blob: cb6fcab3805d193b6aafead30721d17417dbcee2 [file] [log] [blame]
//== BasicStore.cpp - Basic map from Locations to Values --------*- C++ -*--==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defined the BasicStore and BasicStoreManager classes.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ExprObjC.h"
#include "clang/Analysis/Analyses/LiveVariables.h"
#include "clang/Analysis/PathSensitive/GRState.h"
#include "llvm/ADT/ImmutableMap.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Streams.h"
using namespace clang;
typedef llvm::ImmutableMap<const MemRegion*,SVal> BindingsTy;
namespace {
class VISIBILITY_HIDDEN BasicStoreSubRegionMap : public SubRegionMap {
public:
BasicStoreSubRegionMap() {}
bool iterSubRegions(const MemRegion* R, Visitor& V) const {
return true; // Do nothing. No subregions.
}
};
class VISIBILITY_HIDDEN BasicStoreManager : public StoreManager {
BindingsTy::Factory VBFactory;
GRStateManager& StateMgr;
const MemRegion* SelfRegion;
public:
BasicStoreManager(GRStateManager& mgr)
: StoreManager(mgr.getAllocator()),
VBFactory(mgr.getAllocator()),
StateMgr(mgr),
SelfRegion(0) {}
~BasicStoreManager() {}
SubRegionMap* getSubRegionMap(const GRState *state) {
return new BasicStoreSubRegionMap();
}
SVal Retrieve(const GRState *state, Loc loc, QualType T = QualType());
const GRState* Bind(const GRState* St, Loc L, SVal V) {
Store store = BindInternal(St->getStore(), L, V);
return StateMgr.MakeStateWithStore(St, store);
}
Store scanForIvars(Stmt *B, const Decl* SelfDecl, Store St);
Store BindInternal(Store St, Loc loc, SVal V);
Store Remove(Store St, Loc loc);
Store getInitialStore();
// FIXME: Investigate what is using this. This method should be removed.
virtual Loc getLoc(const VarDecl* VD) {
return Loc::MakeVal(MRMgr.getVarRegion(VD));
}
const GRState* BindCompoundLiteral(const GRState* St,
const CompoundLiteralExpr* CL,
SVal V) {
return St;
}
SVal getLValueVar(const GRState* St, const VarDecl* VD);
SVal getLValueString(const GRState* St, const StringLiteral* S);
SVal getLValueCompoundLiteral(const GRState* St,
const CompoundLiteralExpr* CL);
SVal getLValueIvar(const GRState* St, const ObjCIvarDecl* D, SVal Base);
SVal getLValueField(const GRState* St, SVal Base, const FieldDecl* D);
SVal getLValueElement(const GRState* St, SVal Base, SVal Offset);
/// ArrayToPointer - Used by GRExprEngine::VistCast to handle implicit
/// conversions between arrays and pointers.
SVal ArrayToPointer(Loc Array) { return Array; }
/// CastRegion - Used by GRExprEngine::VisitCast to handle casts from
/// a MemRegion* to a specific location type. 'R' is the region being
/// casted and 'CastToTy' the result type of the cast.
CastResult CastRegion(const GRState* state, const MemRegion* R,
QualType CastToTy);
/// getSelfRegion - Returns the region for the 'self' (Objective-C) or
/// 'this' object (C++). When used when analyzing a normal function this
/// method returns NULL.
const MemRegion* getSelfRegion(Store) { return SelfRegion; }
/// RemoveDeadBindings - Scans a BasicStore of 'state' for dead values.
/// It returns a new Store with these values removed, and populates LSymbols
/// and DSymbols with the known set of live and dead symbols respectively.
