UnknownArity); |
| void mangleCXXCtorType(CXXCtorType T); |
| void mangleCXXDtorType(CXXDtorType T); |
| |
| void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs); |
| void mangleTemplateArgs(TemplateName Template, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs); |
| void mangleTemplateArgs(const TemplateParameterList &PL, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs); |
| void mangleTemplateArgs(const TemplateParameterList &PL, |
| const TemplateArgumentList &AL); |
| void mangleTemplateArg(const NamedDecl *P, TemplateArgument A); |
| void mangleUnresolvedTemplateArgs(const TemplateArgument *args, |
| unsigned numArgs); |
| |
| void mangleTemplateParameter(unsigned Index); |
| |
| void mangleFunctionParam(const ParmVarDecl *parm); |
| }; |
| |
| } |
| |
| static bool isInCLinkageSpecification(const Decl *D) { |
| D = D->getCanonicalDecl(); |
| for (const DeclContext *DC = getEffectiveDeclContext(D); |
| !DC->isTranslationUnit(); DC = getEffectiveParentContext(DC)) { |
| if (const LinkageSpecDecl *Linkage = dyn_cast<LinkageSpecDecl>(DC)) |
| return Linkage->getLanguage() == LinkageSpecDecl::lang_c; |
| } |
| |
| return false; |
| } |
| |
| bool ItaniumMangleContext::shouldMangleDeclName(const NamedDecl *D) { |
| // In C, functions with no attributes never need to be mangled. Fastpath them. |
| if (!getASTContext().getLangOpts().CPlusPlus && !D->hasAttrs()) |
| return false; |
| |
| // Any decl can be declared with __asm("foo") on it, and this takes precedence |
| // over all other naming in the .o file. |
| if (D->hasAttr<AsmLabelAttr>()) |
| return true; |
| |
| // Clang's "overloadable" attribute extension to C/C++ implies name mangling |
| // (always) as does passing a C++ member function and a function |
| // whose name is not a simple identifier. |
| const FunctionDecl *FD = dyn_cast<FunctionDecl>(D); |
| if (FD && (FD->hasAttr<OverloadableAttr>() || isa<CXXMethodDecl>(FD) || |
| !FD->getDeclName().isIdentifier())) |
| return true; |
| |
| // Otherwise, no mangling is done outside C++ mode. |
| if (!getASTContext().getLangOpts().CPlusPlus) |
| return false; |
| |
| // Variables at global scope with non-internal linkage are not mangled |
| if (!FD) { |
| const DeclContext *DC = getEffectiveDeclContext(D); |
| // Check for extern variable declared locally. |
| if (DC->isFunctionOrMethod() && D->hasLinkage()) |
| while (!DC->isNamespace() && !DC->isTranslationUnit()) |
| DC = getEffectiveParentContext(DC); |
| if (DC->isTranslationUnit() && D->getLinkage() != InternalLinkage) |
| return false; |
| } |
| |
| // Class members are always mangled. |
| if (getEffectiveDeclContext(D)->isRecord()) |
| return true; |
| |
| // C functions and "main" are not mangled. |
| if ((FD && FD->isMain()) || isInCLinkageSpecification(D)) |
| return false; |
| |
| return true; |
| } |
| |
| void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) { |
| // Any decl can be declared with __asm("foo") on it, and this takes precedence |
| // over all other naming in the .o file. |
| if (const AsmLabelAttr *ALA = D->getAttr<AsmLabelAttr>()) { |
| // If we have an asm name, then we use it as the mangling. |
| |
| // Adding the prefix can cause problems when one file has a "foo" and |
| // another has a "\01foo". That is known to happen on ELF with the |
| // tricks normally used for producing aliases (PR9177). Fortunately the |
| // llvm mangler on ELF is a nop, so we can just avoid adding the \01 |
| // marker. We also avoid adding the marker if this is an alias for an |
| // LLVM intrinsic. |
| StringRef UserLabelPrefix = |
| getASTContext().getTargetInfo().getUserLabelPrefix(); |
| if (!UserLabelPrefix.empty() && !ALA->getLabel().startswith("llvm.")) |
| Out << '\01'; // LLVM IR Marker for __asm("foo") |
| |
| Out << ALA->getLabel(); |
| return; |
| } |
| |
| // <mangled-name> ::= _Z <encoding> |
| // ::= <data name> |
| // ::= <special-name> |
| Out << Prefix; |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) |
| mangleFunctionEncoding(FD); |
| else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
| mangleName(VD); |
| else |
| mangleName(cast<FieldDecl>(D)); |
| } |
| |
| void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) { |
| // <encoding> ::= <function name> <bare-function-type> |
| mangleName(FD); |
| |
| // Don't mangle in the type if this isn't a decl we should typically mangle. |
| if (!Context.shouldMangleDeclName(FD)) |
| return; |
| |
| // Whether the mangling of a function type includes the return type depends on |
| // the context and the nature of the function. The rules for deciding whether |
| // the return type is included are: |
| // |
| // 1. Template functions (names or types) have return types encoded, with |
| // the exceptions listed below. |
| // 2. Function types not appearing as part of a function name mangling, |
| // e.g. parameters, pointer types, etc., have return type encoded, with the |
| // exceptions listed below. |
| // 3. Non-template function names do not have return types encoded. |
| // |
| // The exceptions mentioned in (1) and (2) above, for which the return type is |
| // never included, are |
| // 1. Constructors. |
| // 2. Destructors. |
| // 3. Conversion operator functions, e.g. operator int. |
| bool MangleReturnType = false; |
| if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) { |
| if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) || |
| isa<CXXConversionDecl>(FD))) |
| MangleReturnType = true; |
| |
| // Mangle the type of the primary template. |
| FD = PrimaryTemplate->getTemplatedDecl(); |
| } |
| |
| mangleBareFunctionType(FD->getType()->getAs<FunctionType>(), |
| MangleReturnType); |
| } |
| |
| static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) { |
| while (isa<LinkageSpecDecl>(DC)) { |
| DC = getEffectiveParentContext(DC); |
| } |
| |
| return DC; |
| } |
| |
| /// isStd - Return whether a given namespace is the 'std' namespace. |
| static bool isStd(const NamespaceDecl *NS) { |
| if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS)) |
| ->isTranslationUnit()) |
| return false; |
| |
| const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier(); |
| return II && II->isStr("std"); |
| } |
| |
| // isStdNamespace - Return whether a given decl context is a toplevel 'std' |
| // namespace. |
| static bool isStdNamespace(const DeclContext *DC) { |
| if (!DC->isNamespace()) |
| return false; |
| |
| return isStd(cast<NamespaceDecl>(DC)); |
| } |
| |
| static const TemplateDecl * |
| isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) { |
| // Check if we have a function template. |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){ |
| if (const TemplateDecl *TD = FD->getPrimaryTemplate()) { |
| TemplateArgs = FD->getTemplateSpecializationArgs(); |
| return TD; |
| } |
| } |
| |
| // Check if we have a class template. |
| if (const ClassTemplateSpecializationDecl *Spec = |
| dyn_cast<ClassTemplateSpecializationDecl>(ND)) { |
| TemplateArgs = &Spec->getTemplateArgs(); |
| return Spec->getSpecializedTemplate(); |
| } |
| |
| return 0; |
| } |
| |
| static bool isLambda(const NamedDecl *ND) { |
| const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND); |
| if (!Record) |
| return false; |
| |
| return Record->isLambda(); |
| } |
| |
| void CXXNameMangler::mangleName(const NamedDecl *ND) { |
| // <name> ::= <nested-name> |
| // ::= <unscoped-name> |
| // ::= <unscoped-template-name> <template-args> |
| // ::= <local-name> |
| // |
| const DeclContext *DC = getEffectiveDeclContext(ND); |
| |
| // If this is an extern variable declared locally, the relevant DeclContext |
| // is that of the containing namespace, or the translation unit. |
| // FIXME: This is a hack; extern variables declared locally should have |
| // a proper semantic declaration context! |
| if (isa<FunctionDecl>(DC) && ND->hasLinkage() && !isLambda(ND)) |
| while (!DC->isNamespace() && !DC->isTranslationUnit()) |
| DC = getEffectiveParentContext(DC); |
| else if (GetLocalClassDecl(ND)) { |
| mangleLocalName(ND); |
| return; |
| } |
| |
| DC = IgnoreLinkageSpecDecls(DC); |
| |
| if (DC->isTranslationUnit() || isStdNamespace(DC)) { |
| // Check if we have a template. |
| const TemplateArgumentList *TemplateArgs = 0; |
| if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { |
| mangleUnscopedTemplateName(TD); |
| TemplateParameterList *TemplateParameters = TD->getTemplateParameters(); |
| mangleTemplateArgs(*TemplateParameters, *TemplateArgs); |
| return; |
| } |
| |
| mangleUnscopedName(ND); |
| return; |
| } |
| |
| if (isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC)) { |
| mangleLocalName(ND); |
| return; |
| } |
| |
| mangleNestedName(ND, DC); |
| } |
| void CXXNameMangler::mangleName(const TemplateDecl *TD, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs) { |
| const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD)); |
| |
| if (DC->isTranslationUnit() || isStdNamespace(DC)) { |
| mangleUnscopedTemplateName(TD); |
| TemplateParameterList *TemplateParameters = TD->getTemplateParameters(); |
| mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs); |
| } else { |
| mangleNestedName(TD, TemplateArgs, NumTemplateArgs); |
| } |
| } |
| |
| void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) { |
| // <unscoped-name> ::= <unqualified-name> |
| // ::= St <unqualified-name> # ::std:: |
| |
| if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND)))) |
| Out << "St"; |
| |
| mangleUnqualifiedName(ND); |
| } |
| |
| void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) { |
| // <unscoped-template-name> ::= <unscoped-name> |
| // ::= <substitution> |
| if (mangleSubstitution(ND)) |
| return; |
| |
| // <template-template-param> ::= <template-param> |
| if (const TemplateTemplateParmDecl *TTP |
| = dyn_cast<TemplateTemplateParmDecl>(ND)) { |
| mangleTemplateParameter(TTP->getIndex()); |
| return; |
| } |
| |
| mangleUnscopedName(ND->getTemplatedDecl()); |
| addSubstitution(ND); |
| } |
| |
| void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) { |
| // <unscoped-template-name> ::= <unscoped-name> |
| // ::= <substitution> |
| if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
| return mangleUnscopedTemplateName(TD); |
| |
| if (mangleSubstitution(Template)) |
| return; |
| |
| DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); |
| assert(Dependent && "Not a dependent template name?"); |
| if (const IdentifierInfo *Id = Dependent->getIdentifier()) |
| mangleSourceName(Id); |
| else |
| mangleOperatorName(Dependent->getOperator(), UnknownArity); |
| |
| addSubstitution(Template); |
| } |
| |
| void CXXNameMangler::mangleFloat(const llvm::APFloat &f) { |
| // ABI: |
| // Floating-point literals are encoded using a fixed-length |
| // lowercase hexadecimal string corresponding to the internal |
| // representation (IEEE on Itanium), high-order bytes first, |
| // without leading zeroes. For example: "Lf bf800000 E" is -1.0f |
| // on Itanium. |
| // The 'without leading zeroes' thing seems to be an editorial |
| // mistake; see the discussion on cxx-abi-dev beginning on |
| // 2012-01-16. |
| |
| // Our requirements here are just barely weird enough to justify |
| // using a custom algorithm instead of post-processing APInt::toString(). |
| |
| llvm::APInt valueBits = f.bitcastToAPInt(); |
| unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4; |
| assert(numCharacters != 0); |
| |
| // Allocate a buffer of the right number of characters. |
| llvm::SmallVector<char, 20> buffer; |
| buffer.set_size(numCharacters); |
| |
| // Fill the buffer left-to-right. |
| for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) { |
| // The bit-index of the next hex digit. |
| unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1); |
| |
| // Project out 4 bits starting at 'digitIndex'. |
| llvm::integerPart hexDigit |
| = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth]; |
| hexDigit >>= (digitBitIndex % llvm::integerPartWidth); |
| hexDigit &= 0xF; |
| |
| // Map that over to a lowercase hex digit. |
| static const char charForHex[16] = { |
| '0', '1', '2', '3', '4', '5', '6', '7', |
| '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' |
| }; |
| buffer[stringIndex] = charForHex[hexDigit]; |
| } |
| |
| Out.write(buffer.data(), numCharacters); |
| } |
| |
| void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) { |
| if (Value.isSigned() && Value.isNegative()) { |
| Out << 'n'; |
| Value.abs().print(Out, true); |
| } else |
| Value.print(Out, Value.isSigned()); |
| } |
| |
| void CXXNameMangler::mangleNumber(int64_t Number) { |
| // <number> ::= [n] <non-negative decimal integer> |
| if (Number < 0) { |
| Out << 'n'; |
| Number = -Number; |
| } |
| |
| Out << Number; |
| } |
| |
| void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) { |
| // <call-offset> ::= h <nv-offset> _ |
| // ::= v <v-offset> _ |
| // <nv-offset> ::= <offset number> # non-virtual base override |
| // <v-offset> ::= <offset number> _ <virtual offset number> |
| // # virtual base override, with vcall offset |
| if (!Virtual) { |
| Out << 'h'; |
| mangleNumber(NonVirtual); |
| Out << '_'; |
| return; |
| } |
| |
| Out << 'v'; |
| mangleNumber(NonVirtual); |
| Out << '_'; |
| mangleNumber(Virtual); |
| Out << '_'; |
| } |
| |
| void CXXNameMangler::manglePrefix(QualType type) { |
| if (const TemplateSpecializationType *TST = |
| type->getAs<TemplateSpecializationType>()) { |
