Check in LLVM r95781.
diff --git a/lib/AST/ASTContext.cpp b/lib/AST/ASTContext.cpp
new file mode 100644
index 0000000..7912a93
--- /dev/null
+++ b/lib/AST/ASTContext.cpp
@@ -0,0 +1,5028 @@
+//===--- ASTContext.cpp - Context to hold long-lived AST nodes ------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//  This file implements the ASTContext interface.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExternalASTSource.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "RecordLayoutBuilder.h"
+
+using namespace clang;
+
+enum FloatingRank {
+  FloatRank, DoubleRank, LongDoubleRank
+};
+
+ASTContext::ASTContext(const LangOptions& LOpts, SourceManager &SM,
+                       const TargetInfo &t,
+                       IdentifierTable &idents, SelectorTable &sels,
+                       Builtin::Context &builtins,
+                       bool FreeMem, unsigned size_reserve) :
+  GlobalNestedNameSpecifier(0), CFConstantStringTypeDecl(0),
+  ObjCFastEnumerationStateTypeDecl(0), FILEDecl(0), jmp_bufDecl(0),
+  sigjmp_bufDecl(0), BlockDescriptorType(0), BlockDescriptorExtendedType(0),
+  SourceMgr(SM), LangOpts(LOpts),
+  LoadedExternalComments(false), FreeMemory(FreeMem), Target(t),
+  Idents(idents), Selectors(sels),
+  BuiltinInfo(builtins), ExternalSource(0), PrintingPolicy(LOpts) {
+  ObjCIdRedefinitionType = QualType();
+  ObjCClassRedefinitionType = QualType();
+  ObjCSelRedefinitionType = QualType();
+  if (size_reserve > 0) Types.reserve(size_reserve);
+  TUDecl = TranslationUnitDecl::Create(*this);
+  InitBuiltinTypes();
+}
+
+ASTContext::~ASTContext() {
+  if (FreeMemory) {
+    // Deallocate all the types.
+    while (!Types.empty()) {
+      Types.back()->Destroy(*this);
+      Types.pop_back();
+    }
+
+    for (llvm::FoldingSet<ExtQuals>::iterator
+         I = ExtQualNodes.begin(), E = ExtQualNodes.end(); I != E; ) {
+      // Increment in loop to prevent using deallocated memory.
+      Deallocate(&*I++);
+    }
+  }
+
+  for (llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>::iterator
+       I = ASTRecordLayouts.begin(), E = ASTRecordLayouts.end(); I != E; ) {
+    // Increment in loop to prevent using deallocated memory.
+    ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
+    delete R;
+  }
+
+  for (llvm::DenseMap<const ObjCContainerDecl*,
+                      const ASTRecordLayout*>::iterator
+       I = ObjCLayouts.begin(), E = ObjCLayouts.end(); I != E; ) {
+    // Increment in loop to prevent using deallocated memory.
+    ASTRecordLayout *R = const_cast<ASTRecordLayout*>((I++)->second);
+    delete R;
+  }
+
+  // Destroy nested-name-specifiers.
+  for (llvm::FoldingSet<NestedNameSpecifier>::iterator
+         NNS = NestedNameSpecifiers.begin(),
+         NNSEnd = NestedNameSpecifiers.end();
+       NNS != NNSEnd; ) {
+    // Increment in loop to prevent using deallocated memory.
+    (*NNS++).Destroy(*this);
+  }
+
+  if (GlobalNestedNameSpecifier)
+    GlobalNestedNameSpecifier->Destroy(*this);
+
+  TUDecl->Destroy(*this);
+}
+
+void
+ASTContext::setExternalSource(llvm::OwningPtr<ExternalASTSource> &Source) {
+  ExternalSource.reset(Source.take());
+}
+
+void ASTContext::PrintStats() const {
+  fprintf(stderr, "*** AST Context Stats:\n");
+  fprintf(stderr, "  %d types total.\n", (int)Types.size());
+
+  unsigned counts[] = {
+#define TYPE(Name, Parent) 0,
+#define ABSTRACT_TYPE(Name, Parent)
+#include "clang/AST/TypeNodes.def"
+    0 // Extra
+  };
+
+  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
+    Type *T = Types[i];
+    counts[(unsigned)T->getTypeClass()]++;
+  }
+
+  unsigned Idx = 0;
+  unsigned TotalBytes = 0;
+#define TYPE(Name, Parent)                                              \
+  if (counts[Idx])                                                      \
+    fprintf(stderr, "    %d %s types\n", (int)counts[Idx], #Name);      \
+  TotalBytes += counts[Idx] * sizeof(Name##Type);                       \
+  ++Idx;
+#define ABSTRACT_TYPE(Name, Parent)
+#include "clang/AST/TypeNodes.def"
+
+  fprintf(stderr, "Total bytes = %d\n", int(TotalBytes));
+
+  if (ExternalSource.get()) {
+    fprintf(stderr, "\n");
+    ExternalSource->PrintStats();
+  }
+}
+
+
+void ASTContext::InitBuiltinType(CanQualType &R, BuiltinType::Kind K) {
+  BuiltinType *Ty = new (*this, TypeAlignment) BuiltinType(K);
+  R = CanQualType::CreateUnsafe(QualType(Ty, 0));
+  Types.push_back(Ty);
+}
+
+void ASTContext::InitBuiltinTypes() {
+  assert(VoidTy.isNull() && "Context reinitialized?");
+
+  // C99 6.2.5p19.
+  InitBuiltinType(VoidTy,              BuiltinType::Void);
+
+  // C99 6.2.5p2.
+  InitBuiltinType(BoolTy,              BuiltinType::Bool);
+  // C99 6.2.5p3.
+  if (LangOpts.CharIsSigned)
+    InitBuiltinType(CharTy,            BuiltinType::Char_S);
+  else
+    InitBuiltinType(CharTy,            BuiltinType::Char_U);
+  // C99 6.2.5p4.
+  InitBuiltinType(SignedCharTy,        BuiltinType::SChar);
+  InitBuiltinType(ShortTy,             BuiltinType::Short);
+  InitBuiltinType(IntTy,               BuiltinType::Int);
+  InitBuiltinType(LongTy,              BuiltinType::Long);
+  InitBuiltinType(LongLongTy,          BuiltinType::LongLong);
+
+  // C99 6.2.5p6.
+  InitBuiltinType(UnsignedCharTy,      BuiltinType::UChar);
+  InitBuiltinType(UnsignedShortTy,     BuiltinType::UShort);
+  InitBuiltinType(UnsignedIntTy,       BuiltinType::UInt);
+  InitBuiltinType(UnsignedLongTy,      BuiltinType::ULong);
+  InitBuiltinType(UnsignedLongLongTy,  BuiltinType::ULongLong);
+
+  // C99 6.2.5p10.
+  InitBuiltinType(FloatTy,             BuiltinType::Float);
+  InitBuiltinType(DoubleTy,            BuiltinType::Double);
+  InitBuiltinType(LongDoubleTy,        BuiltinType::LongDouble);
+
+  // GNU extension, 128-bit integers.
+  InitBuiltinType(Int128Ty,            BuiltinType::Int128);
+  InitBuiltinType(UnsignedInt128Ty,    BuiltinType::UInt128);
+
+  if (LangOpts.CPlusPlus) // C++ 3.9.1p5
+    InitBuiltinType(WCharTy,           BuiltinType::WChar);
+  else // C99
+    WCharTy = getFromTargetType(Target.getWCharType());
+
+  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
+    InitBuiltinType(Char16Ty,           BuiltinType::Char16);
+  else // C99
+    Char16Ty = getFromTargetType(Target.getChar16Type());
+
+  if (LangOpts.CPlusPlus) // C++0x 3.9.1p5, extension for C++
+    InitBuiltinType(Char32Ty,           BuiltinType::Char32);
+  else // C99
+    Char32Ty = getFromTargetType(Target.getChar32Type());
+
+  // Placeholder type for functions.
+  InitBuiltinType(OverloadTy,          BuiltinType::Overload);
+
+  // Placeholder type for type-dependent expressions whose type is
+  // completely unknown. No code should ever check a type against
+  // DependentTy and users should never see it; however, it is here to
+  // help diagnose failures to properly check for type-dependent
+  // expressions.
+  InitBuiltinType(DependentTy,         BuiltinType::Dependent);
+
+  // Placeholder type for C++0x auto declarations whose real type has
+  // not yet been deduced.
+  InitBuiltinType(UndeducedAutoTy, BuiltinType::UndeducedAuto);
+
+  // C99 6.2.5p11.
+  FloatComplexTy      = getComplexType(FloatTy);
+  DoubleComplexTy     = getComplexType(DoubleTy);
+  LongDoubleComplexTy = getComplexType(LongDoubleTy);
+
+  BuiltinVaListType = QualType();
+
+  // "Builtin" typedefs set by Sema::ActOnTranslationUnitScope().
+  ObjCIdTypedefType = QualType();
+  ObjCClassTypedefType = QualType();
+  ObjCSelTypedefType = QualType();
+
+  // Builtin types for 'id', 'Class', and 'SEL'.
+  InitBuiltinType(ObjCBuiltinIdTy, BuiltinType::ObjCId);
+  InitBuiltinType(ObjCBuiltinClassTy, BuiltinType::ObjCClass);
+  InitBuiltinType(ObjCBuiltinSelTy, BuiltinType::ObjCSel);
+
+  ObjCConstantStringType = QualType();
+
+  // void * type
+  VoidPtrTy = getPointerType(VoidTy);
+
+  // nullptr type (C++0x 2.14.7)
+  InitBuiltinType(NullPtrTy,           BuiltinType::NullPtr);
+}
+
+MemberSpecializationInfo *
+ASTContext::getInstantiatedFromStaticDataMember(const VarDecl *Var) {
+  assert(Var->isStaticDataMember() && "Not a static data member");
+  llvm::DenseMap<const VarDecl *, MemberSpecializationInfo *>::iterator Pos
+    = InstantiatedFromStaticDataMember.find(Var);
+  if (Pos == InstantiatedFromStaticDataMember.end())
+    return 0;
+
+  return Pos->second;
+}
+
+void
+ASTContext::setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
+                                                TemplateSpecializationKind TSK) {
+  assert(Inst->isStaticDataMember() && "Not a static data member");
+  assert(Tmpl->isStaticDataMember() && "Not a static data member");
+  assert(!InstantiatedFromStaticDataMember[Inst] &&
+         "Already noted what static data member was instantiated from");
+  InstantiatedFromStaticDataMember[Inst] 
+    = new (*this) MemberSpecializationInfo(Tmpl, TSK);
+}
+
+NamedDecl *
+ASTContext::getInstantiatedFromUsingDecl(UsingDecl *UUD) {
+  llvm::DenseMap<UsingDecl *, NamedDecl *>::const_iterator Pos
+    = InstantiatedFromUsingDecl.find(UUD);
+  if (Pos == InstantiatedFromUsingDecl.end())
+    return 0;
+
+  return Pos->second;
+}
+
+void
+ASTContext::setInstantiatedFromUsingDecl(UsingDecl *Inst, NamedDecl *Pattern) {
+  assert((isa<UsingDecl>(Pattern) ||
+          isa<UnresolvedUsingValueDecl>(Pattern) ||
+          isa<UnresolvedUsingTypenameDecl>(Pattern)) && 
+         "pattern decl is not a using decl");
+  assert(!InstantiatedFromUsingDecl[Inst] && "pattern already exists");
+  InstantiatedFromUsingDecl[Inst] = Pattern;
+}
+
+UsingShadowDecl *
+ASTContext::getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst) {
+  llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>::const_iterator Pos
+    = InstantiatedFromUsingShadowDecl.find(Inst);
+  if (Pos == InstantiatedFromUsingShadowDecl.end())
+    return 0;
+
+  return Pos->second;
+}
+
+void
+ASTContext::setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
+                                               UsingShadowDecl *Pattern) {
+  assert(!InstantiatedFromUsingShadowDecl[Inst] && "pattern already exists");
+  InstantiatedFromUsingShadowDecl[Inst] = Pattern;
+}
+
+FieldDecl *ASTContext::getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field) {
+  llvm::DenseMap<FieldDecl *, FieldDecl *>::iterator Pos
+    = InstantiatedFromUnnamedFieldDecl.find(Field);
+  if (Pos == InstantiatedFromUnnamedFieldDecl.end())
+    return 0;
+
+  return Pos->second;
+}
+
+void ASTContext::setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst,
+                                                     FieldDecl *Tmpl) {
+  assert(!Inst->getDeclName() && "Instantiated field decl is not unnamed");
+  assert(!Tmpl->getDeclName() && "Template field decl is not unnamed");
+  assert(!InstantiatedFromUnnamedFieldDecl[Inst] &&
+         "Already noted what unnamed field was instantiated from");
+
+  InstantiatedFromUnnamedFieldDecl[Inst] = Tmpl;
+}
+
+namespace {
+  class BeforeInTranslationUnit
+    : std::binary_function<SourceRange, SourceRange, bool> {
+    SourceManager *SourceMgr;
+
+  public:
+    explicit BeforeInTranslationUnit(SourceManager *SM) : SourceMgr(SM) { }
+
+    bool operator()(SourceRange X, SourceRange Y) {
+      return SourceMgr->isBeforeInTranslationUnit(X.getBegin(), Y.getBegin());
+    }
+  };
+}
+
+/// \brief Determine whether the given comment is a Doxygen-style comment.
+///
+/// \param Start the start of the comment text.
+///
+/// \param End the end of the comment text.
+///
+/// \param Member whether we want to check whether this is a member comment
+/// (which requires a < after the Doxygen-comment delimiter). Otherwise,
+/// we only return true when we find a non-member comment.
+static bool
+isDoxygenComment(SourceManager &SourceMgr, SourceRange Comment,
+                 bool Member = false) {
+  const char *BufferStart
+    = SourceMgr.getBufferData(SourceMgr.getFileID(Comment.getBegin())).first;
+  const char *Start = BufferStart + SourceMgr.getFileOffset(Comment.getBegin());
+  const char* End = BufferStart + SourceMgr.getFileOffset(Comment.getEnd());
+
+  if (End - Start < 4)
+    return false;
+
+  assert(Start[0] == '/' && "Not a comment?");
+  if (Start[1] == '*' && !(Start[2] == '!' || Start[2] == '*'))
+    return false;
+  if (Start[1] == '/' && !(Start[2] == '!' || Start[2] == '/'))
+    return false;
+
+  return (Start[3] == '<') == Member;
+}
+
+/// \brief Retrieve the comment associated with the given declaration, if
+/// it has one.
+const char *ASTContext::getCommentForDecl(const Decl *D) {
+  if (!D)
+    return 0;
+
+  // Check whether we have cached a comment string for this declaration
+  // already.
+  llvm::DenseMap<const Decl *, std::string>::iterator Pos
+    = DeclComments.find(D);
+  if (Pos != DeclComments.end())
+    return Pos->second.c_str();
+
+  // If we have an external AST source and have not yet loaded comments from
+  // that source, do so now.
+  if (ExternalSource && !LoadedExternalComments) {
+    std::vector<SourceRange> LoadedComments;
+    ExternalSource->ReadComments(LoadedComments);
+
+    if (!LoadedComments.empty())
+      Comments.insert(Comments.begin(), LoadedComments.begin(),
+                      LoadedComments.end());
+
+    LoadedExternalComments = true;
+  }
+
+  // If there are no comments anywhere, we won't find anything.
+  if (Comments.empty())
+    return 0;
+
+  // If the declaration doesn't map directly to a location in a file, we
+  // can't find the comment.
+  SourceLocation DeclStartLoc = D->getLocStart();
+  if (DeclStartLoc.isInvalid() || !DeclStartLoc.isFileID())
+    return 0;
+
+  // Find the comment that occurs just before this declaration.
+  std::vector<SourceRange>::iterator LastComment
+    = std::lower_bound(Comments.begin(), Comments.end(),
+                       SourceRange(DeclStartLoc),
+                       BeforeInTranslationUnit(&SourceMgr));
+
+  // Decompose the location for the start of the declaration and find the
+  // beginning of the file buffer.
+  std::pair<FileID, unsigned> DeclStartDecomp
+    = SourceMgr.getDecomposedLoc(DeclStartLoc);
+  const char *FileBufferStart
+    = SourceMgr.getBufferData(DeclStartDecomp.first).first;
+
+  // First check whether we have a comment for a member.
+  if (LastComment != Comments.end() &&
+      !isa<TagDecl>(D) && !isa<NamespaceDecl>(D) &&
+      isDoxygenComment(SourceMgr, *LastComment, true)) {
+    std::pair<FileID, unsigned> LastCommentEndDecomp
+      = SourceMgr.getDecomposedLoc(LastComment->getEnd());
+    if (DeclStartDecomp.first == LastCommentEndDecomp.first &&
+        SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second)
+          == SourceMgr.getLineNumber(LastCommentEndDecomp.first,
+                                     LastCommentEndDecomp.second)) {
+      // The Doxygen member comment comes after the declaration starts and
+      // is on the same line and in the same file as the declaration. This
+      // is the comment we want.
+      std::string &Result = DeclComments[D];
+      Result.append(FileBufferStart +
+                      SourceMgr.getFileOffset(LastComment->getBegin()),
+                    FileBufferStart + LastCommentEndDecomp.second + 1);
+      return Result.c_str();
+    }
+  }
+
+  if (LastComment == Comments.begin())
+    return 0;
+  --LastComment;
+
+  // Decompose the end of the comment.
+  std::pair<FileID, unsigned> LastCommentEndDecomp
+    = SourceMgr.getDecomposedLoc(LastComment->getEnd());
+
+  // If the comment and the declaration aren't in the same file, then they
+  // aren't related.
+  if (DeclStartDecomp.first != LastCommentEndDecomp.first)
+    return 0;
+
+  // Check that we actually have a Doxygen comment.
+  if (!isDoxygenComment(SourceMgr, *LastComment))
+    return 0;
+
+  // Compute the starting line for the declaration and for the end of the
+  // comment (this is expensive).
+  unsigned DeclStartLine
+    = SourceMgr.getLineNumber(DeclStartDecomp.first, DeclStartDecomp.second);
+  unsigned CommentEndLine
+    = SourceMgr.getLineNumber(LastCommentEndDecomp.first,
+                              LastCommentEndDecomp.second);
+
+  // If the comment does not end on the line prior to the declaration, then
+  // the comment is not associated with the declaration at all.
+  if (CommentEndLine + 1 != DeclStartLine)
+    return 0;
+
+  // We have a comment, but there may be more comments on the previous lines.
+  // Keep looking so long as the comments are still Doxygen comments and are
+  // still adjacent.
+  unsigned ExpectedLine
+    = SourceMgr.getSpellingLineNumber(LastComment->getBegin()) - 1;
+  std::vector<SourceRange>::iterator FirstComment = LastComment;
+  while (FirstComment != Comments.begin()) {
+    // Look at the previous comment
+    --FirstComment;
+    std::pair<FileID, unsigned> Decomp
+      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
+
+    // If this previous comment is in a different file, we're done.
+    if (Decomp.first != DeclStartDecomp.first) {
+      ++FirstComment;
+      break;
+    }
+
+    // If this comment is not a Doxygen comment, we're done.
+    if (!isDoxygenComment(SourceMgr, *FirstComment)) {
+      ++FirstComment;
+      break;
+    }
+
+    // If the line number is not what we expected, we're done.
+    unsigned Line = SourceMgr.getLineNumber(Decomp.first, Decomp.second);
+    if (Line != ExpectedLine) {
+      ++FirstComment;
+      break;
+    }
+
+    // Set the next expected line number.
+    ExpectedLine
+      = SourceMgr.getSpellingLineNumber(FirstComment->getBegin()) - 1;
+  }
+
+  // The iterator range [FirstComment, LastComment] contains all of the
+  // BCPL comments that, together, are associated with this declaration.
+  // Form a single comment block string for this declaration that concatenates
+  // all of these comments.
+  std::string &Result = DeclComments[D];
+  while (FirstComment != LastComment) {
+    std::pair<FileID, unsigned> DecompStart
+      = SourceMgr.getDecomposedLoc(FirstComment->getBegin());
+    std::pair<FileID, unsigned> DecompEnd
+      = SourceMgr.getDecomposedLoc(FirstComment->getEnd());
+    Result.append(FileBufferStart + DecompStart.second,
+                  FileBufferStart + DecompEnd.second + 1);
+    ++FirstComment;
+  }
+
+  // Append the last comment line.
+  Result.append(FileBufferStart +
+                  SourceMgr.getFileOffset(LastComment->getBegin()),
+                FileBufferStart + LastCommentEndDecomp.second + 1);
+  return Result.c_str();
+}
+
+//===----------------------------------------------------------------------===//
+//                         Type Sizing and Analysis
+//===----------------------------------------------------------------------===//
+
+/// getFloatTypeSemantics - Return the APFloat 'semantics' for the specified
+/// scalar floating point type.
+const llvm::fltSemantics &ASTContext::getFloatTypeSemantics(QualType T) const {
+  const BuiltinType *BT = T->getAs<BuiltinType>();
+  assert(BT && "Not a floating point type!");
+  switch (BT->getKind()) {
+  default: assert(0 && "Not a floating point type!");
+  case BuiltinType::Float:      return Target.getFloatFormat();
+  case BuiltinType::Double:     return Target.getDoubleFormat();
+  case BuiltinType::LongDouble: return Target.getLongDoubleFormat();
+  }
+}
+
+/// getDeclAlign - Return a conservative estimate of the alignment of the
+/// specified decl.  Note that bitfields do not have a valid alignment, so
+/// this method will assert on them.
+/// If @p RefAsPointee, references are treated like their underlying type
+/// (for alignof), else they're treated like pointers (for CodeGen).
+CharUnits ASTContext::getDeclAlign(const Decl *D, bool RefAsPointee) {
+  unsigned Align = Target.getCharWidth();
+
+  if (const AlignedAttr* AA = D->getAttr<AlignedAttr>())
+    Align = std::max(Align, AA->getMaxAlignment());
+
+  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
+    QualType T = VD->getType();
+    if (const ReferenceType* RT = T->getAs<ReferenceType>()) {
+      if (RefAsPointee)
+        T = RT->getPointeeType();
+      else
+        T = getPointerType(RT->getPointeeType());
+    }
+    if (!T->isIncompleteType() && !T->isFunctionType()) {
+      // Incomplete or function types default to 1.
+      while (isa<VariableArrayType>(T) || isa<IncompleteArrayType>(T))
+        T = cast<ArrayType>(T)->getElementType();
+
+      Align = std::max(Align, getPreferredTypeAlign(T.getTypePtr()));
+    }
+  }
+
+  return CharUnits::fromQuantity(Align / Target.getCharWidth());
+}
+
+/// getTypeSize - Return the size of the specified type, in bits.  This method
+/// does not work on incomplete types.
+///
+/// FIXME: Pointers into different addr spaces could have different sizes and
+/// alignment requirements: getPointerInfo should take an AddrSpace, this
+/// should take a QualType, &c.
+std::pair<uint64_t, unsigned>
+ASTContext::getTypeInfo(const Type *T) {
+  uint64_t Width=0;
+  unsigned Align=8;
+  switch (T->getTypeClass()) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base)
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+    assert(false && "Should not see dependent types");
+    break;
+
+  case Type::FunctionNoProto:
+  case Type::FunctionProto:
+    // GCC extension: alignof(function) = 32 bits
+    Width = 0;
+    Align = 32;
+    break;
+
+  case Type::IncompleteArray:
+  case Type::VariableArray:
+    Width = 0;
+    Align = getTypeAlign(cast<ArrayType>(T)->getElementType());
+    break;
+
+  case Type::ConstantArray: {
+    const ConstantArrayType *CAT = cast<ConstantArrayType>(T);
+
+    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(CAT->getElementType());
+    Width = EltInfo.first*CAT->getSize().getZExtValue();
+    Align = EltInfo.second;
+    break;
+  }
+  case Type::ExtVector:
+  case Type::Vector: {
+    const VectorType *VT = cast<VectorType>(T);
+    std::pair<uint64_t, unsigned> EltInfo = getTypeInfo(VT->getElementType());
+    Width = EltInfo.first*VT->getNumElements();
+    Align = Width;
+    // If the alignment is not a power of 2, round up to the next power of 2.
+    // This happens for non-power-of-2 length vectors.
+    if (VT->getNumElements() & (VT->getNumElements()-1)) {
+      Align = llvm::NextPowerOf2(Align);
+      Width = llvm::RoundUpToAlignment(Width, Align);
+    }
+    break;
+  }
+
+  case Type::Builtin:
+    switch (cast<BuiltinType>(T)->getKind()) {
+    default: assert(0 && "Unknown builtin type!");
+    case BuiltinType::Void:
+      // GCC extension: alignof(void) = 8 bits.