Store
RemoveDeadBindings(const GRState* state, Stmt* Loc,
SymbolReaper& SymReaper,
llvm::SmallVectorImpl<const MemRegion*>& RegionRoots);
void iterBindings(Store store, BindingsHandler& f);
const GRState* BindDecl(const GRState* St, const VarDecl* VD, SVal InitVal) {
Store store = BindDeclInternal(St->getStore(), VD, &InitVal);
return StateMgr.MakeStateWithStore(St, store);
}
const GRState* BindDeclWithNoInit(const GRState* St, const VarDecl* VD) {
Store store = BindDeclInternal(St->getStore(), VD, 0);
return StateMgr.MakeStateWithStore(St, store);
}
Store BindDeclInternal(Store store, const VarDecl* VD, SVal* InitVal);
static inline BindingsTy GetBindings(Store store) {
return BindingsTy(static_cast<const BindingsTy::TreeTy*>(store));
}
void print(Store store, std::ostream& Out, const char* nl, const char *sep);
};
} // end anonymous namespace
StoreManager* clang::CreateBasicStoreManager(GRStateManager& StMgr) {
return new BasicStoreManager(StMgr);
}
SVal BasicStoreManager::getLValueVar(const GRState* St, const VarDecl* VD) {
return Loc::MakeVal(MRMgr.getVarRegion(VD));
}
SVal BasicStoreManager::getLValueString(const GRState* St,
const StringLiteral* S) {
return Loc::MakeVal(MRMgr.getStringRegion(S));
}
SVal BasicStoreManager::getLValueCompoundLiteral(const GRState* St,
const CompoundLiteralExpr* CL){
return Loc::MakeVal(MRMgr.getCompoundLiteralRegion(CL));
}
SVal BasicStoreManager::getLValueIvar(const GRState* St, const ObjCIvarDecl* D,
SVal Base) {
if (Base.isUnknownOrUndef())
return Base;
Loc BaseL = cast<Loc>(Base);
if (isa<loc::MemRegionVal>(BaseL)) {
const MemRegion *BaseR = cast<loc::MemRegionVal>(BaseL).getRegion();
if (BaseR == SelfRegion)
return loc::MemRegionVal(MRMgr.getObjCIvarRegion(D, BaseR));
}
return UnknownVal();
}
/// CastRegion - Used by GRExprEngine::VisitCast to handle casts from
/// a MemRegion* to a specific location type. 'R' is the region being
/// casted and 'CastToTy' the result type of the cast.
StoreManager::CastResult
BasicStoreManager::CastRegion(const GRState* state, const MemRegion* R,
QualType CastToTy) {
// Return the same region if the region types are compatible.
if (const TypedRegion* TR = dyn_cast<TypedRegion>(R)) {
ASTContext& Ctx = StateMgr.getContext();
QualType Ta = Ctx.getCanonicalType(TR->getLValueType(Ctx));
QualType Tb = Ctx.getCanonicalType(CastToTy);
if (Ta == Tb)
return CastResult(state, R);
}
return CastResult(state, MRMgr.getTypedViewRegion(CastToTy, R));
}
SVal BasicStoreManager::getLValueField(const GRState* St, SVal Base,
const FieldDecl* D) {
if (Base.isUnknownOrUndef())
return Base;
Loc BaseL = cast<Loc>(Base);
const MemRegion* BaseR = 0;
switch(BaseL.getSubKind()) {
case loc::SymbolValKind:
BaseR =
MRMgr.getSymbolicRegion(cast<loc::SymbolVal>(&BaseL)->getSymbol());
break;
case loc::GotoLabelKind:
case loc::FuncValKind:
// Technically we can get here if people do funny things with casts.
return UndefinedVal();
case loc::MemRegionKind:
BaseR = cast<loc::MemRegionVal>(BaseL).getRegion();
break;
case loc::ConcreteIntKind:
// While these seem funny, this can happen through casts.
// FIXME: What we should return is the field offset. For example,
// add the field offset to the integer value. That way funny things
// like this work properly: &(((struct foo *) 0xa)->f)
return Base;
default:
assert ("Unhandled Base.");
return Base;
}
return Loc::MakeVal(MRMgr.getFieldRegion(D, BaseR));
}
SVal BasicStoreManager::getLValueElement(const GRState* St, SVal Base,
SVal Offset) {
if (Base.isUnknownOrUndef())
return Base;
Loc BaseL = cast<Loc>(Base);
const TypedRegion* BaseR = 0;
switch(BaseL.getSubKind()) {
case loc::SymbolValKind: {
// FIXME: Should we have symbolic regions be typed or typeless?
// Here we assume that these regions are typeless, even though the
// symbol is typed.