| if (!mangleSubstitution(QualType(TST, 0))) { |
| mangleTemplatePrefix(TST->getTemplateName()); |
| |
| // FIXME: GCC does not appear to mangle the template arguments when |
| // the template in question is a dependent template name. Should we |
| // emulate that badness? |
| mangleTemplateArgs(TST->getTemplateName(), TST->getArgs(), |
| TST->getNumArgs()); |
| addSubstitution(QualType(TST, 0)); |
| } |
| } else if (const DependentTemplateSpecializationType *DTST |
| = type->getAs<DependentTemplateSpecializationType>()) { |
| TemplateName Template |
| = getASTContext().getDependentTemplateName(DTST->getQualifier(), |
| DTST->getIdentifier()); |
| mangleTemplatePrefix(Template); |
| |
| // FIXME: GCC does not appear to mangle the template arguments when |
| // the template in question is a dependent template name. Should we |
| // emulate that badness? |
| mangleTemplateArgs(Template, DTST->getArgs(), DTST->getNumArgs()); |
| } else { |
| // We use the QualType mangle type variant here because it handles |
| // substitutions. |
| mangleType(type); |
| } |
| } |
| |
| /// Mangle everything prior to the base-unresolved-name in an unresolved-name. |
| /// |
| /// \param firstQualifierLookup - the entity found by unqualified lookup |
| /// for the first name in the qualifier, if this is for a member expression |
| /// \param recursive - true if this is being called recursively, |
| /// i.e. if there is more prefix "to the right". |
| void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier, |
| NamedDecl *firstQualifierLookup, |
| bool recursive) { |
| |
| // x, ::x |
| // <unresolved-name> ::= [gs] <base-unresolved-name> |
| |
| // T::x / decltype(p)::x |
| // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name> |
| |
| // T::N::x /decltype(p)::N::x |
| // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E |
| // <base-unresolved-name> |
| |
| // A::x, N::y, A<T>::z; "gs" means leading "::" |
| // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E |
| // <base-unresolved-name> |
| |
| switch (qualifier->getKind()) { |
| case NestedNameSpecifier::Global: |
| Out << "gs"; |
| |
| // We want an 'sr' unless this is the entire NNS. |
| if (recursive) |
| Out << "sr"; |
| |
| // We never want an 'E' here. |
| return; |
| |
| case NestedNameSpecifier::Namespace: |
| if (qualifier->getPrefix()) |
| mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, |
| /*recursive*/ true); |
| else |
| Out << "sr"; |
| mangleSourceName(qualifier->getAsNamespace()->getIdentifier()); |
| break; |
| case NestedNameSpecifier::NamespaceAlias: |
| if (qualifier->getPrefix()) |
| mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, |
| /*recursive*/ true); |
| else |
| Out << "sr"; |
| mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier()); |
| break; |
| |
| case NestedNameSpecifier::TypeSpec: |
| case NestedNameSpecifier::TypeSpecWithTemplate: { |
| const Type *type = qualifier->getAsType(); |
| |
| // We only want to use an unresolved-type encoding if this is one of: |
| // - a decltype |
| // - a template type parameter |
| // - a template template parameter with arguments |
| // In all of these cases, we should have no prefix. |
| if (qualifier->getPrefix()) { |
| mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, |
| /*recursive*/ true); |
| } else { |
| // Otherwise, all the cases want this. |
| Out << "sr"; |
| } |
| |
| // Only certain other types are valid as prefixes; enumerate them. |
| switch (type->getTypeClass()) { |
| case Type::Builtin: |
| case Type::Complex: |
| case Type::Pointer: |
| case Type::BlockPointer: |
| case Type::LValueReference: |
| case Type::RValueReference: |
| case Type::MemberPointer: |
| case Type::ConstantArray: |
| case Type::IncompleteArray: |
| case Type::VariableArray: |
| case Type::DependentSizedArray: |
| case Type::DependentSizedExtVector: |
| case Type::Vector: |
| case Type::ExtVector: |
| case Type::FunctionProto: |
| case Type::FunctionNoProto: |
| case Type::Enum: |
| case Type::Paren: |
| case Type::Elaborated: |
| case Type::Attributed: |
| case Type::Auto: |
| case Type::PackExpansion: |
| case Type::ObjCObject: |
| case Type::ObjCInterface: |
| case Type::ObjCObjectPointer: |
| case Type::Atomic: |
| llvm_unreachable("type is illegal as a nested name specifier"); |
| |
| case Type::SubstTemplateTypeParmPack: |
| // FIXME: not clear how to mangle this! |
| // template <class T...> class A { |
| // template <class U...> void foo(decltype(T::foo(U())) x...); |
| // }; |
| Out << "_SUBSTPACK_"; |
| break; |
| |
| // <unresolved-type> ::= <template-param> |
| // ::= <decltype> |
| // ::= <template-template-param> <template-args> |
| // (this last is not official yet) |
| case Type::TypeOfExpr: |
| case Type::TypeOf: |
| case Type::Decltype: |
| case Type::TemplateTypeParm: |
| case Type::UnaryTransform: |
| case Type::SubstTemplateTypeParm: |
| unresolvedType: |
| assert(!qualifier->getPrefix()); |
| |
| // We only get here recursively if we're followed by identifiers. |
| if (recursive) Out << 'N'; |
| |
| // This seems to do everything we want. It's not really |
| // sanctioned for a substituted template parameter, though. |
| mangleType(QualType(type, 0)); |
| |
| // We never want to print 'E' directly after an unresolved-type, |
| // so we return directly. |
| return; |
| |
| case Type::Typedef: |
| mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier()); |
| break; |
| |
| case Type::UnresolvedUsing: |
| mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl() |
| ->getIdentifier()); |
| break; |
| |
| case Type::Record: |
| mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier()); |
| break; |
| |
| case Type::TemplateSpecialization: { |
| const TemplateSpecializationType *tst |
| = cast<TemplateSpecializationType>(type); |
| TemplateName name = tst->getTemplateName(); |
| switch (name.getKind()) { |
| case TemplateName::Template: |
| case TemplateName::QualifiedTemplate: { |
| TemplateDecl *temp = name.getAsTemplateDecl(); |
| |
| // If the base is a template template parameter, this is an |
| // unresolved type. |
| assert(temp && "no template for template specialization type"); |
| if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType; |
| |
| mangleSourceName(temp->getIdentifier()); |
| break; |
| } |
| |
| case TemplateName::OverloadedTemplate: |
| case TemplateName::DependentTemplate: |
| llvm_unreachable("invalid base for a template specialization type"); |
| |
| case TemplateName::SubstTemplateTemplateParm: { |
| SubstTemplateTemplateParmStorage *subst |
| = name.getAsSubstTemplateTemplateParm(); |
| mangleExistingSubstitution(subst->getReplacement()); |
| break; |
| } |
| |
| case TemplateName::SubstTemplateTemplateParmPack: { |
| // FIXME: not clear how to mangle this! |
| // template <template <class U> class T...> class A { |
| // template <class U...> void foo(decltype(T<U>::foo) x...); |
| // }; |
| Out << "_SUBSTPACK_"; |
| break; |
| } |
| } |
| |
| mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs()); |
| break; |
| } |
| |
| case Type::InjectedClassName: |
| mangleSourceName(cast<InjectedClassNameType>(type)->getDecl() |
| ->getIdentifier()); |
| break; |
| |
| case Type::DependentName: |
| mangleSourceName(cast<DependentNameType>(type)->getIdentifier()); |
| break; |
| |
| case Type::DependentTemplateSpecialization: { |
| const DependentTemplateSpecializationType *tst |
| = cast<DependentTemplateSpecializationType>(type); |
| mangleSourceName(tst->getIdentifier()); |
| mangleUnresolvedTemplateArgs(tst->getArgs(), tst->getNumArgs()); |
| break; |
| } |
| } |
| break; |
| } |
| |
| case NestedNameSpecifier::Identifier: |
| // Member expressions can have these without prefixes. |
| if (qualifier->getPrefix()) { |
| mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup, |
| /*recursive*/ true); |
| } else if (firstQualifierLookup) { |
| |
| // Try to make a proper qualifier out of the lookup result, and |
| // then just recurse on that. |
| NestedNameSpecifier *newQualifier; |
| if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) { |
| QualType type = getASTContext().getTypeDeclType(typeDecl); |
| |
| // Pretend we had a different nested name specifier. |
| newQualifier = NestedNameSpecifier::Create(getASTContext(), |
| /*prefix*/ 0, |
| /*template*/ false, |
| type.getTypePtr()); |
| } else if (NamespaceDecl *nspace = |
| dyn_cast<NamespaceDecl>(firstQualifierLookup)) { |
| newQualifier = NestedNameSpecifier::Create(getASTContext(), |
| /*prefix*/ 0, |
| nspace); |
| } else if (NamespaceAliasDecl *alias = |
| dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) { |
| newQualifier = NestedNameSpecifier::Create(getASTContext(), |
| /*prefix*/ 0, |
| alias); |
| } else { |
| // No sensible mangling to do here. |
| newQualifier = 0; |
| } |
| |
| if (newQualifier) |
| return mangleUnresolvedPrefix(newQualifier, /*lookup*/ 0, recursive); |
| |
| } else { |
| Out << "sr"; |
| } |
| |
| mangleSourceName(qualifier->getAsIdentifier()); |
| break; |
| } |
| |
| // If this was the innermost part of the NNS, and we fell out to |
| // here, append an 'E'. |
| if (!recursive) |
| Out << 'E'; |
| } |
| |
| /// Mangle an unresolved-name, which is generally used for names which |
| /// weren't resolved to specific entities. |
| void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier, |
| NamedDecl *firstQualifierLookup, |
| DeclarationName name, |
| unsigned knownArity) { |
| if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup); |
| mangleUnqualifiedName(0, name, knownArity); |
| } |
| |
| static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) { |
| assert(RD->isAnonymousStructOrUnion() && |
| "Expected anonymous struct or union!"); |
| |
| for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end(); |
| I != E; ++I) { |
| if (I->getIdentifier()) |
| return *I; |
| |
| if (const RecordType *RT = I->getType()->getAs<RecordType>()) |
| if (const FieldDecl *NamedDataMember = |
| FindFirstNamedDataMember(RT->getDecl())) |
| return NamedDataMember; |
| } |
| |
| // We didn't find a named data member. |
| return 0; |
| } |
| |
| void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND, |
| DeclarationName Name, |
| unsigned KnownArity) { |
| // <unqualified-name> ::= <operator-name> |
| // ::= <ctor-dtor-name> |
| // ::= <source-name> |
| switch (Name.getNameKind()) { |
| case DeclarationName::Identifier: { |
| if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) { |
| // We must avoid conflicts between internally- and externally- |
| // linked variable and function declaration names in the same TU: |
| // void test() { extern void foo(); } |
| // static void foo(); |
| // This naming convention is the same as that followed by GCC, |
| // though it shouldn't actually matter. |
| if (ND && ND->getLinkage() == InternalLinkage && |
| getEffectiveDeclContext(ND)->isFileContext()) |
| Out << 'L'; |
| |
| mangleSourceName(II); |
| break; |
| } |
| |
| // Otherwise, an anonymous entity. We must have a declaration. |
| assert(ND && "mangling empty name without declaration"); |
| |
| if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { |
| if (NS->isAnonymousNamespace()) { |
| // This is how gcc mangles these names. |
| Out << "12_GLOBAL__N_1"; |
| break; |
| } |
| } |
| |
| if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) { |
| // We must have an anonymous union or struct declaration. |
| const RecordDecl *RD = |
| cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl()); |
| |
| // Itanium C++ ABI 5.1.2: |
| // |
| // For the purposes of mangling, the name of an anonymous union is |
| // considered to be the name of the first named data member found by a |
| // pre-order, depth-first, declaration-order walk of the data members of |
| // the anonymous union. If there is no such data member (i.e., if all of |
| // the data members in the union are unnamed), then there is no way for |
| // a program to refer to the anonymous union, and there is therefore no |
| // need to mangle its name. |
| const FieldDecl *FD = FindFirstNamedDataMember(RD); |
| |
| // It's actually possible for various reasons for us to get here |
| // with an empty anonymous struct / union. Fortunately, it |
| // doesn't really matter what name we generate. |
| if (!FD) break; |
| assert(FD->getIdentifier() && "Data member name isn't an identifier!"); |
| |
| mangleSourceName(FD->getIdentifier()); |
| break; |
| } |
| |
| // We must have an anonymous struct. |
| const TagDecl *TD = cast<TagDecl>(ND); |
| if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) { |
| assert(TD->getDeclContext() == D->getDeclContext() && |
| "Typedef should not be in another decl context!"); |
| assert(D->getDeclName().getAsIdentifierInfo() && |
| "Typedef was not named!"); |
| mangleSourceName(D->getDeclName().getAsIdentifierInfo()); |
| break; |
| } |
| |
| // <unnamed-type-name> ::= <closure-type-name> |
| // |
| // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _ |
| // <lambda-sig> ::= <parameter-type>+ # Parameter types or 'v' for 'void'. |
| if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) { |
| if (Record->isLambda() && Record->getLambdaManglingNumber()) { |
| mangleLambda(Record); |
| break; |
| } |
| } |
| |
| // Get a unique id for the anonymous struct. |
| uint64_t AnonStructId = Context.getAnonymousStructId(TD); |
| |
| // Mangle it as a source name in the form |
| // [n] $_<id> |
| // where n is the length of the string. |
