blob: 45a3372ada682ae5a9e32d0633a81d3cf08a7046 [file] [log] [blame]
//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the C++ related Decl classes.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ASTContext.h"
#include "clang/Basic/IdentifierTable.h"
#include "llvm/ADT/STLExtras.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// Decl Allocation/Deallocation Method Implementations
//===----------------------------------------------------------------------===//
CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id)
: RecordDecl(K, TK, DC, L, Id),
UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false),
UserDeclaredCopyAssignment(false), UserDeclaredDestructor(false),
Aggregate(true), PlainOldData(true), Polymorphic(false), Bases(0),
NumBases(0), Conversions(DC, DeclarationName()) { }
CXXRecordDecl *CXXRecordDecl::Create(ASTContext &C, TagKind TK, DeclContext *DC,
SourceLocation L, IdentifierInfo *Id,
CXXRecordDecl* PrevDecl) {
CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, L, Id);
C.getTypeDeclType(R, PrevDecl);
return R;
}
CXXRecordDecl::~CXXRecordDecl() {
delete [] Bases;
}
void
CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases,
unsigned NumBases) {
// C++ [dcl.init.aggr]p1:
// An aggregate is an array or a class (clause 9) with [...]
// no base classes [...].
Aggregate = false;
if (this->Bases)
delete [] this->Bases;
// FIXME: allocate using the ASTContext
this->Bases = new CXXBaseSpecifier[NumBases];
this->NumBases = NumBases;
for (unsigned i = 0; i < NumBases; ++i)
this->Bases[i] = *Bases[i];
}
bool CXXRecordDecl::hasConstCopyConstructor(ASTContext &Context) const {
QualType ClassType
= Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this));
DeclarationName ConstructorName
= Context.DeclarationNames.getCXXConstructorName(
Context.getCanonicalType(ClassType));
unsigned TypeQuals;
DeclContext::lookup_const_iterator Con, ConEnd;
for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName);
Con != ConEnd; ++Con) {
if (cast<CXXConstructorDecl>(*Con)->isCopyConstructor(Context, TypeQuals) &&
(TypeQuals & QualType::Const) != 0)
return true;
}
return false;
}
bool CXXRecordDecl::hasConstCopyAssignment(ASTContext &Context) const {
QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(
const_cast<CXXRecordDecl*>(this)));
DeclarationName OpName =Context.DeclarationNames.getCXXOperatorName(OO_Equal);
DeclContext::lookup_const_iterator Op, OpEnd;
for (llvm::tie(Op, OpEnd) = this->lookup(OpName);
Op != OpEnd; ++Op) {
// C++ [class.copy]p9:
// A user-declared copy assignment operator is a non-static non-template
// member function of class X with exactly one parameter of type X, X&,
// const X&, volatile X& or const volatile X&.
const CXXMethodDecl* Method = cast<CXXMethodDecl>(*Op);
if (Method->isStatic())
continue;
// TODO: Skip templates? Or is this implicitly done due to parameter types?
const FunctionProtoType *FnType =
Method->getType()->getAsFunctionProtoType();
assert(FnType && "Overloaded operator has no prototype.");
// Don't assert on this; an invalid decl might have been left in the AST.
if (FnType->getNumArgs() != 1 || FnType->isVariadic())
continue;
bool AcceptsConst = true;
QualType ArgType = FnType->getArgType(0);
if (const ReferenceType *Ref = ArgType->getAsReferenceType()) {
ArgType = Ref->getPointeeType();
// Is it a non-const reference?
if (!ArgType.isConstQualified())
AcceptsConst = false;
}
if (Context.getCanonicalType(ArgType).getUnqualifiedType() != ClassType)
continue;
// We have a single argument of type cv X or cv X&, i.e. we've found the
// copy assignment operator. Return whether it accepts const arguments.
return AcceptsConst;
}
assert(isInvalidDecl() &&
"No copy assignment operator declared in valid code.");
return false;
}
void
CXXRecordDecl::addedConstructor(ASTContext &Context,
CXXConstructorDecl *ConDecl) {
if (!ConDecl->isImplicit()) {
// Note that we have a user-declared constructor.