SymbolRef Sym = cast<loc::SymbolVal>(&BaseL)->getSymbol();
// Create a region to represent this symbol.
// FIXME: In the future we may just use symbolic regions instead of
// SymbolVals to reason about symbolic memory chunks.
const MemRegion* SymR = MRMgr.getSymbolicRegion(Sym);
// Layered a typed region on top of this.
QualType T = StateMgr.getSymbolManager().getType(Sym);
BaseR = MRMgr.getTypedViewRegion(T, SymR);
break;
}
case loc::GotoLabelKind:
case loc::FuncValKind:
// Technically we can get here if people do funny things with casts.
return UndefinedVal();
case loc::MemRegionKind: {
const MemRegion *R = cast<loc::MemRegionVal>(BaseL).getRegion();
if (isa<ElementRegion>(R)) {
// Basic example:
// char buf[100];
// char *q = &buf[1]; // p points to ElementRegion(buf,Unknown)
// &q[10]
assert(cast<ElementRegion>(R)->getIndex().isUnknown());
return Base;
}
if (const TypedRegion *TR = dyn_cast<TypedRegion>(R)) {
BaseR = TR;
break;
}
// FIXME: Handle SymbolRegions? Shouldn't be possible in
// BasicStoreManager.
assert(!isa<SymbolicRegion>(R));
break;
}
case loc::ConcreteIntKind:
// While these seem funny, this can happen through casts.
// FIXME: What we should return is the field offset. For example,
// add the field offset to the integer value. That way funny things
// like this work properly: &(((struct foo *) 0xa)->f)
return Base;
default:
assert ("Unhandled Base.");
return Base;
}
if (BaseR)
return Loc::MakeVal(MRMgr.getElementRegion(UnknownVal(), BaseR));
else
return UnknownVal();
}
SVal BasicStoreManager::Retrieve(const GRState* state, Loc loc, QualType T) {
if (isa<UnknownVal>(loc))
return UnknownVal();
assert (!isa<UndefinedVal>(loc));
switch (loc.getSubKind()) {
case loc::MemRegionKind: {
const MemRegion* R = cast<loc::MemRegionVal>(loc).getRegion();
if (!(isa<VarRegion>(R) || isa<ObjCIvarRegion>(R)))
return UnknownVal();
BindingsTy B = GetBindings(state->getStore());
BindingsTy::data_type* T = B.lookup(R);
return T ? *T : UnknownVal();
}
case loc::SymbolValKind:
return UnknownVal();
case loc::ConcreteIntKind:
// Some clients may call GetSVal with such an option simply because
// they are doing a quick scan through their Locs (potentially to
// invalidate their bindings). Just return Undefined.
return UndefinedVal();
case loc::FuncValKind:
return loc;
default:
assert (false && "Invalid Loc.");
break;
}
return UnknownVal();
}
Store BasicStoreManager::BindInternal(Store store, Loc loc, SVal V) {
switch (loc.getSubKind()) {
case loc::MemRegionKind: {
const MemRegion* R = cast<loc::MemRegionVal>(loc).getRegion();
if (!(isa<VarRegion>(R) || isa<ObjCIvarRegion>(R)))
return store;
// We only track bindings to self.ivar.
if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R))
if (IVR->getSuperRegion() != SelfRegion)
return store;
BindingsTy B = GetBindings(store);
return V.isUnknown()
? VBFactory.Remove(B, R).getRoot()
: VBFactory.Add(B, R, V).getRoot();
}
default:
assert ("SetSVal for given Loc type not yet implemented.");
return store;
}
}
Store BasicStoreManager::Remove(Store store, Loc loc) {
switch (loc.getSubKind()) {
case loc::MemRegionKind: {
const MemRegion* R = cast<loc::MemRegionVal>(loc).getRegion();
if (!(isa<VarRegion>(R) || isa<ObjCIvarRegion>(R)))
return store;
return VBFactory.Remove(GetBindings(store), R).getRoot();
}
default:
assert ("Remove for given Loc type not yet implemented.");
return store;
}
}
Store
BasicStoreManager::RemoveDeadBindings(const GRState* state, Stmt* Loc,
SymbolReaper& SymReaper,
llvm::SmallVectorImpl<const MemRegion*>& RegionRoots)
{
Store store = state->getStore();
BindingsTy B = GetBindings(store);
typedef SVal::symbol_iterator symbol_iterator;
// Iterate over the variable bindings.