| SmallString<8> Str; |
| Str += "$_"; |
| Str += llvm::utostr(AnonStructId); |
| |
| Out << Str.size(); |
| Out << Str.str(); |
| break; |
| } |
| |
| case DeclarationName::ObjCZeroArgSelector: |
| case DeclarationName::ObjCOneArgSelector: |
| case DeclarationName::ObjCMultiArgSelector: |
| llvm_unreachable("Can't mangle Objective-C selector names here!"); |
| |
| case DeclarationName::CXXConstructorName: |
| if (ND == Structor) |
| // If the named decl is the C++ constructor we're mangling, use the type |
| // we were given. |
| mangleCXXCtorType(static_cast<CXXCtorType>(StructorType)); |
| else |
| // Otherwise, use the complete constructor name. This is relevant if a |
| // class with a constructor is declared within a constructor. |
| mangleCXXCtorType(Ctor_Complete); |
| break; |
| |
| case DeclarationName::CXXDestructorName: |
| if (ND == Structor) |
| // If the named decl is the C++ destructor we're mangling, use the type we |
| // were given. |
| mangleCXXDtorType(static_cast<CXXDtorType>(StructorType)); |
| else |
| // Otherwise, use the complete destructor name. This is relevant if a |
| // class with a destructor is declared within a destructor. |
| mangleCXXDtorType(Dtor_Complete); |
| break; |
| |
| case DeclarationName::CXXConversionFunctionName: |
| // <operator-name> ::= cv <type> # (cast) |
| Out << "cv"; |
| mangleType(Name.getCXXNameType()); |
| break; |
| |
| case DeclarationName::CXXOperatorName: { |
| unsigned Arity; |
| if (ND) { |
| Arity = cast<FunctionDecl>(ND)->getNumParams(); |
| |
| // If we have a C++ member function, we need to include the 'this' pointer. |
| // FIXME: This does not make sense for operators that are static, but their |
| // names stay the same regardless of the arity (operator new for instance). |
| if (isa<CXXMethodDecl>(ND)) |
| Arity++; |
| } else |
| Arity = KnownArity; |
| |
| mangleOperatorName(Name.getCXXOverloadedOperator(), Arity); |
| break; |
| } |
| |
| case DeclarationName::CXXLiteralOperatorName: |
| // FIXME: This mangling is not yet official. |
| Out << "li"; |
| mangleSourceName(Name.getCXXLiteralIdentifier()); |
| break; |
| |
| case DeclarationName::CXXUsingDirective: |
| llvm_unreachable("Can't mangle a using directive name!"); |
| } |
| } |
| |
| void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) { |
| // <source-name> ::= <positive length number> <identifier> |
| // <number> ::= [n] <non-negative decimal integer> |
| // <identifier> ::= <unqualified source code identifier> |
| Out << II->getLength() << II->getName(); |
| } |
| |
| void CXXNameMangler::mangleNestedName(const NamedDecl *ND, |
| const DeclContext *DC, |
| bool NoFunction) { |
| // <nested-name> |
| // ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E |
| // ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> |
| // <template-args> E |
| |
| Out << 'N'; |
| if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) { |
| mangleQualifiers(Qualifiers::fromCVRMask(Method->getTypeQualifiers())); |
| mangleRefQualifier(Method->getRefQualifier()); |
| } |
| |
| // Check if we have a template. |
| const TemplateArgumentList *TemplateArgs = 0; |
| if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { |
| mangleTemplatePrefix(TD); |
| TemplateParameterList *TemplateParameters = TD->getTemplateParameters(); |
| mangleTemplateArgs(*TemplateParameters, *TemplateArgs); |
| } |
| else { |
| manglePrefix(DC, NoFunction); |
| mangleUnqualifiedName(ND); |
| } |
| |
| Out << 'E'; |
| } |
| void CXXNameMangler::mangleNestedName(const TemplateDecl *TD, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs) { |
| // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E |
| |
| Out << 'N'; |
| |
| mangleTemplatePrefix(TD); |
| TemplateParameterList *TemplateParameters = TD->getTemplateParameters(); |
| mangleTemplateArgs(*TemplateParameters, TemplateArgs, NumTemplateArgs); |
| |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleLocalName(const NamedDecl *ND) { |
| // <local-name> := Z <function encoding> E <entity name> [<discriminator>] |
| // := Z <function encoding> E s [<discriminator>] |
| // <local-name> := Z <function encoding> E d [ <parameter number> ] |
| // _ <entity name> |
| // <discriminator> := _ <non-negative number> |
| const DeclContext *DC = getEffectiveDeclContext(ND); |
| if (isa<ObjCMethodDecl>(DC) && isa<FunctionDecl>(ND)) { |
| // Don't add objc method name mangling to locally declared function |
| mangleUnqualifiedName(ND); |
| return; |
| } |
| |
| Out << 'Z'; |
| |
| if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC)) { |
| mangleObjCMethodName(MD); |
| } else if (const CXXRecordDecl *RD = GetLocalClassDecl(ND)) { |
| mangleFunctionEncoding(cast<FunctionDecl>(getEffectiveDeclContext(RD))); |
| Out << 'E'; |
| |
| // The parameter number is omitted for the last parameter, 0 for the |
| // second-to-last parameter, 1 for the third-to-last parameter, etc. The |
| // <entity name> will of course contain a <closure-type-name>: Its |
| // numbering will be local to the particular argument in which it appears |
| // -- other default arguments do not affect its encoding. |
| bool SkipDiscriminator = false; |
| if (RD->isLambda()) { |
| if (const ParmVarDecl *Parm |
| = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl())) { |
| if (const FunctionDecl *Func |
| = dyn_cast<FunctionDecl>(Parm->getDeclContext())) { |
| Out << 'd'; |
| unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex(); |
| if (Num > 1) |
| mangleNumber(Num - 2); |
| Out << '_'; |
| SkipDiscriminator = true; |
| } |
| } |
| } |
| |
| // Mangle the name relative to the closest enclosing function. |
| if (ND == RD) // equality ok because RD derived from ND above |
| mangleUnqualifiedName(ND); |
| else |
| mangleNestedName(ND, DC, true /*NoFunction*/); |
| |
| if (!SkipDiscriminator) { |
| unsigned disc; |
| if (Context.getNextDiscriminator(RD, disc)) { |
| if (disc < 10) |
| Out << '_' << disc; |
| else |
| Out << "__" << disc << '_'; |
| } |
| } |
| |
| return; |
| } |
| else |
| mangleFunctionEncoding(cast<FunctionDecl>(DC)); |
| |
| Out << 'E'; |
| mangleUnqualifiedName(ND); |
| } |
| |
| void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) { |
| // If the context of a closure type is an initializer for a class member |
| // (static or nonstatic), it is encoded in a qualified name with a final |
| // <prefix> of the form: |
| // |
| // <data-member-prefix> := <member source-name> M |
| // |
| // Technically, the data-member-prefix is part of the <prefix>. However, |
| // since a closure type will always be mangled with a prefix, it's easier |
| // to emit that last part of the prefix here. |
| if (Decl *Context = Lambda->getLambdaContextDecl()) { |
| if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) && |
| Context->getDeclContext()->isRecord()) { |
| if (const IdentifierInfo *Name |
| = cast<NamedDecl>(Context)->getIdentifier()) { |
| mangleSourceName(Name); |
| Out << 'M'; |
| } |
| } |
| } |
| |
| Out << "Ul"; |
| DeclarationName Name |
| = getASTContext().DeclarationNames.getCXXOperatorName(OO_Call); |
| const FunctionProtoType *Proto |
| = cast<CXXMethodDecl>(*Lambda->lookup(Name).first)->getType()-> |
| getAs<FunctionProtoType>(); |
| mangleBareFunctionType(Proto, /*MangleReturnType=*/false); |
| Out << "E"; |
| |
| // The number is omitted for the first closure type with a given |
| // <lambda-sig> in a given context; it is n-2 for the nth closure type |
| // (in lexical order) with that same <lambda-sig> and context. |
| // |
| // The AST keeps track of the number for us. |
| unsigned Number = Lambda->getLambdaManglingNumber(); |
| assert(Number > 0 && "Lambda should be mangled as an unnamed class"); |
| if (Number > 1) |
| mangleNumber(Number - 2); |
| Out << '_'; |
| } |
| |
| void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) { |
| switch (qualifier->getKind()) { |
| case NestedNameSpecifier::Global: |
| // nothing |
| return; |
| |
| case NestedNameSpecifier::Namespace: |
| mangleName(qualifier->getAsNamespace()); |
| return; |
| |
| case NestedNameSpecifier::NamespaceAlias: |
| mangleName(qualifier->getAsNamespaceAlias()->getNamespace()); |
| return; |
| |
| case NestedNameSpecifier::TypeSpec: |
| case NestedNameSpecifier::TypeSpecWithTemplate: |
| manglePrefix(QualType(qualifier->getAsType(), 0)); |
| return; |
| |
| case NestedNameSpecifier::Identifier: |
| // Member expressions can have these without prefixes, but that |
| // should end up in mangleUnresolvedPrefix instead. |
| assert(qualifier->getPrefix()); |
| manglePrefix(qualifier->getPrefix()); |
| |
| mangleSourceName(qualifier->getAsIdentifier()); |
| return; |
| } |
| |
| llvm_unreachable("unexpected nested name specifier"); |
| } |
| |
| void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) { |
| // <prefix> ::= <prefix> <unqualified-name> |
| // ::= <template-prefix> <template-args> |
| // ::= <template-param> |
| // ::= # empty |
| // ::= <substitution> |
| |
| DC = IgnoreLinkageSpecDecls(DC); |
| |
| if (DC->isTranslationUnit()) |
| return; |
| |
| if (const BlockDecl *Block = dyn_cast<BlockDecl>(DC)) { |
| manglePrefix(getEffectiveParentContext(DC), NoFunction); |
| SmallString<64> Name; |
| llvm::raw_svector_ostream NameStream(Name); |
| Context.mangleBlock(Block, NameStream); |
| NameStream.flush(); |
| Out << Name.size() << Name; |
| return; |
| } |
| |
| const NamedDecl *ND = cast<NamedDecl>(DC); |
| if (mangleSubstitution(ND)) |
| return; |
| |
| // Check if we have a template. |
| const TemplateArgumentList *TemplateArgs = 0; |
| if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) { |
| mangleTemplatePrefix(TD); |
| TemplateParameterList *TemplateParameters = TD->getTemplateParameters(); |
| mangleTemplateArgs(*TemplateParameters, *TemplateArgs); |
| } |
| else if(NoFunction && (isa<FunctionDecl>(ND) || isa<ObjCMethodDecl>(ND))) |
| return; |
| else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(ND)) |
| mangleObjCMethodName(Method); |
| else { |
| manglePrefix(getEffectiveDeclContext(ND), NoFunction); |
| mangleUnqualifiedName(ND); |
| } |
| |
| addSubstitution(ND); |
| } |
| |
| void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) { |
| // <template-prefix> ::= <prefix> <template unqualified-name> |
| // ::= <template-param> |
| // ::= <substitution> |
| if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
| return mangleTemplatePrefix(TD); |
| |
| if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName()) |
| manglePrefix(Qualified->getQualifier()); |
| |
| if (OverloadedTemplateStorage *Overloaded |
| = Template.getAsOverloadedTemplate()) { |
| mangleUnqualifiedName(0, (*Overloaded->begin())->getDeclName(), |
| UnknownArity); |
| return; |
| } |
| |
| DependentTemplateName *Dependent = Template.getAsDependentTemplateName(); |
| assert(Dependent && "Unknown template name kind?"); |
| manglePrefix(Dependent->getQualifier()); |
| mangleUnscopedTemplateName(Template); |
| } |
| |
| void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND) { |
| // <template-prefix> ::= <prefix> <template unqualified-name> |
| // ::= <template-param> |
| // ::= <substitution> |
| // <template-template-param> ::= <template-param> |
| // <substitution> |
| |
| if (mangleSubstitution(ND)) |
| return; |
| |
| // <template-template-param> ::= <template-param> |
| if (const TemplateTemplateParmDecl *TTP |
| = dyn_cast<TemplateTemplateParmDecl>(ND)) { |
| mangleTemplateParameter(TTP->getIndex()); |
| return; |
| } |
| |
| manglePrefix(getEffectiveDeclContext(ND)); |
| mangleUnqualifiedName(ND->getTemplatedDecl()); |
| addSubstitution(ND); |
| } |
| |
| /// Mangles a template name under the production <type>. Required for |
| /// template template arguments. |
| /// <type> ::= <class-enum-type> |
| /// ::= <template-param> |
| /// ::= <substitution> |
| void CXXNameMangler::mangleType(TemplateName TN) { |
| if (mangleSubstitution(TN)) |
| return; |
| |
| TemplateDecl *TD = 0; |
| |
| switch (TN.getKind()) { |
| case TemplateName::QualifiedTemplate: |
| TD = TN.getAsQualifiedTemplateName()->getTemplateDecl(); |
| goto HaveDecl; |
| |
| case TemplateName::Template: |
| TD = TN.getAsTemplateDecl(); |
| goto HaveDecl; |
| |
| HaveDecl: |
| if (isa<TemplateTemplateParmDecl>(TD)) |
| mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex()); |
| else |
| mangleName(TD); |
| break; |
| |
| case TemplateName::OverloadedTemplate: |
| llvm_unreachable("can't mangle an overloaded template name as a <type>"); |
| |
| case TemplateName::DependentTemplate: { |
| const DependentTemplateName *Dependent = TN.getAsDependentTemplateName(); |
| assert(Dependent->isIdentifier()); |
| |
| // <class-enum-type> ::= <name> |
| // <name> ::= <nested-name> |
| mangleUnresolvedPrefix(Dependent->getQualifier(), 0); |
| mangleSourceName(Dependent->getIdentifier()); |
| break; |
| } |
| |
| case TemplateName::SubstTemplateTemplateParm: { |
| // Substituted template parameters are mangled as the substituted |
| // template. This will check for the substitution twice, which is |
| // fine, but we have to return early so that we don't try to *add* |
| // the substitution twice. |
| SubstTemplateTemplateParmStorage *subst |
| = TN.getAsSubstTemplateTemplateParm(); |
| mangleType(subst->getReplacement()); |
| return; |
| } |
| |
| case TemplateName::SubstTemplateTemplateParmPack: { |
| // FIXME: not clear how to mangle this! |
| // template <template <class> class T...> class A { |