+      Width = 0;
+      Align = 8;
+      break;
+
+    case BuiltinType::Bool:
+      Width = Target.getBoolWidth();
+      Align = Target.getBoolAlign();
+      break;
+    case BuiltinType::Char_S:
+    case BuiltinType::Char_U:
+    case BuiltinType::UChar:
+    case BuiltinType::SChar:
+      Width = Target.getCharWidth();
+      Align = Target.getCharAlign();
+      break;
+    case BuiltinType::WChar:
+      Width = Target.getWCharWidth();
+      Align = Target.getWCharAlign();
+      break;
+    case BuiltinType::Char16:
+      Width = Target.getChar16Width();
+      Align = Target.getChar16Align();
+      break;
+    case BuiltinType::Char32:
+      Width = Target.getChar32Width();
+      Align = Target.getChar32Align();
+      break;
+    case BuiltinType::UShort:
+    case BuiltinType::Short:
+      Width = Target.getShortWidth();
+      Align = Target.getShortAlign();
+      break;
+    case BuiltinType::UInt:
+    case BuiltinType::Int:
+      Width = Target.getIntWidth();
+      Align = Target.getIntAlign();
+      break;
+    case BuiltinType::ULong:
+    case BuiltinType::Long:
+      Width = Target.getLongWidth();
+      Align = Target.getLongAlign();
+      break;
+    case BuiltinType::ULongLong:
+    case BuiltinType::LongLong:
+      Width = Target.getLongLongWidth();
+      Align = Target.getLongLongAlign();
+      break;
+    case BuiltinType::Int128:
+    case BuiltinType::UInt128:
+      Width = 128;
+      Align = 128; // int128_t is 128-bit aligned on all targets.
+      break;
+    case BuiltinType::Float:
+      Width = Target.getFloatWidth();
+      Align = Target.getFloatAlign();
+      break;
+    case BuiltinType::Double:
+      Width = Target.getDoubleWidth();
+      Align = Target.getDoubleAlign();
+      break;
+    case BuiltinType::LongDouble:
+      Width = Target.getLongDoubleWidth();
+      Align = Target.getLongDoubleAlign();
+      break;
+    case BuiltinType::NullPtr:
+      Width = Target.getPointerWidth(0); // C++ 3.9.1p11: sizeof(nullptr_t)
+      Align = Target.getPointerAlign(0); //   == sizeof(void*)
+      break;
+    }
+    break;
+  case Type::ObjCObjectPointer:
+    Width = Target.getPointerWidth(0);
+    Align = Target.getPointerAlign(0);
+    break;
+  case Type::BlockPointer: {
+    unsigned AS = cast<BlockPointerType>(T)->getPointeeType().getAddressSpace();
+    Width = Target.getPointerWidth(AS);
+    Align = Target.getPointerAlign(AS);
+    break;
+  }
+  case Type::LValueReference:
+  case Type::RValueReference: {
+    // alignof and sizeof should never enter this code path here, so we go
+    // the pointer route.
+    unsigned AS = cast<ReferenceType>(T)->getPointeeType().getAddressSpace();
+    Width = Target.getPointerWidth(AS);
+    Align = Target.getPointerAlign(AS);
+    break;
+  }
+  case Type::Pointer: {
+    unsigned AS = cast<PointerType>(T)->getPointeeType().getAddressSpace();
+    Width = Target.getPointerWidth(AS);
+    Align = Target.getPointerAlign(AS);
+    break;
+  }
+  case Type::MemberPointer: {
+    QualType Pointee = cast<MemberPointerType>(T)->getPointeeType();
+    std::pair<uint64_t, unsigned> PtrDiffInfo =
+      getTypeInfo(getPointerDiffType());
+    Width = PtrDiffInfo.first;
+    if (Pointee->isFunctionType())
+      Width *= 2;
+    Align = PtrDiffInfo.second;
+    break;
+  }
+  case Type::Complex: {
+    // Complex types have the same alignment as their elements, but twice the
+    // size.
+    std::pair<uint64_t, unsigned> EltInfo =
+      getTypeInfo(cast<ComplexType>(T)->getElementType());
+    Width = EltInfo.first*2;
+    Align = EltInfo.second;
+    break;
+  }
+  case Type::ObjCInterface: {
+    const ObjCInterfaceType *ObjCI = cast<ObjCInterfaceType>(T);
+    const ASTRecordLayout &Layout = getASTObjCInterfaceLayout(ObjCI->getDecl());
+    Width = Layout.getSize();
+    Align = Layout.getAlignment();
+    break;
+  }
+  case Type::Record:
+  case Type::Enum: {
+    const TagType *TT = cast<TagType>(T);
+
+    if (TT->getDecl()->isInvalidDecl()) {
+      Width = 1;
+      Align = 1;
+      break;
+    }
+
+    if (const EnumType *ET = dyn_cast<EnumType>(TT))
+      return getTypeInfo(ET->getDecl()->getIntegerType());
+
+    const RecordType *RT = cast<RecordType>(TT);
+    const ASTRecordLayout &Layout = getASTRecordLayout(RT->getDecl());
+    Width = Layout.getSize();
+    Align = Layout.getAlignment();
+    break;
+  }
+
+  case Type::SubstTemplateTypeParm:
+    return getTypeInfo(cast<SubstTemplateTypeParmType>(T)->
+                       getReplacementType().getTypePtr());
+
+  case Type::Elaborated:
+    return getTypeInfo(cast<ElaboratedType>(T)->getUnderlyingType()
+                         .getTypePtr());
+
+  case Type::Typedef: {
+    const TypedefDecl *Typedef = cast<TypedefType>(T)->getDecl();
+    if (const AlignedAttr *Aligned = Typedef->getAttr<AlignedAttr>()) {
+      Align = std::max(Aligned->getMaxAlignment(),
+                       getTypeAlign(Typedef->getUnderlyingType().getTypePtr()));
+      Width = getTypeSize(Typedef->getUnderlyingType().getTypePtr());
+    } else
+      return getTypeInfo(Typedef->getUnderlyingType().getTypePtr());
+    break;
+  }
+
+  case Type::TypeOfExpr:
+    return getTypeInfo(cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType()
+                         .getTypePtr());
+
+  case Type::TypeOf:
+    return getTypeInfo(cast<TypeOfType>(T)->getUnderlyingType().getTypePtr());
+
+  case Type::Decltype:
+    return getTypeInfo(cast<DecltypeType>(T)->getUnderlyingExpr()->getType()
+                        .getTypePtr());
+
+  case Type::QualifiedName:
+    return getTypeInfo(cast<QualifiedNameType>(T)->getNamedType().getTypePtr());
+
+  case Type::TemplateSpecialization:
+    assert(getCanonicalType(T) != T &&
+           "Cannot request the size of a dependent type");
+    // FIXME: this is likely to be wrong once we support template
+    // aliases, since a template alias could refer to a typedef that
+    // has an __aligned__ attribute on it.
+    return getTypeInfo(getCanonicalType(T));
+  }
+
+  assert(Align && (Align & (Align-1)) == 0 && "Alignment must be power of 2");
+  return std::make_pair(Width, Align);
+}
+
+/// getTypeSizeInChars - Return the size of the specified type, in characters.
+/// This method does not work on incomplete types.
+CharUnits ASTContext::getTypeSizeInChars(QualType T) {
+  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
+}
+CharUnits ASTContext::getTypeSizeInChars(const Type *T) {
+  return CharUnits::fromQuantity(getTypeSize(T) / getCharWidth());
+}
+
+/// getTypeAlignInChars - Return the ABI-specified alignment of a type, in 
+/// characters. This method does not work on incomplete types.
+CharUnits ASTContext::getTypeAlignInChars(QualType T) {
+  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
+}
+CharUnits ASTContext::getTypeAlignInChars(const Type *T) {
+  return CharUnits::fromQuantity(getTypeAlign(T) / getCharWidth());
+}
+
+/// getPreferredTypeAlign - Return the "preferred" alignment of the specified
+/// type for the current target in bits.  This can be different than the ABI
+/// alignment in cases where it is beneficial for performance to overalign
+/// a data type.
+unsigned ASTContext::getPreferredTypeAlign(const Type *T) {
+  unsigned ABIAlign = getTypeAlign(T);
+
+  // Double and long long should be naturally aligned if possible.
+  if (const ComplexType* CT = T->getAs<ComplexType>())
+    T = CT->getElementType().getTypePtr();
+  if (T->isSpecificBuiltinType(BuiltinType::Double) ||
+      T->isSpecificBuiltinType(BuiltinType::LongLong))
+    return std::max(ABIAlign, (unsigned)getTypeSize(T));
+
+  return ABIAlign;
+}
+
+static void CollectLocalObjCIvars(ASTContext *Ctx,
+                                  const ObjCInterfaceDecl *OI,
+                                  llvm::SmallVectorImpl<FieldDecl*> &Fields) {
+  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
+       E = OI->ivar_end(); I != E; ++I) {
+    ObjCIvarDecl *IVDecl = *I;
+    if (!IVDecl->isInvalidDecl())
+      Fields.push_back(cast<FieldDecl>(IVDecl));
+  }
+}
+
+void ASTContext::CollectObjCIvars(const ObjCInterfaceDecl *OI,
+                             llvm::SmallVectorImpl<FieldDecl*> &Fields) {
+  if (const ObjCInterfaceDecl *SuperClass = OI->getSuperClass())
+    CollectObjCIvars(SuperClass, Fields);
+  CollectLocalObjCIvars(this, OI, Fields);
+}
+
+/// ShallowCollectObjCIvars -
+/// Collect all ivars, including those synthesized, in the current class.
+///
+void ASTContext::ShallowCollectObjCIvars(const ObjCInterfaceDecl *OI,
+                                 llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars,
+                                 bool CollectSynthesized) {
+  for (ObjCInterfaceDecl::ivar_iterator I = OI->ivar_begin(),
+         E = OI->ivar_end(); I != E; ++I) {
+     Ivars.push_back(*I);
+  }
+  if (CollectSynthesized)
+    CollectSynthesizedIvars(OI, Ivars);
+}
+
+void ASTContext::CollectProtocolSynthesizedIvars(const ObjCProtocolDecl *PD,
+                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
+  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
+       E = PD->prop_end(); I != E; ++I)
+    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
+      Ivars.push_back(Ivar);
+
+  // Also look into nested protocols.
+  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
+       E = PD->protocol_end(); P != E; ++P)
+    CollectProtocolSynthesizedIvars(*P, Ivars);
+}
+
+/// CollectSynthesizedIvars -
+/// This routine collect synthesized ivars for the designated class.
+///
+void ASTContext::CollectSynthesizedIvars(const ObjCInterfaceDecl *OI,
+                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
+  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
+       E = OI->prop_end(); I != E; ++I) {
+    if (ObjCIvarDecl *Ivar = (*I)->getPropertyIvarDecl())
+      Ivars.push_back(Ivar);
+  }
+  // Also look into interface's protocol list for properties declared
+  // in the protocol and whose ivars are synthesized.
+  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
+       PE = OI->protocol_end(); P != PE; ++P) {
+    ObjCProtocolDecl *PD = (*P);
+    CollectProtocolSynthesizedIvars(PD, Ivars);
+  }
+}
+
+/// CollectInheritedProtocols - Collect all protocols in current class and
+/// those inherited by it.
+void ASTContext::CollectInheritedProtocols(const Decl *CDecl,
+                          llvm::SmallVectorImpl<ObjCProtocolDecl*> &Protocols) {
+  if (const ObjCInterfaceDecl *OI = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
+    for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
+         PE = OI->protocol_end(); P != PE; ++P) {
+      ObjCProtocolDecl *Proto = (*P);
+      Protocols.push_back(Proto);
+      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
+           PE = Proto->protocol_end(); P != PE; ++P)
+        CollectInheritedProtocols(*P, Protocols);
+      }
+    
+    // Categories of this Interface.
+    for (const ObjCCategoryDecl *CDeclChain = OI->getCategoryList(); 
+         CDeclChain; CDeclChain = CDeclChain->getNextClassCategory())
+      CollectInheritedProtocols(CDeclChain, Protocols);
+    if (ObjCInterfaceDecl *SD = OI->getSuperClass())
+      while (SD) {
+        CollectInheritedProtocols(SD, Protocols);
+        SD = SD->getSuperClass();
+      }
+    return;
+  }
+  if (const ObjCCategoryDecl *OC = dyn_cast<ObjCCategoryDecl>(CDecl)) {
+    for (ObjCInterfaceDecl::protocol_iterator P = OC->protocol_begin(),
+         PE = OC->protocol_end(); P != PE; ++P) {
+      ObjCProtocolDecl *Proto = (*P);
+      Protocols.push_back(Proto);
+      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
+           PE = Proto->protocol_end(); P != PE; ++P)
+        CollectInheritedProtocols(*P, Protocols);
+    }
+    return;
+  }
+  if (const ObjCProtocolDecl *OP = dyn_cast<ObjCProtocolDecl>(CDecl)) {
+    for (ObjCProtocolDecl::protocol_iterator P = OP->protocol_begin(),
+         PE = OP->protocol_end(); P != PE; ++P) {
+      ObjCProtocolDecl *Proto = (*P);
+      Protocols.push_back(Proto);
+      for (ObjCProtocolDecl::protocol_iterator P = Proto->protocol_begin(),
+           PE = Proto->protocol_end(); P != PE; ++P)
+        CollectInheritedProtocols(*P, Protocols);
+    }
+    return;
+  }
+}
+
+unsigned ASTContext::CountProtocolSynthesizedIvars(const ObjCProtocolDecl *PD) {
+  unsigned count = 0;
+  for (ObjCContainerDecl::prop_iterator I = PD->prop_begin(),
+       E = PD->prop_end(); I != E; ++I)
+    if ((*I)->getPropertyIvarDecl())
+      ++count;
+
+  // Also look into nested protocols.
+  for (ObjCProtocolDecl::protocol_iterator P = PD->protocol_begin(),
+       E = PD->protocol_end(); P != E; ++P)
+    count += CountProtocolSynthesizedIvars(*P);
+  return count;
+}
+
+unsigned ASTContext::CountSynthesizedIvars(const ObjCInterfaceDecl *OI) {
+  unsigned count = 0;
+  for (ObjCInterfaceDecl::prop_iterator I = OI->prop_begin(),
+       E = OI->prop_end(); I != E; ++I) {
+    if ((*I)->getPropertyIvarDecl())
+      ++count;
+  }
+  // Also look into interface's protocol list for properties declared
+  // in the protocol and whose ivars are synthesized.
+  for (ObjCInterfaceDecl::protocol_iterator P = OI->protocol_begin(),
+       PE = OI->protocol_end(); P != PE; ++P) {
+    ObjCProtocolDecl *PD = (*P);
+    count += CountProtocolSynthesizedIvars(PD);
+  }
+  return count;
+}
+
+/// \brief Get the implementation of ObjCInterfaceDecl,or NULL if none exists.
+ObjCImplementationDecl *ASTContext::getObjCImplementation(ObjCInterfaceDecl *D) {
+  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
+    I = ObjCImpls.find(D);
+  if (I != ObjCImpls.end())
+    return cast<ObjCImplementationDecl>(I->second);
+  return 0;
+}
+/// \brief Get the implementation of ObjCCategoryDecl, or NULL if none exists.
+ObjCCategoryImplDecl *ASTContext::getObjCImplementation(ObjCCategoryDecl *D) {
+  llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*>::iterator
+    I = ObjCImpls.find(D);
+  if (I != ObjCImpls.end())
+    return cast<ObjCCategoryImplDecl>(I->second);
+  return 0;
+}
+
+/// \brief Set the implementation of ObjCInterfaceDecl.
+void ASTContext::setObjCImplementation(ObjCInterfaceDecl *IFaceD,
+                           ObjCImplementationDecl *ImplD) {
+  assert(IFaceD && ImplD && "Passed null params");
+  ObjCImpls[IFaceD] = ImplD;
+}
+/// \brief Set the implementation of ObjCCategoryDecl.
+void ASTContext::setObjCImplementation(ObjCCategoryDecl *CatD,
+                           ObjCCategoryImplDecl *ImplD) {
+  assert(CatD && ImplD && "Passed null params");
+  ObjCImpls[CatD] = ImplD;
+}
+
+/// \brief Allocate an uninitialized TypeSourceInfo.
+///
+/// The caller should initialize the memory held by TypeSourceInfo using
+/// the TypeLoc wrappers.
+///
+/// \param T the type that will be the basis for type source info. This type
+/// should refer to how the declarator was written in source code, not to
+/// what type semantic analysis resolved the declarator to.
+TypeSourceInfo *ASTContext::CreateTypeSourceInfo(QualType T,
+                                                 unsigned DataSize) {
+  if (!DataSize)
+    DataSize = TypeLoc::getFullDataSizeForType(T);
+  else
+    assert(DataSize == TypeLoc::getFullDataSizeForType(T) &&
+           "incorrect data size provided to CreateTypeSourceInfo!");
+
+  TypeSourceInfo *TInfo =
+    (TypeSourceInfo*)BumpAlloc.Allocate(sizeof(TypeSourceInfo) + DataSize, 8);
+  new (TInfo) TypeSourceInfo(T);
+  return TInfo;
+}
+
+TypeSourceInfo *ASTContext::getTrivialTypeSourceInfo(QualType T,
+                                                     SourceLocation L) {
+  TypeSourceInfo *DI = CreateTypeSourceInfo(T);
+  DI->getTypeLoc().initialize(L);
+  return DI;
+}
+
+/// getInterfaceLayoutImpl - Get or compute information about the
+/// layout of the given interface.
+///
+/// \param Impl - If given, also include the layout of the interface's
+/// implementation. This may differ by including synthesized ivars.
+const ASTRecordLayout &
+ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
+                          const ObjCImplementationDecl *Impl) {
+  assert(!D->isForwardDecl() && "Invalid interface decl!");
+
+  // Look up this layout, if already laid out, return what we have.
+  ObjCContainerDecl *Key =
+    Impl ? (ObjCContainerDecl*) Impl : (ObjCContainerDecl*) D;
+  if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
+    return *Entry;
+
+  // Add in synthesized ivar count if laying out an implementation.
+  if (Impl) {
+    unsigned SynthCount = CountSynthesizedIvars(D);
+    // If there aren't any sythesized ivars then reuse the interface
+    // entry. Note we can't cache this because we simply free all
+    // entries later; however we shouldn't look up implementations
+    // frequently.
+    if (SynthCount == 0)
+      return getObjCLayout(D, 0);
+  }
+
+  const ASTRecordLayout *NewEntry =
+    ASTRecordLayoutBuilder::ComputeLayout(*this, D, Impl);
+  ObjCLayouts[Key] = NewEntry;
+
+  return *NewEntry;
+}
+
+const ASTRecordLayout &
+ASTContext::getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D) {
+  return getObjCLayout(D, 0);
+}
+
+const ASTRecordLayout &
+ASTContext::getASTObjCImplementationLayout(const ObjCImplementationDecl *D) {
+  return getObjCLayout(D->getClassInterface(), D);
+}
+
+/// getASTRecordLayout - Get or compute information about the layout of the
+/// specified record (struct/union/class), which indicates its size and field
+/// position information.
+const ASTRecordLayout &ASTContext::getASTRecordLayout(const RecordDecl *D) {
+  D = D->getDefinition(*this);
+  assert(D && "Cannot get layout of forward declarations!");
+
+  // Look up this layout, if already laid out, return what we have.
+  // Note that we can't save a reference to the entry because this function
+  // is recursive.
+  const ASTRecordLayout *Entry = ASTRecordLayouts[D];
+  if (Entry) return *Entry;
+
+  const ASTRecordLayout *NewEntry =
+    ASTRecordLayoutBuilder::ComputeLayout(*this, D);
+  ASTRecordLayouts[D] = NewEntry;
+
+  return *NewEntry;
+}
+
+const CXXMethodDecl *ASTContext::getKeyFunction(const CXXRecordDecl *RD) {
+  RD = cast<CXXRecordDecl>(RD->getDefinition(*this));
+  assert(RD && "Cannot get key function for forward declarations!");
+  
+  const CXXMethodDecl *&Entry = KeyFunctions[RD];
+  if (!Entry) 
+    Entry = ASTRecordLayoutBuilder::ComputeKeyFunction(RD);
+  else
+    assert(Entry == ASTRecordLayoutBuilder::ComputeKeyFunction(RD) &&
+           "Key function changed!");
+  
+  return Entry;
+}
+
+//===----------------------------------------------------------------------===//
+//                   Type creation/memoization methods
+//===----------------------------------------------------------------------===//
+
+QualType ASTContext::getExtQualType(const Type *TypeNode, Qualifiers Quals) {
+  unsigned Fast = Quals.getFastQualifiers();
+  Quals.removeFastQualifiers();
+
+  // Check if we've already instantiated this type.
+  llvm::FoldingSetNodeID ID;
+  ExtQuals::Profile(ID, TypeNode, Quals);
+  void *InsertPos = 0;
+  if (ExtQuals *EQ = ExtQualNodes.FindNodeOrInsertPos(ID, InsertPos)) {
+    assert(EQ->getQualifiers() == Quals);
+    QualType T = QualType(EQ, Fast);
+    return T;
+  }
+
+  ExtQuals *New = new (*this, TypeAlignment) ExtQuals(*this, TypeNode, Quals);
+  ExtQualNodes.InsertNode(New, InsertPos);
+  QualType T = QualType(New, Fast);
+  return T;
+}
+
+QualType ASTContext::getVolatileType(QualType T) {
+  QualType CanT = getCanonicalType(T);
+  if (CanT.isVolatileQualified()) return T;
+
+  QualifierCollector Quals;
+  const Type *TypeNode = Quals.strip(T);
+  Quals.addVolatile();
+
+  return getExtQualType(TypeNode, Quals);
+}
+
+QualType ASTContext::getAddrSpaceQualType(QualType T, unsigned AddressSpace) {
+  QualType CanT = getCanonicalType(T);
+  if (CanT.getAddressSpace() == AddressSpace)
+    return T;
+
+  // If we are composing extended qualifiers together, merge together
+  // into one ExtQuals node.
+  QualifierCollector Quals;
+  const Type *TypeNode = Quals.strip(T);
+
+  // If this type already has an address space specified, it cannot get
+  // another one.
+  assert(!Quals.hasAddressSpace() &&
+         "Type cannot be in multiple addr spaces!");
+  Quals.addAddressSpace(AddressSpace);
+
+  return getExtQualType(TypeNode, Quals);
+}
+
+QualType ASTContext::getObjCGCQualType(QualType T,
+                                       Qualifiers::GC GCAttr) {
+  QualType CanT = getCanonicalType(T);
+  if (CanT.getObjCGCAttr() == GCAttr)
+    return T;
+
+  if (T->isPointerType()) {
+    QualType Pointee = T->getAs<PointerType>()->getPointeeType();
+    if (Pointee->isAnyPointerType()) {
+      QualType ResultType = getObjCGCQualType(Pointee, GCAttr);
+      return getPointerType(ResultType);
+    }
+  }
+
+  // If we are composing extended qualifiers together, merge together
+  // into one ExtQuals node.
+  QualifierCollector Quals;
+  const Type *TypeNode = Quals.strip(T);
+
+  // If this type already has an ObjCGC specified, it cannot get
+  // another one.
+  assert(!Quals.hasObjCGCAttr() &&
+         "Type cannot have multiple ObjCGCs!");
+  Quals.addObjCGCAttr(GCAttr);
+
+  return getExtQualType(TypeNode, Quals);
+}
+
+static QualType getNoReturnCallConvType(ASTContext& Context, QualType T,
+                                        bool AddNoReturn,
+                                        CallingConv CallConv) {
+  QualType ResultType;
+  if (const PointerType *Pointer = T->getAs<PointerType>()) {
+    QualType Pointee = Pointer->getPointeeType();
+    ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
+                                         CallConv);
+    if (ResultType == Pointee)
+      return T;
+
+    ResultType = Context.getPointerType(ResultType);
+  } else if (const BlockPointerType *BlockPointer
+                                              = T->getAs<BlockPointerType>()) {
+    QualType Pointee = BlockPointer->getPointeeType();
+    ResultType = getNoReturnCallConvType(Context, Pointee, AddNoReturn,
+                                         CallConv);
+    if (ResultType == Pointee)
+      return T;
+
+    ResultType = Context.getBlockPointerType(ResultType);
+   } else if (const FunctionType *F = T->getAs<FunctionType>()) {
+    if (F->getNoReturnAttr() == AddNoReturn && F->getCallConv() == CallConv)
+      return T;
+
+    if (const FunctionNoProtoType *FNPT = dyn_cast<FunctionNoProtoType>(F)) {
+      ResultType = Context.getFunctionNoProtoType(FNPT->getResultType(),
+                                                  AddNoReturn, CallConv);
+    } else {
+      const FunctionProtoType *FPT = cast<FunctionProtoType>(F);
+      ResultType
+        = Context.getFunctionType(FPT->getResultType(), FPT->arg_type_begin(),
+                                  FPT->getNumArgs(), FPT->isVariadic(),
+                                  FPT->getTypeQuals(),
+                                  FPT->hasExceptionSpec(),
+                                  FPT->hasAnyExceptionSpec(),
+                                  FPT->getNumExceptions(),
+                                  FPT->exception_begin(),
+                                  AddNoReturn, CallConv);
+    }
+  } else
+    return T;
+
+  return Context.getQualifiedType(ResultType, T.getLocalQualifiers());
+}
+
+QualType ASTContext::getNoReturnType(QualType T, bool AddNoReturn) {
+  return getNoReturnCallConvType(*this, T, AddNoReturn, T.getCallConv());
+}
+
+QualType ASTContext::getCallConvType(QualType T, CallingConv CallConv) {
+  return getNoReturnCallConvType(*this, T, T.getNoReturnAttr(), CallConv);
+}
+
+/// getComplexType - Return the uniqued reference to the type for a complex
+/// number with the specified element type.