UserDeclaredConstructor = true;
// C++ [dcl.init.aggr]p1:
// An aggregate is an array or a class (clause 9) with no
// user-declared constructors (12.1) [...].
Aggregate = false;
// C++ [class]p4:
// A POD-struct is an aggregate class [...]
PlainOldData = false;
// Note when we have a user-declared copy constructor, which will
// suppress the implicit declaration of a copy constructor.
if (ConDecl->isCopyConstructor(Context))
UserDeclaredCopyConstructor = true;
}
}
void CXXRecordDecl::addedAssignmentOperator(ASTContext &Context,
CXXMethodDecl *OpDecl) {
// We're interested specifically in copy assignment operators.
// Unlike addedConstructor, this method is not called for implicit
// declarations.
const FunctionProtoType *FnType = OpDecl->getType()->getAsFunctionProtoType();
assert(FnType && "Overloaded operator has no proto function type.");
assert(FnType->getNumArgs() == 1 && !FnType->isVariadic());
QualType ArgType = FnType->getArgType(0);
if (const ReferenceType *Ref = ArgType->getAsReferenceType())
ArgType = Ref->getPointeeType();
ArgType = ArgType.getUnqualifiedType();
QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(
const_cast<CXXRecordDecl*>(this)));
if (ClassType != Context.getCanonicalType(ArgType))
return;
// This is a copy assignment operator.
// Suppress the implicit declaration of a copy constructor.
UserDeclaredCopyAssignment = true;
// C++ [class]p4:
// A POD-struct is an aggregate class that [...] has no user-defined copy
// assignment operator [...].
PlainOldData = false;
}
void CXXRecordDecl::addConversionFunction(ASTContext &Context,
CXXConversionDecl *ConvDecl) {
Conversions.addOverload(ConvDecl);
}
CXXMethodDecl *
CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation L, DeclarationName N,
QualType T, bool isStatic, bool isInline) {
return new (C) CXXMethodDecl(CXXMethod, RD, L, N, T, isStatic, isInline);
}
QualType CXXMethodDecl::getThisType(ASTContext &C) const {
// C++ 9.3.2p1: The type of this in a member function of a class X is X*.
// If the member function is declared const, the type of this is const X*,
// if the member function is declared volatile, the type of this is
// volatile X*, and if the member function is declared const volatile,
// the type of this is const volatile X*.
assert(isInstance() && "No 'this' for static methods!");
QualType ClassTy = C.getTagDeclType(const_cast<CXXRecordDecl*>(getParent()));
ClassTy = ClassTy.getWithAdditionalQualifiers(getTypeQualifiers());
return C.getPointerType(ClassTy).withConst();
}
CXXBaseOrMemberInitializer::
CXXBaseOrMemberInitializer(QualType BaseType, Expr **Args, unsigned NumArgs)
: Args(0), NumArgs(0) {
BaseOrMember = reinterpret_cast<uintptr_t>(BaseType.getTypePtr());
assert((BaseOrMember & 0x01) == 0 && "Invalid base class type pointer");
BaseOrMember |= 0x01;
if (NumArgs > 0) {
this->NumArgs = NumArgs;
this->Args = new Expr*[NumArgs];
for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
this->Args[Idx] = Args[Idx];
}
}
CXXBaseOrMemberInitializer::
CXXBaseOrMemberInitializer(FieldDecl *Member, Expr **Args, unsigned NumArgs)
: Args(0), NumArgs(0) {
BaseOrMember = reinterpret_cast<uintptr_t>(Member);
assert((BaseOrMember & 0x01) == 0 && "Invalid member pointer");
if (NumArgs > 0) {
this->NumArgs = NumArgs;
this->Args = new Expr*[NumArgs];
for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
this->Args[Idx] = Args[Idx];
}
}
CXXBaseOrMemberInitializer::~CXXBaseOrMemberInitializer() {
delete [] Args;
}
CXXConstructorDecl *
CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation L, DeclarationName N,
QualType T, bool isExplicit,
bool isInline, bool isImplicitlyDeclared) {
assert(N.getNameKind() == DeclarationName::CXXConstructorName &&
"Name must refer to a constructor");
return new (C) CXXConstructorDecl(RD, L, N, T, isExplicit, isInline,
isImplicitlyDeclared);
}
bool CXXConstructorDecl::isDefaultConstructor() const {
// C++ [class.ctor]p5:
// A default constructor for a class X is a constructor of class
// X that can be called without an argument.