| // template <template <class> class U...> void foo(B<T,U> x...); |
| // }; |
| Out << "_SUBSTPACK_"; |
| break; |
| } |
| } |
| |
| addSubstitution(TN); |
| } |
| |
| void |
| CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) { |
| switch (OO) { |
| // <operator-name> ::= nw # new |
| case OO_New: Out << "nw"; break; |
| // ::= na # new[] |
| case OO_Array_New: Out << "na"; break; |
| // ::= dl # delete |
| case OO_Delete: Out << "dl"; break; |
| // ::= da # delete[] |
| case OO_Array_Delete: Out << "da"; break; |
| // ::= ps # + (unary) |
| // ::= pl # + (binary or unknown) |
| case OO_Plus: |
| Out << (Arity == 1? "ps" : "pl"); break; |
| // ::= ng # - (unary) |
| // ::= mi # - (binary or unknown) |
| case OO_Minus: |
| Out << (Arity == 1? "ng" : "mi"); break; |
| // ::= ad # & (unary) |
| // ::= an # & (binary or unknown) |
| case OO_Amp: |
| Out << (Arity == 1? "ad" : "an"); break; |
| // ::= de # * (unary) |
| // ::= ml # * (binary or unknown) |
| case OO_Star: |
| // Use binary when unknown. |
| Out << (Arity == 1? "de" : "ml"); break; |
| // ::= co # ~ |
| case OO_Tilde: Out << "co"; break; |
| // ::= dv # / |
| case OO_Slash: Out << "dv"; break; |
| // ::= rm # % |
| case OO_Percent: Out << "rm"; break; |
| // ::= or # | |
| case OO_Pipe: Out << "or"; break; |
| // ::= eo # ^ |
| case OO_Caret: Out << "eo"; break; |
| // ::= aS # = |
| case OO_Equal: Out << "aS"; break; |
| // ::= pL # += |
| case OO_PlusEqual: Out << "pL"; break; |
| // ::= mI # -= |
| case OO_MinusEqual: Out << "mI"; break; |
| // ::= mL # *= |
| case OO_StarEqual: Out << "mL"; break; |
| // ::= dV # /= |
| case OO_SlashEqual: Out << "dV"; break; |
| // ::= rM # %= |
| case OO_PercentEqual: Out << "rM"; break; |
| // ::= aN # &= |
| case OO_AmpEqual: Out << "aN"; break; |
| // ::= oR # |= |
| case OO_PipeEqual: Out << "oR"; break; |
| // ::= eO # ^= |
| case OO_CaretEqual: Out << "eO"; break; |
| // ::= ls # << |
| case OO_LessLess: Out << "ls"; break; |
| // ::= rs # >> |
| case OO_GreaterGreater: Out << "rs"; break; |
| // ::= lS # <<= |
| case OO_LessLessEqual: Out << "lS"; break; |
| // ::= rS # >>= |
| case OO_GreaterGreaterEqual: Out << "rS"; break; |
| // ::= eq # == |
| case OO_EqualEqual: Out << "eq"; break; |
| // ::= ne # != |
| case OO_ExclaimEqual: Out << "ne"; break; |
| // ::= lt # < |
| case OO_Less: Out << "lt"; break; |
| // ::= gt # > |
| case OO_Greater: Out << "gt"; break; |
| // ::= le # <= |
| case OO_LessEqual: Out << "le"; break; |
| // ::= ge # >= |
| case OO_GreaterEqual: Out << "ge"; break; |
| // ::= nt # ! |
| case OO_Exclaim: Out << "nt"; break; |
| // ::= aa # && |
| case OO_AmpAmp: Out << "aa"; break; |
| // ::= oo # || |
| case OO_PipePipe: Out << "oo"; break; |
| // ::= pp # ++ |
| case OO_PlusPlus: Out << "pp"; break; |
| // ::= mm # -- |
| case OO_MinusMinus: Out << "mm"; break; |
| // ::= cm # , |
| case OO_Comma: Out << "cm"; break; |
| // ::= pm # ->* |
| case OO_ArrowStar: Out << "pm"; break; |
| // ::= pt # -> |
| case OO_Arrow: Out << "pt"; break; |
| // ::= cl # () |
| case OO_Call: Out << "cl"; break; |
| // ::= ix # [] |
| case OO_Subscript: Out << "ix"; break; |
| |
| // ::= qu # ? |
| // The conditional operator can't be overloaded, but we still handle it when |
| // mangling expressions. |
| case OO_Conditional: Out << "qu"; break; |
| |
| case OO_None: |
| case NUM_OVERLOADED_OPERATORS: |
| llvm_unreachable("Not an overloaded operator"); |
| } |
| } |
| |
| void CXXNameMangler::mangleQualifiers(Qualifiers Quals) { |
| // <CV-qualifiers> ::= [r] [V] [K] # restrict (C99), volatile, const |
| if (Quals.hasRestrict()) |
| Out << 'r'; |
| if (Quals.hasVolatile()) |
| Out << 'V'; |
| if (Quals.hasConst()) |
| Out << 'K'; |
| |
| if (Quals.hasAddressSpace()) { |
| // Extension: |
| // |
| // <type> ::= U <address-space-number> |
| // |
| // where <address-space-number> is a source name consisting of 'AS' |
| // followed by the address space <number>. |
| SmallString<64> ASString; |
| ASString = "AS" + llvm::utostr_32(Quals.getAddressSpace()); |
| Out << 'U' << ASString.size() << ASString; |
| } |
| |
| StringRef LifetimeName; |
| switch (Quals.getObjCLifetime()) { |
| // Objective-C ARC Extension: |
| // |
| // <type> ::= U "__strong" |
| // <type> ::= U "__weak" |
| // <type> ::= U "__autoreleasing" |
| case Qualifiers::OCL_None: |
| break; |
| |
| case Qualifiers::OCL_Weak: |
| LifetimeName = "__weak"; |
| break; |
| |
| case Qualifiers::OCL_Strong: |
| LifetimeName = "__strong"; |
| break; |
| |
| case Qualifiers::OCL_Autoreleasing: |
| LifetimeName = "__autoreleasing"; |
| break; |
| |
| case Qualifiers::OCL_ExplicitNone: |
| // The __unsafe_unretained qualifier is *not* mangled, so that |
| // __unsafe_unretained types in ARC produce the same manglings as the |
| // equivalent (but, naturally, unqualified) types in non-ARC, providing |
| // better ABI compatibility. |
| // |
| // It's safe to do this because unqualified 'id' won't show up |
| // in any type signatures that need to be mangled. |
| break; |
| } |
| if (!LifetimeName.empty()) |
| Out << 'U' << LifetimeName.size() << LifetimeName; |
| } |
| |
| void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) { |
| // <ref-qualifier> ::= R # lvalue reference |
| // ::= O # rvalue-reference |
| // Proposal to Itanium C++ ABI list on 1/26/11 |
| switch (RefQualifier) { |
| case RQ_None: |
| break; |
| |
| case RQ_LValue: |
| Out << 'R'; |
| break; |
| |
| case RQ_RValue: |
| Out << 'O'; |
| break; |
| } |
| } |
| |
| void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) { |
| Context.mangleObjCMethodName(MD, Out); |
| } |
| |
| void CXXNameMangler::mangleType(QualType T) { |
| // If our type is instantiation-dependent but not dependent, we mangle |
| // it as it was written in the source, removing any top-level sugar. |
| // Otherwise, use the canonical type. |
| // |
| // FIXME: This is an approximation of the instantiation-dependent name |
| // mangling rules, since we should really be using the type as written and |
| // augmented via semantic analysis (i.e., with implicit conversions and |
| // default template arguments) for any instantiation-dependent type. |
| // Unfortunately, that requires several changes to our AST: |
| // - Instantiation-dependent TemplateSpecializationTypes will need to be |
| // uniqued, so that we can handle substitutions properly |
| // - Default template arguments will need to be represented in the |
| // TemplateSpecializationType, since they need to be mangled even though |
| // they aren't written. |
| // - Conversions on non-type template arguments need to be expressed, since |
| // they can affect the mangling of sizeof/alignof. |
| if (!T->isInstantiationDependentType() || T->isDependentType()) |
| T = T.getCanonicalType(); |
| else { |
| // Desugar any types that are purely sugar. |
| do { |
| // Don't desugar through template specialization types that aren't |
| // type aliases. We need to mangle the template arguments as written. |
| if (const TemplateSpecializationType *TST |
| = dyn_cast<TemplateSpecializationType>(T)) |
| if (!TST->isTypeAlias()) |
| break; |
| |
| QualType Desugared |
| = T.getSingleStepDesugaredType(Context.getASTContext()); |
| if (Desugared == T) |
| break; |
| |
| T = Desugared; |
| } while (true); |
| } |
| SplitQualType split = T.split(); |
| Qualifiers quals = split.Quals; |
| const Type *ty = split.Ty; |
| |
| bool isSubstitutable = quals || !isa<BuiltinType>(T); |
| if (isSubstitutable && mangleSubstitution(T)) |
| return; |
| |
| // If we're mangling a qualified array type, push the qualifiers to |
| // the element type. |
| if (quals && isa<ArrayType>(T)) { |
| ty = Context.getASTContext().getAsArrayType(T); |
| quals = Qualifiers(); |
| |
| // Note that we don't update T: we want to add the |
| // substitution at the original type. |
| } |
| |
| if (quals) { |
| mangleQualifiers(quals); |
| // Recurse: even if the qualified type isn't yet substitutable, |
| // the unqualified type might be. |
| mangleType(QualType(ty, 0)); |
| } else { |
| switch (ty->getTypeClass()) { |
| #define ABSTRACT_TYPE(CLASS, PARENT) |
| #define NON_CANONICAL_TYPE(CLASS, PARENT) \ |
| case Type::CLASS: \ |
| llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \ |
| return; |
| #define TYPE(CLASS, PARENT) \ |
| case Type::CLASS: \ |
| mangleType(static_cast<const CLASS##Type*>(ty)); \ |
| break; |
| #include "clang/AST/TypeNodes.def" |
| } |
| } |
| |
| // Add the substitution. |
| if (isSubstitutable) |
| addSubstitution(T); |
| } |
| |
| void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) { |
| if (!mangleStandardSubstitution(ND)) |
| mangleName(ND); |
| } |
| |
| void CXXNameMangler::mangleType(const BuiltinType *T) { |
| // <type> ::= <builtin-type> |
| // <builtin-type> ::= v # void |
| // ::= w # wchar_t |
| // ::= b # bool |
| // ::= c # char |
| // ::= a # signed char |
| // ::= h # unsigned char |
| // ::= s # short |
| // ::= t # unsigned short |
| // ::= i # int |
| // ::= j # unsigned int |
| // ::= l # long |
| // ::= m # unsigned long |
| // ::= x # long long, __int64 |
| // ::= y # unsigned long long, __int64 |
| // ::= n # __int128 |
| // UNSUPPORTED: ::= o # unsigned __int128 |
| // ::= f # float |
| // ::= d # double |
| // ::= e # long double, __float80 |
| // UNSUPPORTED: ::= g # __float128 |
| // UNSUPPORTED: ::= Dd # IEEE 754r decimal floating point (64 bits) |
| // UNSUPPORTED: ::= De # IEEE 754r decimal floating point (128 bits) |
| // UNSUPPORTED: ::= Df # IEEE 754r decimal floating point (32 bits) |
| // ::= Dh # IEEE 754r half-precision floating point (16 bits) |
| // ::= Di # char32_t |
| // ::= Ds # char16_t |
| // ::= Dn # std::nullptr_t (i.e., decltype(nullptr)) |
| // ::= u <source-name> # vendor extended type |
| switch (T->getKind()) { |
| case BuiltinType::Void: Out << 'v'; break; |
| case BuiltinType::Bool: Out << 'b'; break; |
| case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break; |
| case BuiltinType::UChar: Out << 'h'; break; |
| case BuiltinType::UShort: Out << 't'; break; |
| case BuiltinType::UInt: Out << 'j'; break; |
| case BuiltinType::ULong: Out << 'm'; break; |
| case BuiltinType::ULongLong: Out << 'y'; break; |
| case BuiltinType::UInt128: Out << 'o'; break; |
| case BuiltinType::SChar: Out << 'a'; break; |
| case BuiltinType::WChar_S: |
| case BuiltinType::WChar_U: Out << 'w'; break; |
| case BuiltinType::Char16: Out << "Ds"; break; |
| case BuiltinType::Char32: Out << "Di"; break; |
| case BuiltinType::Short: Out << 's'; break; |
| case BuiltinType::Int: Out << 'i'; break; |
| case BuiltinType::Long: Out << 'l'; break; |
| case BuiltinType::LongLong: Out << 'x'; break; |
| case BuiltinType::Int128: Out << 'n'; break; |
| case BuiltinType::Half: Out << "Dh"; break; |
| case BuiltinType::Float: Out << 'f'; break; |
| case BuiltinType::Double: Out << 'd'; break; |
| case BuiltinType::LongDouble: Out << 'e'; break; |
| case BuiltinType::NullPtr: Out << "Dn"; break; |
| |
| #define BUILTIN_TYPE(Id, SingletonId) |
| #define PLACEHOLDER_TYPE(Id, SingletonId) \ |
| case BuiltinType::Id: |
| #include "clang/AST/BuiltinTypes.def" |
| case BuiltinType::Dependent: |
| llvm_unreachable("mangling a placeholder type"); |
| case BuiltinType::ObjCId: Out << "11objc_object"; break; |
| case BuiltinType::ObjCClass: Out << "10objc_class"; break; |
| case BuiltinType::ObjCSel: Out << "13objc_selector"; break; |
| } |
| } |
| |
| // <type> ::= <function-type> |
| // <function-type> ::= [<CV-qualifiers>] F [Y] |
| // <bare-function-type> [<ref-qualifier>] E |
| // (Proposal to cxx-abi-dev, 2012-05-11) |
| void CXXNameMangler::mangleType(const FunctionProtoType *T) { |
| // Mangle CV-qualifiers, if present. These are 'this' qualifiers, |
| // e.g. "const" in "int (A::*)() const". |
| mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals())); |
| |
| Out << 'F'; |
| |
| // FIXME: We don't have enough information in the AST to produce the 'Y' |
| // encoding for extern "C" function types. |
| mangleBareFunctionType(T, /*MangleReturnType=*/true); |
| |
| // Mangle the ref-qualifier, if present. |
| mangleRefQualifier(T->getRefQualifier()); |
| |
| Out << 'E'; |
| } |
| void CXXNameMangler::mangleType(const FunctionNoProtoType *T) { |
| llvm_unreachable("Can't mangle K&R function prototypes"); |
| } |
| void CXXNameMangler::mangleBareFunctionType(const FunctionType *T, |
| bool MangleReturnType) { |
| // We should never be mangling something without a prototype. |
| const FunctionProtoType *Proto = cast<FunctionProtoType>(T); |
| |
| // Record that we're in a function type. See mangleFunctionParam |
| // for details on what we're trying to achieve here. |
| FunctionTypeDepthState saved = FunctionTypeDepth.push(); |
| |
| // <bare-function-type> ::= <signature type>+ |
| if (MangleReturnType) { |
| FunctionTypeDepth.enterResultType(); |
| mangleType(Proto->getResultType()); |
| FunctionTypeDepth.leaveResultType(); |
| } |
| |
| if (Proto->getNumArgs() == 0 && !Proto->isVariadic()) { |
| // <builtin-type> ::= v # void |
| Out << 'v'; |
| |
| FunctionTypeDepth.pop(saved); |
| return; |
| } |
| |
| for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(), |
| ArgEnd = Proto->arg_type_end(); |
| Arg != ArgEnd; ++Arg) |
| mangleType(Context.getASTContext().getSignatureParameterType(*Arg)); |
| |
| FunctionTypeDepth.pop(saved); |
| |
| // <builtin-type> ::= z # ellipsis |
| if (Proto->isVariadic()) |
| Out << 'z'; |
| } |
| |