+QualType ASTContext::getComplexType(QualType T) {
+  // Unique pointers, to guarantee there is only one pointer of a particular
+  // structure.
+  llvm::FoldingSetNodeID ID;
+  ComplexType::Profile(ID, T);
+
+  void *InsertPos = 0;
+  if (ComplexType *CT = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(CT, 0);
+
+  // If the pointee type isn't canonical, this won't be a canonical type either,
+  // so fill in the canonical type field.
+  QualType Canonical;
+  if (!T.isCanonical()) {
+    Canonical = getComplexType(getCanonicalType(T));
+
+    // Get the new insert position for the node we care about.
+    ComplexType *NewIP = ComplexTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+  }
+  ComplexType *New = new (*this, TypeAlignment) ComplexType(T, Canonical);
+  Types.push_back(New);
+  ComplexTypes.InsertNode(New, InsertPos);
+  return QualType(New, 0);
+}
+
+/// getPointerType - Return the uniqued reference to the type for a pointer to
+/// the specified type.
+QualType ASTContext::getPointerType(QualType T) {
+  // Unique pointers, to guarantee there is only one pointer of a particular
+  // structure.
+  llvm::FoldingSetNodeID ID;
+  PointerType::Profile(ID, T);
+
+  void *InsertPos = 0;
+  if (PointerType *PT = PointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(PT, 0);
+
+  // If the pointee type isn't canonical, this won't be a canonical type either,
+  // so fill in the canonical type field.
+  QualType Canonical;
+  if (!T.isCanonical()) {
+    Canonical = getPointerType(getCanonicalType(T));
+
+    // Get the new insert position for the node we care about.
+    PointerType *NewIP = PointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+  }
+  PointerType *New = new (*this, TypeAlignment) PointerType(T, Canonical);
+  Types.push_back(New);
+  PointerTypes.InsertNode(New, InsertPos);
+  return QualType(New, 0);
+}
+
+/// getBlockPointerType - Return the uniqued reference to the type for
+/// a pointer to the specified block.
+QualType ASTContext::getBlockPointerType(QualType T) {
+  assert(T->isFunctionType() && "block of function types only");
+  // Unique pointers, to guarantee there is only one block of a particular
+  // structure.
+  llvm::FoldingSetNodeID ID;
+  BlockPointerType::Profile(ID, T);
+
+  void *InsertPos = 0;
+  if (BlockPointerType *PT =
+        BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(PT, 0);
+
+  // If the block pointee type isn't canonical, this won't be a canonical
+  // type either so fill in the canonical type field.
+  QualType Canonical;
+  if (!T.isCanonical()) {
+    Canonical = getBlockPointerType(getCanonicalType(T));
+
+    // Get the new insert position for the node we care about.
+    BlockPointerType *NewIP =
+      BlockPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+  }
+  BlockPointerType *New
+    = new (*this, TypeAlignment) BlockPointerType(T, Canonical);
+  Types.push_back(New);
+  BlockPointerTypes.InsertNode(New, InsertPos);
+  return QualType(New, 0);
+}
+
+/// getLValueReferenceType - Return the uniqued reference to the type for an
+/// lvalue reference to the specified type.
+QualType ASTContext::getLValueReferenceType(QualType T, bool SpelledAsLValue) {
+  // Unique pointers, to guarantee there is only one pointer of a particular
+  // structure.
+  llvm::FoldingSetNodeID ID;
+  ReferenceType::Profile(ID, T, SpelledAsLValue);
+
+  void *InsertPos = 0;
+  if (LValueReferenceType *RT =
+        LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(RT, 0);
+
+  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
+
+  // If the referencee type isn't canonical, this won't be a canonical type
+  // either, so fill in the canonical type field.
+  QualType Canonical;
+  if (!SpelledAsLValue || InnerRef || !T.isCanonical()) {
+    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
+    Canonical = getLValueReferenceType(getCanonicalType(PointeeType));
+
+    // Get the new insert position for the node we care about.
+    LValueReferenceType *NewIP =
+      LValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+  }
+
+  LValueReferenceType *New
+    = new (*this, TypeAlignment) LValueReferenceType(T, Canonical,
+                                                     SpelledAsLValue);
+  Types.push_back(New);
+  LValueReferenceTypes.InsertNode(New, InsertPos);
+
+  return QualType(New, 0);
+}
+
+/// getRValueReferenceType - Return the uniqued reference to the type for an
+/// rvalue reference to the specified type.
+QualType ASTContext::getRValueReferenceType(QualType T) {
+  // Unique pointers, to guarantee there is only one pointer of a particular
+  // structure.
+  llvm::FoldingSetNodeID ID;
+  ReferenceType::Profile(ID, T, false);
+
+  void *InsertPos = 0;
+  if (RValueReferenceType *RT =
+        RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(RT, 0);
+
+  const ReferenceType *InnerRef = T->getAs<ReferenceType>();
+
+  // If the referencee type isn't canonical, this won't be a canonical type
+  // either, so fill in the canonical type field.
+  QualType Canonical;
+  if (InnerRef || !T.isCanonical()) {
+    QualType PointeeType = (InnerRef ? InnerRef->getPointeeType() : T);
+    Canonical = getRValueReferenceType(getCanonicalType(PointeeType));
+
+    // Get the new insert position for the node we care about.
+    RValueReferenceType *NewIP =
+      RValueReferenceTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+  }
+
+  RValueReferenceType *New
+    = new (*this, TypeAlignment) RValueReferenceType(T, Canonical);
+  Types.push_back(New);
+  RValueReferenceTypes.InsertNode(New, InsertPos);
+  return QualType(New, 0);
+}
+
+/// getMemberPointerType - Return the uniqued reference to the type for a
+/// member pointer to the specified type, in the specified class.
+QualType ASTContext::getMemberPointerType(QualType T, const Type *Cls) {
+  // Unique pointers, to guarantee there is only one pointer of a particular
+  // structure.
+  llvm::FoldingSetNodeID ID;
+  MemberPointerType::Profile(ID, T, Cls);
+
+  void *InsertPos = 0;
+  if (MemberPointerType *PT =
+      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(PT, 0);
+
+  // If the pointee or class type isn't canonical, this won't be a canonical
+  // type either, so fill in the canonical type field.
+  QualType Canonical;
+  if (!T.isCanonical() || !Cls->isCanonicalUnqualified()) {
+    Canonical = getMemberPointerType(getCanonicalType(T),getCanonicalType(Cls));
+
+    // Get the new insert position for the node we care about.
+    MemberPointerType *NewIP =
+      MemberPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+  }
+  MemberPointerType *New
+    = new (*this, TypeAlignment) MemberPointerType(T, Cls, Canonical);
+  Types.push_back(New);
+  MemberPointerTypes.InsertNode(New, InsertPos);
+  return QualType(New, 0);
+}
+
+/// getConstantArrayType - Return the unique reference to the type for an
+/// array of the specified element type.
+QualType ASTContext::getConstantArrayType(QualType EltTy,
+                                          const llvm::APInt &ArySizeIn,
+                                          ArrayType::ArraySizeModifier ASM,
+                                          unsigned EltTypeQuals) {
+  assert((EltTy->isDependentType() ||
+          EltTy->isIncompleteType() || EltTy->isConstantSizeType()) &&
+         "Constant array of VLAs is illegal!");
+
+  // Convert the array size into a canonical width matching the pointer size for
+  // the target.
+  llvm::APInt ArySize(ArySizeIn);
+  ArySize.zextOrTrunc(Target.getPointerWidth(EltTy.getAddressSpace()));
+
+  llvm::FoldingSetNodeID ID;
+  ConstantArrayType::Profile(ID, EltTy, ArySize, ASM, EltTypeQuals);
+
+  void *InsertPos = 0;
+  if (ConstantArrayType *ATP =
+      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(ATP, 0);
+
+  // If the element type isn't canonical, this won't be a canonical type either,
+  // so fill in the canonical type field.
+  QualType Canonical;
+  if (!EltTy.isCanonical()) {
+    Canonical = getConstantArrayType(getCanonicalType(EltTy), ArySize,
+                                     ASM, EltTypeQuals);
+    // Get the new insert position for the node we care about.
+    ConstantArrayType *NewIP =
+      ConstantArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+  }
+
+  ConstantArrayType *New = new(*this,TypeAlignment)
+    ConstantArrayType(EltTy, Canonical, ArySize, ASM, EltTypeQuals);
+  ConstantArrayTypes.InsertNode(New, InsertPos);
+  Types.push_back(New);
+  return QualType(New, 0);
+}
+
+/// getVariableArrayType - Returns a non-unique reference to the type for a
+/// variable array of the specified element type.
+QualType ASTContext::getVariableArrayType(QualType EltTy,
+                                          Expr *NumElts,
+                                          ArrayType::ArraySizeModifier ASM,
+                                          unsigned EltTypeQuals,
+                                          SourceRange Brackets) {
+  // Since we don't unique expressions, it isn't possible to unique VLA's
+  // that have an expression provided for their size.
+
+  VariableArrayType *New = new(*this, TypeAlignment)
+    VariableArrayType(EltTy, QualType(), NumElts, ASM, EltTypeQuals, Brackets);
+
+  VariableArrayTypes.push_back(New);
+  Types.push_back(New);
+  return QualType(New, 0);
+}
+
+/// getDependentSizedArrayType - Returns a non-unique reference to
+/// the type for a dependently-sized array of the specified element
+/// type.
+QualType ASTContext::getDependentSizedArrayType(QualType EltTy,
+                                                Expr *NumElts,
+                                                ArrayType::ArraySizeModifier ASM,
+                                                unsigned EltTypeQuals,
+                                                SourceRange Brackets) {
+  assert((!NumElts || NumElts->isTypeDependent() || 
+          NumElts->isValueDependent()) &&
+         "Size must be type- or value-dependent!");
+
+  void *InsertPos = 0;
+  DependentSizedArrayType *Canon = 0;
+  llvm::FoldingSetNodeID ID;
+
+  if (NumElts) {
+    // Dependently-sized array types that do not have a specified
+    // number of elements will have their sizes deduced from an
+    // initializer.
+    DependentSizedArrayType::Profile(ID, *this, getCanonicalType(EltTy), ASM,
+                                     EltTypeQuals, NumElts);
+
+    Canon = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
+  }
+
+  DependentSizedArrayType *New;
+  if (Canon) {
+    // We already have a canonical version of this array type; use it as
+    // the canonical type for a newly-built type.
+    New = new (*this, TypeAlignment)
+      DependentSizedArrayType(*this, EltTy, QualType(Canon, 0),
+                              NumElts, ASM, EltTypeQuals, Brackets);
+  } else {
+    QualType CanonEltTy = getCanonicalType(EltTy);
+    if (CanonEltTy == EltTy) {
+      New = new (*this, TypeAlignment)
+        DependentSizedArrayType(*this, EltTy, QualType(),
+                                NumElts, ASM, EltTypeQuals, Brackets);
+
+      if (NumElts) {
+        DependentSizedArrayType *CanonCheck
+          = DependentSizedArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
+        assert(!CanonCheck && "Dependent-sized canonical array type broken");
+        (void)CanonCheck;
+        DependentSizedArrayTypes.InsertNode(New, InsertPos);
+      }
+    } else {
+      QualType Canon = getDependentSizedArrayType(CanonEltTy, NumElts,
+                                                  ASM, EltTypeQuals,
+                                                  SourceRange());
+      New = new (*this, TypeAlignment)
+        DependentSizedArrayType(*this, EltTy, Canon,
+                                NumElts, ASM, EltTypeQuals, Brackets);
+    }
+  }
+
+  Types.push_back(New);
+  return QualType(New, 0);
+}
+
+QualType ASTContext::getIncompleteArrayType(QualType EltTy,
+                                            ArrayType::ArraySizeModifier ASM,
+                                            unsigned EltTypeQuals) {
+  llvm::FoldingSetNodeID ID;
+  IncompleteArrayType::Profile(ID, EltTy, ASM, EltTypeQuals);
+
+  void *InsertPos = 0;
+  if (IncompleteArrayType *ATP =
+       IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(ATP, 0);
+
+  // If the element type isn't canonical, this won't be a canonical type
+  // either, so fill in the canonical type field.
+  QualType Canonical;
+
+  if (!EltTy.isCanonical()) {
+    Canonical = getIncompleteArrayType(getCanonicalType(EltTy),
+                                       ASM, EltTypeQuals);
+
+    // Get the new insert position for the node we care about.
+    IncompleteArrayType *NewIP =
+      IncompleteArrayTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+  }
+
+  IncompleteArrayType *New = new (*this, TypeAlignment)
+    IncompleteArrayType(EltTy, Canonical, ASM, EltTypeQuals);
+
+  IncompleteArrayTypes.InsertNode(New, InsertPos);
+  Types.push_back(New);
+  return QualType(New, 0);
+}
+
+/// getVectorType - Return the unique reference to a vector type of
+/// the specified element type and size. VectorType must be a built-in type.
+QualType ASTContext::getVectorType(QualType vecType, unsigned NumElts,
+                                   bool IsAltiVec, bool IsPixel) {
+  BuiltinType *baseType;
+
+  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
+  assert(baseType != 0 && "getVectorType(): Expecting a built-in type");
+
+  // Check if we've already instantiated a vector of this type.
+  llvm::FoldingSetNodeID ID;
+  VectorType::Profile(ID, vecType, NumElts, Type::Vector,
+    IsAltiVec, IsPixel);
+  void *InsertPos = 0;
+  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(VTP, 0);
+
+  // If the element type isn't canonical, this won't be a canonical type either,
+  // so fill in the canonical type field.
+  QualType Canonical;
+  if (!vecType.isCanonical() || IsAltiVec || IsPixel) {
+    Canonical = getVectorType(getCanonicalType(vecType),
+      NumElts, false, false);
+
+    // Get the new insert position for the node we care about.
+    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+  }
+  VectorType *New = new (*this, TypeAlignment)
+    VectorType(vecType, NumElts, Canonical, IsAltiVec, IsPixel);
+  VectorTypes.InsertNode(New, InsertPos);
+  Types.push_back(New);
+  return QualType(New, 0);
+}
+
+/// getExtVectorType - Return the unique reference to an extended vector type of
+/// the specified element type and size. VectorType must be a built-in type.
+QualType ASTContext::getExtVectorType(QualType vecType, unsigned NumElts) {
+  BuiltinType *baseType;
+
+  baseType = dyn_cast<BuiltinType>(getCanonicalType(vecType).getTypePtr());
+  assert(baseType != 0 && "getExtVectorType(): Expecting a built-in type");
+
+  // Check if we've already instantiated a vector of this type.
+  llvm::FoldingSetNodeID ID;
+  VectorType::Profile(ID, vecType, NumElts, Type::ExtVector, false, false);
+  void *InsertPos = 0;
+  if (VectorType *VTP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(VTP, 0);
+
+  // If the element type isn't canonical, this won't be a canonical type either,
+  // so fill in the canonical type field.
+  QualType Canonical;
+  if (!vecType.isCanonical()) {
+    Canonical = getExtVectorType(getCanonicalType(vecType), NumElts);
+
+    // Get the new insert position for the node we care about.
+    VectorType *NewIP = VectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+  }
+  ExtVectorType *New = new (*this, TypeAlignment)
+    ExtVectorType(vecType, NumElts, Canonical);
+  VectorTypes.InsertNode(New, InsertPos);
+  Types.push_back(New);
+  return QualType(New, 0);
+}
+
+QualType ASTContext::getDependentSizedExtVectorType(QualType vecType,
+                                                    Expr *SizeExpr,
+                                                    SourceLocation AttrLoc) {
+  llvm::FoldingSetNodeID ID;
+  DependentSizedExtVectorType::Profile(ID, *this, getCanonicalType(vecType),
+                                       SizeExpr);
+
+  void *InsertPos = 0;
+  DependentSizedExtVectorType *Canon
+    = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+  DependentSizedExtVectorType *New;
+  if (Canon) {
+    // We already have a canonical version of this array type; use it as
+    // the canonical type for a newly-built type.
+    New = new (*this, TypeAlignment)
+      DependentSizedExtVectorType(*this, vecType, QualType(Canon, 0),
+                                  SizeExpr, AttrLoc);
+  } else {
+    QualType CanonVecTy = getCanonicalType(vecType);
+    if (CanonVecTy == vecType) {
+      New = new (*this, TypeAlignment)
+        DependentSizedExtVectorType(*this, vecType, QualType(), SizeExpr,
+                                    AttrLoc);
+
+      DependentSizedExtVectorType *CanonCheck
+        = DependentSizedExtVectorTypes.FindNodeOrInsertPos(ID, InsertPos);
+      assert(!CanonCheck && "Dependent-sized ext_vector canonical type broken");
+      (void)CanonCheck;
+      DependentSizedExtVectorTypes.InsertNode(New, InsertPos);
+    } else {
+      QualType Canon = getDependentSizedExtVectorType(CanonVecTy, SizeExpr,
+                                                      SourceLocation());
+      New = new (*this, TypeAlignment) 
+        DependentSizedExtVectorType(*this, vecType, Canon, SizeExpr, AttrLoc);
+    }
+  }
+
+  Types.push_back(New);
+  return QualType(New, 0);
+}
+
+/// getFunctionNoProtoType - Return a K&R style C function type like 'int()'.
+///
+QualType ASTContext::getFunctionNoProtoType(QualType ResultTy, bool NoReturn,
+                                            CallingConv CallConv) {
+  // Unique functions, to guarantee there is only one function of a particular
+  // structure.
+  llvm::FoldingSetNodeID ID;
+  FunctionNoProtoType::Profile(ID, ResultTy, NoReturn, CallConv);
+
+  void *InsertPos = 0;
+  if (FunctionNoProtoType *FT =
+        FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(FT, 0);
+
+  QualType Canonical;
+  if (!ResultTy.isCanonical() ||
+      getCanonicalCallConv(CallConv) != CallConv) {
+    Canonical = getFunctionNoProtoType(getCanonicalType(ResultTy), NoReturn,
+                                       getCanonicalCallConv(CallConv));
+
+    // Get the new insert position for the node we care about.
+    FunctionNoProtoType *NewIP =
+      FunctionNoProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+  }
+
+  FunctionNoProtoType *New = new (*this, TypeAlignment)
+    FunctionNoProtoType(ResultTy, Canonical, NoReturn, CallConv);
+  Types.push_back(New);
+  FunctionNoProtoTypes.InsertNode(New, InsertPos);
+  return QualType(New, 0);
+}
+
+/// getFunctionType - Return a normal function type with a typed argument
+/// list.  isVariadic indicates whether the argument list includes '...'.
+QualType ASTContext::getFunctionType(QualType ResultTy,const QualType *ArgArray,
+                                     unsigned NumArgs, bool isVariadic,
+                                     unsigned TypeQuals, bool hasExceptionSpec,
+                                     bool hasAnyExceptionSpec, unsigned NumExs,
+                                     const QualType *ExArray, bool NoReturn,
+                                     CallingConv CallConv) {
+  // Unique functions, to guarantee there is only one function of a particular
+  // structure.
+  llvm::FoldingSetNodeID ID;
+  FunctionProtoType::Profile(ID, ResultTy, ArgArray, NumArgs, isVariadic,
+                             TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
+                             NumExs, ExArray, NoReturn, CallConv);
+
+  void *InsertPos = 0;
+  if (FunctionProtoType *FTP =
+        FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(FTP, 0);
+
+  // Determine whether the type being created is already canonical or not.
+  bool isCanonical = !hasExceptionSpec && ResultTy.isCanonical();
+  for (unsigned i = 0; i != NumArgs && isCanonical; ++i)
+    if (!ArgArray[i].isCanonicalAsParam())
+      isCanonical = false;
+
+  // If this type isn't canonical, get the canonical version of it.
+  // The exception spec is not part of the canonical type.
+  QualType Canonical;
+  if (!isCanonical || getCanonicalCallConv(CallConv) != CallConv) {
+    llvm::SmallVector<QualType, 16> CanonicalArgs;
+    CanonicalArgs.reserve(NumArgs);
+    for (unsigned i = 0; i != NumArgs; ++i)
+      CanonicalArgs.push_back(getCanonicalParamType(ArgArray[i]));
+
+    Canonical = getFunctionType(getCanonicalType(ResultTy),
+                                CanonicalArgs.data(), NumArgs,
+                                isVariadic, TypeQuals, false,
+                                false, 0, 0, NoReturn,
+                                getCanonicalCallConv(CallConv));
+
+    // Get the new insert position for the node we care about.
+    FunctionProtoType *NewIP =
+      FunctionProtoTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(NewIP == 0 && "Shouldn't be in the map!"); NewIP = NewIP;
+  }
+
+  // FunctionProtoType objects are allocated with extra bytes after them
+  // for two variable size arrays (for parameter and exception types) at the
+  // end of them.
+  FunctionProtoType *FTP =
+    (FunctionProtoType*)Allocate(sizeof(FunctionProtoType) +
+                                 NumArgs*sizeof(QualType) +
+                                 NumExs*sizeof(QualType), TypeAlignment);
+  new (FTP) FunctionProtoType(ResultTy, ArgArray, NumArgs, isVariadic,
+                              TypeQuals, hasExceptionSpec, hasAnyExceptionSpec,
+                              ExArray, NumExs, Canonical, NoReturn, CallConv);
+  Types.push_back(FTP);
+  FunctionProtoTypes.InsertNode(FTP, InsertPos);
+  return QualType(FTP, 0);
+}
+
+/// getTypeDeclType - Return the unique reference to the type for the
+/// specified type declaration.
+QualType ASTContext::getTypeDeclType(TypeDecl *Decl, TypeDecl* PrevDecl) {
+  assert(Decl && "Passed null for Decl param");
+  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+
+  if (TypedefDecl *Typedef = dyn_cast<TypedefDecl>(Decl))
+    return getTypedefType(Typedef);
+  else if (isa<TemplateTypeParmDecl>(Decl)) {
+    assert(false && "Template type parameter types are always available.");
+  } else if (ObjCInterfaceDecl *ObjCInterface
+               = dyn_cast<ObjCInterfaceDecl>(Decl))
+    return getObjCInterfaceType(ObjCInterface);
+
+  if (RecordDecl *Record = dyn_cast<RecordDecl>(Decl)) {
+    if (PrevDecl)
+      Decl->TypeForDecl = PrevDecl->TypeForDecl;
+    else
+      Decl->TypeForDecl = new (*this, TypeAlignment) RecordType(Record);
+  } else if (EnumDecl *Enum = dyn_cast<EnumDecl>(Decl)) {
+    if (PrevDecl)
+      Decl->TypeForDecl = PrevDecl->TypeForDecl;
+    else
+      Decl->TypeForDecl = new (*this, TypeAlignment) EnumType(Enum);
+  } else if (UnresolvedUsingTypenameDecl *Using =
+               dyn_cast<UnresolvedUsingTypenameDecl>(Decl)) {
+    Decl->TypeForDecl = new (*this, TypeAlignment) UnresolvedUsingType(Using);
+  } else
+    assert(false && "TypeDecl without a type?");
+
+  if (!PrevDecl) Types.push_back(Decl->TypeForDecl);
+  return QualType(Decl->TypeForDecl, 0);
+}
+
+/// getTypedefType - Return the unique reference to the type for the
+/// specified typename decl.
+QualType ASTContext::getTypedefType(TypedefDecl *Decl) {
+  if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
+
+  QualType Canonical = getCanonicalType(Decl->getUnderlyingType());
+  Decl->TypeForDecl = new(*this, TypeAlignment)
+    TypedefType(Type::Typedef, Decl, Canonical);
+  Types.push_back(Decl->TypeForDecl);
+  return QualType(Decl->TypeForDecl, 0);
+}
+
+/// \brief Retrieve a substitution-result type.
+QualType
+ASTContext::getSubstTemplateTypeParmType(const TemplateTypeParmType *Parm,
+                                         QualType Replacement) {
+  assert(Replacement.isCanonical()
+         && "replacement types must always be canonical");
+
+  llvm::FoldingSetNodeID ID;
+  SubstTemplateTypeParmType::Profile(ID, Parm, Replacement);
+  void *InsertPos = 0;
+  SubstTemplateTypeParmType *SubstParm
+    = SubstTemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
+
+  if (!SubstParm) {
+    SubstParm = new (*this, TypeAlignment)
+      SubstTemplateTypeParmType(Parm, Replacement);
+    Types.push_back(SubstParm);
+    SubstTemplateTypeParmTypes.InsertNode(SubstParm, InsertPos);
+  }
+
+  return QualType(SubstParm, 0);
+}
+
+/// \brief Retrieve the template type parameter type for a template
+/// parameter or parameter pack with the given depth, index, and (optionally)
+/// name.