return (getNumParams() == 0) ||
(getNumParams() > 0 && getParamDecl(0)->getDefaultArg() != 0);
}
bool
CXXConstructorDecl::isCopyConstructor(ASTContext &Context,
unsigned &TypeQuals) const {
// C++ [class.copy]p2:
// A non-template constructor for class X is a copy constructor
// if its first parameter is of type X&, const X&, volatile X& or
// const volatile X&, and either there are no other parameters
// or else all other parameters have default arguments (8.3.6).
if ((getNumParams() < 1) ||
(getNumParams() > 1 && getParamDecl(1)->getDefaultArg() == 0))
return false;
const ParmVarDecl *Param = getParamDecl(0);
// Do we have a reference type?
const ReferenceType *ParamRefType = Param->getType()->getAsReferenceType();
if (!ParamRefType)
return false;
// Is it a reference to our class type?
QualType PointeeType
= Context.getCanonicalType(ParamRefType->getPointeeType());
QualType ClassTy
= Context.getTagDeclType(const_cast<CXXRecordDecl*>(getParent()));
if (PointeeType.getUnqualifiedType() != ClassTy)
return false;
// We have a copy constructor.
TypeQuals = PointeeType.getCVRQualifiers();
return true;
}
bool CXXConstructorDecl::isConvertingConstructor() const {
// C++ [class.conv.ctor]p1:
// A constructor declared without the function-specifier explicit
// that can be called with a single parameter specifies a
// conversion from the type of its first parameter to the type of
// its class. Such a constructor is called a converting
// constructor.
if (isExplicit())
return false;
return (getNumParams() == 0 &&
getType()->getAsFunctionProtoType()->isVariadic()) ||
(getNumParams() == 1) ||
(getNumParams() > 1 && getParamDecl(1)->getDefaultArg() != 0);
}
CXXDestructorDecl *
CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation L, DeclarationName N,
QualType T, bool isInline,
bool isImplicitlyDeclared) {
assert(N.getNameKind() == DeclarationName::CXXDestructorName &&
"Name must refer to a destructor");
return new (C) CXXDestructorDecl(RD, L, N, T, isInline,
isImplicitlyDeclared);
}
CXXConversionDecl *
CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation L, DeclarationName N,
QualType T, bool isInline, bool isExplicit) {
assert(N.getNameKind() == DeclarationName::CXXConversionFunctionName &&
"Name must refer to a conversion function");
return new (C) CXXConversionDecl(RD, L, N, T, isInline, isExplicit);
}
CXXClassVarDecl *CXXClassVarDecl::Create(ASTContext &C, CXXRecordDecl *RD,
SourceLocation L, IdentifierInfo *Id,
QualType T) {
return new (C) CXXClassVarDecl(RD, L, Id, T);
}
OverloadedFunctionDecl *
OverloadedFunctionDecl::Create(ASTContext &C, DeclContext *DC,
DeclarationName N) {
return new (C) OverloadedFunctionDecl(DC, N);
}
LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
DeclContext *DC,
SourceLocation L,
LanguageIDs Lang, bool Braces) {
return new (C) LinkageSpecDecl(DC, L, Lang, Braces);
}
UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
SourceLocation L,
SourceLocation NamespaceLoc,
SourceLocation IdentLoc,
NamespaceDecl *Used,
DeclContext *CommonAncestor) {
return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, IdentLoc,
Used, CommonAncestor);
}