| // <type> ::= <class-enum-type> |
| // <class-enum-type> ::= <name> |
| void CXXNameMangler::mangleType(const UnresolvedUsingType *T) { |
| mangleName(T->getDecl()); |
| } |
| |
| // <type> ::= <class-enum-type> |
| // <class-enum-type> ::= <name> |
| void CXXNameMangler::mangleType(const EnumType *T) { |
| mangleType(static_cast<const TagType*>(T)); |
| } |
| void CXXNameMangler::mangleType(const RecordType *T) { |
| mangleType(static_cast<const TagType*>(T)); |
| } |
| void CXXNameMangler::mangleType(const TagType *T) { |
| mangleName(T->getDecl()); |
| } |
| |
| // <type> ::= <array-type> |
| // <array-type> ::= A <positive dimension number> _ <element type> |
| // ::= A [<dimension expression>] _ <element type> |
| void CXXNameMangler::mangleType(const ConstantArrayType *T) { |
| Out << 'A' << T->getSize() << '_'; |
| mangleType(T->getElementType()); |
| } |
| void CXXNameMangler::mangleType(const VariableArrayType *T) { |
| Out << 'A'; |
| // decayed vla types (size 0) will just be skipped. |
| if (T->getSizeExpr()) |
| mangleExpression(T->getSizeExpr()); |
| Out << '_'; |
| mangleType(T->getElementType()); |
| } |
| void CXXNameMangler::mangleType(const DependentSizedArrayType *T) { |
| Out << 'A'; |
| mangleExpression(T->getSizeExpr()); |
| Out << '_'; |
| mangleType(T->getElementType()); |
| } |
| void CXXNameMangler::mangleType(const IncompleteArrayType *T) { |
| Out << "A_"; |
| mangleType(T->getElementType()); |
| } |
| |
| // <type> ::= <pointer-to-member-type> |
| // <pointer-to-member-type> ::= M <class type> <member type> |
| void CXXNameMangler::mangleType(const MemberPointerType *T) { |
| Out << 'M'; |
| mangleType(QualType(T->getClass(), 0)); |
| QualType PointeeType = T->getPointeeType(); |
| if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) { |
| mangleType(FPT); |
| |
| // Itanium C++ ABI 5.1.8: |
| // |
| // The type of a non-static member function is considered to be different, |
| // for the purposes of substitution, from the type of a namespace-scope or |
| // static member function whose type appears similar. The types of two |
| // non-static member functions are considered to be different, for the |
| // purposes of substitution, if the functions are members of different |
| // classes. In other words, for the purposes of substitution, the class of |
| // which the function is a member is considered part of the type of |
| // function. |
| |
| // Given that we already substitute member function pointers as a |
| // whole, the net effect of this rule is just to unconditionally |
| // suppress substitution on the function type in a member pointer. |
| // We increment the SeqID here to emulate adding an entry to the |
| // substitution table. |
| ++SeqID; |
| } else |
| mangleType(PointeeType); |
| } |
| |
| // <type> ::= <template-param> |
| void CXXNameMangler::mangleType(const TemplateTypeParmType *T) { |
| mangleTemplateParameter(T->getIndex()); |
| } |
| |
| // <type> ::= <template-param> |
| void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) { |
| // FIXME: not clear how to mangle this! |
| // template <class T...> class A { |
| // template <class U...> void foo(T(*)(U) x...); |
| // }; |
| Out << "_SUBSTPACK_"; |
| } |
| |
| // <type> ::= P <type> # pointer-to |
| void CXXNameMangler::mangleType(const PointerType *T) { |
| Out << 'P'; |
| mangleType(T->getPointeeType()); |
| } |
| void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) { |
| Out << 'P'; |
| mangleType(T->getPointeeType()); |
| } |
| |
| // <type> ::= R <type> # reference-to |
| void CXXNameMangler::mangleType(const LValueReferenceType *T) { |
| Out << 'R'; |
| mangleType(T->getPointeeType()); |
| } |
| |
| // <type> ::= O <type> # rvalue reference-to (C++0x) |
| void CXXNameMangler::mangleType(const RValueReferenceType *T) { |
| Out << 'O'; |
| mangleType(T->getPointeeType()); |
| } |
| |
| // <type> ::= C <type> # complex pair (C 2000) |
| void CXXNameMangler::mangleType(const ComplexType *T) { |
| Out << 'C'; |
| mangleType(T->getElementType()); |
| } |
| |
| // ARM's ABI for Neon vector types specifies that they should be mangled as |
| // if they are structs (to match ARM's initial implementation). The |
| // vector type must be one of the special types predefined by ARM. |
| void CXXNameMangler::mangleNeonVectorType(const VectorType *T) { |
| QualType EltType = T->getElementType(); |
| assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType"); |
| const char *EltName = 0; |
| if (T->getVectorKind() == VectorType::NeonPolyVector) { |
| switch (cast<BuiltinType>(EltType)->getKind()) { |
| case BuiltinType::SChar: EltName = "poly8_t"; break; |
| case BuiltinType::Short: EltName = "poly16_t"; break; |
| default: llvm_unreachable("unexpected Neon polynomial vector element type"); |
| } |
| } else { |
| switch (cast<BuiltinType>(EltType)->getKind()) { |
| case BuiltinType::SChar: EltName = "int8_t"; break; |
| case BuiltinType::UChar: EltName = "uint8_t"; break; |
| case BuiltinType::Short: EltName = "int16_t"; break; |
| case BuiltinType::UShort: EltName = "uint16_t"; break; |
| case BuiltinType::Int: EltName = "int32_t"; break; |
| case BuiltinType::UInt: EltName = "uint32_t"; break; |
| case BuiltinType::LongLong: EltName = "int64_t"; break; |
| case BuiltinType::ULongLong: EltName = "uint64_t"; break; |
| case BuiltinType::Float: EltName = "float32_t"; break; |
| default: llvm_unreachable("unexpected Neon vector element type"); |
| } |
| } |
| const char *BaseName = 0; |
| unsigned BitSize = (T->getNumElements() * |
| getASTContext().getTypeSize(EltType)); |
| if (BitSize == 64) |
| BaseName = "__simd64_"; |
| else { |
| assert(BitSize == 128 && "Neon vector type not 64 or 128 bits"); |
| BaseName = "__simd128_"; |
| } |
| Out << strlen(BaseName) + strlen(EltName); |
| Out << BaseName << EltName; |
| } |
| |
| // GNU extension: vector types |
| // <type> ::= <vector-type> |
| // <vector-type> ::= Dv <positive dimension number> _ |
| // <extended element type> |
| // ::= Dv [<dimension expression>] _ <element type> |
| // <extended element type> ::= <element type> |
| // ::= p # AltiVec vector pixel |
| void CXXNameMangler::mangleType(const VectorType *T) { |
| if ((T->getVectorKind() == VectorType::NeonVector || |
| T->getVectorKind() == VectorType::NeonPolyVector)) { |
| mangleNeonVectorType(T); |
| return; |
| } |
| Out << "Dv" << T->getNumElements() << '_'; |
| if (T->getVectorKind() == VectorType::AltiVecPixel) |
| Out << 'p'; |
| else if (T->getVectorKind() == VectorType::AltiVecBool) |
| Out << 'b'; |
| else |
| mangleType(T->getElementType()); |
| } |
| void CXXNameMangler::mangleType(const ExtVectorType *T) { |
| mangleType(static_cast<const VectorType*>(T)); |
| } |
| void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) { |
| Out << "Dv"; |
| mangleExpression(T->getSizeExpr()); |
| Out << '_'; |
| mangleType(T->getElementType()); |
| } |
| |
| void CXXNameMangler::mangleType(const PackExpansionType *T) { |
| // <type> ::= Dp <type> # pack expansion (C++0x) |
| Out << "Dp"; |
| mangleType(T->getPattern()); |
| } |
| |
| void CXXNameMangler::mangleType(const ObjCInterfaceType *T) { |
| mangleSourceName(T->getDecl()->getIdentifier()); |
| } |
| |
| void CXXNameMangler::mangleType(const ObjCObjectType *T) { |
| // We don't allow overloading by different protocol qualification, |
| // so mangling them isn't necessary. |
| mangleType(T->getBaseType()); |
| } |
| |
| void CXXNameMangler::mangleType(const BlockPointerType *T) { |
| Out << "U13block_pointer"; |
| mangleType(T->getPointeeType()); |
| } |
| |
| void CXXNameMangler::mangleType(const InjectedClassNameType *T) { |
| // Mangle injected class name types as if the user had written the |
| // specialization out fully. It may not actually be possible to see |
| // this mangling, though. |
| mangleType(T->getInjectedSpecializationType()); |
| } |
| |
| void CXXNameMangler::mangleType(const TemplateSpecializationType *T) { |
| if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) { |
| mangleName(TD, T->getArgs(), T->getNumArgs()); |
| } else { |
| if (mangleSubstitution(QualType(T, 0))) |
| return; |
| |
| mangleTemplatePrefix(T->getTemplateName()); |
| |
| // FIXME: GCC does not appear to mangle the template arguments when |
| // the template in question is a dependent template name. Should we |
| // emulate that badness? |
| mangleTemplateArgs(T->getTemplateName(), T->getArgs(), T->getNumArgs()); |
| addSubstitution(QualType(T, 0)); |
| } |
| } |
| |
| void CXXNameMangler::mangleType(const DependentNameType *T) { |
| // Typename types are always nested |
| Out << 'N'; |
| manglePrefix(T->getQualifier()); |
| mangleSourceName(T->getIdentifier()); |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) { |
| // Dependently-scoped template types are nested if they have a prefix. |
| Out << 'N'; |
| |
| // TODO: avoid making this TemplateName. |
| TemplateName Prefix = |
| getASTContext().getDependentTemplateName(T->getQualifier(), |
| T->getIdentifier()); |
| mangleTemplatePrefix(Prefix); |
| |
| // FIXME: GCC does not appear to mangle the template arguments when |
| // the template in question is a dependent template name. Should we |
| // emulate that badness? |
| mangleTemplateArgs(Prefix, T->getArgs(), T->getNumArgs()); |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleType(const TypeOfType *T) { |
| // FIXME: this is pretty unsatisfactory, but there isn't an obvious |
| // "extension with parameters" mangling. |
| Out << "u6typeof"; |
| } |
| |
| void CXXNameMangler::mangleType(const TypeOfExprType *T) { |
| // FIXME: this is pretty unsatisfactory, but there isn't an obvious |
| // "extension with parameters" mangling. |
| Out << "u6typeof"; |
| } |
| |
| void CXXNameMangler::mangleType(const DecltypeType *T) { |
| Expr *E = T->getUnderlyingExpr(); |
| |
| // type ::= Dt <expression> E # decltype of an id-expression |
| // # or class member access |
| // ::= DT <expression> E # decltype of an expression |
| |
| // This purports to be an exhaustive list of id-expressions and |
| // class member accesses. Note that we do not ignore parentheses; |
| // parentheses change the semantics of decltype for these |
| // expressions (and cause the mangler to use the other form). |
| if (isa<DeclRefExpr>(E) || |
| isa<MemberExpr>(E) || |
| isa<UnresolvedLookupExpr>(E) || |
| isa<DependentScopeDeclRefExpr>(E) || |
| isa<CXXDependentScopeMemberExpr>(E) || |
| isa<UnresolvedMemberExpr>(E)) |
| Out << "Dt"; |
| else |
| Out << "DT"; |
| mangleExpression(E); |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleType(const UnaryTransformType *T) { |
| // If this is dependent, we need to record that. If not, we simply |
| // mangle it as the underlying type since they are equivalent. |
| if (T->isDependentType()) { |
| Out << 'U'; |
| |
| switch (T->getUTTKind()) { |
| case UnaryTransformType::EnumUnderlyingType: |
| Out << "3eut"; |
| break; |
| } |
| } |
| |
| mangleType(T->getUnderlyingType()); |
| } |
| |
| void CXXNameMangler::mangleType(const AutoType *T) { |
| QualType D = T->getDeducedType(); |
| // <builtin-type> ::= Da # dependent auto |
| if (D.isNull()) |
| Out << "Da"; |
| else |
| mangleType(D); |
| } |
| |
| void CXXNameMangler::mangleType(const AtomicType *T) { |
| // <type> ::= U <source-name> <type> # vendor extended type qualifier |
| // (Until there's a standardized mangling...) |
| Out << "U7_Atomic"; |
| mangleType(T->getValueType()); |
| } |
| |
| void CXXNameMangler::mangleIntegerLiteral(QualType T, |
| const llvm::APSInt &Value) { |
| // <expr-primary> ::= L <type> <value number> E # integer literal |
| Out << 'L'; |
| |
| mangleType(T); |
| if (T->isBooleanType()) { |
| // Boolean values are encoded as 0/1. |
| Out << (Value.getBoolValue() ? '1' : '0'); |
| } else { |
| mangleNumber(Value); |
| } |
| Out << 'E'; |
| |
| } |
| |
| /// Mangles a member expression. |
| void CXXNameMangler::mangleMemberExpr(const Expr *base, |
| bool isArrow, |
| NestedNameSpecifier *qualifier, |
| NamedDecl *firstQualifierLookup, |
| DeclarationName member, |
| unsigned arity) { |
| // <expression> ::= dt <expression> <unresolved-name> |
| // ::= pt <expression> <unresolved-name> |
| if (base) { |
| if (base->isImplicitCXXThis()) { |
| // Note: GCC mangles member expressions to the implicit 'this' as |
| // *this., whereas we represent them as this->. The Itanium C++ ABI |
| // does not specify anything here, so we follow GCC. |
| Out << "dtdefpT"; |
| } else { |
| Out << (isArrow ? "pt" : "dt"); |
| mangleExpression(base); |
| } |
| } |
| mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity); |
| } |
| |
| /// Look at the callee of the given call expression and determine if |
| /// it's a parenthesized id-expression which would have triggered ADL |
| /// otherwise. |
| static bool isParenthesizedADLCallee(const CallExpr *call) { |
| const Expr *callee = call->getCallee(); |
| const Expr *fn = callee->IgnoreParens(); |
| |
| // Must be parenthesized. IgnoreParens() skips __extension__ nodes, |
| // too, but for those to appear in the callee, it would have to be |
| // parenthesized. |
| if (callee == fn) return false; |
| |
| // Must be an unresolved lookup. |
| const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn); |
| if (!lookup) return false; |
| |
| assert(!lookup->requiresADL()); |
| |
| // Must be an unqualified lookup. |
| if (lookup->getQualifier()) return false; |
| |