+QualType ASTContext::getTemplateTypeParmType(unsigned Depth, unsigned Index,
+                                             bool ParameterPack,
+                                             IdentifierInfo *Name) {
+  llvm::FoldingSetNodeID ID;
+  TemplateTypeParmType::Profile(ID, Depth, Index, ParameterPack, Name);
+  void *InsertPos = 0;
+  TemplateTypeParmType *TypeParm
+    = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
+
+  if (TypeParm)
+    return QualType(TypeParm, 0);
+
+  if (Name) {
+    QualType Canon = getTemplateTypeParmType(Depth, Index, ParameterPack);
+    TypeParm = new (*this, TypeAlignment)
+      TemplateTypeParmType(Depth, Index, ParameterPack, Name, Canon);
+
+    TemplateTypeParmType *TypeCheck 
+      = TemplateTypeParmTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(!TypeCheck && "Template type parameter canonical type broken");
+    (void)TypeCheck;
+  } else
+    TypeParm = new (*this, TypeAlignment)
+      TemplateTypeParmType(Depth, Index, ParameterPack);
+
+  Types.push_back(TypeParm);
+  TemplateTypeParmTypes.InsertNode(TypeParm, InsertPos);
+
+  return QualType(TypeParm, 0);
+}
+
+QualType
+ASTContext::getTemplateSpecializationType(TemplateName Template,
+                                          const TemplateArgumentListInfo &Args,
+                                          QualType Canon) {
+  unsigned NumArgs = Args.size();
+
+  llvm::SmallVector<TemplateArgument, 4> ArgVec;
+  ArgVec.reserve(NumArgs);
+  for (unsigned i = 0; i != NumArgs; ++i)
+    ArgVec.push_back(Args[i].getArgument());
+
+  return getTemplateSpecializationType(Template, ArgVec.data(), NumArgs, Canon);
+}
+
+QualType
+ASTContext::getTemplateSpecializationType(TemplateName Template,
+                                          const TemplateArgument *Args,
+                                          unsigned NumArgs,
+                                          QualType Canon) {
+  if (!Canon.isNull())
+    Canon = getCanonicalType(Canon);
+  else {
+    // Build the canonical template specialization type.
+    TemplateName CanonTemplate = getCanonicalTemplateName(Template);
+    llvm::SmallVector<TemplateArgument, 4> CanonArgs;
+    CanonArgs.reserve(NumArgs);
+    for (unsigned I = 0; I != NumArgs; ++I)
+      CanonArgs.push_back(getCanonicalTemplateArgument(Args[I]));
+
+    // Determine whether this canonical template specialization type already
+    // exists.
+    llvm::FoldingSetNodeID ID;
+    TemplateSpecializationType::Profile(ID, CanonTemplate,
+                                        CanonArgs.data(), NumArgs, *this);
+
+    void *InsertPos = 0;
+    TemplateSpecializationType *Spec
+      = TemplateSpecializationTypes.FindNodeOrInsertPos(ID, InsertPos);
+
+    if (!Spec) {
+      // Allocate a new canonical template specialization type.
+      void *Mem = Allocate((sizeof(TemplateSpecializationType) +
+                            sizeof(TemplateArgument) * NumArgs),
+                           TypeAlignment);
+      Spec = new (Mem) TemplateSpecializationType(*this, CanonTemplate,
+                                                  CanonArgs.data(), NumArgs,
+                                                  Canon);
+      Types.push_back(Spec);
+      TemplateSpecializationTypes.InsertNode(Spec, InsertPos);
+    }
+
+    if (Canon.isNull())
+      Canon = QualType(Spec, 0);
+    assert(Canon->isDependentType() &&
+           "Non-dependent template-id type must have a canonical type");
+  }
+
+  // Allocate the (non-canonical) template specialization type, but don't
+  // try to unique it: these types typically have location information that
+  // we don't unique and don't want to lose.
+  void *Mem = Allocate((sizeof(TemplateSpecializationType) +
+                        sizeof(TemplateArgument) * NumArgs),
+                       TypeAlignment);
+  TemplateSpecializationType *Spec
+    = new (Mem) TemplateSpecializationType(*this, Template, Args, NumArgs,
+                                           Canon);
+
+  Types.push_back(Spec);
+  return QualType(Spec, 0);
+}
+
+QualType
+ASTContext::getQualifiedNameType(NestedNameSpecifier *NNS,
+                                 QualType NamedType) {
+  llvm::FoldingSetNodeID ID;
+  QualifiedNameType::Profile(ID, NNS, NamedType);
+
+  void *InsertPos = 0;
+  QualifiedNameType *T
+    = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
+  if (T)
+    return QualType(T, 0);
+
+  QualType Canon = NamedType;
+  if (!Canon.isCanonical()) {
+    Canon = getCanonicalType(NamedType);
+    QualifiedNameType *CheckT
+      = QualifiedNameTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(!CheckT && "Qualified name canonical type broken");
+    (void)CheckT;
+  }
+
+  T = new (*this) QualifiedNameType(NNS, NamedType, Canon);
+  Types.push_back(T);
+  QualifiedNameTypes.InsertNode(T, InsertPos);
+  return QualType(T, 0);
+}
+
+QualType ASTContext::getTypenameType(NestedNameSpecifier *NNS,
+                                     const IdentifierInfo *Name,
+                                     QualType Canon) {
+  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
+
+  if (Canon.isNull()) {
+    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+    if (CanonNNS != NNS)
+      Canon = getTypenameType(CanonNNS, Name);
+  }
+
+  llvm::FoldingSetNodeID ID;
+  TypenameType::Profile(ID, NNS, Name);
+
+  void *InsertPos = 0;
+  TypenameType *T
+    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
+  if (T)
+    return QualType(T, 0);
+
+  T = new (*this) TypenameType(NNS, Name, Canon);
+  Types.push_back(T);
+  TypenameTypes.InsertNode(T, InsertPos);
+  return QualType(T, 0);
+}
+
+QualType
+ASTContext::getTypenameType(NestedNameSpecifier *NNS,
+                            const TemplateSpecializationType *TemplateId,
+                            QualType Canon) {
+  assert(NNS->isDependent() && "nested-name-specifier must be dependent");
+
+  llvm::FoldingSetNodeID ID;
+  TypenameType::Profile(ID, NNS, TemplateId);
+
+  void *InsertPos = 0;
+  TypenameType *T
+    = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
+  if (T)
+    return QualType(T, 0);
+
+  if (Canon.isNull()) {
+    NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+    QualType CanonType = getCanonicalType(QualType(TemplateId, 0));
+    if (CanonNNS != NNS || CanonType != QualType(TemplateId, 0)) {
+      const TemplateSpecializationType *CanonTemplateId
+        = CanonType->getAs<TemplateSpecializationType>();
+      assert(CanonTemplateId &&
+             "Canonical type must also be a template specialization type");
+      Canon = getTypenameType(CanonNNS, CanonTemplateId);
+    }
+
+    TypenameType *CheckT
+      = TypenameTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(!CheckT && "Typename canonical type is broken"); (void)CheckT;
+  }
+
+  T = new (*this) TypenameType(NNS, TemplateId, Canon);
+  Types.push_back(T);
+  TypenameTypes.InsertNode(T, InsertPos);
+  return QualType(T, 0);
+}
+
+QualType
+ASTContext::getElaboratedType(QualType UnderlyingType,
+                              ElaboratedType::TagKind Tag) {
+  llvm::FoldingSetNodeID ID;
+  ElaboratedType::Profile(ID, UnderlyingType, Tag);
+
+  void *InsertPos = 0;
+  ElaboratedType *T = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
+  if (T)
+    return QualType(T, 0);
+
+  QualType Canon = UnderlyingType;
+  if (!Canon.isCanonical()) {
+    Canon = getCanonicalType(Canon);
+    ElaboratedType *CheckT = ElaboratedTypes.FindNodeOrInsertPos(ID, InsertPos);
+    assert(!CheckT && "Elaborated canonical type is broken"); (void)CheckT;
+  }
+
+  T = new (*this) ElaboratedType(UnderlyingType, Tag, Canon);
+  Types.push_back(T);
+  ElaboratedTypes.InsertNode(T, InsertPos);
+  return QualType(T, 0);
+}
+
+/// CmpProtocolNames - Comparison predicate for sorting protocols
+/// alphabetically.
+static bool CmpProtocolNames(const ObjCProtocolDecl *LHS,
+                            const ObjCProtocolDecl *RHS) {
+  return LHS->getDeclName() < RHS->getDeclName();
+}
+
+static bool areSortedAndUniqued(ObjCProtocolDecl **Protocols,
+                                unsigned NumProtocols) {
+  if (NumProtocols == 0) return true;
+
+  for (unsigned i = 1; i != NumProtocols; ++i)
+    if (!CmpProtocolNames(Protocols[i-1], Protocols[i]))
+      return false;
+  return true;
+}
+
+static void SortAndUniqueProtocols(ObjCProtocolDecl **Protocols,
+                                   unsigned &NumProtocols) {
+  ObjCProtocolDecl **ProtocolsEnd = Protocols+NumProtocols;
+
+  // Sort protocols, keyed by name.
+  std::sort(Protocols, Protocols+NumProtocols, CmpProtocolNames);
+
+  // Remove duplicates.
+  ProtocolsEnd = std::unique(Protocols, ProtocolsEnd);
+  NumProtocols = ProtocolsEnd-Protocols;
+}
+
+/// getObjCObjectPointerType - Return a ObjCObjectPointerType type for
+/// the given interface decl and the conforming protocol list.
+QualType ASTContext::getObjCObjectPointerType(QualType InterfaceT,
+                                              ObjCProtocolDecl **Protocols,
+                                              unsigned NumProtocols) {
+  llvm::FoldingSetNodeID ID;
+  ObjCObjectPointerType::Profile(ID, InterfaceT, Protocols, NumProtocols);
+
+  void *InsertPos = 0;
+  if (ObjCObjectPointerType *QT =
+              ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(QT, 0);
+
+  // Sort the protocol list alphabetically to canonicalize it.
+  QualType Canonical;
+  if (!InterfaceT.isCanonical() || 
+      !areSortedAndUniqued(Protocols, NumProtocols)) {
+    if (!areSortedAndUniqued(Protocols, NumProtocols)) {
+      llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
+      unsigned UniqueCount = NumProtocols;
+
+      std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
+      SortAndUniqueProtocols(&Sorted[0], UniqueCount);
+
+      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
+                                           &Sorted[0], UniqueCount);
+    } else {
+      Canonical = getObjCObjectPointerType(getCanonicalType(InterfaceT),
+                                           Protocols, NumProtocols);
+    }
+
+    // Regenerate InsertPos.
+    ObjCObjectPointerTypes.FindNodeOrInsertPos(ID, InsertPos);
+  }
+
+  // No match.
+  unsigned Size = sizeof(ObjCObjectPointerType) 
+                + NumProtocols * sizeof(ObjCProtocolDecl *);
+  void *Mem = Allocate(Size, TypeAlignment);
+  ObjCObjectPointerType *QType = new (Mem) ObjCObjectPointerType(Canonical, 
+                                                                 InterfaceT, 
+                                                                 Protocols,
+                                                                 NumProtocols);
+
+  Types.push_back(QType);
+  ObjCObjectPointerTypes.InsertNode(QType, InsertPos);
+  return QualType(QType, 0);
+}
+
+/// getObjCInterfaceType - Return the unique reference to the type for the
+/// specified ObjC interface decl. The list of protocols is optional.
+QualType ASTContext::getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
+                       ObjCProtocolDecl **Protocols, unsigned NumProtocols) {
+  llvm::FoldingSetNodeID ID;
+  ObjCInterfaceType::Profile(ID, Decl, Protocols, NumProtocols);
+
+  void *InsertPos = 0;
+  if (ObjCInterfaceType *QT =
+      ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos))
+    return QualType(QT, 0);
+
+  // Sort the protocol list alphabetically to canonicalize it.
+  QualType Canonical;
+  if (NumProtocols && !areSortedAndUniqued(Protocols, NumProtocols)) {
+    llvm::SmallVector<ObjCProtocolDecl*, 8> Sorted(NumProtocols);
+    std::copy(Protocols, Protocols + NumProtocols, Sorted.begin());
+
+    unsigned UniqueCount = NumProtocols;
+    SortAndUniqueProtocols(&Sorted[0], UniqueCount);
+
+    Canonical = getObjCInterfaceType(Decl, &Sorted[0], UniqueCount);
+
+    ObjCInterfaceTypes.FindNodeOrInsertPos(ID, InsertPos);
+  }
+
+  unsigned Size = sizeof(ObjCInterfaceType) 
+    + NumProtocols * sizeof(ObjCProtocolDecl *);
+  void *Mem = Allocate(Size, TypeAlignment);
+  ObjCInterfaceType *QType = new (Mem) ObjCInterfaceType(Canonical, 
+                                        const_cast<ObjCInterfaceDecl*>(Decl),
+                                                         Protocols, 
+                                                         NumProtocols);
+
+  Types.push_back(QType);
+  ObjCInterfaceTypes.InsertNode(QType, InsertPos);
+  return QualType(QType, 0);
+}
+
+/// getTypeOfExprType - Unlike many "get<Type>" functions, we can't unique
+/// TypeOfExprType AST's (since expression's are never shared). For example,
+/// multiple declarations that refer to "typeof(x)" all contain different
+/// DeclRefExpr's. This doesn't effect the type checker, since it operates
+/// on canonical type's (which are always unique).
+QualType ASTContext::getTypeOfExprType(Expr *tofExpr) {
+  TypeOfExprType *toe;
+  if (tofExpr->isTypeDependent()) {
+    llvm::FoldingSetNodeID ID;
+    DependentTypeOfExprType::Profile(ID, *this, tofExpr);
+
+    void *InsertPos = 0;
+    DependentTypeOfExprType *Canon
+      = DependentTypeOfExprTypes.FindNodeOrInsertPos(ID, InsertPos);
+    if (Canon) {
+      // We already have a "canonical" version of an identical, dependent
+      // typeof(expr) type. Use that as our canonical type.
+      toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr,
+                                          QualType((TypeOfExprType*)Canon, 0));
+    }
+    else {
+      // Build a new, canonical typeof(expr) type.
+      Canon
+        = new (*this, TypeAlignment) DependentTypeOfExprType(*this, tofExpr);
+      DependentTypeOfExprTypes.InsertNode(Canon, InsertPos);
+      toe = Canon;
+    }
+  } else {
+    QualType Canonical = getCanonicalType(tofExpr->getType());
+    toe = new (*this, TypeAlignment) TypeOfExprType(tofExpr, Canonical);
+  }
+  Types.push_back(toe);
+  return QualType(toe, 0);
+}
+
+/// getTypeOfType -  Unlike many "get<Type>" functions, we don't unique
+/// TypeOfType AST's. The only motivation to unique these nodes would be
+/// memory savings. Since typeof(t) is fairly uncommon, space shouldn't be
+/// an issue. This doesn't effect the type checker, since it operates
+/// on canonical type's (which are always unique).
+QualType ASTContext::getTypeOfType(QualType tofType) {
+  QualType Canonical = getCanonicalType(tofType);
+  TypeOfType *tot = new (*this, TypeAlignment) TypeOfType(tofType, Canonical);
+  Types.push_back(tot);
+  return QualType(tot, 0);
+}
+
+/// getDecltypeForExpr - Given an expr, will return the decltype for that
+/// expression, according to the rules in C++0x [dcl.type.simple]p4
+static QualType getDecltypeForExpr(const Expr *e, ASTContext &Context) {
+  if (e->isTypeDependent())
+    return Context.DependentTy;
+
+  // If e is an id expression or a class member access, decltype(e) is defined
+  // as the type of the entity named by e.
+  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(e)) {
+    if (const ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl()))
+      return VD->getType();
+  }
+  if (const MemberExpr *ME = dyn_cast<MemberExpr>(e)) {
+    if (const FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
+      return FD->getType();
+  }
+  // If e is a function call or an invocation of an overloaded operator,
+  // (parentheses around e are ignored), decltype(e) is defined as the
+  // return type of that function.
+  if (const CallExpr *CE = dyn_cast<CallExpr>(e->IgnoreParens()))
+    return CE->getCallReturnType();
+
+  QualType T = e->getType();
+
+  // Otherwise, where T is the type of e, if e is an lvalue, decltype(e) is
+  // defined as T&, otherwise decltype(e) is defined as T.
+  if (e->isLvalue(Context) == Expr::LV_Valid)
+    T = Context.getLValueReferenceType(T);
+
+  return T;
+}
+
+/// getDecltypeType -  Unlike many "get<Type>" functions, we don't unique
+/// DecltypeType AST's. The only motivation to unique these nodes would be
+/// memory savings. Since decltype(t) is fairly uncommon, space shouldn't be
+/// an issue. This doesn't effect the type checker, since it operates
+/// on canonical type's (which are always unique).
+QualType ASTContext::getDecltypeType(Expr *e) {
+  DecltypeType *dt;
+  if (e->isTypeDependent()) {
+    llvm::FoldingSetNodeID ID;
+    DependentDecltypeType::Profile(ID, *this, e);
+
+    void *InsertPos = 0;
+    DependentDecltypeType *Canon
+      = DependentDecltypeTypes.FindNodeOrInsertPos(ID, InsertPos);
+    if (Canon) {
+      // We already have a "canonical" version of an equivalent, dependent
+      // decltype type. Use that as our canonical type.
+      dt = new (*this, TypeAlignment) DecltypeType(e, DependentTy,
+                                       QualType((DecltypeType*)Canon, 0));
+    }
+    else {
+      // Build a new, canonical typeof(expr) type.
+      Canon = new (*this, TypeAlignment) DependentDecltypeType(*this, e);
+      DependentDecltypeTypes.InsertNode(Canon, InsertPos);
+      dt = Canon;
+    }
+  } else {
+    QualType T = getDecltypeForExpr(e, *this);
+    dt = new (*this, TypeAlignment) DecltypeType(e, T, getCanonicalType(T));
+  }
+  Types.push_back(dt);
+  return QualType(dt, 0);
+}
+
+/// getTagDeclType - Return the unique reference to the type for the
+/// specified TagDecl (struct/union/class/enum) decl.
+QualType ASTContext::getTagDeclType(const TagDecl *Decl) {
+  assert (Decl);
+  // FIXME: What is the design on getTagDeclType when it requires casting
+  // away const?  mutable?
+  return getTypeDeclType(const_cast<TagDecl*>(Decl));
+}
+
+/// getSizeType - Return the unique type for "size_t" (C99 7.17), the result
+/// of the sizeof operator (C99 6.5.3.4p4). The value is target dependent and
+/// needs to agree with the definition in <stddef.h>.
+CanQualType ASTContext::getSizeType() const {
+  return getFromTargetType(Target.getSizeType());
+}
+
+/// getSignedWCharType - Return the type of "signed wchar_t".
+/// Used when in C++, as a GCC extension.
+QualType ASTContext::getSignedWCharType() const {
+  // FIXME: derive from "Target" ?
+  return WCharTy;
+}
+
+/// getUnsignedWCharType - Return the type of "unsigned wchar_t".
+/// Used when in C++, as a GCC extension.
+QualType ASTContext::getUnsignedWCharType() const {
+  // FIXME: derive from "Target" ?
+  return UnsignedIntTy;
+}
+
+/// getPointerDiffType - Return the unique type for "ptrdiff_t" (ref?)
+/// defined in <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
+QualType ASTContext::getPointerDiffType() const {
+  return getFromTargetType(Target.getPtrDiffType(0));
+}
+
+//===----------------------------------------------------------------------===//
+//                              Type Operators
+//===----------------------------------------------------------------------===//
+
+CanQualType ASTContext::getCanonicalParamType(QualType T) {
+  // Push qualifiers into arrays, and then discard any remaining
+  // qualifiers.
+  T = getCanonicalType(T);
+  const Type *Ty = T.getTypePtr();
+
+  QualType Result;
+  if (isa<ArrayType>(Ty)) {
+    Result = getArrayDecayedType(QualType(Ty,0));
+  } else if (isa<FunctionType>(Ty)) {
+    Result = getPointerType(QualType(Ty, 0));
+  } else {
+    Result = QualType(Ty, 0);
+  }
+
+  return CanQualType::CreateUnsafe(Result);
+}
+
+/// getCanonicalType - Return the canonical (structural) type corresponding to
+/// the specified potentially non-canonical type.  The non-canonical version
+/// of a type may have many "decorated" versions of types.  Decorators can
+/// include typedefs, 'typeof' operators, etc. The returned type is guaranteed
+/// to be free of any of these, allowing two canonical types to be compared
+/// for exact equality with a simple pointer comparison.
+CanQualType ASTContext::getCanonicalType(QualType T) {
+  QualifierCollector Quals;
+  const Type *Ptr = Quals.strip(T);
+  QualType CanType = Ptr->getCanonicalTypeInternal();
+
+  // The canonical internal type will be the canonical type *except*
+  // that we push type qualifiers down through array types.
+
+  // If there are no new qualifiers to push down, stop here.
+  if (!Quals.hasQualifiers())
+    return CanQualType::CreateUnsafe(CanType);
+
+  // If the type qualifiers are on an array type, get the canonical
+  // type of the array with the qualifiers applied to the element
+  // type.
+  ArrayType *AT = dyn_cast<ArrayType>(CanType);
+  if (!AT)
+    return CanQualType::CreateUnsafe(getQualifiedType(CanType, Quals));
+
+  // Get the canonical version of the element with the extra qualifiers on it.
+  // This can recursively sink qualifiers through multiple levels of arrays.
+  QualType NewEltTy = getQualifiedType(AT->getElementType(), Quals);
+  NewEltTy = getCanonicalType(NewEltTy);
+
+  if (ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
+    return CanQualType::CreateUnsafe(
+             getConstantArrayType(NewEltTy, CAT->getSize(),
+                                  CAT->getSizeModifier(),
+                                  CAT->getIndexTypeCVRQualifiers()));
+  if (IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT))
+    return CanQualType::CreateUnsafe(
+             getIncompleteArrayType(NewEltTy, IAT->getSizeModifier(),
+                                    IAT->getIndexTypeCVRQualifiers()));
+
+  if (DependentSizedArrayType *DSAT = dyn_cast<DependentSizedArrayType>(AT))
+    return CanQualType::CreateUnsafe(
+             getDependentSizedArrayType(NewEltTy,
+                                        DSAT->getSizeExpr() ?
+                                          DSAT->getSizeExpr()->Retain() : 0,
+                                        DSAT->getSizeModifier(),
+                                        DSAT->getIndexTypeCVRQualifiers(),
+                        DSAT->getBracketsRange())->getCanonicalTypeInternal());
+
+  VariableArrayType *VAT = cast<VariableArrayType>(AT);
+  return CanQualType::CreateUnsafe(getVariableArrayType(NewEltTy,
+                                                        VAT->getSizeExpr() ?
+                                              VAT->getSizeExpr()->Retain() : 0,
+                                                        VAT->getSizeModifier(),
+                                              VAT->getIndexTypeCVRQualifiers(),
+                                                     VAT->getBracketsRange()));
+}
+
+QualType ASTContext::getUnqualifiedArrayType(QualType T,
+                                             Qualifiers &Quals) {
+  Quals = T.getQualifiers();
+  if (!isa<ArrayType>(T)) {
+    return T.getUnqualifiedType();
+  }
+
+  const ArrayType *AT = cast<ArrayType>(T);
+  QualType Elt = AT->getElementType();
+  QualType UnqualElt = getUnqualifiedArrayType(Elt, Quals);
+  if (Elt == UnqualElt)
+    return T;
+
+  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(T)) {
+    return getConstantArrayType(UnqualElt, CAT->getSize(),
+                                CAT->getSizeModifier(), 0);
+  }
+
+  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(T)) {
+    return getIncompleteArrayType(UnqualElt, IAT->getSizeModifier(), 0);
+  }
+
+  const DependentSizedArrayType *DSAT = cast<DependentSizedArrayType>(T);
+  return getDependentSizedArrayType(UnqualElt, DSAT->getSizeExpr()->Retain(),
+                                    DSAT->getSizeModifier(), 0,
+                                    SourceRange());
+}
+
+DeclarationName ASTContext::getNameForTemplate(TemplateName Name) {
+  if (TemplateDecl *TD = Name.getAsTemplateDecl())
+    return TD->getDeclName();
+  
+  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) {
+    if (DTN->isIdentifier()) {
+      return DeclarationNames.getIdentifier(DTN->getIdentifier());
+    } else {
+      return DeclarationNames.getCXXOperatorName(DTN->getOperator());
+    }
+  }
+
+  OverloadedTemplateStorage *Storage = Name.getAsOverloadedTemplate();
+  assert(Storage);
+  return (*Storage->begin())->getDeclName();
+}
+
+TemplateName ASTContext::getCanonicalTemplateName(TemplateName Name) {
+  // If this template name refers to a template, the canonical
+  // template name merely stores the template itself.
