Check in LLVM r95781.
diff --git a/lib/AST/DeclCXX.cpp b/lib/AST/DeclCXX.cpp
new file mode 100644
index 0000000..a519f78
--- /dev/null
+++ b/lib/AST/DeclCXX.cpp
@@ -0,0 +1,1000 @@
+//===--- DeclCXX.cpp - C++ Declaration AST Node Implementation ------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the C++ related Decl classes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Basic/IdentifierTable.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Decl Allocation/Deallocation Method Implementations
+//===----------------------------------------------------------------------===//
+
+CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D)
+ : UserDeclaredConstructor(false), UserDeclaredCopyConstructor(false),
+ UserDeclaredCopyAssignment(false), UserDeclaredDestructor(false),
+ Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false),
+ Abstract(false), HasTrivialConstructor(true),
+ HasTrivialCopyConstructor(true), HasTrivialCopyAssignment(true),
+ HasTrivialDestructor(true), ComputedVisibleConversions(false),
+ Bases(0), NumBases(0), VBases(0), NumVBases(0),
+ Definition(D) {
+}
+
+CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, DeclContext *DC,
+ SourceLocation L, IdentifierInfo *Id,
+ CXXRecordDecl *PrevDecl,
+ SourceLocation TKL)
+ : RecordDecl(K, TK, DC, L, Id, PrevDecl, TKL),
+ DefinitionData(PrevDecl ? PrevDecl->DefinitionData : 0),
+ TemplateOrInstantiation() { }
+
+CXXRecordDecl *CXXRecordDecl::Create(ASTContext &C, TagKind TK, DeclContext *DC,
+ SourceLocation L, IdentifierInfo *Id,
+ SourceLocation TKL,
+ CXXRecordDecl* PrevDecl,
+ bool DelayTypeCreation) {
+ CXXRecordDecl* R = new (C) CXXRecordDecl(CXXRecord, TK, DC, L, Id,
+ PrevDecl, TKL);
+
+ // FIXME: DelayTypeCreation seems like such a hack
+ if (!DelayTypeCreation)
+ C.getTypeDeclType(R, PrevDecl);
+ return R;
+}
+
+CXXRecordDecl::~CXXRecordDecl() {
+}
+
+void CXXRecordDecl::Destroy(ASTContext &C) {
+ if (data().Definition == this) {
+ C.Deallocate(data().Bases);
+ C.Deallocate(data().VBases);
+ C.Deallocate(&data());
+ }
+ this->RecordDecl::Destroy(C);
+}
+
+void
+CXXRecordDecl::setBases(ASTContext &C,
+ CXXBaseSpecifier const * const *Bases,
+ unsigned NumBases) {
+ // C++ [dcl.init.aggr]p1:
+ // An aggregate is an array or a class (clause 9) with [...]
+ // no base classes [...].
+ data().Aggregate = false;
+
+ if (data().Bases)
+ C.Deallocate(data().Bases);
+
+ int vbaseCount = 0;
+ llvm::SmallVector<const CXXBaseSpecifier*, 8> UniqueVbases;
+ bool hasDirectVirtualBase = false;
+
+ data().Bases = new(C) CXXBaseSpecifier [NumBases];
+ data().NumBases = NumBases;
+ for (unsigned i = 0; i < NumBases; ++i) {
+ data().Bases[i] = *Bases[i];
+ // Keep track of inherited vbases for this base class.
+ const CXXBaseSpecifier *Base = Bases[i];
+ QualType BaseType = Base->getType();
+ // Skip template types.
+ // FIXME. This means that this list must be rebuilt during template
+ // instantiation.
+ if (BaseType->isDependentType())
+ continue;
+ CXXRecordDecl *BaseClassDecl
+ = cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
+ if (Base->isVirtual())
+ hasDirectVirtualBase = true;
+ for (CXXRecordDecl::base_class_iterator VBase =
+ BaseClassDecl->vbases_begin(),
+ E = BaseClassDecl->vbases_end(); VBase != E; ++VBase) {
+ // Add this vbase to the array of vbases for current class if it is
+ // not already in the list.
+ // FIXME. Note that we do a linear search as number of such classes are
+ // very few.
+ int i;
+ for (i = 0; i < vbaseCount; ++i)
+ if (UniqueVbases[i]->getType() == VBase->getType())
+ break;
+ if (i == vbaseCount) {
+ UniqueVbases.push_back(VBase);
+ ++vbaseCount;
+ }
+ }
+ }
+ if (hasDirectVirtualBase) {
+ // Iterate one more time through the direct bases and add the virtual
+ // base to the list of vritual bases for current class.
+ for (unsigned i = 0; i < NumBases; ++i) {
+ const CXXBaseSpecifier *VBase = Bases[i];
+ if (!VBase->isVirtual())
+ continue;
+ int j;
+ for (j = 0; j < vbaseCount; ++j)
+ if (UniqueVbases[j]->getType() == VBase->getType())
+ break;
+ if (j == vbaseCount) {
+ UniqueVbases.push_back(VBase);
+ ++vbaseCount;
+ }
+ }
+ }
+ if (vbaseCount > 0) {
+ // build AST for inhireted, direct or indirect, virtual bases.