| // Must not have found a class member. Note that if one is a class |
| // member, they're all class members. |
| if (lookup->getNumDecls() > 0 && |
| (*lookup->decls_begin())->isCXXClassMember()) |
| return false; |
| |
| // Otherwise, ADL would have been triggered. |
| return true; |
| } |
| |
| void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) { |
| // <expression> ::= <unary operator-name> <expression> |
| // ::= <binary operator-name> <expression> <expression> |
| // ::= <trinary operator-name> <expression> <expression> <expression> |
| // ::= cv <type> expression # conversion with one argument |
| // ::= cv <type> _ <expression>* E # conversion with a different number of arguments |
| // ::= st <type> # sizeof (a type) |
| // ::= at <type> # alignof (a type) |
| // ::= <template-param> |
| // ::= <function-param> |
| // ::= sr <type> <unqualified-name> # dependent name |
| // ::= sr <type> <unqualified-name> <template-args> # dependent template-id |
| // ::= ds <expression> <expression> # expr.*expr |
| // ::= sZ <template-param> # size of a parameter pack |
| // ::= sZ <function-param> # size of a function parameter pack |
| // ::= <expr-primary> |
| // <expr-primary> ::= L <type> <value number> E # integer literal |
| // ::= L <type <value float> E # floating literal |
| // ::= L <mangled-name> E # external name |
| // ::= fpT # 'this' expression |
| QualType ImplicitlyConvertedToType; |
| |
| recurse: |
| switch (E->getStmtClass()) { |
| case Expr::NoStmtClass: |
| #define ABSTRACT_STMT(Type) |
| #define EXPR(Type, Base) |
| #define STMT(Type, Base) \ |
| case Expr::Type##Class: |
| #include "clang/AST/StmtNodes.inc" |
| // fallthrough |
| |
| // These all can only appear in local or variable-initialization |
| // contexts and so should never appear in a mangling. |
| case Expr::AddrLabelExprClass: |
| case Expr::DesignatedInitExprClass: |
| case Expr::ImplicitValueInitExprClass: |
| case Expr::ParenListExprClass: |
| case Expr::LambdaExprClass: |
| llvm_unreachable("unexpected statement kind"); |
| |
| // FIXME: invent manglings for all these. |
| case Expr::BlockExprClass: |
| case Expr::CXXPseudoDestructorExprClass: |
| case Expr::ChooseExprClass: |
| case Expr::CompoundLiteralExprClass: |
| case Expr::ExtVectorElementExprClass: |
| case Expr::GenericSelectionExprClass: |
| case Expr::ObjCEncodeExprClass: |
| case Expr::ObjCIsaExprClass: |
| case Expr::ObjCIvarRefExprClass: |
| case Expr::ObjCMessageExprClass: |
| case Expr::ObjCPropertyRefExprClass: |
| case Expr::ObjCProtocolExprClass: |
| case Expr::ObjCSelectorExprClass: |
| case Expr::ObjCStringLiteralClass: |
| case Expr::ObjCBoxedExprClass: |
| case Expr::ObjCArrayLiteralClass: |
| case Expr::ObjCDictionaryLiteralClass: |
| case Expr::ObjCSubscriptRefExprClass: |
| case Expr::ObjCIndirectCopyRestoreExprClass: |
| case Expr::OffsetOfExprClass: |
| case Expr::PredefinedExprClass: |
| case Expr::ShuffleVectorExprClass: |
| case Expr::StmtExprClass: |
| case Expr::UnaryTypeTraitExprClass: |
| case Expr::BinaryTypeTraitExprClass: |
| case Expr::TypeTraitExprClass: |
| case Expr::ArrayTypeTraitExprClass: |
| case Expr::ExpressionTraitExprClass: |
| case Expr::VAArgExprClass: |
| case Expr::CXXUuidofExprClass: |
| case Expr::CXXNoexceptExprClass: |
| case Expr::CUDAKernelCallExprClass: |
| case Expr::AsTypeExprClass: |
| case Expr::PseudoObjectExprClass: |
| case Expr::AtomicExprClass: |
| { |
| // As bad as this diagnostic is, it's better than crashing. |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot yet mangle expression type %0"); |
| Diags.Report(E->getExprLoc(), DiagID) |
| << E->getStmtClassName() << E->getSourceRange(); |
| break; |
| } |
| |
| // Even gcc-4.5 doesn't mangle this. |
| case Expr::BinaryConditionalOperatorClass: { |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = |
| Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "?: operator with omitted middle operand cannot be mangled"); |
| Diags.Report(E->getExprLoc(), DiagID) |
| << E->getStmtClassName() << E->getSourceRange(); |
| break; |
| } |
| |
| // These are used for internal purposes and cannot be meaningfully mangled. |
| case Expr::OpaqueValueExprClass: |
| llvm_unreachable("cannot mangle opaque value; mangling wrong thing?"); |
| |
| case Expr::InitListExprClass: { |
| // Proposal by Jason Merrill, 2012-01-03 |
| Out << "il"; |
| const InitListExpr *InitList = cast<InitListExpr>(E); |
| for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i) |
| mangleExpression(InitList->getInit(i)); |
| Out << "E"; |
| break; |
| } |
| |
| case Expr::CXXDefaultArgExprClass: |
| mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity); |
| break; |
| |
| case Expr::SubstNonTypeTemplateParmExprClass: |
| mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), |
| Arity); |
| break; |
| |
| case Expr::UserDefinedLiteralClass: |
| // We follow g++'s approach of mangling a UDL as a call to the literal |
| // operator. |
| case Expr::CXXMemberCallExprClass: // fallthrough |
| case Expr::CallExprClass: { |
| const CallExpr *CE = cast<CallExpr>(E); |
| |
| // <expression> ::= cp <simple-id> <expression>* E |
| // We use this mangling only when the call would use ADL except |
| // for being parenthesized. Per discussion with David |
| // Vandervoorde, 2011.04.25. |
| if (isParenthesizedADLCallee(CE)) { |
| Out << "cp"; |
| // The callee here is a parenthesized UnresolvedLookupExpr with |
| // no qualifier and should always get mangled as a <simple-id> |
| // anyway. |
| |
| // <expression> ::= cl <expression>* E |
| } else { |
| Out << "cl"; |
| } |
| |
| mangleExpression(CE->getCallee(), CE->getNumArgs()); |
| for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I) |
| mangleExpression(CE->getArg(I)); |
| Out << 'E'; |
| break; |
| } |
| |
| case Expr::CXXNewExprClass: { |
| const CXXNewExpr *New = cast<CXXNewExpr>(E); |
| if (New->isGlobalNew()) Out << "gs"; |
| Out << (New->isArray() ? "na" : "nw"); |
| for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(), |
| E = New->placement_arg_end(); I != E; ++I) |
| mangleExpression(*I); |
| Out << '_'; |
| mangleType(New->getAllocatedType()); |
| if (New->hasInitializer()) { |
| // Proposal by Jason Merrill, 2012-01-03 |
| if (New->getInitializationStyle() == CXXNewExpr::ListInit) |
| Out << "il"; |
| else |
| Out << "pi"; |
| const Expr *Init = New->getInitializer(); |
| if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) { |
| // Directly inline the initializers. |
| for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(), |
| E = CCE->arg_end(); |
| I != E; ++I) |
| mangleExpression(*I); |
| } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) { |
| for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i) |
| mangleExpression(PLE->getExpr(i)); |
| } else if (New->getInitializationStyle() == CXXNewExpr::ListInit && |
| isa<InitListExpr>(Init)) { |
| // Only take InitListExprs apart for list-initialization. |
| const InitListExpr *InitList = cast<InitListExpr>(Init); |
| for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i) |
| mangleExpression(InitList->getInit(i)); |
| } else |
| mangleExpression(Init); |
| } |
| Out << 'E'; |
| break; |
| } |
| |
| case Expr::MemberExprClass: { |
| const MemberExpr *ME = cast<MemberExpr>(E); |
| mangleMemberExpr(ME->getBase(), ME->isArrow(), |
| ME->getQualifier(), 0, ME->getMemberDecl()->getDeclName(), |
| Arity); |
| break; |
| } |
| |
| case Expr::UnresolvedMemberExprClass: { |
| const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E); |
| mangleMemberExpr(ME->getBase(), ME->isArrow(), |
| ME->getQualifier(), 0, ME->getMemberName(), |
| Arity); |
| if (ME->hasExplicitTemplateArgs()) |
| mangleTemplateArgs(ME->getExplicitTemplateArgs()); |
| break; |
| } |
| |
| case Expr::CXXDependentScopeMemberExprClass: { |
| const CXXDependentScopeMemberExpr *ME |
| = cast<CXXDependentScopeMemberExpr>(E); |
| mangleMemberExpr(ME->getBase(), ME->isArrow(), |
| ME->getQualifier(), ME->getFirstQualifierFoundInScope(), |
| ME->getMember(), Arity); |
| if (ME->hasExplicitTemplateArgs()) |
| mangleTemplateArgs(ME->getExplicitTemplateArgs()); |
| break; |
| } |
| |
| case Expr::UnresolvedLookupExprClass: { |
| const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E); |
| mangleUnresolvedName(ULE->getQualifier(), 0, ULE->getName(), Arity); |
| |
| // All the <unresolved-name> productions end in a |
| // base-unresolved-name, where <template-args> are just tacked |
| // onto the end. |
| if (ULE->hasExplicitTemplateArgs()) |
| mangleTemplateArgs(ULE->getExplicitTemplateArgs()); |
| break; |
| } |
| |
| case Expr::CXXUnresolvedConstructExprClass: { |
| const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E); |
| unsigned N = CE->arg_size(); |
| |
| Out << "cv"; |
| mangleType(CE->getType()); |
| if (N != 1) Out << '_'; |
| for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I)); |
| if (N != 1) Out << 'E'; |
| break; |
| } |
| |
| case Expr::CXXTemporaryObjectExprClass: |
| case Expr::CXXConstructExprClass: { |
| const CXXConstructExpr *CE = cast<CXXConstructExpr>(E); |
| unsigned N = CE->getNumArgs(); |
| |
| // Proposal by Jason Merrill, 2012-01-03 |
| if (CE->isListInitialization()) |
| Out << "tl"; |
| else |
| Out << "cv"; |
| mangleType(CE->getType()); |
| if (N != 1) Out << '_'; |
| for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I)); |
| if (N != 1) Out << 'E'; |
| break; |
| } |
| |
| case Expr::CXXScalarValueInitExprClass: |
| Out <<"cv"; |
| mangleType(E->getType()); |
| Out <<"_E"; |
| break; |
| |
| case Expr::UnaryExprOrTypeTraitExprClass: { |
| const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E); |
| |
| if (!SAE->isInstantiationDependent()) { |
| // Itanium C++ ABI: |
| // If the operand of a sizeof or alignof operator is not |
| // instantiation-dependent it is encoded as an integer literal |
| // reflecting the result of the operator. |
| // |
| // If the result of the operator is implicitly converted to a known |
| // integer type, that type is used for the literal; otherwise, the type |
| // of std::size_t or std::ptrdiff_t is used. |
| QualType T = (ImplicitlyConvertedToType.isNull() || |
| !ImplicitlyConvertedToType->isIntegerType())? SAE->getType() |
| : ImplicitlyConvertedToType; |
| llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext()); |
| mangleIntegerLiteral(T, V); |
| break; |
| } |
| |
| switch(SAE->getKind()) { |
| case UETT_SizeOf: |
| Out << 's'; |
| break; |
| case UETT_AlignOf: |
| Out << 'a'; |
| break; |
| case UETT_VecStep: |
| DiagnosticsEngine &Diags = Context.getDiags(); |
| unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, |
| "cannot yet mangle vec_step expression"); |
| Diags.Report(DiagID); |
| return; |
| } |
| if (SAE->isArgumentType()) { |
| Out << 't'; |
| mangleType(SAE->getArgumentType()); |
| } else { |
| Out << 'z'; |
| mangleExpression(SAE->getArgumentExpr()); |
| } |
| break; |
| } |
| |
| case Expr::CXXThrowExprClass: { |
| const CXXThrowExpr *TE = cast<CXXThrowExpr>(E); |
| |
| // Proposal from David Vandervoorde, 2010.06.30 |
| if (TE->getSubExpr()) { |
| Out << "tw"; |
| mangleExpression(TE->getSubExpr()); |
| } else { |
| Out << "tr"; |
| } |
| break; |
| } |
| |
| case Expr::CXXTypeidExprClass: { |
| const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E); |
| |
| // Proposal from David Vandervoorde, 2010.06.30 |
| if (TIE->isTypeOperand()) { |
| Out << "ti"; |
| mangleType(TIE->getTypeOperand()); |
| } else { |
| Out << "te"; |
| mangleExpression(TIE->getExprOperand()); |
| } |
| break; |
| } |
| |
| case Expr::CXXDeleteExprClass: { |
| const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E); |
| |
| // Proposal from David Vandervoorde, 2010.06.30 |
| if (DE->isGlobalDelete()) Out << "gs"; |
| Out << (DE->isArrayForm() ? "da" : "dl"); |
| mangleExpression(DE->getArgument()); |
| break; |
| } |
| |
| case Expr::UnaryOperatorClass: { |
| const UnaryOperator *UO = cast<UnaryOperator>(E); |
| mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()), |
| /*Arity=*/1); |
| mangleExpression(UO->getSubExpr()); |
| break; |
| } |
| |
| case Expr::ArraySubscriptExprClass: { |
| const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E); |
| |
| // Array subscript is treated as a syntactically weird form of |
| // binary operator. |
| Out << "ix"; |
| mangleExpression(AE->getLHS()); |
| mangleExpression(AE->getRHS()); |
| break; |
| } |
| |
| case Expr::CompoundAssignOperatorClass: // fallthrough |
| case Expr::BinaryOperatorClass: { |
| const BinaryOperator *BO = cast<BinaryOperator>(E); |
| if (BO->getOpcode() == BO_PtrMemD) |
| Out << "ds"; |
| else |
| mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()), |
| /*Arity=*/2); |
| mangleExpression(BO->getLHS()); |
| mangleExpression(BO->getRHS()); |
| break; |
| } |
| |
| case Expr::ConditionalOperatorClass: { |
| const ConditionalOperator *CO = cast<ConditionalOperator>(E); |
| mangleOperatorName(OO_Conditional, /*Arity=*/3); |
| mangleExpression(CO->getCond()); |
| mangleExpression(CO->getLHS(), Arity); |
| mangleExpression(CO->getRHS(), Arity); |
| break; |
| } |
| |
| case Expr::ImplicitCastExprClass: { |
| ImplicitlyConvertedToType = E->getType(); |
| E = cast<ImplicitCastExpr>(E)->getSubExpr(); |
| goto recurse; |
| } |
| |
| case Expr::ObjCBridgedCastExprClass: { |
| // Mangle ownership casts as a vendor extended operator __bridge, |
| // __bridge_transfer, or __bridge_retain. |
| StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName(); |