+  if (TemplateDecl *Template = Name.getAsTemplateDecl())
+    return TemplateName(cast<TemplateDecl>(Template->getCanonicalDecl()));
+
+  assert(!Name.getAsOverloadedTemplate());
+
+  DependentTemplateName *DTN = Name.getAsDependentTemplateName();
+  assert(DTN && "Non-dependent template names must refer to template decls.");
+  return DTN->CanonicalTemplateName;
+}
+
+bool ASTContext::hasSameTemplateName(TemplateName X, TemplateName Y) {
+  X = getCanonicalTemplateName(X);
+  Y = getCanonicalTemplateName(Y);
+  return X.getAsVoidPointer() == Y.getAsVoidPointer();
+}
+
+TemplateArgument
+ASTContext::getCanonicalTemplateArgument(const TemplateArgument &Arg) {
+  switch (Arg.getKind()) {
+    case TemplateArgument::Null:
+      return Arg;
+
+    case TemplateArgument::Expression:
+      return Arg;
+
+    case TemplateArgument::Declaration:
+      return TemplateArgument(Arg.getAsDecl()->getCanonicalDecl());
+
+    case TemplateArgument::Template:
+      return TemplateArgument(getCanonicalTemplateName(Arg.getAsTemplate()));
+      
+    case TemplateArgument::Integral:
+      return TemplateArgument(*Arg.getAsIntegral(),
+                              getCanonicalType(Arg.getIntegralType()));
+
+    case TemplateArgument::Type:
+      return TemplateArgument(getCanonicalType(Arg.getAsType()));
+
+    case TemplateArgument::Pack: {
+      // FIXME: Allocate in ASTContext
+      TemplateArgument *CanonArgs = new TemplateArgument[Arg.pack_size()];
+      unsigned Idx = 0;
+      for (TemplateArgument::pack_iterator A = Arg.pack_begin(),
+                                        AEnd = Arg.pack_end();
+           A != AEnd; (void)++A, ++Idx)
+        CanonArgs[Idx] = getCanonicalTemplateArgument(*A);
+
+      TemplateArgument Result;
+      Result.setArgumentPack(CanonArgs, Arg.pack_size(), false);
+      return Result;
+    }
+  }
+
+  // Silence GCC warning
+  assert(false && "Unhandled template argument kind");
+  return TemplateArgument();
+}
+
+NestedNameSpecifier *
+ASTContext::getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) {
+  if (!NNS)
+    return 0;
+
+  switch (NNS->getKind()) {
+  case NestedNameSpecifier::Identifier:
+    // Canonicalize the prefix but keep the identifier the same.
+    return NestedNameSpecifier::Create(*this,
+                         getCanonicalNestedNameSpecifier(NNS->getPrefix()),
+                                       NNS->getAsIdentifier());
+
+  case NestedNameSpecifier::Namespace:
+    // A namespace is canonical; build a nested-name-specifier with
+    // this namespace and no prefix.
+    return NestedNameSpecifier::Create(*this, 0, NNS->getAsNamespace());
+
+  case NestedNameSpecifier::TypeSpec:
+  case NestedNameSpecifier::TypeSpecWithTemplate: {
+    QualType T = getCanonicalType(QualType(NNS->getAsType(), 0));
+    return NestedNameSpecifier::Create(*this, 0,
+                 NNS->getKind() == NestedNameSpecifier::TypeSpecWithTemplate,
+                                       T.getTypePtr());
+  }
+
+  case NestedNameSpecifier::Global:
+    // The global specifier is canonical and unique.
+    return NNS;
+  }
+
+  // Required to silence a GCC warning
+  return 0;
+}
+
+
+const ArrayType *ASTContext::getAsArrayType(QualType T) {
+  // Handle the non-qualified case efficiently.
+  if (!T.hasLocalQualifiers()) {
+    // Handle the common positive case fast.
+    if (const ArrayType *AT = dyn_cast<ArrayType>(T))
+      return AT;
+  }
+
+  // Handle the common negative case fast.
+  QualType CType = T->getCanonicalTypeInternal();
+  if (!isa<ArrayType>(CType))
+    return 0;
+
+  // Apply any qualifiers from the array type to the element type.  This
+  // implements C99 6.7.3p8: "If the specification of an array type includes
+  // any type qualifiers, the element type is so qualified, not the array type."
+
+  // If we get here, we either have type qualifiers on the type, or we have
+  // sugar such as a typedef in the way.  If we have type qualifiers on the type
+  // we must propagate them down into the element type.
+
+  QualifierCollector Qs;
+  const Type *Ty = Qs.strip(T.getDesugaredType());
+
+  // If we have a simple case, just return now.
+  const ArrayType *ATy = dyn_cast<ArrayType>(Ty);
+  if (ATy == 0 || Qs.empty())
+    return ATy;
+
+  // Otherwise, we have an array and we have qualifiers on it.  Push the
+  // qualifiers into the array element type and return a new array type.
+  // Get the canonical version of the element with the extra qualifiers on it.
+  // This can recursively sink qualifiers through multiple levels of arrays.
+  QualType NewEltTy = getQualifiedType(ATy->getElementType(), Qs);
+
+  if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(ATy))
+    return cast<ArrayType>(getConstantArrayType(NewEltTy, CAT->getSize(),
+                                                CAT->getSizeModifier(),
+                                           CAT->getIndexTypeCVRQualifiers()));
+  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(ATy))
+    return cast<ArrayType>(getIncompleteArrayType(NewEltTy,
+                                                  IAT->getSizeModifier(),
+                                           IAT->getIndexTypeCVRQualifiers()));
+
+  if (const DependentSizedArrayType *DSAT
+        = dyn_cast<DependentSizedArrayType>(ATy))
+    return cast<ArrayType>(
+                     getDependentSizedArrayType(NewEltTy,
+                                                DSAT->getSizeExpr() ?
+                                              DSAT->getSizeExpr()->Retain() : 0,
+                                                DSAT->getSizeModifier(),
+                                              DSAT->getIndexTypeCVRQualifiers(),
+                                                DSAT->getBracketsRange()));
+
+  const VariableArrayType *VAT = cast<VariableArrayType>(ATy);
+  return cast<ArrayType>(getVariableArrayType(NewEltTy,
+                                              VAT->getSizeExpr() ?
+                                              VAT->getSizeExpr()->Retain() : 0,
+                                              VAT->getSizeModifier(),
+                                              VAT->getIndexTypeCVRQualifiers(),
+                                              VAT->getBracketsRange()));
+}
+
+
+/// getArrayDecayedType - Return the properly qualified result of decaying the
+/// specified array type to a pointer.  This operation is non-trivial when
+/// handling typedefs etc.  The canonical type of "T" must be an array type,
+/// this returns a pointer to a properly qualified element of the array.
+///
+/// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
+QualType ASTContext::getArrayDecayedType(QualType Ty) {
+  // Get the element type with 'getAsArrayType' so that we don't lose any
+  // typedefs in the element type of the array.  This also handles propagation
+  // of type qualifiers from the array type into the element type if present
+  // (C99 6.7.3p8).
+  const ArrayType *PrettyArrayType = getAsArrayType(Ty);
+  assert(PrettyArrayType && "Not an array type!");
+
+  QualType PtrTy = getPointerType(PrettyArrayType->getElementType());
+
+  // int x[restrict 4] ->  int *restrict
+  return getQualifiedType(PtrTy, PrettyArrayType->getIndexTypeQualifiers());
+}
+
+QualType ASTContext::getBaseElementType(QualType QT) {
+  QualifierCollector Qs;
+  while (true) {
+    const Type *UT = Qs.strip(QT);
+    if (const ArrayType *AT = getAsArrayType(QualType(UT,0))) {
+      QT = AT->getElementType();
+    } else {
+      return Qs.apply(QT);
+    }
+  }
+}
+
+QualType ASTContext::getBaseElementType(const ArrayType *AT) {
+  QualType ElemTy = AT->getElementType();
+
+  if (const ArrayType *AT = getAsArrayType(ElemTy))
+    return getBaseElementType(AT);
+
+  return ElemTy;
+}
+
+/// getConstantArrayElementCount - Returns number of constant array elements.
+uint64_t
+ASTContext::getConstantArrayElementCount(const ConstantArrayType *CA)  const {
+  uint64_t ElementCount = 1;
+  do {
+    ElementCount *= CA->getSize().getZExtValue();
+    CA = dyn_cast<ConstantArrayType>(CA->getElementType());
+  } while (CA);
+  return ElementCount;
+}
+
+/// getFloatingRank - Return a relative rank for floating point types.
+/// This routine will assert if passed a built-in type that isn't a float.
+static FloatingRank getFloatingRank(QualType T) {
+  if (const ComplexType *CT = T->getAs<ComplexType>())
+    return getFloatingRank(CT->getElementType());
+
+  assert(T->getAs<BuiltinType>() && "getFloatingRank(): not a floating type");
+  switch (T->getAs<BuiltinType>()->getKind()) {
+  default: assert(0 && "getFloatingRank(): not a floating type");
+  case BuiltinType::Float:      return FloatRank;
+  case BuiltinType::Double:     return DoubleRank;
+  case BuiltinType::LongDouble: return LongDoubleRank;
+  }
+}
+
+/// getFloatingTypeOfSizeWithinDomain - Returns a real floating
+/// point or a complex type (based on typeDomain/typeSize).
+/// 'typeDomain' is a real floating point or complex type.
+/// 'typeSize' is a real floating point or complex type.
+QualType ASTContext::getFloatingTypeOfSizeWithinDomain(QualType Size,
+                                                       QualType Domain) const {
+  FloatingRank EltRank = getFloatingRank(Size);
+  if (Domain->isComplexType()) {
+    switch (EltRank) {
+    default: assert(0 && "getFloatingRank(): illegal value for rank");
+    case FloatRank:      return FloatComplexTy;
+    case DoubleRank:     return DoubleComplexTy;
+    case LongDoubleRank: return LongDoubleComplexTy;
+    }
+  }
+
+  assert(Domain->isRealFloatingType() && "Unknown domain!");
+  switch (EltRank) {
+  default: assert(0 && "getFloatingRank(): illegal value for rank");
+  case FloatRank:      return FloatTy;
+  case DoubleRank:     return DoubleTy;
+  case LongDoubleRank: return LongDoubleTy;
+  }
+}
+
+/// getFloatingTypeOrder - Compare the rank of the two specified floating
+/// point types, ignoring the domain of the type (i.e. 'double' ==
+/// '_Complex double').  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
+/// LHS < RHS, return -1.
+int ASTContext::getFloatingTypeOrder(QualType LHS, QualType RHS) {
+  FloatingRank LHSR = getFloatingRank(LHS);
+  FloatingRank RHSR = getFloatingRank(RHS);
+
+  if (LHSR == RHSR)
+    return 0;
+  if (LHSR > RHSR)
+    return 1;
+  return -1;
+}
+
+/// getIntegerRank - Return an integer conversion rank (C99 6.3.1.1p1). This
+/// routine will assert if passed a built-in type that isn't an integer or enum,
+/// or if it is not canonicalized.
+unsigned ASTContext::getIntegerRank(Type *T) {
+  assert(T->isCanonicalUnqualified() && "T should be canonicalized");
+  if (EnumType* ET = dyn_cast<EnumType>(T))
+    T = ET->getDecl()->getPromotionType().getTypePtr();
+
+  if (T->isSpecificBuiltinType(BuiltinType::WChar))
+    T = getFromTargetType(Target.getWCharType()).getTypePtr();
+
+  if (T->isSpecificBuiltinType(BuiltinType::Char16))
+    T = getFromTargetType(Target.getChar16Type()).getTypePtr();
+
+  if (T->isSpecificBuiltinType(BuiltinType::Char32))
+    T = getFromTargetType(Target.getChar32Type()).getTypePtr();
+
+  switch (cast<BuiltinType>(T)->getKind()) {
+  default: assert(0 && "getIntegerRank(): not a built-in integer");
+  case BuiltinType::Bool:
+    return 1 + (getIntWidth(BoolTy) << 3);
+  case BuiltinType::Char_S:
+  case BuiltinType::Char_U:
+  case BuiltinType::SChar:
+  case BuiltinType::UChar:
+    return 2 + (getIntWidth(CharTy) << 3);
+  case BuiltinType::Short:
+  case BuiltinType::UShort:
+    return 3 + (getIntWidth(ShortTy) << 3);
+  case BuiltinType::Int:
+  case BuiltinType::UInt:
+    return 4 + (getIntWidth(IntTy) << 3);
+  case BuiltinType::Long:
+  case BuiltinType::ULong:
+    return 5 + (getIntWidth(LongTy) << 3);
+  case BuiltinType::LongLong:
+  case BuiltinType::ULongLong:
+    return 6 + (getIntWidth(LongLongTy) << 3);
+  case BuiltinType::Int128:
+  case BuiltinType::UInt128:
+    return 7 + (getIntWidth(Int128Ty) << 3);
+  }
+}
+
+/// \brief Whether this is a promotable bitfield reference according
+/// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
+///
+/// \returns the type this bit-field will promote to, or NULL if no
+/// promotion occurs.
+QualType ASTContext::isPromotableBitField(Expr *E) {
+  FieldDecl *Field = E->getBitField();
+  if (!Field)
+    return QualType();
+
+  QualType FT = Field->getType();
+
+  llvm::APSInt BitWidthAP = Field->getBitWidth()->EvaluateAsInt(*this);
+  uint64_t BitWidth = BitWidthAP.getZExtValue();
+  uint64_t IntSize = getTypeSize(IntTy);
+  // GCC extension compatibility: if the bit-field size is less than or equal
+  // to the size of int, it gets promoted no matter what its type is.
+  // For instance, unsigned long bf : 4 gets promoted to signed int.
+  if (BitWidth < IntSize)
+    return IntTy;
+
+  if (BitWidth == IntSize)
+    return FT->isSignedIntegerType() ? IntTy : UnsignedIntTy;
+
+  // Types bigger than int are not subject to promotions, and therefore act
+  // like the base type.
+  // FIXME: This doesn't quite match what gcc does, but what gcc does here
+  // is ridiculous.
+  return QualType();
+}
+
+/// getPromotedIntegerType - Returns the type that Promotable will
+/// promote to: C99 6.3.1.1p2, assuming that Promotable is a promotable
+/// integer type.
+QualType ASTContext::getPromotedIntegerType(QualType Promotable) {
+  assert(!Promotable.isNull());
+  assert(Promotable->isPromotableIntegerType());
+  if (const EnumType *ET = Promotable->getAs<EnumType>())
+    return ET->getDecl()->getPromotionType();
+  if (Promotable->isSignedIntegerType())
+    return IntTy;
+  uint64_t PromotableSize = getTypeSize(Promotable);
+  uint64_t IntSize = getTypeSize(IntTy);
+  assert(Promotable->isUnsignedIntegerType() && PromotableSize <= IntSize);
+  return (PromotableSize != IntSize) ? IntTy : UnsignedIntTy;
+}
+
+/// getIntegerTypeOrder - Returns the highest ranked integer type:
+/// C99 6.3.1.8p1.  If LHS > RHS, return 1.  If LHS == RHS, return 0. If
+/// LHS < RHS, return -1.
+int ASTContext::getIntegerTypeOrder(QualType LHS, QualType RHS) {
+  Type *LHSC = getCanonicalType(LHS).getTypePtr();
+  Type *RHSC = getCanonicalType(RHS).getTypePtr();
+  if (LHSC == RHSC) return 0;
+
+  bool LHSUnsigned = LHSC->isUnsignedIntegerType();
+  bool RHSUnsigned = RHSC->isUnsignedIntegerType();
+
+  unsigned LHSRank = getIntegerRank(LHSC);
+  unsigned RHSRank = getIntegerRank(RHSC);
+
+  if (LHSUnsigned == RHSUnsigned) {  // Both signed or both unsigned.
+    if (LHSRank == RHSRank) return 0;
+    return LHSRank > RHSRank ? 1 : -1;
+  }
+
+  // Otherwise, the LHS is signed and the RHS is unsigned or visa versa.
+  if (LHSUnsigned) {
+    // If the unsigned [LHS] type is larger, return it.
+    if (LHSRank >= RHSRank)
+      return 1;
+
+    // If the signed type can represent all values of the unsigned type, it
+    // wins.  Because we are dealing with 2's complement and types that are
+    // powers of two larger than each other, this is always safe.
+    return -1;
+  }
+
+  // If the unsigned [RHS] type is larger, return it.
+  if (RHSRank >= LHSRank)
+    return -1;
+
+  // If the signed type can represent all values of the unsigned type, it
+  // wins.  Because we are dealing with 2's complement and types that are
+  // powers of two larger than each other, this is always safe.
+  return 1;
+}
+
+static RecordDecl *
+CreateRecordDecl(ASTContext &Ctx, RecordDecl::TagKind TK, DeclContext *DC,
+                 SourceLocation L, IdentifierInfo *Id) {
+  if (Ctx.getLangOptions().CPlusPlus)
+    return CXXRecordDecl::Create(Ctx, TK, DC, L, Id);
+  else
+    return RecordDecl::Create(Ctx, TK, DC, L, Id);
+}
+                                    
+// getCFConstantStringType - Return the type used for constant CFStrings.
+QualType ASTContext::getCFConstantStringType() {
+  if (!CFConstantStringTypeDecl) {
+    CFConstantStringTypeDecl =
+      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
+                       &Idents.get("NSConstantString"));
+    CFConstantStringTypeDecl->startDefinition();
+
+    QualType FieldTypes[4];
+
+    // const int *isa;
+    FieldTypes[0] = getPointerType(IntTy.withConst());
+    // int flags;
+    FieldTypes[1] = IntTy;
+    // const char *str;
+    FieldTypes[2] = getPointerType(CharTy.withConst());
+    // long length;
+    FieldTypes[3] = LongTy;
+
+    // Create fields
+    for (unsigned i = 0; i < 4; ++i) {
+      FieldDecl *Field = FieldDecl::Create(*this, CFConstantStringTypeDecl,
+                                           SourceLocation(), 0,
+                                           FieldTypes[i], /*TInfo=*/0,
+                                           /*BitWidth=*/0,
+                                           /*Mutable=*/false);
+      CFConstantStringTypeDecl->addDecl(Field);
+    }
+
+    CFConstantStringTypeDecl->completeDefinition(*this);
+  }
+
+  return getTagDeclType(CFConstantStringTypeDecl);
+}
+
+void ASTContext::setCFConstantStringType(QualType T) {
+  const RecordType *Rec = T->getAs<RecordType>();
+  assert(Rec && "Invalid CFConstantStringType");
+  CFConstantStringTypeDecl = Rec->getDecl();
+}
+
+QualType ASTContext::getObjCFastEnumerationStateType() {
+  if (!ObjCFastEnumerationStateTypeDecl) {
+    ObjCFastEnumerationStateTypeDecl =
+      CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
+                       &Idents.get("__objcFastEnumerationState"));
+    ObjCFastEnumerationStateTypeDecl->startDefinition();
+
+    QualType FieldTypes[] = {
+      UnsignedLongTy,
+      getPointerType(ObjCIdTypedefType),
+      getPointerType(UnsignedLongTy),
+      getConstantArrayType(UnsignedLongTy,
+                           llvm::APInt(32, 5), ArrayType::Normal, 0)
+    };
+
+    for (size_t i = 0; i < 4; ++i) {
+      FieldDecl *Field = FieldDecl::Create(*this,
+                                           ObjCFastEnumerationStateTypeDecl,
+                                           SourceLocation(), 0,
+                                           FieldTypes[i], /*TInfo=*/0,
+                                           /*BitWidth=*/0,
+                                           /*Mutable=*/false);
+      ObjCFastEnumerationStateTypeDecl->addDecl(Field);
+    }
+
+    ObjCFastEnumerationStateTypeDecl->completeDefinition(*this);
+  }
+
+  return getTagDeclType(ObjCFastEnumerationStateTypeDecl);
+}
+
+QualType ASTContext::getBlockDescriptorType() {
+  if (BlockDescriptorType)
+    return getTagDeclType(BlockDescriptorType);
+
+  RecordDecl *T;
+  // FIXME: Needs the FlagAppleBlock bit.
+  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
+                       &Idents.get("__block_descriptor"));
+  T->startDefinition();
+  
+  QualType FieldTypes[] = {
+    UnsignedLongTy,
+    UnsignedLongTy,
+  };
+
+  const char *FieldNames[] = {
+    "reserved",
+    "Size"
+  };
+
+  for (size_t i = 0; i < 2; ++i) {
+    FieldDecl *Field = FieldDecl::Create(*this,
+                                         T,
+                                         SourceLocation(),
+                                         &Idents.get(FieldNames[i]),
+                                         FieldTypes[i], /*TInfo=*/0,
+                                         /*BitWidth=*/0,
+                                         /*Mutable=*/false);
+    T->addDecl(Field);
+  }
+
+  T->completeDefinition(*this);
+
+  BlockDescriptorType = T;
+
+  return getTagDeclType(BlockDescriptorType);
+}
+
+void ASTContext::setBlockDescriptorType(QualType T) {
+  const RecordType *Rec = T->getAs<RecordType>();
+  assert(Rec && "Invalid BlockDescriptorType");
+  BlockDescriptorType = Rec->getDecl();
+}
+
+QualType ASTContext::getBlockDescriptorExtendedType() {
+  if (BlockDescriptorExtendedType)
+    return getTagDeclType(BlockDescriptorExtendedType);
+
+  RecordDecl *T;
+  // FIXME: Needs the FlagAppleBlock bit.
+  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
+                       &Idents.get("__block_descriptor_withcopydispose"));
+  T->startDefinition();
+  
+  QualType FieldTypes[] = {
+    UnsignedLongTy,
+    UnsignedLongTy,
+    getPointerType(VoidPtrTy),
+    getPointerType(VoidPtrTy)
+  };
+
+  const char *FieldNames[] = {
+    "reserved",
+    "Size",
+    "CopyFuncPtr",
+    "DestroyFuncPtr"
+  };
+
+  for (size_t i = 0; i < 4; ++i) {
+    FieldDecl *Field = FieldDecl::Create(*this,
+                                         T,
+                                         SourceLocation(),
+                                         &Idents.get(FieldNames[i]),
+                                         FieldTypes[i], /*TInfo=*/0,
+                                         /*BitWidth=*/0,
+                                         /*Mutable=*/false);
+    T->addDecl(Field);
+  }
+
+  T->completeDefinition(*this);
+
+  BlockDescriptorExtendedType = T;
+
+  return getTagDeclType(BlockDescriptorExtendedType);
+}
+
+void ASTContext::setBlockDescriptorExtendedType(QualType T) {
+  const RecordType *Rec = T->getAs<RecordType>();
+  assert(Rec && "Invalid BlockDescriptorType");
+  BlockDescriptorExtendedType = Rec->getDecl();
+}
+
+bool ASTContext::BlockRequiresCopying(QualType Ty) {
+  if (Ty->isBlockPointerType())
+    return true;
+  if (isObjCNSObjectType(Ty))
+    return true;
+  if (Ty->isObjCObjectPointerType())
+    return true;
+  return false;
+}
+
+QualType ASTContext::BuildByRefType(const char *DeclName, QualType Ty) {
+  //  type = struct __Block_byref_1_X {
+  //    void *__isa;
+  //    struct __Block_byref_1_X *__forwarding;
+  //    unsigned int __flags;
+  //    unsigned int __size;
+  //    void *__copy_helper;		// as needed
+  //    void *__destroy_help		// as needed
+  //    int X;
+  //  } *
+
+  bool HasCopyAndDispose = BlockRequiresCopying(Ty);
+
+  // FIXME: Move up
+  static unsigned int UniqueBlockByRefTypeID = 0;
+  llvm::SmallString<36> Name;
+  llvm::raw_svector_ostream(Name) << "__Block_byref_" <<
+                                  ++UniqueBlockByRefTypeID << '_' << DeclName;
+  RecordDecl *T;
+  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
+                       &Idents.get(Name.str()));
+  T->startDefinition();
+  QualType Int32Ty = IntTy;
+  assert(getIntWidth(IntTy) == 32 && "non-32bit int not supported");
+  QualType FieldTypes[] = {
+    getPointerType(VoidPtrTy),
+    getPointerType(getTagDeclType(T)),
+    Int32Ty,
+    Int32Ty,
+    getPointerType(VoidPtrTy),
+    getPointerType(VoidPtrTy),
+    Ty
+  };
+
+  const char *FieldNames[] = {
+    "__isa",
+    "__forwarding",
+    "__flags",
+    "__size",
+    "__copy_helper",
+    "__destroy_helper",
+    DeclName,
+  };
+
+  for (size_t i = 0; i < 7; ++i) {
+    if (!HasCopyAndDispose && i >=4 && i <= 5)
+      continue;
+    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
+                                         &Idents.get(FieldNames[i]),
+                                         FieldTypes[i], /*TInfo=*/0,
+                                         /*BitWidth=*/0, /*Mutable=*/false);
+    T->addDecl(Field);
+  }
+
+  T->completeDefinition(*this);
+
+  return getPointerType(getTagDeclType(T));
+}
+
+
+QualType ASTContext::getBlockParmType(
+  bool BlockHasCopyDispose,
+  llvm::SmallVector<const Expr *, 8> &BlockDeclRefDecls) {
+  // FIXME: Move up
+  static unsigned int UniqueBlockParmTypeID = 0;
+  llvm::SmallString<36> Name;
+  llvm::raw_svector_ostream(Name) << "__block_literal_"
+                                  << ++UniqueBlockParmTypeID;
+  RecordDecl *T;
+  T = CreateRecordDecl(*this, TagDecl::TK_struct, TUDecl, SourceLocation(),
+                       &Idents.get(Name.str()));
+  T->startDefinition();
+  QualType FieldTypes[] = {
+    getPointerType(VoidPtrTy),
+    IntTy,
+    IntTy,
+    getPointerType(VoidPtrTy),
+    (BlockHasCopyDispose ?