for (BindingsTy::iterator I=B.begin(), E=B.end(); I!=E ; ++I) {
if (const VarRegion *VR = dyn_cast<VarRegion>(I.getKey())) {
if (SymReaper.isLive(Loc, VR->getDecl()))
RegionRoots.push_back(VR);
else
continue;
}
else if (isa<ObjCIvarRegion>(I.getKey())) {
RegionRoots.push_back(I.getKey());
}
else
continue;
// Mark the bindings in the data as live.
SVal X = I.getData();
for (symbol_iterator SI=X.symbol_begin(), SE=X.symbol_end(); SI!=SE; ++SI)
SymReaper.markLive(*SI);
}
// Scan for live variables and live symbols.
llvm::SmallPtrSet<const MemRegion*, 10> Marked;
while (!RegionRoots.empty()) {
const MemRegion* MR = RegionRoots.back();
RegionRoots.pop_back();
while (MR) {
if (const SymbolicRegion* SymR = dyn_cast<SymbolicRegion>(MR)) {
SymReaper.markLive(SymR->getSymbol());
break;
}
else if (isa<VarRegion>(MR) || isa<ObjCIvarRegion>(MR)) {
if (Marked.count(MR))
break;
Marked.insert(MR);
SVal X = Retrieve(state, loc::MemRegionVal(MR));
// FIXME: We need to handle symbols nested in region definitions.
for (symbol_iterator SI=X.symbol_begin(),SE=X.symbol_end();SI!=SE;++SI)
SymReaper.markLive(*SI);
if (!isa<loc::MemRegionVal>(X))
break;
const loc::MemRegionVal& LVD = cast<loc::MemRegionVal>(X);
RegionRoots.push_back(LVD.getRegion());
break;
}
else if (const SubRegion* R = dyn_cast<SubRegion>(MR))
MR = R->getSuperRegion();
else
break;
}
}
// Remove dead variable bindings.
for (BindingsTy::iterator I=B.begin(), E=B.end(); I!=E ; ++I) {
const MemRegion* R = I.getKey();
if (!Marked.count(R)) {
store = Remove(store, Loc::MakeVal(R));
SVal X = I.getData();
for (symbol_iterator SI=X.symbol_begin(), SE=X.symbol_end(); SI!=SE; ++SI)
SymReaper.maybeDead(*SI);
}
}
return store;
}
Store BasicStoreManager::scanForIvars(Stmt *B, const Decl* SelfDecl, Store St) {
for (Stmt::child_iterator CI=B->child_begin(), CE=B->child_end();
CI != CE; ++CI) {
if (!*CI)
continue;
// Check if the statement is an ivar reference. We only
// care about self.ivar.
if (ObjCIvarRefExpr *IV = dyn_cast<ObjCIvarRefExpr>(*CI)) {
const Expr *Base = IV->getBase()->IgnoreParenCasts();
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Base)) {
if (DR->getDecl() == SelfDecl) {
const MemRegion *IVR = MRMgr.getObjCIvarRegion(IV->getDecl(),
SelfRegion);
SVal X = SVal::GetRValueSymbolVal(StateMgr.getSymbolManager(),
IVR);
St = BindInternal(St, Loc::MakeVal(IVR), X);
}
}
}
else
St = scanForIvars(*CI, SelfDecl, St);
}
return St;
}
Store BasicStoreManager::getInitialStore() {
// The LiveVariables information already has a compilation of all VarDecls
// used in the function. Iterate through this set, and "symbolicate"
// any VarDecl whose value originally comes from outside the function.
typedef LiveVariables::AnalysisDataTy LVDataTy;
LVDataTy& D = StateMgr.getLiveVariables().getAnalysisData();
Store St = VBFactory.GetEmptyMap().getRoot();
for (LVDataTy::decl_iterator I=D.begin_decl(), E=D.end_decl(); I != E; ++I) {
NamedDecl* ND = const_cast<NamedDecl*>(I->first);
// Handle implicit parameters.