| Out << "v1U" << Kind.size() << Kind; |
| } |
| // Fall through to mangle the cast itself. |
| |
| case Expr::CStyleCastExprClass: |
| case Expr::CXXStaticCastExprClass: |
| case Expr::CXXDynamicCastExprClass: |
| case Expr::CXXReinterpretCastExprClass: |
| case Expr::CXXConstCastExprClass: |
| case Expr::CXXFunctionalCastExprClass: { |
| const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E); |
| Out << "cv"; |
| mangleType(ECE->getType()); |
| mangleExpression(ECE->getSubExpr()); |
| break; |
| } |
| |
| case Expr::CXXOperatorCallExprClass: { |
| const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E); |
| unsigned NumArgs = CE->getNumArgs(); |
| mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs); |
| // Mangle the arguments. |
| for (unsigned i = 0; i != NumArgs; ++i) |
| mangleExpression(CE->getArg(i)); |
| break; |
| } |
| |
| case Expr::ParenExprClass: |
| mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity); |
| break; |
| |
| case Expr::DeclRefExprClass: { |
| const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl(); |
| |
| switch (D->getKind()) { |
| default: |
| // <expr-primary> ::= L <mangled-name> E # external name |
| Out << 'L'; |
| mangle(D, "_Z"); |
| Out << 'E'; |
| break; |
| |
| case Decl::ParmVar: |
| mangleFunctionParam(cast<ParmVarDecl>(D)); |
| break; |
| |
| case Decl::EnumConstant: { |
| const EnumConstantDecl *ED = cast<EnumConstantDecl>(D); |
| mangleIntegerLiteral(ED->getType(), ED->getInitVal()); |
| break; |
| } |
| |
| case Decl::NonTypeTemplateParm: { |
| const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D); |
| mangleTemplateParameter(PD->getIndex()); |
| break; |
| } |
| |
| } |
| |
| break; |
| } |
| |
| case Expr::SubstNonTypeTemplateParmPackExprClass: |
| // FIXME: not clear how to mangle this! |
| // template <unsigned N...> class A { |
| // template <class U...> void foo(U (&x)[N]...); |
| // }; |
| Out << "_SUBSTPACK_"; |
| break; |
| |
| case Expr::DependentScopeDeclRefExprClass: { |
| const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E); |
| mangleUnresolvedName(DRE->getQualifier(), 0, DRE->getDeclName(), Arity); |
| |
| // All the <unresolved-name> productions end in a |
| // base-unresolved-name, where <template-args> are just tacked |
| // onto the end. |
| if (DRE->hasExplicitTemplateArgs()) |
| mangleTemplateArgs(DRE->getExplicitTemplateArgs()); |
| break; |
| } |
| |
| case Expr::CXXBindTemporaryExprClass: |
| mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr()); |
| break; |
| |
| case Expr::ExprWithCleanupsClass: |
| mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity); |
| break; |
| |
| case Expr::FloatingLiteralClass: { |
| const FloatingLiteral *FL = cast<FloatingLiteral>(E); |
| Out << 'L'; |
| mangleType(FL->getType()); |
| mangleFloat(FL->getValue()); |
| Out << 'E'; |
| break; |
| } |
| |
| case Expr::CharacterLiteralClass: |
| Out << 'L'; |
| mangleType(E->getType()); |
| Out << cast<CharacterLiteral>(E)->getValue(); |
| Out << 'E'; |
| break; |
| |
| // FIXME. __objc_yes/__objc_no are mangled same as true/false |
| case Expr::ObjCBoolLiteralExprClass: |
| Out << "Lb"; |
| Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0'); |
| Out << 'E'; |
| break; |
| |
| case Expr::CXXBoolLiteralExprClass: |
| Out << "Lb"; |
| Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0'); |
| Out << 'E'; |
| break; |
| |
| case Expr::IntegerLiteralClass: { |
| llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue()); |
| if (E->getType()->isSignedIntegerType()) |
| Value.setIsSigned(true); |
| mangleIntegerLiteral(E->getType(), Value); |
| break; |
| } |
| |
| case Expr::ImaginaryLiteralClass: { |
| const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E); |
| // Mangle as if a complex literal. |
| // Proposal from David Vandevoorde, 2010.06.30. |
| Out << 'L'; |
| mangleType(E->getType()); |
| if (const FloatingLiteral *Imag = |
| dyn_cast<FloatingLiteral>(IE->getSubExpr())) { |
| // Mangle a floating-point zero of the appropriate type. |
| mangleFloat(llvm::APFloat(Imag->getValue().getSemantics())); |
| Out << '_'; |
| mangleFloat(Imag->getValue()); |
| } else { |
| Out << "0_"; |
| llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue()); |
| if (IE->getSubExpr()->getType()->isSignedIntegerType()) |
| Value.setIsSigned(true); |
| mangleNumber(Value); |
| } |
| Out << 'E'; |
| break; |
| } |
| |
| case Expr::StringLiteralClass: { |
| // Revised proposal from David Vandervoorde, 2010.07.15. |
| Out << 'L'; |
| assert(isa<ConstantArrayType>(E->getType())); |
| mangleType(E->getType()); |
| Out << 'E'; |
| break; |
| } |
| |
| case Expr::GNUNullExprClass: |
| // FIXME: should this really be mangled the same as nullptr? |
| // fallthrough |
| |
| case Expr::CXXNullPtrLiteralExprClass: { |
| // Proposal from David Vandervoorde, 2010.06.30, as |
| // modified by ABI list discussion. |
| Out << "LDnE"; |
| break; |
| } |
| |
| case Expr::PackExpansionExprClass: |
| Out << "sp"; |
| mangleExpression(cast<PackExpansionExpr>(E)->getPattern()); |
| break; |
| |
| case Expr::SizeOfPackExprClass: { |
| Out << "sZ"; |
| const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack(); |
| if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack)) |
| mangleTemplateParameter(TTP->getIndex()); |
| else if (const NonTypeTemplateParmDecl *NTTP |
| = dyn_cast<NonTypeTemplateParmDecl>(Pack)) |
| mangleTemplateParameter(NTTP->getIndex()); |
| else if (const TemplateTemplateParmDecl *TempTP |
| = dyn_cast<TemplateTemplateParmDecl>(Pack)) |
| mangleTemplateParameter(TempTP->getIndex()); |
| else |
| mangleFunctionParam(cast<ParmVarDecl>(Pack)); |
| break; |
| } |
| |
| case Expr::MaterializeTemporaryExprClass: { |
| mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()); |
| break; |
| } |
| |
| case Expr::CXXThisExprClass: |
| Out << "fpT"; |
| break; |
| } |
| } |
| |
| /// Mangle an expression which refers to a parameter variable. |
| /// |
| /// <expression> ::= <function-param> |
| /// <function-param> ::= fp <top-level CV-qualifiers> _ # L == 0, I == 0 |
| /// <function-param> ::= fp <top-level CV-qualifiers> |
| /// <parameter-2 non-negative number> _ # L == 0, I > 0 |
| /// <function-param> ::= fL <L-1 non-negative number> |
| /// p <top-level CV-qualifiers> _ # L > 0, I == 0 |
| /// <function-param> ::= fL <L-1 non-negative number> |
| /// p <top-level CV-qualifiers> |
| /// <I-1 non-negative number> _ # L > 0, I > 0 |
| /// |
| /// L is the nesting depth of the parameter, defined as 1 if the |
| /// parameter comes from the innermost function prototype scope |
| /// enclosing the current context, 2 if from the next enclosing |
| /// function prototype scope, and so on, with one special case: if |
| /// we've processed the full parameter clause for the innermost |
| /// function type, then L is one less. This definition conveniently |
| /// makes it irrelevant whether a function's result type was written |
| /// trailing or leading, but is otherwise overly complicated; the |
| /// numbering was first designed without considering references to |
| /// parameter in locations other than return types, and then the |
| /// mangling had to be generalized without changing the existing |
| /// manglings. |
| /// |
| /// I is the zero-based index of the parameter within its parameter |
| /// declaration clause. Note that the original ABI document describes |
| /// this using 1-based ordinals. |
| void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) { |
| unsigned parmDepth = parm->getFunctionScopeDepth(); |
| unsigned parmIndex = parm->getFunctionScopeIndex(); |
| |
| // Compute 'L'. |
| // parmDepth does not include the declaring function prototype. |
| // FunctionTypeDepth does account for that. |
| assert(parmDepth < FunctionTypeDepth.getDepth()); |
| unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth; |
| if (FunctionTypeDepth.isInResultType()) |
| nestingDepth--; |
| |
| if (nestingDepth == 0) { |
| Out << "fp"; |
| } else { |
| Out << "fL" << (nestingDepth - 1) << 'p'; |
| } |
| |
| // Top-level qualifiers. We don't have to worry about arrays here, |
| // because parameters declared as arrays should already have been |
| // transformed to have pointer type. FIXME: apparently these don't |
| // get mangled if used as an rvalue of a known non-class type? |
| assert(!parm->getType()->isArrayType() |
| && "parameter's type is still an array type?"); |
| mangleQualifiers(parm->getType().getQualifiers()); |
| |
| // Parameter index. |
| if (parmIndex != 0) { |
| Out << (parmIndex - 1); |
| } |
| Out << '_'; |
| } |
| |
| void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) { |
| // <ctor-dtor-name> ::= C1 # complete object constructor |
| // ::= C2 # base object constructor |
| // ::= C3 # complete object allocating constructor |
| // |
| switch (T) { |
| case Ctor_Complete: |
| Out << "C1"; |
| break; |
| case Ctor_Base: |
| Out << "C2"; |
| break; |
| case Ctor_CompleteAllocating: |
| Out << "C3"; |
| break; |
| } |
| } |
| |
| void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) { |
| // <ctor-dtor-name> ::= D0 # deleting destructor |
| // ::= D1 # complete object destructor |
| // ::= D2 # base object destructor |
| // |
| switch (T) { |
| case Dtor_Deleting: |
| Out << "D0"; |
| break; |
| case Dtor_Complete: |
| Out << "D1"; |
| break; |
| case Dtor_Base: |
| Out << "D2"; |
| break; |
| } |
| } |
| |
| void CXXNameMangler::mangleTemplateArgs( |
| const ASTTemplateArgumentListInfo &TemplateArgs) { |
| // <template-args> ::= I <template-arg>+ E |
| Out << 'I'; |
| for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i) |
| mangleTemplateArg(0, TemplateArgs.getTemplateArgs()[i].getArgument()); |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleTemplateArgs(TemplateName Template, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs) { |
| if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
| return mangleTemplateArgs(*TD->getTemplateParameters(), TemplateArgs, |
| NumTemplateArgs); |
| |
| mangleUnresolvedTemplateArgs(TemplateArgs, NumTemplateArgs); |
| } |
| |
| void CXXNameMangler::mangleUnresolvedTemplateArgs(const TemplateArgument *args, |
| unsigned numArgs) { |
| // <template-args> ::= I <template-arg>+ E |
| Out << 'I'; |
| for (unsigned i = 0; i != numArgs; ++i) |
| mangleTemplateArg(0, args[i]); |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL, |
| const TemplateArgumentList &AL) { |
| // <template-args> ::= I <template-arg>+ E |
| Out << 'I'; |
| for (unsigned i = 0, e = AL.size(); i != e; ++i) |
| mangleTemplateArg(PL.getParam(i), AL[i]); |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleTemplateArgs(const TemplateParameterList &PL, |
| const TemplateArgument *TemplateArgs, |
| unsigned NumTemplateArgs) { |
| // <template-args> ::= I <template-arg>+ E |
| Out << 'I'; |
| for (unsigned i = 0; i != NumTemplateArgs; ++i) |
| mangleTemplateArg(PL.getParam(i), TemplateArgs[i]); |
| Out << 'E'; |
| } |
| |
| void CXXNameMangler::mangleTemplateArg(const NamedDecl *P, |
| TemplateArgument A) { |
| // <template-arg> ::= <type> # type or template |
| // ::= X <expression> E # expression |
| // ::= <expr-primary> # simple expressions |
| // ::= J <template-arg>* E # argument pack |
| // ::= sp <expression> # pack expansion of (C++0x) |
| if (!A.isInstantiationDependent() || A.isDependent()) |
| A = Context.getASTContext().getCanonicalTemplateArgument(A); |
| |
| switch (A.getKind()) { |
| case TemplateArgument::Null: |
| llvm_unreachable("Cannot mangle NULL template argument"); |
| |
| case TemplateArgument::Type: |
| mangleType(A.getAsType()); |
| break; |
| case TemplateArgument::Template: |
| // This is mangled as <type>. |
| mangleType(A.getAsTemplate()); |
| break; |
| case TemplateArgument::TemplateExpansion: |
| // <type> ::= Dp <type> # pack expansion (C++0x) |
| Out << "Dp"; |
| mangleType(A.getAsTemplateOrTemplatePattern()); |
| break; |
| case TemplateArgument::Expression: { |
| // It's possible to end up with a DeclRefExpr here in certain |
| // dependent cases, in which case we should mangle as a |
| // declaration. |
| const Expr *E = A.getAsExpr()->IgnoreParens(); |
| if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) { |
| const ValueDecl *D = DRE->getDecl(); |
| if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) { |
| Out << "L"; |
| mangle(D, "_Z"); |
| Out << 'E'; |
| break; |
| } |
| } |
| |
| Out << 'X'; |
| mangleExpression(E); |
| Out << 'E'; |
| break; |
| } |
| case TemplateArgument::Integral: |
| mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral()); |
| break; |
| case TemplateArgument::Declaration: { |
| assert(P && "Missing template parameter for declaration argument"); |
| // <expr-primary> ::= L <mangled-name> E # external name |
| // <expr-primary> ::= L <type> 0 E |
| // Clang produces AST's where pointer-to-member-function expressions |
| // and pointer-to-function expressions are represented as a declaration not |
| // an expression. We compensate for it here to produce the correct mangling. |
| const NonTypeTemplateParmDecl *Parameter = cast<NonTypeTemplateParmDecl>(P); |
| |
| // Handle NULL pointer arguments. |
| if (!A.getAsDecl()) { |
| Out << "L"; |
| mangleType(Parameter->getType()); |
| Out << "0E"; |
| break; |
| } |
| |
| |
| NamedDecl *D = cast<NamedDecl>(A.getAsDecl()); |
| bool compensateMangling = !Parameter->getType()->isReferenceType(); |
| if (compensateMangling) { |