+     getPointerType(getBlockDescriptorExtendedType()) :
+     getPointerType(getBlockDescriptorType()))
+  };
+
+  const char *FieldNames[] = {
+    "__isa",
+    "__flags",
+    "__reserved",
+    "__FuncPtr",
+    "__descriptor"
+  };
+
+  for (size_t i = 0; i < 5; ++i) {
+    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
+                                         &Idents.get(FieldNames[i]),
+                                         FieldTypes[i], /*TInfo=*/0,
+                                         /*BitWidth=*/0, /*Mutable=*/false);
+    T->addDecl(Field);
+  }
+
+  for (size_t i = 0; i < BlockDeclRefDecls.size(); ++i) {
+    const Expr *E = BlockDeclRefDecls[i];
+    const BlockDeclRefExpr *BDRE = dyn_cast<BlockDeclRefExpr>(E);
+    clang::IdentifierInfo *Name = 0;
+    if (BDRE) {
+      const ValueDecl *D = BDRE->getDecl();
+      Name = &Idents.get(D->getName());
+    }
+    QualType FieldType = E->getType();
+
+    if (BDRE && BDRE->isByRef())
+      FieldType = BuildByRefType(BDRE->getDecl()->getNameAsCString(),
+                                 FieldType);
+
+    FieldDecl *Field = FieldDecl::Create(*this, T, SourceLocation(),
+                                         Name, FieldType, /*TInfo=*/0,
+                                         /*BitWidth=*/0, /*Mutable=*/false);
+    T->addDecl(Field);
+  }
+
+  T->completeDefinition(*this);
+
+  return getPointerType(getTagDeclType(T));
+}
+
+void ASTContext::setObjCFastEnumerationStateType(QualType T) {
+  const RecordType *Rec = T->getAs<RecordType>();
+  assert(Rec && "Invalid ObjCFAstEnumerationStateType");
+  ObjCFastEnumerationStateTypeDecl = Rec->getDecl();
+}
+
+// This returns true if a type has been typedefed to BOOL:
+// typedef <type> BOOL;
+static bool isTypeTypedefedAsBOOL(QualType T) {
+  if (const TypedefType *TT = dyn_cast<TypedefType>(T))
+    if (IdentifierInfo *II = TT->getDecl()->getIdentifier())
+      return II->isStr("BOOL");
+
+  return false;
+}
+
+/// getObjCEncodingTypeSize returns size of type for objective-c encoding
+/// purpose.
+CharUnits ASTContext::getObjCEncodingTypeSize(QualType type) {
+  CharUnits sz = getTypeSizeInChars(type);
+
+  // Make all integer and enum types at least as large as an int
+  if (sz.isPositive() && type->isIntegralType())
+    sz = std::max(sz, getTypeSizeInChars(IntTy));
+  // Treat arrays as pointers, since that's how they're passed in.
+  else if (type->isArrayType())
+    sz = getTypeSizeInChars(VoidPtrTy);
+  return sz;
+}
+
+static inline 
+std::string charUnitsToString(const CharUnits &CU) {
+  return llvm::itostr(CU.getQuantity());
+}
+
+/// getObjCEncodingForBlockDecl - Return the encoded type for this method
+/// declaration.
+void ASTContext::getObjCEncodingForBlock(const BlockExpr *Expr, 
+                                             std::string& S) {
+  const BlockDecl *Decl = Expr->getBlockDecl();
+  QualType BlockTy =
+      Expr->getType()->getAs<BlockPointerType>()->getPointeeType();
+  // Encode result type.
+  getObjCEncodingForType(cast<FunctionType>(BlockTy)->getResultType(), S);
+  // Compute size of all parameters.
+  // Start with computing size of a pointer in number of bytes.
+  // FIXME: There might(should) be a better way of doing this computation!
+  SourceLocation Loc;
+  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
+  CharUnits ParmOffset = PtrSize;
+  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
+       E = Decl->param_end(); PI != E; ++PI) {
+    QualType PType = (*PI)->getType();
+    CharUnits sz = getObjCEncodingTypeSize(PType);
+    assert (sz.isPositive() && "BlockExpr - Incomplete param type");
+    ParmOffset += sz;
+  }
+  // Size of the argument frame
+  S += charUnitsToString(ParmOffset);
+  // Block pointer and offset.
+  S += "@?0";
+  ParmOffset = PtrSize;
+  
+  // Argument types.
+  ParmOffset = PtrSize;
+  for (BlockDecl::param_const_iterator PI = Decl->param_begin(), E =
+       Decl->param_end(); PI != E; ++PI) {
+    ParmVarDecl *PVDecl = *PI;
+    QualType PType = PVDecl->getOriginalType(); 
+    if (const ArrayType *AT =
+          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
+      // Use array's original type only if it has known number of
+      // elements.
+      if (!isa<ConstantArrayType>(AT))
+        PType = PVDecl->getType();
+    } else if (PType->isFunctionType())
+      PType = PVDecl->getType();
+    getObjCEncodingForType(PType, S);
+    S += charUnitsToString(ParmOffset);
+    ParmOffset += getObjCEncodingTypeSize(PType);
+  }
+}
+
+/// getObjCEncodingForMethodDecl - Return the encoded type for this method
+/// declaration.
+void ASTContext::getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
+                                              std::string& S) {
+  // FIXME: This is not very efficient.
+  // Encode type qualifer, 'in', 'inout', etc. for the return type.
+  getObjCEncodingForTypeQualifier(Decl->getObjCDeclQualifier(), S);
+  // Encode result type.
+  getObjCEncodingForType(Decl->getResultType(), S);
+  // Compute size of all parameters.
+  // Start with computing size of a pointer in number of bytes.
+  // FIXME: There might(should) be a better way of doing this computation!
+  SourceLocation Loc;
+  CharUnits PtrSize = getTypeSizeInChars(VoidPtrTy);
+  // The first two arguments (self and _cmd) are pointers; account for
+  // their size.
+  CharUnits ParmOffset = 2 * PtrSize;
+  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
+       E = Decl->param_end(); PI != E; ++PI) {
+    QualType PType = (*PI)->getType();
+    CharUnits sz = getObjCEncodingTypeSize(PType);
+    assert (sz.isPositive() && 
+        "getObjCEncodingForMethodDecl - Incomplete param type");
+    ParmOffset += sz;
+  }
+  S += charUnitsToString(ParmOffset);
+  S += "@0:";
+  S += charUnitsToString(PtrSize);
+
+  // Argument types.
+  ParmOffset = 2 * PtrSize;
+  for (ObjCMethodDecl::param_iterator PI = Decl->param_begin(),
+       E = Decl->param_end(); PI != E; ++PI) {
+    ParmVarDecl *PVDecl = *PI;
+    QualType PType = PVDecl->getOriginalType();
+    if (const ArrayType *AT =
+          dyn_cast<ArrayType>(PType->getCanonicalTypeInternal())) {
+      // Use array's original type only if it has known number of
+      // elements.
+      if (!isa<ConstantArrayType>(AT))
+        PType = PVDecl->getType();
+    } else if (PType->isFunctionType())
+      PType = PVDecl->getType();
+    // Process argument qualifiers for user supplied arguments; such as,
+    // 'in', 'inout', etc.
+    getObjCEncodingForTypeQualifier(PVDecl->getObjCDeclQualifier(), S);
+    getObjCEncodingForType(PType, S);
+    S += charUnitsToString(ParmOffset);
+    ParmOffset += getObjCEncodingTypeSize(PType);
+  }
+}
+
+/// getObjCEncodingForPropertyDecl - Return the encoded type for this
+/// property declaration. If non-NULL, Container must be either an
+/// ObjCCategoryImplDecl or ObjCImplementationDecl; it should only be
+/// NULL when getting encodings for protocol properties.
+/// Property attributes are stored as a comma-delimited C string. The simple
+/// attributes readonly and bycopy are encoded as single characters. The
+/// parametrized attributes, getter=name, setter=name, and ivar=name, are
+/// encoded as single characters, followed by an identifier. Property types
+/// are also encoded as a parametrized attribute. The characters used to encode
+/// these attributes are defined by the following enumeration:
+/// @code
+/// enum PropertyAttributes {
+/// kPropertyReadOnly = 'R',   // property is read-only.
+/// kPropertyBycopy = 'C',     // property is a copy of the value last assigned
+/// kPropertyByref = '&',  // property is a reference to the value last assigned
+/// kPropertyDynamic = 'D',    // property is dynamic
+/// kPropertyGetter = 'G',     // followed by getter selector name
+/// kPropertySetter = 'S',     // followed by setter selector name
+/// kPropertyInstanceVariable = 'V'  // followed by instance variable  name
+/// kPropertyType = 't'              // followed by old-style type encoding.
+/// kPropertyWeak = 'W'              // 'weak' property
+/// kPropertyStrong = 'P'            // property GC'able
+/// kPropertyNonAtomic = 'N'         // property non-atomic
+/// };
+/// @endcode
+void ASTContext::getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
+                                                const Decl *Container,
+                                                std::string& S) {
+  // Collect information from the property implementation decl(s).
+  bool Dynamic = false;
+  ObjCPropertyImplDecl *SynthesizePID = 0;
+
+  // FIXME: Duplicated code due to poor abstraction.
+  if (Container) {
+    if (const ObjCCategoryImplDecl *CID =
+        dyn_cast<ObjCCategoryImplDecl>(Container)) {
+      for (ObjCCategoryImplDecl::propimpl_iterator
+             i = CID->propimpl_begin(), e = CID->propimpl_end();
+           i != e; ++i) {
+        ObjCPropertyImplDecl *PID = *i;
+        if (PID->getPropertyDecl() == PD) {
+          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
+            Dynamic = true;
+          } else {
+            SynthesizePID = PID;
+          }
+        }
+      }
+    } else {
+      const ObjCImplementationDecl *OID=cast<ObjCImplementationDecl>(Container);
+      for (ObjCCategoryImplDecl::propimpl_iterator
+             i = OID->propimpl_begin(), e = OID->propimpl_end();
+           i != e; ++i) {
+        ObjCPropertyImplDecl *PID = *i;
+        if (PID->getPropertyDecl() == PD) {
+          if (PID->getPropertyImplementation()==ObjCPropertyImplDecl::Dynamic) {
+            Dynamic = true;
+          } else {
+            SynthesizePID = PID;
+          }
+        }
+      }
+    }
+  }
+
+  // FIXME: This is not very efficient.
+  S = "T";
+
+  // Encode result type.
+  // GCC has some special rules regarding encoding of properties which
+  // closely resembles encoding of ivars.
+  getObjCEncodingForTypeImpl(PD->getType(), S, true, true, 0,
+                             true /* outermost type */,
+                             true /* encoding for property */);
+
+  if (PD->isReadOnly()) {
+    S += ",R";
+  } else {
+    switch (PD->getSetterKind()) {
+    case ObjCPropertyDecl::Assign: break;
+    case ObjCPropertyDecl::Copy:   S += ",C"; break;
+    case ObjCPropertyDecl::Retain: S += ",&"; break;
+    }
+  }
+
+  // It really isn't clear at all what this means, since properties
+  // are "dynamic by default".
+  if (Dynamic)
+    S += ",D";
+
+  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_nonatomic)
+    S += ",N";
+
+  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_getter) {
+    S += ",G";
+    S += PD->getGetterName().getAsString();
+  }
+
+  if (PD->getPropertyAttributes() & ObjCPropertyDecl::OBJC_PR_setter) {
+    S += ",S";
+    S += PD->getSetterName().getAsString();
+  }
+
+  if (SynthesizePID) {
+    const ObjCIvarDecl *OID = SynthesizePID->getPropertyIvarDecl();
+    S += ",V";
+    S += OID->getNameAsString();
+  }
+
+  // FIXME: OBJCGC: weak & strong
+}
+
+/// getLegacyIntegralTypeEncoding -
+/// Another legacy compatibility encoding: 32-bit longs are encoded as
+/// 'l' or 'L' , but not always.  For typedefs, we need to use
+/// 'i' or 'I' instead if encoding a struct field, or a pointer!
+///
+void ASTContext::getLegacyIntegralTypeEncoding (QualType &PointeeTy) const {
+  if (isa<TypedefType>(PointeeTy.getTypePtr())) {
+    if (const BuiltinType *BT = PointeeTy->getAs<BuiltinType>()) {
+      if (BT->getKind() == BuiltinType::ULong &&
+          ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
+        PointeeTy = UnsignedIntTy;
+      else
+        if (BT->getKind() == BuiltinType::Long &&
+            ((const_cast<ASTContext *>(this))->getIntWidth(PointeeTy) == 32))
+          PointeeTy = IntTy;
+    }
+  }
+}
+
+void ASTContext::getObjCEncodingForType(QualType T, std::string& S,
+                                        const FieldDecl *Field) {
+  // We follow the behavior of gcc, expanding structures which are
+  // directly pointed to, and expanding embedded structures. Note that
+  // these rules are sufficient to prevent recursive encoding of the
+  // same type.
+  getObjCEncodingForTypeImpl(T, S, true, true, Field,
+                             true /* outermost type */);
+}
+
+static void EncodeBitField(const ASTContext *Context, std::string& S,
+                           const FieldDecl *FD) {
+  const Expr *E = FD->getBitWidth();
+  assert(E && "bitfield width not there - getObjCEncodingForTypeImpl");
+  ASTContext *Ctx = const_cast<ASTContext*>(Context);
+  unsigned N = E->EvaluateAsInt(*Ctx).getZExtValue();
+  S += 'b';
+  S += llvm::utostr(N);
+}
+
+// FIXME: Use SmallString for accumulating string.
+void ASTContext::getObjCEncodingForTypeImpl(QualType T, std::string& S,
+                                            bool ExpandPointedToStructures,
+                                            bool ExpandStructures,
+                                            const FieldDecl *FD,
+                                            bool OutermostType,
+                                            bool EncodingProperty) {
+  if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
+    if (FD && FD->isBitField())
+      return EncodeBitField(this, S, FD);
+    char encoding;
+    switch (BT->getKind()) {
+    default: assert(0 && "Unhandled builtin type kind");
+    case BuiltinType::Void:       encoding = 'v'; break;
+    case BuiltinType::Bool:       encoding = 'B'; break;
+    case BuiltinType::Char_U:
+    case BuiltinType::UChar:      encoding = 'C'; break;
+    case BuiltinType::UShort:     encoding = 'S'; break;
+    case BuiltinType::UInt:       encoding = 'I'; break;
+    case BuiltinType::ULong:
+        encoding =
+          (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'L' : 'Q';
+        break;
+    case BuiltinType::UInt128:    encoding = 'T'; break;
+    case BuiltinType::ULongLong:  encoding = 'Q'; break;
+    case BuiltinType::Char_S:
+    case BuiltinType::SChar:      encoding = 'c'; break;
+    case BuiltinType::Short:      encoding = 's'; break;
+    case BuiltinType::Int:        encoding = 'i'; break;
+    case BuiltinType::Long:
+      encoding =
+        (const_cast<ASTContext *>(this))->getIntWidth(T) == 32 ? 'l' : 'q';
+      break;
+    case BuiltinType::LongLong:   encoding = 'q'; break;
+    case BuiltinType::Int128:     encoding = 't'; break;
+    case BuiltinType::Float:      encoding = 'f'; break;
+    case BuiltinType::Double:     encoding = 'd'; break;
+    case BuiltinType::LongDouble: encoding = 'd'; break;
+    }
+
+    S += encoding;
+    return;
+  }
+
+  if (const ComplexType *CT = T->getAs<ComplexType>()) {
+    S += 'j';
+    getObjCEncodingForTypeImpl(CT->getElementType(), S, false, false, 0, false,
+                               false);
+    return;
+  }
+  
+  if (const PointerType *PT = T->getAs<PointerType>()) {
+    if (PT->isObjCSelType()) {
+      S += ':';
+      return;
+    }
+    QualType PointeeTy = PT->getPointeeType();
+    
+    bool isReadOnly = false;
+    // For historical/compatibility reasons, the read-only qualifier of the
+    // pointee gets emitted _before_ the '^'.  The read-only qualifier of
+    // the pointer itself gets ignored, _unless_ we are looking at a typedef!
+    // Also, do not emit the 'r' for anything but the outermost type!
+    if (isa<TypedefType>(T.getTypePtr())) {
+      if (OutermostType && T.isConstQualified()) {
+        isReadOnly = true;
+        S += 'r';
+      }
+    } else if (OutermostType) {
+      QualType P = PointeeTy;
+      while (P->getAs<PointerType>())
+        P = P->getAs<PointerType>()->getPointeeType();
+      if (P.isConstQualified()) {
+        isReadOnly = true;
+        S += 'r';
+      }
+    }
+    if (isReadOnly) {
+      // Another legacy compatibility encoding. Some ObjC qualifier and type
+      // combinations need to be rearranged.
+      // Rewrite "in const" from "nr" to "rn"
+      const char * s = S.c_str();
+      int len = S.length();
+      if (len >= 2 && s[len-2] == 'n' && s[len-1] == 'r') {
+        std::string replace = "rn";
+        S.replace(S.end()-2, S.end(), replace);
+      }
+    }
+
+    if (PointeeTy->isCharType()) {
+      // char pointer types should be encoded as '*' unless it is a
+      // type that has been typedef'd to 'BOOL'.
+      if (!isTypeTypedefedAsBOOL(PointeeTy)) {
+        S += '*';
+        return;
+      }
+    } else if (const RecordType *RTy = PointeeTy->getAs<RecordType>()) {
+      // GCC binary compat: Need to convert "struct objc_class *" to "#".
+      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_class")) {
+        S += '#';
+        return;
+      }
+      // GCC binary compat: Need to convert "struct objc_object *" to "@".
+      if (RTy->getDecl()->getIdentifier() == &Idents.get("objc_object")) {
+        S += '@';
+        return;
+      }
+      // fall through...
+    }
+    S += '^';
+    getLegacyIntegralTypeEncoding(PointeeTy);
+
+    getObjCEncodingForTypeImpl(PointeeTy, S, false, ExpandPointedToStructures,
+                               NULL);
+    return;
+  }
+
+  if (const ArrayType *AT =
+      // Ignore type qualifiers etc.
+        dyn_cast<ArrayType>(T->getCanonicalTypeInternal())) {
+    if (isa<IncompleteArrayType>(AT)) {
+      // Incomplete arrays are encoded as a pointer to the array element.
+      S += '^';
+
+      getObjCEncodingForTypeImpl(AT->getElementType(), S,
+                                 false, ExpandStructures, FD);
+    } else {
+      S += '[';
+
+      if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
+        S += llvm::utostr(CAT->getSize().getZExtValue());
+      else {
+        //Variable length arrays are encoded as a regular array with 0 elements.
+        assert(isa<VariableArrayType>(AT) && "Unknown array type!");
+        S += '0';
+      }
+
+      getObjCEncodingForTypeImpl(AT->getElementType(), S,
+                                 false, ExpandStructures, FD);
+      S += ']';
+    }
+    return;
+  }
+
+  if (T->getAs<FunctionType>()) {
+    S += '?';
+    return;
+  }
+
+  if (const RecordType *RTy = T->getAs<RecordType>()) {
+    RecordDecl *RDecl = RTy->getDecl();
+    S += RDecl->isUnion() ? '(' : '{';
+    // Anonymous structures print as '?'
+    if (const IdentifierInfo *II = RDecl->getIdentifier()) {
+      S += II->getName();
+    } else {
+      S += '?';
+    }
+    if (ExpandStructures) {
+      S += '=';
+      for (RecordDecl::field_iterator Field = RDecl->field_begin(),
+                                   FieldEnd = RDecl->field_end();
+           Field != FieldEnd; ++Field) {
+        if (FD) {
+          S += '"';
+          S += Field->getNameAsString();
+          S += '"';
+        }
+
+        // Special case bit-fields.
+        if (Field->isBitField()) {
+          getObjCEncodingForTypeImpl(Field->getType(), S, false, true,
+                                     (*Field));
+        } else {
+          QualType qt = Field->getType();
+          getLegacyIntegralTypeEncoding(qt);
+          getObjCEncodingForTypeImpl(qt, S, false, true,
+                                     FD);
+        }
+      }
+    }
+    S += RDecl->isUnion() ? ')' : '}';
+    return;
+  }
+
+  if (T->isEnumeralType()) {
+    if (FD && FD->isBitField())
+      EncodeBitField(this, S, FD);
+    else
+      S += 'i';
+    return;
+  }
+
+  if (T->isBlockPointerType()) {
+    S += "@?"; // Unlike a pointer-to-function, which is "^?".
+    return;
+  }
+
+  if (const ObjCInterfaceType *OIT = T->getAs<ObjCInterfaceType>()) {
+    // @encode(class_name)
+    ObjCInterfaceDecl *OI = OIT->getDecl();
+    S += '{';
+    const IdentifierInfo *II = OI->getIdentifier();
+    S += II->getName();
+    S += '=';
+    llvm::SmallVector<FieldDecl*, 32> RecFields;
+    CollectObjCIvars(OI, RecFields);
+    for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
+      if (RecFields[i]->isBitField())
+        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
+                                   RecFields[i]);
+      else
+        getObjCEncodingForTypeImpl(RecFields[i]->getType(), S, false, true,
+                                   FD);
+    }
+    S += '}';
+    return;
+  }
+
+  if (const ObjCObjectPointerType *OPT = T->getAs<ObjCObjectPointerType>()) {
+    if (OPT->isObjCIdType()) {
+      S += '@';
+      return;
+    }
+
+    if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType()) {
+      // FIXME: Consider if we need to output qualifiers for 'Class<p>'.
+      // Since this is a binary compatibility issue, need to consult with runtime
+      // folks. Fortunately, this is a *very* obsure construct.
+      S += '#';
+      return;
+    }
+
+    if (OPT->isObjCQualifiedIdType()) {
+      getObjCEncodingForTypeImpl(getObjCIdType(), S,
+                                 ExpandPointedToStructures,
+                                 ExpandStructures, FD);
+      if (FD || EncodingProperty) {
+        // Note that we do extended encoding of protocol qualifer list
+        // Only when doing ivar or property encoding.
+        S += '"';
+        for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
+             E = OPT->qual_end(); I != E; ++I) {
+          S += '<';
+          S += (*I)->getNameAsString();
+          S += '>';
+        }
+        S += '"';
+      }
+      return;
+    }
+
+    QualType PointeeTy = OPT->getPointeeType();
+    if (!EncodingProperty &&
+        isa<TypedefType>(PointeeTy.getTypePtr())) {
+      // Another historical/compatibility reason.
+      // We encode the underlying type which comes out as
+      // {...};
+      S += '^';
+      getObjCEncodingForTypeImpl(PointeeTy, S,
+                                 false, ExpandPointedToStructures,
+                                 NULL);
+      return;
+    }
+
+    S += '@';
+    if (OPT->getInterfaceDecl() && (FD || EncodingProperty)) {
+      S += '"';
+      S += OPT->getInterfaceDecl()->getIdentifier()->getName();
+      for (ObjCObjectPointerType::qual_iterator I = OPT->qual_begin(),
+           E = OPT->qual_end(); I != E; ++I) {
+        S += '<';
+        S += (*I)->getNameAsString();
+        S += '>';
+      }
+      S += '"';
+    }
+    return;
+  }
+
+  assert(0 && "@encode for type not implemented!");
+}
+
+void ASTContext::getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
+                                                 std::string& S) const {
+  if (QT & Decl::OBJC_TQ_In)
+    S += 'n';
+  if (QT & Decl::OBJC_TQ_Inout)
+    S += 'N';
+  if (QT & Decl::OBJC_TQ_Out)
+    S += 'o';
+  if (QT & Decl::OBJC_TQ_Bycopy)
+    S += 'O';
+  if (QT & Decl::OBJC_TQ_Byref)
+    S += 'R';
+  if (QT & Decl::OBJC_TQ_Oneway)
+    S += 'V';
+}
+
+void ASTContext::setBuiltinVaListType(QualType T) {
+  assert(BuiltinVaListType.isNull() && "__builtin_va_list type already set!");
+
+  BuiltinVaListType = T;
+}
+
+void ASTContext::setObjCIdType(QualType T) {
+  ObjCIdTypedefType = T;
+}
+
+void ASTContext::setObjCSelType(QualType T) {
+  ObjCSelTypedefType = T;
+}
+
+void ASTContext::setObjCProtoType(QualType QT) {
+  ObjCProtoType = QT;
+}
+
+void ASTContext::setObjCClassType(QualType T) {
+  ObjCClassTypedefType = T;
+}
+
+void ASTContext::setObjCConstantStringInterface(ObjCInterfaceDecl *Decl) {
+  assert(ObjCConstantStringType.isNull() &&
+         "'NSConstantString' type already set!");
+
+  ObjCConstantStringType = getObjCInterfaceType(Decl);
+}
+
+/// \brief Retrieve the template name that corresponds to a non-empty
+/// lookup.