if (ImplicitParamDecl* PD = dyn_cast<ImplicitParamDecl>(ND)) {
const Decl& CD = StateMgr.getCodeDecl();
if (const ObjCMethodDecl* MD = dyn_cast<ObjCMethodDecl>(&CD)) {
if (MD->getSelfDecl() == PD) {
// Create a region for "self".
assert (SelfRegion == 0);
SelfRegion = MRMgr.getObjCObjectRegion(MD->getClassInterface(),
MRMgr.getHeapRegion());
St = BindInternal(St, Loc::MakeVal(MRMgr.getVarRegion(PD)),
Loc::MakeVal(SelfRegion));
// Scan the method for ivar references. While this requires an
// entire AST scan, the cost should not be high in practice.
St = scanForIvars(MD->getBody(), PD, St);
}
}
}
else if (VarDecl* VD = dyn_cast<VarDecl>(ND)) {
// Punt on static variables for now.
if (VD->getStorageClass() == VarDecl::Static)
continue;
// Only handle simple types that we can symbolicate.
if (!SymbolManager::canSymbolicate(VD->getType()))
continue;
// Initialize globals and parameters to symbolic values.
// Initialize local variables to undefined.
const MemRegion *R = StateMgr.getRegion(VD);
SVal X = (VD->hasGlobalStorage() || isa<ParmVarDecl>(VD) ||
isa<ImplicitParamDecl>(VD))
? SVal::GetRValueSymbolVal(StateMgr.getSymbolManager(), R)
: UndefinedVal();
St = BindInternal(St, Loc::MakeVal(R), X);
}
}
return St;
}
Store BasicStoreManager::BindDeclInternal(Store store, const VarDecl* VD,
SVal* InitVal) {
BasicValueFactory& BasicVals = StateMgr.getBasicVals();
// BasicStore does not model arrays and structs.
if (VD->getType()->isArrayType() || VD->getType()->isStructureType())
return store;
if (VD->hasGlobalStorage()) {
// Handle variables with global storage: extern, static, PrivateExtern.
// FIXME:: static variables may have an initializer, but the second time a
// function is called those values may not be current. Currently, a function
// will not be called more than once.
// Static global variables should not be visited here.
assert(!(VD->getStorageClass() == VarDecl::Static &&
VD->isFileVarDecl()));
// Process static variables.
if (VD->getStorageClass() == VarDecl::Static) {
// C99: 6.7.8 Initialization
// If an object that has static storage duration is not initialized
// explicitly, then:
// —if it has pointer type, it is initialized to a null pointer;
// —if it has arithmetic type, it is initialized to (positive or
// unsigned) zero;
if (!InitVal) {
QualType T = VD->getType();
if (Loc::IsLocType(T))
store = BindInternal(store, getLoc(VD),
loc::ConcreteInt(BasicVals.getValue(0, T)));
else if (T->isIntegerType())
store = BindInternal(store, getLoc(VD),
nonloc::ConcreteInt(BasicVals.getValue(0, T)));
else {
// assert(0 && "ignore other types of variables");
}
} else {
store = BindInternal(store, getLoc(VD), *InitVal);
}
}
} else {
// Process local scalar variables.
QualType T = VD->getType();
if (Loc::IsLocType(T) || T->isIntegerType()) {
SVal V = InitVal ? *InitVal : UndefinedVal();
store = BindInternal(store, getLoc(VD), V);
}
}
return store;
}
void BasicStoreManager::print(Store store, std::ostream& O,
const char* nl, const char *sep) {
llvm::raw_os_ostream Out(O);
BindingsTy B = GetBindings(store);
Out << "Variables:" << nl;
bool isFirst = true;
for (BindingsTy::iterator I=B.begin(), E=B.end(); I != E; ++I) {
if (isFirst) isFirst = false;
else Out << nl;
Out << ' ' << I.getKey() << " : ";
I.getData().print(Out);
}
}
void BasicStoreManager::iterBindings(Store store, BindingsHandler& f) {
BindingsTy B = GetBindings(store);
for (BindingsTy::iterator I=B.begin(), E=B.end(); I != E; ++I)
f.HandleBinding(*this, store, I.getKey(), I.getData());
}
StoreManager::BindingsHandler::~BindingsHandler() {}