| Out << 'X'; |
| mangleOperatorName(OO_Amp, 1); |
| } |
| |
| Out << 'L'; |
| // References to external entities use the mangled name; if the name would |
| // not normally be manged then mangle it as unqualified. |
| // |
| // FIXME: The ABI specifies that external names here should have _Z, but |
| // gcc leaves this off. |
| if (compensateMangling) |
| mangle(D, "_Z"); |
| else |
| mangle(D, "Z"); |
| Out << 'E'; |
| |
| if (compensateMangling) |
| Out << 'E'; |
| |
| break; |
| } |
| |
| case TemplateArgument::Pack: { |
| // Note: proposal by Mike Herrick on 12/20/10 |
| Out << 'J'; |
| for (TemplateArgument::pack_iterator PA = A.pack_begin(), |
| PAEnd = A.pack_end(); |
| PA != PAEnd; ++PA) |
| mangleTemplateArg(P, *PA); |
| Out << 'E'; |
| } |
| } |
| } |
| |
| void CXXNameMangler::mangleTemplateParameter(unsigned Index) { |
| // <template-param> ::= T_ # first template parameter |
| // ::= T <parameter-2 non-negative number> _ |
| if (Index == 0) |
| Out << "T_"; |
| else |
| Out << 'T' << (Index - 1) << '_'; |
| } |
| |
| void CXXNameMangler::mangleExistingSubstitution(QualType type) { |
| bool result = mangleSubstitution(type); |
| assert(result && "no existing substitution for type"); |
| (void) result; |
| } |
| |
| void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) { |
| bool result = mangleSubstitution(tname); |
| assert(result && "no existing substitution for template name"); |
| (void) result; |
| } |
| |
| // <substitution> ::= S <seq-id> _ |
| // ::= S_ |
| bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) { |
| // Try one of the standard substitutions first. |
| if (mangleStandardSubstitution(ND)) |
| return true; |
| |
| ND = cast<NamedDecl>(ND->getCanonicalDecl()); |
| return mangleSubstitution(reinterpret_cast<uintptr_t>(ND)); |
| } |
| |
| /// \brief Determine whether the given type has any qualifiers that are |
| /// relevant for substitutions. |
| static bool hasMangledSubstitutionQualifiers(QualType T) { |
| Qualifiers Qs = T.getQualifiers(); |
| return Qs.getCVRQualifiers() || Qs.hasAddressSpace(); |
| } |
| |
| bool CXXNameMangler::mangleSubstitution(QualType T) { |
| if (!hasMangledSubstitutionQualifiers(T)) { |
| if (const RecordType *RT = T->getAs<RecordType>()) |
| return mangleSubstitution(RT->getDecl()); |
| } |
| |
| uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); |
| |
| return mangleSubstitution(TypePtr); |
| } |
| |
| bool CXXNameMangler::mangleSubstitution(TemplateName Template) { |
| if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
| return mangleSubstitution(TD); |
| |
| Template = Context.getASTContext().getCanonicalTemplateName(Template); |
| return mangleSubstitution( |
| reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); |
| } |
| |
| bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) { |
| llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr); |
| if (I == Substitutions.end()) |
| return false; |
| |
| unsigned SeqID = I->second; |
| if (SeqID == 0) |
| Out << "S_"; |
| else { |
| SeqID--; |
| |
| // <seq-id> is encoded in base-36, using digits and upper case letters. |
| char Buffer[10]; |
| char *BufferPtr = llvm::array_endof(Buffer); |
| |
| if (SeqID == 0) *--BufferPtr = '0'; |
| |
| while (SeqID) { |
| assert(BufferPtr > Buffer && "Buffer overflow!"); |
| |
| char c = static_cast<char>(SeqID % 36); |
| |
| *--BufferPtr = (c < 10 ? '0' + c : 'A' + c - 10); |
| SeqID /= 36; |
| } |
| |
| Out << 'S' |
| << StringRef(BufferPtr, llvm::array_endof(Buffer)-BufferPtr) |
| << '_'; |
| } |
| |
| return true; |
| } |
| |
| static bool isCharType(QualType T) { |
| if (T.isNull()) |
| return false; |
| |
| return T->isSpecificBuiltinType(BuiltinType::Char_S) || |
| T->isSpecificBuiltinType(BuiltinType::Char_U); |
| } |
| |
| /// isCharSpecialization - Returns whether a given type is a template |
| /// specialization of a given name with a single argument of type char. |
| static bool isCharSpecialization(QualType T, const char *Name) { |
| if (T.isNull()) |
| return false; |
| |
| const RecordType *RT = T->getAs<RecordType>(); |
| if (!RT) |
| return false; |
| |
| const ClassTemplateSpecializationDecl *SD = |
| dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl()); |
| if (!SD) |
| return false; |
| |
| if (!isStdNamespace(getEffectiveDeclContext(SD))) |
| return false; |
| |
| const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); |
| if (TemplateArgs.size() != 1) |
| return false; |
| |
| if (!isCharType(TemplateArgs[0].getAsType())) |
| return false; |
| |
| return SD->getIdentifier()->getName() == Name; |
| } |
| |
| template <std::size_t StrLen> |
| static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD, |
| const char (&Str)[StrLen]) { |
| if (!SD->getIdentifier()->isStr(Str)) |
| return false; |
| |
| const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); |
| if (TemplateArgs.size() != 2) |
| return false; |
| |
| if (!isCharType(TemplateArgs[0].getAsType())) |
| return false; |
| |
| if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) |
| return false; |
| |
| return true; |
| } |
| |
| bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) { |
| // <substitution> ::= St # ::std:: |
| if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) { |
| if (isStd(NS)) { |
| Out << "St"; |
| return true; |
| } |
| } |
| |
| if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) { |
| if (!isStdNamespace(getEffectiveDeclContext(TD))) |
| return false; |
| |
| // <substitution> ::= Sa # ::std::allocator |
| if (TD->getIdentifier()->isStr("allocator")) { |
| Out << "Sa"; |
| return true; |
| } |
| |
| // <<substitution> ::= Sb # ::std::basic_string |
| if (TD->getIdentifier()->isStr("basic_string")) { |
| Out << "Sb"; |
| return true; |
| } |
| } |
| |
| if (const ClassTemplateSpecializationDecl *SD = |
| dyn_cast<ClassTemplateSpecializationDecl>(ND)) { |
| if (!isStdNamespace(getEffectiveDeclContext(SD))) |
| return false; |
| |
| // <substitution> ::= Ss # ::std::basic_string<char, |
| // ::std::char_traits<char>, |
| // ::std::allocator<char> > |
| if (SD->getIdentifier()->isStr("basic_string")) { |
| const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs(); |
| |
| if (TemplateArgs.size() != 3) |
| return false; |
| |
| if (!isCharType(TemplateArgs[0].getAsType())) |
| return false; |
| |
| if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits")) |
| return false; |
| |
| if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator")) |
| return false; |
| |
| Out << "Ss"; |
| return true; |
| } |
| |
| // <substitution> ::= Si # ::std::basic_istream<char, |
| // ::std::char_traits<char> > |
| if (isStreamCharSpecialization(SD, "basic_istream")) { |
| Out << "Si"; |
| return true; |
| } |
| |
| // <substitution> ::= So # ::std::basic_ostream<char, |
| // ::std::char_traits<char> > |
| if (isStreamCharSpecialization(SD, "basic_ostream")) { |
| Out << "So"; |
| return true; |
| } |
| |
| // <substitution> ::= Sd # ::std::basic_iostream<char, |
| // ::std::char_traits<char> > |
| if (isStreamCharSpecialization(SD, "basic_iostream")) { |
| Out << "Sd"; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void CXXNameMangler::addSubstitution(QualType T) { |
| if (!hasMangledSubstitutionQualifiers(T)) { |
| if (const RecordType *RT = T->getAs<RecordType>()) { |
| addSubstitution(RT->getDecl()); |
| return; |
| } |
| } |
| |
| uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr()); |
| addSubstitution(TypePtr); |
| } |
| |
| void CXXNameMangler::addSubstitution(TemplateName Template) { |
| if (TemplateDecl *TD = Template.getAsTemplateDecl()) |
| return addSubstitution(TD); |
| |
| Template = Context.getASTContext().getCanonicalTemplateName(Template); |
| addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer())); |
| } |
| |
| void CXXNameMangler::addSubstitution(uintptr_t Ptr) { |
| assert(!Substitutions.count(Ptr) && "Substitution already exists!"); |
| Substitutions[Ptr] = SeqID++; |
| } |
| |
| // |
| |
| /// \brief Mangles the name of the declaration D and emits that name to the |
| /// given output stream. |
| /// |
| /// If the declaration D requires a mangled name, this routine will emit that |
| /// mangled name to \p os and return true. Otherwise, \p os will be unchanged |
| /// and this routine will return false. In this case, the caller should just |
| /// emit the identifier of the declaration (\c D->getIdentifier()) as its |
| /// name. |
| void ItaniumMangleContext::mangleName(const NamedDecl *D, |
| raw_ostream &Out) { |
| assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) && |
| "Invalid mangleName() call, argument is not a variable or function!"); |
| assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) && |
| "Invalid mangleName() call on 'structor decl!"); |
| |
| PrettyStackTraceDecl CrashInfo(D, SourceLocation(), |
| getASTContext().getSourceManager(), |
| "Mangling declaration"); |
| |
| CXXNameMangler Mangler(*this, Out, D); |
| return Mangler.mangle(D); |
| } |
| |
| void ItaniumMangleContext::mangleCXXCtor(const CXXConstructorDecl *D, |
| CXXCtorType Type, |
| raw_ostream &Out) { |
| CXXNameMangler Mangler(*this, Out, D, Type); |
| Mangler.mangle(D); |
| } |
| |
| void ItaniumMangleContext::mangleCXXDtor(const CXXDestructorDecl *D, |
| CXXDtorType Type, |
| raw_ostream &Out) { |
| CXXNameMangler Mangler(*this, Out, D, Type); |
| Mangler.mangle(D); |
| } |
| |
| void ItaniumMangleContext::mangleThunk(const CXXMethodDecl *MD, |
| const ThunkInfo &Thunk, |
| raw_ostream &Out) { |
| // <special-name> ::= T <call-offset> <base encoding> |
| // # base is the nominal target function of thunk |
| // <special-name> ::= Tc <call-offset> <call-offset> <base encoding> |
| // # base is the nominal target function of thunk |
| // # first call-offset is 'this' adjustment |
| // # second call-offset is result adjustment |
| |
| assert(!isa<CXXDestructorDecl>(MD) && |
| "Use mangleCXXDtor for destructor decls!"); |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "_ZT"; |
| if (!Thunk.Return.isEmpty()) |
| Mangler.getStream() << 'c'; |
| |
| // Mangle the 'this' pointer adjustment. |
| Mangler.mangleCallOffset(Thunk.This.NonVirtual, Thunk.This.VCallOffsetOffset); |
| |
| // Mangle the return pointer adjustment if there is one. |
| if (!Thunk.Return.isEmpty()) |
| Mangler.mangleCallOffset(Thunk.Return.NonVirtual, |
| Thunk.Return.VBaseOffsetOffset); |
| |
| Mangler.mangleFunctionEncoding(MD); |
| } |
| |
| void |
| ItaniumMangleContext::mangleCXXDtorThunk(const CXXDestructorDecl *DD, |
| CXXDtorType Type, |
| const ThisAdjustment &ThisAdjustment, |
| raw_ostream &Out) { |
| // <special-name> ::= T <call-offset> <base encoding> |
| // # base is the nominal target function of thunk |
| CXXNameMangler Mangler(*this, Out, DD, Type); |
| Mangler.getStream() << "_ZT"; |
| |
| // Mangle the 'this' pointer adjustment. |
| Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, |
| ThisAdjustment.VCallOffsetOffset); |
| |
| Mangler.mangleFunctionEncoding(DD); |
| } |
| |
| /// mangleGuardVariable - Returns the mangled name for a guard variable |
| /// for the passed in VarDecl. |
| void ItaniumMangleContext::mangleItaniumGuardVariable(const VarDecl *D, |
| raw_ostream &Out) { |
| // <special-name> ::= GV <object name> # Guard variable for one-time |
| // # initialization |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "_ZGV"; |
| Mangler.mangleName(D); |
| } |
| |
| void ItaniumMangleContext::mangleReferenceTemporary(const VarDecl *D, |
| raw_ostream &Out) { |
| // We match the GCC mangling here. |
| // <special-name> ::= GR <object name> |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "_ZGR"; |
| Mangler.mangleName(D); |
| } |
| |
| void ItaniumMangleContext::mangleCXXVTable(const CXXRecordDecl *RD, |
| raw_ostream &Out) { |
| // <special-name> ::= TV <type> # virtual table |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "_ZTV"; |
| Mangler.mangleNameOrStandardSubstitution(RD); |
| } |
| |
| void ItaniumMangleContext::mangleCXXVTT(const CXXRecordDecl *RD, |
| raw_ostream &Out) { |
| // <special-name> ::= TT <type> # VTT structure |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "_ZTT"; |
| Mangler.mangleNameOrStandardSubstitution(RD); |
| } |
| |
| void ItaniumMangleContext::mangleCXXCtorVTable(const CXXRecordDecl *RD, |
| int64_t Offset, |
| const CXXRecordDecl *Type, |
| raw_ostream &Out) { |
| // <special-name> ::= TC <type> <offset number> _ <base type> |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "_ZTC"; |
| Mangler.mangleNameOrStandardSubstitution(RD); |
| Mangler.getStream() << Offset; |
| Mangler.getStream() << '_'; |
| Mangler.mangleNameOrStandardSubstitution(Type); |
| } |
| |
| void ItaniumMangleContext::mangleCXXRTTI(QualType Ty, |
| raw_ostream &Out) { |
| // <special-name> ::= TI <type> # typeinfo structure |
| assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers"); |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "_ZTI"; |
| Mangler.mangleType(Ty); |
| } |
| |
| void ItaniumMangleContext::mangleCXXRTTIName(QualType Ty, |
| raw_ostream &Out) { |
| // <special-name> ::= TS <type> # typeinfo name (null terminated byte string) |
| CXXNameMangler Mangler(*this, Out); |
| Mangler.getStream() << "_ZTS"; |
| Mangler.mangleType(Ty); |
| } |
| |
| MangleContext *clang::createItaniumMangleContext(ASTContext &Context, |
| DiagnosticsEngine &Diags) { |
| return new ItaniumMangleContext(Context, Diags); |
| } |