+TemplateName ASTContext::getOverloadedTemplateName(UnresolvedSetIterator Begin,
+                                                   UnresolvedSetIterator End) {
+  unsigned size = End - Begin;
+  assert(size > 1 && "set is not overloaded!");
+
+  void *memory = Allocate(sizeof(OverloadedTemplateStorage) +
+                          size * sizeof(FunctionTemplateDecl*));
+  OverloadedTemplateStorage *OT = new(memory) OverloadedTemplateStorage(size);
+
+  NamedDecl **Storage = OT->getStorage();
+  for (UnresolvedSetIterator I = Begin; I != End; ++I) {
+    NamedDecl *D = *I;
+    assert(isa<FunctionTemplateDecl>(D) ||
+           (isa<UsingShadowDecl>(D) &&
+            isa<FunctionTemplateDecl>(D->getUnderlyingDecl())));
+    *Storage++ = D;
+  }
+
+  return TemplateName(OT);
+}
+
+/// \brief Retrieve the template name that represents a qualified
+/// template name such as \c std::vector.
+TemplateName ASTContext::getQualifiedTemplateName(NestedNameSpecifier *NNS,
+                                                  bool TemplateKeyword,
+                                                  TemplateDecl *Template) {
+  // FIXME: Canonicalization?
+  llvm::FoldingSetNodeID ID;
+  QualifiedTemplateName::Profile(ID, NNS, TemplateKeyword, Template);
+
+  void *InsertPos = 0;
+  QualifiedTemplateName *QTN =
+    QualifiedTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+  if (!QTN) {
+    QTN = new (*this,4) QualifiedTemplateName(NNS, TemplateKeyword, Template);
+    QualifiedTemplateNames.InsertNode(QTN, InsertPos);
+  }
+
+  return TemplateName(QTN);
+}
+
+/// \brief Retrieve the template name that represents a dependent
+/// template name such as \c MetaFun::template apply.
+TemplateName ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
+                                                  const IdentifierInfo *Name) {
+  assert((!NNS || NNS->isDependent()) &&
+         "Nested name specifier must be dependent");
+
+  llvm::FoldingSetNodeID ID;
+  DependentTemplateName::Profile(ID, NNS, Name);
+
+  void *InsertPos = 0;
+  DependentTemplateName *QTN =
+    DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+
+  if (QTN)
+    return TemplateName(QTN);
+
+  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+  if (CanonNNS == NNS) {
+    QTN = new (*this,4) DependentTemplateName(NNS, Name);
+  } else {
+    TemplateName Canon = getDependentTemplateName(CanonNNS, Name);
+    QTN = new (*this,4) DependentTemplateName(NNS, Name, Canon);
+    DependentTemplateName *CheckQTN =
+      DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+    assert(!CheckQTN && "Dependent type name canonicalization broken");
+    (void)CheckQTN;
+  }
+
+  DependentTemplateNames.InsertNode(QTN, InsertPos);
+  return TemplateName(QTN);
+}
+
+/// \brief Retrieve the template name that represents a dependent
+/// template name such as \c MetaFun::template operator+.
+TemplateName 
+ASTContext::getDependentTemplateName(NestedNameSpecifier *NNS,
+                                     OverloadedOperatorKind Operator) {
+  assert((!NNS || NNS->isDependent()) &&
+         "Nested name specifier must be dependent");
+  
+  llvm::FoldingSetNodeID ID;
+  DependentTemplateName::Profile(ID, NNS, Operator);
+  
+  void *InsertPos = 0;
+  DependentTemplateName *QTN
+    = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+  
+  if (QTN)
+    return TemplateName(QTN);
+  
+  NestedNameSpecifier *CanonNNS = getCanonicalNestedNameSpecifier(NNS);
+  if (CanonNNS == NNS) {
+    QTN = new (*this,4) DependentTemplateName(NNS, Operator);
+  } else {
+    TemplateName Canon = getDependentTemplateName(CanonNNS, Operator);
+    QTN = new (*this,4) DependentTemplateName(NNS, Operator, Canon);
+    
+    DependentTemplateName *CheckQTN
+      = DependentTemplateNames.FindNodeOrInsertPos(ID, InsertPos);
+    assert(!CheckQTN && "Dependent template name canonicalization broken");
+    (void)CheckQTN;
+  }
+  
+  DependentTemplateNames.InsertNode(QTN, InsertPos);
+  return TemplateName(QTN);
+}
+
+/// getFromTargetType - Given one of the integer types provided by
+/// TargetInfo, produce the corresponding type. The unsigned @p Type
+/// is actually a value of type @c TargetInfo::IntType.
+CanQualType ASTContext::getFromTargetType(unsigned Type) const {
+  switch (Type) {
+  case TargetInfo::NoInt: return CanQualType();
+  case TargetInfo::SignedShort: return ShortTy;
+  case TargetInfo::UnsignedShort: return UnsignedShortTy;
+  case TargetInfo::SignedInt: return IntTy;
+  case TargetInfo::UnsignedInt: return UnsignedIntTy;
+  case TargetInfo::SignedLong: return LongTy;
+  case TargetInfo::UnsignedLong: return UnsignedLongTy;
+  case TargetInfo::SignedLongLong: return LongLongTy;
+  case TargetInfo::UnsignedLongLong: return UnsignedLongLongTy;
+  }
+
+  assert(false && "Unhandled TargetInfo::IntType value");
+  return CanQualType();
+}
+
+//===----------------------------------------------------------------------===//
+//                        Type Predicates.
+//===----------------------------------------------------------------------===//
+
+/// isObjCNSObjectType - Return true if this is an NSObject object using
+/// NSObject attribute on a c-style pointer type.
+/// FIXME - Make it work directly on types.
+/// FIXME: Move to Type.
+///
+bool ASTContext::isObjCNSObjectType(QualType Ty) const {
+  if (TypedefType *TDT = dyn_cast<TypedefType>(Ty)) {
+    if (TypedefDecl *TD = TDT->getDecl())
+      if (TD->getAttr<ObjCNSObjectAttr>())
+        return true;
+  }
+  return false;
+}
+
+/// getObjCGCAttr - Returns one of GCNone, Weak or Strong objc's
+/// garbage collection attribute.
+///
+Qualifiers::GC ASTContext::getObjCGCAttrKind(const QualType &Ty) const {
+  Qualifiers::GC GCAttrs = Qualifiers::GCNone;
+  if (getLangOptions().ObjC1 &&
+      getLangOptions().getGCMode() != LangOptions::NonGC) {
+    GCAttrs = Ty.getObjCGCAttr();
+    // Default behavious under objective-c's gc is for objective-c pointers
+    // (or pointers to them) be treated as though they were declared
+    // as __strong.
+    if (GCAttrs == Qualifiers::GCNone) {
+      if (Ty->isObjCObjectPointerType() || Ty->isBlockPointerType())
+        GCAttrs = Qualifiers::Strong;
+      else if (Ty->isPointerType())
+        return getObjCGCAttrKind(Ty->getAs<PointerType>()->getPointeeType());
+    }
+    // Non-pointers have none gc'able attribute regardless of the attribute
+    // set on them.
+    else if (!Ty->isAnyPointerType() && !Ty->isBlockPointerType())
+      return Qualifiers::GCNone;
+  }
+  return GCAttrs;
+}
+
+//===----------------------------------------------------------------------===//
+//                        Type Compatibility Testing
+//===----------------------------------------------------------------------===//
+
+/// areCompatVectorTypes - Return true if the two specified vector types are
+/// compatible.
+static bool areCompatVectorTypes(const VectorType *LHS,
+                                 const VectorType *RHS) {
+  assert(LHS->isCanonicalUnqualified() && RHS->isCanonicalUnqualified());
+  return LHS->getElementType() == RHS->getElementType() &&
+         LHS->getNumElements() == RHS->getNumElements();
+}
+
+//===----------------------------------------------------------------------===//
+// ObjCQualifiedIdTypesAreCompatible - Compatibility testing for qualified id's.
+//===----------------------------------------------------------------------===//
+
+/// ProtocolCompatibleWithProtocol - return 'true' if 'lProto' is in the
+/// inheritance hierarchy of 'rProto'.
+bool ASTContext::ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
+                                                ObjCProtocolDecl *rProto) {
+  if (lProto == rProto)
+    return true;
+  for (ObjCProtocolDecl::protocol_iterator PI = rProto->protocol_begin(),
+       E = rProto->protocol_end(); PI != E; ++PI)
+    if (ProtocolCompatibleWithProtocol(lProto, *PI))
+      return true;
+  return false;
+}
+
+/// QualifiedIdConformsQualifiedId - compare id<p,...> with id<p1,...>
+/// return true if lhs's protocols conform to rhs's protocol; false
+/// otherwise.
+bool ASTContext::QualifiedIdConformsQualifiedId(QualType lhs, QualType rhs) {
+  if (lhs->isObjCQualifiedIdType() && rhs->isObjCQualifiedIdType())
+    return ObjCQualifiedIdTypesAreCompatible(lhs, rhs, false);
+  return false;
+}
+
+/// ObjCQualifiedIdTypesAreCompatible - We know that one of lhs/rhs is an
+/// ObjCQualifiedIDType.
+bool ASTContext::ObjCQualifiedIdTypesAreCompatible(QualType lhs, QualType rhs,
+                                                   bool compare) {
+  // Allow id<P..> and an 'id' or void* type in all cases.
+  if (lhs->isVoidPointerType() ||
+      lhs->isObjCIdType() || lhs->isObjCClassType())
+    return true;
+  else if (rhs->isVoidPointerType() ||
+           rhs->isObjCIdType() || rhs->isObjCClassType())
+    return true;
+
+  if (const ObjCObjectPointerType *lhsQID = lhs->getAsObjCQualifiedIdType()) {
+    const ObjCObjectPointerType *rhsOPT = rhs->getAs<ObjCObjectPointerType>();
+
+    if (!rhsOPT) return false;
+
+    if (rhsOPT->qual_empty()) {
+      // If the RHS is a unqualified interface pointer "NSString*",
+      // make sure we check the class hierarchy.
+      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
+        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
+             E = lhsQID->qual_end(); I != E; ++I) {
+          // when comparing an id<P> on lhs with a static type on rhs,
+          // see if static class implements all of id's protocols, directly or
+          // through its super class and categories.
+          if (!rhsID->ClassImplementsProtocol(*I, true))
+            return false;
+        }
+      }
+      // If there are no qualifiers and no interface, we have an 'id'.
+      return true;
+    }
+    // Both the right and left sides have qualifiers.
+    for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
+         E = lhsQID->qual_end(); I != E; ++I) {
+      ObjCProtocolDecl *lhsProto = *I;
+      bool match = false;
+
+      // when comparing an id<P> on lhs with a static type on rhs,
+      // see if static class implements all of id's protocols, directly or
+      // through its super class and categories.
+      for (ObjCObjectPointerType::qual_iterator J = rhsOPT->qual_begin(),
+           E = rhsOPT->qual_end(); J != E; ++J) {
+        ObjCProtocolDecl *rhsProto = *J;
+        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
+            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
+          match = true;
+          break;
+        }
+      }
+      // If the RHS is a qualified interface pointer "NSString<P>*",
+      // make sure we check the class hierarchy.
+      if (ObjCInterfaceDecl *rhsID = rhsOPT->getInterfaceDecl()) {
+        for (ObjCObjectPointerType::qual_iterator I = lhsQID->qual_begin(),
+             E = lhsQID->qual_end(); I != E; ++I) {
+          // when comparing an id<P> on lhs with a static type on rhs,
+          // see if static class implements all of id's protocols, directly or
+          // through its super class and categories.
+          if (rhsID->ClassImplementsProtocol(*I, true)) {
+            match = true;
+            break;
+          }
+        }
+      }
+      if (!match)
+        return false;
+    }
+
+    return true;
+  }
+
+  const ObjCObjectPointerType *rhsQID = rhs->getAsObjCQualifiedIdType();
+  assert(rhsQID && "One of the LHS/RHS should be id<x>");
+
+  if (const ObjCObjectPointerType *lhsOPT =
+        lhs->getAsObjCInterfacePointerType()) {
+    if (lhsOPT->qual_empty()) {
+      bool match = false;
+      if (ObjCInterfaceDecl *lhsID = lhsOPT->getInterfaceDecl()) {
+        for (ObjCObjectPointerType::qual_iterator I = rhsQID->qual_begin(),
+             E = rhsQID->qual_end(); I != E; ++I) {
+          // when comparing an id<P> on lhs with a static type on rhs,
+          // see if static class implements all of id's protocols, directly or
+          // through its super class and categories.
+          if (lhsID->ClassImplementsProtocol(*I, true)) {
+            match = true;
+            break;
+          }
+        }
+        if (!match)
+          return false;
+      }
+      return true;
+    }
+    // Both the right and left sides have qualifiers.
+    for (ObjCObjectPointerType::qual_iterator I = lhsOPT->qual_begin(),
+         E = lhsOPT->qual_end(); I != E; ++I) {
+      ObjCProtocolDecl *lhsProto = *I;
+      bool match = false;
+
+      // when comparing an id<P> on lhs with a static type on rhs,
+      // see if static class implements all of id's protocols, directly or
+      // through its super class and categories.
+      for (ObjCObjectPointerType::qual_iterator J = rhsQID->qual_begin(),
+           E = rhsQID->qual_end(); J != E; ++J) {
+        ObjCProtocolDecl *rhsProto = *J;
+        if (ProtocolCompatibleWithProtocol(lhsProto, rhsProto) ||
+            (compare && ProtocolCompatibleWithProtocol(rhsProto, lhsProto))) {
+          match = true;
+          break;
+        }
+      }
+      if (!match)
+        return false;
+    }
+    return true;
+  }
+  return false;
+}
+
+/// canAssignObjCInterfaces - Return true if the two interface types are
+/// compatible for assignment from RHS to LHS.  This handles validation of any
+/// protocol qualifiers on the LHS or RHS.
+///
+bool ASTContext::canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
+                                         const ObjCObjectPointerType *RHSOPT) {
+  // If either type represents the built-in 'id' or 'Class' types, return true.
+  if (LHSOPT->isObjCBuiltinType() || RHSOPT->isObjCBuiltinType())
+    return true;
+
+  if (LHSOPT->isObjCQualifiedIdType() || RHSOPT->isObjCQualifiedIdType())
+    return ObjCQualifiedIdTypesAreCompatible(QualType(LHSOPT,0),
+                                             QualType(RHSOPT,0),
+                                             false);
+
+  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
+  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
+  if (LHS && RHS) // We have 2 user-defined types.
+    return canAssignObjCInterfaces(LHS, RHS);
+
+  return false;
+}
+
+/// getIntersectionOfProtocols - This routine finds the intersection of set
+/// of protocols inherited from two distinct objective-c pointer objects.
+/// It is used to build composite qualifier list of the composite type of
+/// the conditional expression involving two objective-c pointer objects.
+static 
+void getIntersectionOfProtocols(ASTContext &Context,
+                                const ObjCObjectPointerType *LHSOPT,
+                                const ObjCObjectPointerType *RHSOPT,
+      llvm::SmallVectorImpl<ObjCProtocolDecl *> &IntersectionOfProtocols) {
+  
+  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
+  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
+  
+  llvm::SmallPtrSet<ObjCProtocolDecl *, 8> InheritedProtocolSet;
+  unsigned LHSNumProtocols = LHS->getNumProtocols();
+  if (LHSNumProtocols > 0)
+    InheritedProtocolSet.insert(LHS->qual_begin(), LHS->qual_end());
+  else {
+    llvm::SmallVector<ObjCProtocolDecl *, 8> LHSInheritedProtocols;
+     Context.CollectInheritedProtocols(LHS->getDecl(), LHSInheritedProtocols);
+    InheritedProtocolSet.insert(LHSInheritedProtocols.begin(), 
+                                LHSInheritedProtocols.end());
+  }
+  
+  unsigned RHSNumProtocols = RHS->getNumProtocols();
+  if (RHSNumProtocols > 0) {
+    ObjCProtocolDecl **RHSProtocols = (ObjCProtocolDecl **)RHS->qual_begin();
+    for (unsigned i = 0; i < RHSNumProtocols; ++i)
+      if (InheritedProtocolSet.count(RHSProtocols[i]))
+        IntersectionOfProtocols.push_back(RHSProtocols[i]);
+  }
+  else {
+    llvm::SmallVector<ObjCProtocolDecl *, 8> RHSInheritedProtocols;
+    Context.CollectInheritedProtocols(RHS->getDecl(), RHSInheritedProtocols);
+    // FIXME. This may cause duplication of protocols in the list, but should
+    // be harmless.
+    for (unsigned i = 0, len = RHSInheritedProtocols.size(); i < len; ++i)
+      if (InheritedProtocolSet.count(RHSInheritedProtocols[i]))
+        IntersectionOfProtocols.push_back(RHSInheritedProtocols[i]);
+  }
+}
+
+/// areCommonBaseCompatible - Returns common base class of the two classes if
+/// one found. Note that this is O'2 algorithm. But it will be called as the
+/// last type comparison in a ?-exp of ObjC pointer types before a 
+/// warning is issued. So, its invokation is extremely rare.
+QualType ASTContext::areCommonBaseCompatible(
+                                          const ObjCObjectPointerType *LHSOPT,
+                                          const ObjCObjectPointerType *RHSOPT) {
+  const ObjCInterfaceType* LHS = LHSOPT->getInterfaceType();
+  const ObjCInterfaceType* RHS = RHSOPT->getInterfaceType();
+  if (!LHS || !RHS)
+    return QualType();
+  
+  while (const ObjCInterfaceDecl *LHSIDecl = LHS->getDecl()->getSuperClass()) {
+    QualType LHSTy = getObjCInterfaceType(LHSIDecl);
+    LHS = LHSTy->getAs<ObjCInterfaceType>();
+    if (canAssignObjCInterfaces(LHS, RHS)) {
+      llvm::SmallVector<ObjCProtocolDecl *, 8> IntersectionOfProtocols;
+      getIntersectionOfProtocols(*this, 
+                                 LHSOPT, RHSOPT, IntersectionOfProtocols);
+      if (IntersectionOfProtocols.empty())
+        LHSTy = getObjCObjectPointerType(LHSTy);
+      else
+        LHSTy = getObjCObjectPointerType(LHSTy, &IntersectionOfProtocols[0],
+                                                IntersectionOfProtocols.size());
+      return LHSTy;
+    }
+  }
+    
+  return QualType();
+}
+
+bool ASTContext::canAssignObjCInterfaces(const ObjCInterfaceType *LHS,
+                                         const ObjCInterfaceType *RHS) {
+  // Verify that the base decls are compatible: the RHS must be a subclass of
+  // the LHS.
+  if (!LHS->getDecl()->isSuperClassOf(RHS->getDecl()))
+    return false;
+
+  // RHS must have a superset of the protocols in the LHS.  If the LHS is not
+  // protocol qualified at all, then we are good.
+  if (LHS->getNumProtocols() == 0)
+    return true;
+
+  // Okay, we know the LHS has protocol qualifiers.  If the RHS doesn't, then it
+  // isn't a superset.
+  if (RHS->getNumProtocols() == 0)
+    return true;  // FIXME: should return false!
+
+  for (ObjCInterfaceType::qual_iterator LHSPI = LHS->qual_begin(),
+                                        LHSPE = LHS->qual_end();
+       LHSPI != LHSPE; LHSPI++) {
+    bool RHSImplementsProtocol = false;
+
+    // If the RHS doesn't implement the protocol on the left, the types
+    // are incompatible.
+    for (ObjCInterfaceType::qual_iterator RHSPI = RHS->qual_begin(),
+                                          RHSPE = RHS->qual_end();
+         RHSPI != RHSPE; RHSPI++) {
+      if ((*RHSPI)->lookupProtocolNamed((*LHSPI)->getIdentifier())) {
+        RHSImplementsProtocol = true;
+        break;
+      }
+    }
+    // FIXME: For better diagnostics, consider passing back the protocol name.
+    if (!RHSImplementsProtocol)
+      return false;
+  }
+  // The RHS implements all protocols listed on the LHS.
+  return true;
+}
+
+bool ASTContext::areComparableObjCPointerTypes(QualType LHS, QualType RHS) {
+  // get the "pointed to" types
+  const ObjCObjectPointerType *LHSOPT = LHS->getAs<ObjCObjectPointerType>();
+  const ObjCObjectPointerType *RHSOPT = RHS->getAs<ObjCObjectPointerType>();
+
+  if (!LHSOPT || !RHSOPT)
+    return false;
+
+  return canAssignObjCInterfaces(LHSOPT, RHSOPT) ||
+         canAssignObjCInterfaces(RHSOPT, LHSOPT);
+}
+
+/// typesAreCompatible - C99 6.7.3p9: For two qualified types to be compatible,
+/// both shall have the identically qualified version of a compatible type.
+/// C99 6.2.7p1: Two types have compatible types if their types are the
+/// same. See 6.7.[2,3,5] for additional rules.
+bool ASTContext::typesAreCompatible(QualType LHS, QualType RHS) {
+  if (getLangOptions().CPlusPlus)
+    return hasSameType(LHS, RHS);
+  
+  return !mergeTypes(LHS, RHS).isNull();
+}
+
+QualType ASTContext::mergeFunctionTypes(QualType lhs, QualType rhs) {
+  const FunctionType *lbase = lhs->getAs<FunctionType>();
+  const FunctionType *rbase = rhs->getAs<FunctionType>();
+  const FunctionProtoType *lproto = dyn_cast<FunctionProtoType>(lbase);
+  const FunctionProtoType *rproto = dyn_cast<FunctionProtoType>(rbase);
+  bool allLTypes = true;
+  bool allRTypes = true;
+
+  // Check return type
+  QualType retType = mergeTypes(lbase->getResultType(), rbase->getResultType());
+  if (retType.isNull()) return QualType();
+  if (getCanonicalType(retType) != getCanonicalType(lbase->getResultType()))
+    allLTypes = false;
+  if (getCanonicalType(retType) != getCanonicalType(rbase->getResultType()))
+    allRTypes = false;
+  // FIXME: double check this
+  bool NoReturn = lbase->getNoReturnAttr() || rbase->getNoReturnAttr();
+  if (NoReturn != lbase->getNoReturnAttr())
+    allLTypes = false;
+  if (NoReturn != rbase->getNoReturnAttr())
+    allRTypes = false;
+  CallingConv lcc = lbase->getCallConv();
+  CallingConv rcc = rbase->getCallConv();
+  // Compatible functions must have compatible calling conventions
+  if (!isSameCallConv(lcc, rcc))
+    return QualType();
+
+  if (lproto && rproto) { // two C99 style function prototypes
+    assert(!lproto->hasExceptionSpec() && !rproto->hasExceptionSpec() &&
+           "C++ shouldn't be here");
+    unsigned lproto_nargs = lproto->getNumArgs();
+    unsigned rproto_nargs = rproto->getNumArgs();
+
+    // Compatible functions must have the same number of arguments
+    if (lproto_nargs != rproto_nargs)
+      return QualType();
+
+    // Variadic and non-variadic functions aren't compatible
+    if (lproto->isVariadic() != rproto->isVariadic())
+      return QualType();
+
+    if (lproto->getTypeQuals() != rproto->getTypeQuals())
+      return QualType();
+
+    // Check argument compatibility
+    llvm::SmallVector<QualType, 10> types;
+    for (unsigned i = 0; i < lproto_nargs; i++) {
+      QualType largtype = lproto->getArgType(i).getUnqualifiedType();
+      QualType rargtype = rproto->getArgType(i).getUnqualifiedType();
+      QualType argtype = mergeTypes(largtype, rargtype);
+      if (argtype.isNull()) return QualType();
+      types.push_back(argtype);
+      if (getCanonicalType(argtype) != getCanonicalType(largtype))
+        allLTypes = false;
+      if (getCanonicalType(argtype) != getCanonicalType(rargtype))
+        allRTypes = false;
+    }
+    if (allLTypes) return lhs;
+    if (allRTypes) return rhs;
+    return getFunctionType(retType, types.begin(), types.size(),
+                           lproto->isVariadic(), lproto->getTypeQuals(),
+                           NoReturn, lcc);
+  }
+
+  if (lproto) allRTypes = false;
+  if (rproto) allLTypes = false;
+
+  const FunctionProtoType *proto = lproto ? lproto : rproto;
+  if (proto) {
+    assert(!proto->hasExceptionSpec() && "C++ shouldn't be here");
+    if (proto->isVariadic()) return QualType();
+    // Check that the types are compatible with the types that
+    // would result from default argument promotions (C99 6.7.5.3p15).
+    // The only types actually affected are promotable integer
+    // types and floats, which would be passed as a different
+    // type depending on whether the prototype is visible.
+    unsigned proto_nargs = proto->getNumArgs();
+    for (unsigned i = 0; i < proto_nargs; ++i) {
+      QualType argTy = proto->getArgType(i);
+      
+      // Look at the promotion type of enum types, since that is the type used
+      // to pass enum values.
+      if (const EnumType *Enum = argTy->getAs<EnumType>())
+        argTy = Enum->getDecl()->getPromotionType();
+      
+      if (argTy->isPromotableIntegerType() ||
+          getCanonicalType(argTy).getUnqualifiedType() == FloatTy)
+        return QualType();
+    }
+
+    if (allLTypes) return lhs;
+    if (allRTypes) return rhs;
+    return getFunctionType(retType, proto->arg_type_begin(),
+                           proto->getNumArgs(), proto->isVariadic(),
+                           proto->getTypeQuals(), NoReturn, lcc);
+  }
+
+  if (allLTypes) return lhs;
+  if (allRTypes) return rhs;
+  return getFunctionNoProtoType(retType, NoReturn, lcc);
+}
+
+QualType ASTContext::mergeTypes(QualType LHS, QualType RHS) {
+  // C++ [expr]: If an expression initially has the type "reference to T", the
+  // type is adjusted to "T" prior to any further analysis, the expression
+  // designates the object or function denoted by the reference, and the
+  // expression is an lvalue unless the reference is an rvalue reference and
+  // the expression is a function call (possibly inside parentheses).
+  assert(!LHS->getAs<ReferenceType>() && "LHS is a reference type?");
+  assert(!RHS->getAs<ReferenceType>() && "RHS is a reference type?");
+  
+  QualType LHSCan = getCanonicalType(LHS),
+           RHSCan = getCanonicalType(RHS);
+
+  // If two types are identical, they are compatible.
+  if (LHSCan == RHSCan)
+    return LHS;
+
+  // If the qualifiers are different, the types aren't compatible... mostly.
+  Qualifiers LQuals = LHSCan.getLocalQualifiers();
+  Qualifiers RQuals = RHSCan.getLocalQualifiers();
+  if (LQuals != RQuals) {
+    // If any of these qualifiers are different, we have a type
+    // mismatch.
+    if (LQuals.getCVRQualifiers() != RQuals.getCVRQualifiers() ||
+        LQuals.getAddressSpace() != RQuals.getAddressSpace())
+      return QualType();
+
+    // Exactly one GC qualifier difference is allowed: __strong is
+    // okay if the other type has no GC qualifier but is an Objective
+    // C object pointer (i.e. implicitly strong by default).  We fix
+    // this by pretending that the unqualified type was actually
+    // qualified __strong.
+    Qualifiers::GC GC_L = LQuals.getObjCGCAttr();
+    Qualifiers::GC GC_R = RQuals.getObjCGCAttr();
+    assert((GC_L != GC_R) && "unequal qualifier sets had only equal elements");
+
+    if (GC_L == Qualifiers::Weak || GC_R == Qualifiers::Weak)
+      return QualType();
+
+    if (GC_L == Qualifiers::Strong && RHSCan->isObjCObjectPointerType()) {
+      return mergeTypes(LHS, getObjCGCQualType(RHS, Qualifiers::Strong));
+    }
+    if (GC_R == Qualifiers::Strong && LHSCan->isObjCObjectPointerType()) {
+      return mergeTypes(getObjCGCQualType(LHS, Qualifiers::Strong), RHS);
+    }
+    return QualType();
+  }
+
+  // Okay, qualifiers are equal.
+
+  Type::TypeClass LHSClass = LHSCan->getTypeClass();
+  Type::TypeClass RHSClass = RHSCan->getTypeClass();
+
+  // We want to consider the two function types to be the same for these
+  // comparisons, just force one to the other.
+  if (LHSClass == Type::FunctionProto) LHSClass = Type::FunctionNoProto;
+  if (RHSClass == Type::FunctionProto) RHSClass = Type::FunctionNoProto;
+
+  // Same as above for arrays
+  if (LHSClass == Type::VariableArray || LHSClass == Type::IncompleteArray)
+    LHSClass = Type::ConstantArray;
+  if (RHSClass == Type::VariableArray || RHSClass == Type::IncompleteArray)
+    RHSClass = Type::ConstantArray;
+
+  // Canonicalize ExtVector -> Vector.
+  if (LHSClass == Type::ExtVector) LHSClass = Type::Vector;
+  if (RHSClass == Type::ExtVector) RHSClass = Type::Vector;
+
+  // If the canonical type classes don't match.
+  if (LHSClass != RHSClass) {
+    // C99 6.7.2.2p4: Each enumerated type shall be compatible with char,
+    // a signed integer type, or an unsigned integer type.
+    // Compatibility is based on the underlying type, not the promotion
+    // type.
+    if (const EnumType* ETy = LHS->getAs<EnumType>()) {
+      if (ETy->getDecl()->getIntegerType() == RHSCan.getUnqualifiedType())
+        return RHS;
+    }
+    if (const EnumType* ETy = RHS->getAs<EnumType>()) {
+      if (ETy->getDecl()->getIntegerType() == LHSCan.getUnqualifiedType())
+        return LHS;
+    }
+
+    return QualType();
+  }
+
+  // The canonical type classes match.
+  switch (LHSClass) {
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
+#define DEPENDENT_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+    assert(false && "Non-canonical and dependent types shouldn't get here");
+    return QualType();
+
+  case Type::LValueReference:
+  case Type::RValueReference:
+  case Type::MemberPointer:
+    assert(false && "C++ should never be in mergeTypes");
+    return QualType();
+
+  case Type::IncompleteArray:
+  case Type::VariableArray:
+  case Type::FunctionProto:
+  case Type::ExtVector:
+    assert(false && "Types are eliminated above");
+    return QualType();
+
+  case Type::Pointer:
+  {
+    // Merge two pointer types, while trying to preserve typedef info
+    QualType LHSPointee = LHS->getAs<PointerType>()->getPointeeType();
+    QualType RHSPointee = RHS->getAs<PointerType>()->getPointeeType();
+    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
+    if (ResultType.isNull()) return QualType();
+    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
+      return LHS;
+    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
+      return RHS;
+    return getPointerType(ResultType);
+  }
+  case Type::BlockPointer:
+  {
+    // Merge two block pointer types, while trying to preserve typedef info
+    QualType LHSPointee = LHS->getAs<BlockPointerType>()->getPointeeType();
+    QualType RHSPointee = RHS->getAs<BlockPointerType>()->getPointeeType();
+    QualType ResultType = mergeTypes(LHSPointee, RHSPointee);
+    if (ResultType.isNull()) return QualType();
+    if (getCanonicalType(LHSPointee) == getCanonicalType(ResultType))
+      return LHS;
+    if (getCanonicalType(RHSPointee) == getCanonicalType(ResultType))
+      return RHS;
+    return getBlockPointerType(ResultType);
+  }
+  case Type::ConstantArray:
+  {
+    const ConstantArrayType* LCAT = getAsConstantArrayType(LHS);
+    const ConstantArrayType* RCAT = getAsConstantArrayType(RHS);
+    if (LCAT && RCAT && RCAT->getSize() != LCAT->getSize())
+      return QualType();
+
+    QualType LHSElem = getAsArrayType(LHS)->getElementType();
+    QualType RHSElem = getAsArrayType(RHS)->getElementType();
+    QualType ResultType = mergeTypes(LHSElem, RHSElem);
+    if (ResultType.isNull()) return QualType();
+    if (LCAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
+      return LHS;
+    if (RCAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
+      return RHS;
+    if (LCAT) return getConstantArrayType(ResultType, LCAT->getSize(),
+                                          ArrayType::ArraySizeModifier(), 0);
+    if (RCAT) return getConstantArrayType(ResultType, RCAT->getSize(),
+                                          ArrayType::ArraySizeModifier(), 0);
+    const VariableArrayType* LVAT = getAsVariableArrayType(LHS);
+    const VariableArrayType* RVAT = getAsVariableArrayType(RHS);
+    if (LVAT && getCanonicalType(LHSElem) == getCanonicalType(ResultType))
+      return LHS;
+    if (RVAT && getCanonicalType(RHSElem) == getCanonicalType(ResultType))
+      return RHS;
+    if (LVAT) {
+      // FIXME: This isn't correct! But tricky to implement because
+      // the array's size has to be the size of LHS, but the type
+      // has to be different.
+      return LHS;
+    }
+    if (RVAT) {
+      // FIXME: This isn't correct! But tricky to implement because
+      // the array's size has to be the size of RHS, but the type
+      // has to be different.
+      return RHS;
+    }
+    if (getCanonicalType(LHSElem) == getCanonicalType(ResultType)) return LHS;
+    if (getCanonicalType(RHSElem) == getCanonicalType(ResultType)) return RHS;
+    return getIncompleteArrayType(ResultType,
+                                  ArrayType::ArraySizeModifier(), 0);
+  }
+  case Type::FunctionNoProto:
+    return mergeFunctionTypes(LHS, RHS);
+  case Type::Record:
+  case Type::Enum:
+    return QualType();
+  case Type::Builtin:
+    // Only exactly equal builtin types are compatible, which is tested above.
+    return QualType();
+  case Type::Complex:
+    // Distinct complex types are incompatible.
+    return QualType();
+  case Type::Vector:
+    // FIXME: The merged type should be an ExtVector!
+    if (areCompatVectorTypes(LHS->getAs<VectorType>(), RHS->getAs<VectorType>()))
+      return LHS;
+    return QualType();
+  case Type::ObjCInterface: {
+    // Check if the interfaces are assignment compatible.
+    // FIXME: This should be type compatibility, e.g. whether
+    // "LHS x; RHS x;" at global scope is legal.
+    const ObjCInterfaceType* LHSIface = LHS->getAs<ObjCInterfaceType>();
+    const ObjCInterfaceType* RHSIface = RHS->getAs<ObjCInterfaceType>();
+    if (LHSIface && RHSIface &&
+        canAssignObjCInterfaces(LHSIface, RHSIface))
+      return LHS;
+
+    return QualType();
+  }
+  case Type::ObjCObjectPointer: {
+    if (canAssignObjCInterfaces(LHS->getAs<ObjCObjectPointerType>(),
+                                RHS->getAs<ObjCObjectPointerType>()))
+      return LHS;
+
+    return QualType();
+  }
+  case Type::TemplateSpecialization:
+    assert(false && "Dependent types have no size");
+    break;
+  }
+
+  return QualType();
+}
+
+//===----------------------------------------------------------------------===//
+//                         Integer Predicates
+//===----------------------------------------------------------------------===//
+
+unsigned ASTContext::getIntWidth(QualType T) {
+  if (T->isBooleanType())
+    return 1;
+  if (EnumType *ET = dyn_cast<EnumType>(T))
+    T = ET->getDecl()->getIntegerType();
+  // For builtin types, just use the standard type sizing method
+  return (unsigned)getTypeSize(T);
+}
+
+QualType ASTContext::getCorrespondingUnsignedType(QualType T) {
+  assert(T->isSignedIntegerType() && "Unexpected type");
+  
+  // Turn <4 x signed int> -> <4 x unsigned int>
+  if (const VectorType *VTy = T->getAs<VectorType>())
+    return getVectorType(getCorrespondingUnsignedType(VTy->getElementType()),
+             VTy->getNumElements(), VTy->isAltiVec(), VTy->isPixel());
+
+  // For enums, we return the unsigned version of the base type.
+  if (const EnumType *ETy = T->getAs<EnumType>())
+    T = ETy->getDecl()->getIntegerType();
+  
+  const BuiltinType *BTy = T->getAs<BuiltinType>();
+  assert(BTy && "Unexpected signed integer type");
+  switch (BTy->getKind()) {
+  case BuiltinType::Char_S:
+  case BuiltinType::SChar:
+    return UnsignedCharTy;
+  case BuiltinType::Short:
+    return UnsignedShortTy;
+  case BuiltinType::Int:
+    return UnsignedIntTy;
+  case BuiltinType::Long:
+    return UnsignedLongTy;
+  case BuiltinType::LongLong:
+    return UnsignedLongLongTy;
+  case BuiltinType::Int128:
+    return UnsignedInt128Ty;
+  default:
+    assert(0 && "Unexpected signed integer type");
+    return QualType();
+  }
+}
+
+ExternalASTSource::~ExternalASTSource() { }
+
+void ExternalASTSource::PrintStats() { }
+
+
+//===----------------------------------------------------------------------===//
+//                          Builtin Type Computation
+//===----------------------------------------------------------------------===//
+
+/// DecodeTypeFromStr - This decodes one type descriptor from Str, advancing the
+/// pointer over the consumed characters.  This returns the resultant type.
+static QualType DecodeTypeFromStr(const char *&Str, ASTContext &Context,
+                                  ASTContext::GetBuiltinTypeError &Error,
+                                  bool AllowTypeModifiers = true) {
+  // Modifiers.
+  int HowLong = 0;
+  bool Signed = false, Unsigned = false;
+
+  // Read the modifiers first.
+  bool Done = false;
+  while (!Done) {
+    switch (*Str++) {
+    default: Done = true; --Str; break;
+    case 'S':
+      assert(!Unsigned && "Can't use both 'S' and 'U' modifiers!");
+      assert(!Signed && "Can't use 'S' modifier multiple times!");
+      Signed = true;
+      break;
+    case 'U':
+      assert(!Signed && "Can't use both 'S' and 'U' modifiers!");
+      assert(!Unsigned && "Can't use 'S' modifier multiple times!");
+      Unsigned = true;
+      break;
+    case 'L':
+      assert(HowLong <= 2 && "Can't have LLLL modifier");
+      ++HowLong;
+      break;
+    }
+  }
+
+  QualType Type;
+
+  // Read the base type.
+  switch (*Str++) {
+  default: assert(0 && "Unknown builtin type letter!");
+  case 'v':
+    assert(HowLong == 0 && !Signed && !Unsigned &&
+           "Bad modifiers used with 'v'!");
+    Type = Context.VoidTy;
+    break;
+  case 'f':
+    assert(HowLong == 0 && !Signed && !Unsigned &&
+           "Bad modifiers used with 'f'!");
+    Type = Context.FloatTy;
+    break;
+  case 'd':
+    assert(HowLong < 2 && !Signed && !Unsigned &&
+           "Bad modifiers used with 'd'!");
+    if (HowLong)
+      Type = Context.LongDoubleTy;
+    else
+      Type = Context.DoubleTy;
+    break;
+  case 's':
+    assert(HowLong == 0 && "Bad modifiers used with 's'!");
+    if (Unsigned)
+      Type = Context.UnsignedShortTy;
+    else
+      Type = Context.ShortTy;
+    break;
+  case 'i':
+    if (HowLong == 3)
+      Type = Unsigned ? Context.UnsignedInt128Ty : Context.Int128Ty;
+    else if (HowLong == 2)
+      Type = Unsigned ? Context.UnsignedLongLongTy : Context.LongLongTy;
+    else if (HowLong == 1)
+      Type = Unsigned ? Context.UnsignedLongTy : Context.LongTy;
+    else
+      Type = Unsigned ? Context.UnsignedIntTy : Context.IntTy;
+    break;
+  case 'c':
+    assert(HowLong == 0 && "Bad modifiers used with 'c'!");
+    if (Signed)
+      Type = Context.SignedCharTy;
+    else if (Unsigned)
+      Type = Context.UnsignedCharTy;
+    else
+      Type = Context.CharTy;
+    break;
+  case 'b': // boolean
+    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'b'!");
+    Type = Context.BoolTy;
+    break;
+  case 'z':  // size_t.
+    assert(HowLong == 0 && !Signed && !Unsigned && "Bad modifiers for 'z'!");
+    Type = Context.getSizeType();
+    break;
+  case 'F':
+    Type = Context.getCFConstantStringType();
+    break;
+  case 'a':
+    Type = Context.getBuiltinVaListType();
+    assert(!Type.isNull() && "builtin va list type not initialized!");
+    break;
+  case 'A':
+    // This is a "reference" to a va_list; however, what exactly
+    // this means depends on how va_list is defined. There are two
+    // different kinds of va_list: ones passed by value, and ones
+    // passed by reference.  An example of a by-value va_list is
+    // x86, where va_list is a char*. An example of by-ref va_list
+    // is x86-64, where va_list is a __va_list_tag[1]. For x86,
+    // we want this argument to be a char*&; for x86-64, we want
+    // it to be a __va_list_tag*.
+    Type = Context.getBuiltinVaListType();
+    assert(!Type.isNull() && "builtin va list type not initialized!");
+    if (Type->isArrayType()) {
+      Type = Context.getArrayDecayedType(Type);
+    } else {
+      Type = Context.getLValueReferenceType(Type);
+    }
+    break;
+  case 'V': {
+    char *End;
+    unsigned NumElements = strtoul(Str, &End, 10);
+    assert(End != Str && "Missing vector size");
+
+    Str = End;
+
+    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
+    // FIXME: Don't know what to do about AltiVec.
+    Type = Context.getVectorType(ElementType, NumElements, false, false);
+    break;
+  }
+  case 'X': {
+    QualType ElementType = DecodeTypeFromStr(Str, Context, Error, false);
+    Type = Context.getComplexType(ElementType);
+    break;
+  }      
+  case 'P':
+    Type = Context.getFILEType();
+    if (Type.isNull()) {
+      Error = ASTContext::GE_Missing_stdio;
+      return QualType();
+    }
+    break;
+  case 'J':
+    if (Signed)
+      Type = Context.getsigjmp_bufType();
+    else
+      Type = Context.getjmp_bufType();
+
+    if (Type.isNull()) {
+      Error = ASTContext::GE_Missing_setjmp;
+      return QualType();
+    }
+    break;
+  }
+
+  if (!AllowTypeModifiers)
+    return Type;
+
+  Done = false;
+  while (!Done) {
+    switch (*Str++) {
+      default: Done = true; --Str; break;
+      case '*':
+        Type = Context.getPointerType(Type);
+        break;
+      case '&':
+        Type = Context.getLValueReferenceType(Type);
+        break;
+      // FIXME: There's no way to have a built-in with an rvalue ref arg.
+      case 'C':
+        Type = Type.withConst();
+        break;
+      case 'D':
+        Type = Context.getVolatileType(Type);
+        break;
+    }
+  }
+
+  return Type;
+}
+
+/// GetBuiltinType - Return the type for the specified builtin.
+QualType ASTContext::GetBuiltinType(unsigned id,
+                                    GetBuiltinTypeError &Error) {
+  const char *TypeStr = BuiltinInfo.GetTypeString(id);
+
+  llvm::SmallVector<QualType, 8> ArgTypes;
+
+  Error = GE_None;
+  QualType ResType = DecodeTypeFromStr(TypeStr, *this, Error);
+  if (Error != GE_None)
+    return QualType();
+  while (TypeStr[0] && TypeStr[0] != '.') {
+    QualType Ty = DecodeTypeFromStr(TypeStr, *this, Error);
+    if (Error != GE_None)
+      return QualType();
+
+    // Do array -> pointer decay.  The builtin should use the decayed type.
+    if (Ty->isArrayType())
+      Ty = getArrayDecayedType(Ty);
+
+    ArgTypes.push_back(Ty);
+  }
+
+  assert((TypeStr[0] != '.' || TypeStr[1] == 0) &&
+         "'.' should only occur at end of builtin type list!");
+
+  // handle untyped/variadic arguments "T c99Style();" or "T cppStyle(...);".
+  if (ArgTypes.size() == 0 && TypeStr[0] == '.')
+    return getFunctionNoProtoType(ResType);
+  return getFunctionType(ResType, ArgTypes.data(), ArgTypes.size(),
+                         TypeStr[0] == '.', 0);
+}
+
+QualType
+ASTContext::UsualArithmeticConversionsType(QualType lhs, QualType rhs) {
+  // Perform the usual unary conversions. We do this early so that
+  // integral promotions to "int" can allow us to exit early, in the
+  // lhs == rhs check. Also, for conversion purposes, we ignore any
+  // qualifiers.  For example, "const float" and "float" are
+  // equivalent.
+  if (lhs->isPromotableIntegerType())
+    lhs = getPromotedIntegerType(lhs);
+  else
+    lhs = lhs.getUnqualifiedType();
+  if (rhs->isPromotableIntegerType())
+    rhs = getPromotedIntegerType(rhs);
+  else
+    rhs = rhs.getUnqualifiedType();
+
+  // If both types are identical, no conversion is needed.
+  if (lhs == rhs)
+    return lhs;
+
+  // If either side is a non-arithmetic type (e.g. a pointer), we are done.
+  // The caller can deal with this (e.g. pointer + int).
+  if (!lhs->isArithmeticType() || !rhs->isArithmeticType())
+    return lhs;
+
+  // At this point, we have two different arithmetic types.
+
+  // Handle complex types first (C99 6.3.1.8p1).
+  if (lhs->isComplexType() || rhs->isComplexType()) {
+    // if we have an integer operand, the result is the complex type.
+    if (rhs->isIntegerType() || rhs->isComplexIntegerType()) {
+      // convert the rhs to the lhs complex type.
+      return lhs;
+    }
+    if (lhs->isIntegerType() || lhs->isComplexIntegerType()) {
+      // convert the lhs to the rhs complex type.
+      return rhs;
+    }
+    // This handles complex/complex, complex/float, or float/complex.
+    // When both operands are complex, the shorter operand is converted to the
+    // type of the longer, and that is the type of the result. This corresponds
+    // to what is done when combining two real floating-point operands.
+    // The fun begins when size promotion occur across type domains.
+    // From H&S 6.3.4: When one operand is complex and the other is a real
+    // floating-point type, the less precise type is converted, within it's
+    // real or complex domain, to the precision of the other type. For example,
+    // when combining a "long double" with a "double _Complex", the
+    // "double _Complex" is promoted to "long double _Complex".
+    int result = getFloatingTypeOrder(lhs, rhs);
+
+    if (result > 0) { // The left side is bigger, convert rhs.
+      rhs = getFloatingTypeOfSizeWithinDomain(lhs, rhs);
+    } else if (result < 0) { // The right side is bigger, convert lhs.
+      lhs = getFloatingTypeOfSizeWithinDomain(rhs, lhs);
+    }
+    // At this point, lhs and rhs have the same rank/size. Now, make sure the
+    // domains match. This is a requirement for our implementation, C99
+    // does not require this promotion.
+    if (lhs != rhs) { // Domains don't match, we have complex/float mix.
+      if (lhs->isRealFloatingType()) { // handle "double, _Complex double".
+        return rhs;
+      } else { // handle "_Complex double, double".
+        return lhs;
+      }
+    }
+    return lhs; // The domain/size match exactly.
+  }
+  // Now handle "real" floating types (i.e. float, double, long double).
+  if (lhs->isRealFloatingType() || rhs->isRealFloatingType()) {
+    // if we have an integer operand, the result is the real floating type.
+    if (rhs->isIntegerType()) {
+      // convert rhs to the lhs floating point type.
+      return lhs;
+    }
+    if (rhs->isComplexIntegerType()) {
+      // convert rhs to the complex floating point type.
+      return getComplexType(lhs);
+    }
+    if (lhs->isIntegerType()) {
+      // convert lhs to the rhs floating point type.
+      return rhs;
+    }
+    if (lhs->isComplexIntegerType()) {
+      // convert lhs to the complex floating point type.
+      return getComplexType(rhs);
+    }
+    // We have two real floating types, float/complex combos were handled above.
+    // Convert the smaller operand to the bigger result.
+    int result = getFloatingTypeOrder(lhs, rhs);
+    if (result > 0) // convert the rhs
+      return lhs;
+    assert(result < 0 && "illegal float comparison");
+    return rhs;   // convert the lhs
+  }
+  if (lhs->isComplexIntegerType() || rhs->isComplexIntegerType()) {
+    // Handle GCC complex int extension.
+    const ComplexType *lhsComplexInt = lhs->getAsComplexIntegerType();
+    const ComplexType *rhsComplexInt = rhs->getAsComplexIntegerType();
+
+    if (lhsComplexInt && rhsComplexInt) {
+      if (getIntegerTypeOrder(lhsComplexInt->getElementType(),
+                              rhsComplexInt->getElementType()) >= 0)
+        return lhs; // convert the rhs
+      return rhs;
+    } else if (lhsComplexInt && rhs->isIntegerType()) {
+      // convert the rhs to the lhs complex type.
+      return lhs;
+    } else if (rhsComplexInt && lhs->isIntegerType()) {
+      // convert the lhs to the rhs complex type.
+      return rhs;
+    }
+  }
+  // Finally, we have two differing integer types.
+  // The rules for this case are in C99 6.3.1.8
+  int compare = getIntegerTypeOrder(lhs, rhs);
+  bool lhsSigned = lhs->isSignedIntegerType(),
+       rhsSigned = rhs->isSignedIntegerType();
+  QualType destType;
+  if (lhsSigned == rhsSigned) {
+    // Same signedness; use the higher-ranked type
+    destType = compare >= 0 ? lhs : rhs;
+  } else if (compare != (lhsSigned ? 1 : -1)) {
+    // The unsigned type has greater than or equal rank to the
+    // signed type, so use the unsigned type
+    destType = lhsSigned ? rhs : lhs;
+  } else if (getIntWidth(lhs) != getIntWidth(rhs)) {
+    // The two types are different widths; if we are here, that
+    // means the signed type is larger than the unsigned type, so
+    // use the signed type.
+    destType = lhsSigned ? lhs : rhs;
+  } else {
+    // The signed type is higher-ranked than the unsigned type,
+    // but isn't actually any bigger (like unsigned int and long
+    // on most 32-bit systems).  Use the unsigned type corresponding
+    // to the signed type.
+    destType = getCorrespondingUnsignedType(lhsSigned ? lhs : rhs);
+  }
+  return destType;
+}