+ data().VBases = new (C) CXXBaseSpecifier [vbaseCount];
+ data().NumVBases = vbaseCount;
+ for (int i = 0; i < vbaseCount; i++) {
+ QualType QT = UniqueVbases[i]->getType();
+ CXXRecordDecl *VBaseClassDecl
+ = cast<CXXRecordDecl>(QT->getAs<RecordType>()->getDecl());
+ data().VBases[i] =
+ CXXBaseSpecifier(VBaseClassDecl->getSourceRange(), true,
+ VBaseClassDecl->getTagKind() == RecordDecl::TK_class,
+ UniqueVbases[i]->getAccessSpecifier(), QT);
+ }
+ }
+}
+
+/// Callback function for CXXRecordDecl::forallBases that acknowledges
+/// that it saw a base class.
+static bool SawBase(const CXXRecordDecl *, void *) {
+ return true;
+}
+
+bool CXXRecordDecl::hasAnyDependentBases() const {
+ if (!isDependentContext())
+ return false;
+
+ return !forallBases(SawBase, 0);
+}
+
+bool CXXRecordDecl::hasConstCopyConstructor(ASTContext &Context) const {
+ return getCopyConstructor(Context, Qualifiers::Const) != 0;
+}
+
+CXXConstructorDecl *CXXRecordDecl::getCopyConstructor(ASTContext &Context,
+ unsigned TypeQuals) const{
+ QualType ClassType
+ = Context.getTypeDeclType(const_cast<CXXRecordDecl*>(this));
+ DeclarationName ConstructorName
+ = Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(ClassType));
+ unsigned FoundTQs;
+ DeclContext::lookup_const_iterator Con, ConEnd;
+ for (llvm::tie(Con, ConEnd) = this->lookup(ConstructorName);
+ Con != ConEnd; ++Con) {
+ // C++ [class.copy]p2:
+ // A non-template constructor for class X is a copy constructor if [...]
+ if (isa<FunctionTemplateDecl>(*Con))
+ continue;
+
+ if (cast<CXXConstructorDecl>(*Con)->isCopyConstructor(FoundTQs)) {
+ if (((TypeQuals & Qualifiers::Const) == (FoundTQs & Qualifiers::Const)) ||
+ (!(TypeQuals & Qualifiers::Const) && (FoundTQs & Qualifiers::Const)))
+ return cast<CXXConstructorDecl>(*Con);
+
+ }
+ }
+ return 0;
+}
+
+bool CXXRecordDecl::hasConstCopyAssignment(ASTContext &Context,
+ const CXXMethodDecl *& MD) const {
+ QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(
+ const_cast<CXXRecordDecl*>(this)));
+ DeclarationName OpName =Context.DeclarationNames.getCXXOperatorName(OO_Equal);
+
+ DeclContext::lookup_const_iterator Op, OpEnd;
+ for (llvm::tie(Op, OpEnd) = this->lookup(OpName);
+ Op != OpEnd; ++Op) {
+ // C++ [class.copy]p9:
+ // A user-declared copy assignment operator is a non-static non-template
+ // member function of class X with exactly one parameter of type X, X&,
+ // const X&, volatile X& or const volatile X&.
+ const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
+ if (!Method)
+ continue;
+
+ if (Method->isStatic())
+ continue;
+ if (Method->getPrimaryTemplate())
+ continue;
+ const FunctionProtoType *FnType =
+ Method->getType()->getAs<FunctionProtoType>();
+ assert(FnType && "Overloaded operator has no prototype.");
+ // Don't assert on this; an invalid decl might have been left in the AST.
+ if (FnType->getNumArgs() != 1 || FnType->isVariadic())
+ continue;
+ bool AcceptsConst = true;
+ QualType ArgType = FnType->getArgType(0);
+ if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()) {
+ ArgType = Ref->getPointeeType();
+ // Is it a non-const lvalue reference?
+ if (!ArgType.isConstQualified())
+ AcceptsConst = false;
+ }
+ if (!Context.hasSameUnqualifiedType(ArgType, ClassType))
+ continue;
+ MD = Method;
+ // We have a single argument of type cv X or cv X&, i.e. we've found the
+ // copy assignment operator. Return whether it accepts const arguments.
+ return AcceptsConst;
+ }
+ assert(isInvalidDecl() &&
+ "No copy assignment operator declared in valid code.");
+ return false;
+}
+
+void
+CXXRecordDecl::addedConstructor(ASTContext &Context,
+ CXXConstructorDecl *ConDecl) {
+ assert(!ConDecl->isImplicit() && "addedConstructor - not for implicit decl");
+ // Note that we have a user-declared constructor.
+ data().UserDeclaredConstructor = true;
+
+ // C++ [dcl.init.aggr]p1:
+ // An aggregate is an array or a class (clause 9) with no
+ // user-declared constructors (12.1) [...].
+ data().Aggregate = false;
+
+ // C++ [class]p4:
+ // A POD-struct is an aggregate class [...]
+ data().PlainOldData = false;
+
+ // C++ [class.ctor]p5:
+ // A constructor is trivial if it is an implicitly-declared default
+ // constructor.
+ // FIXME: C++0x: don't do this for "= default" default constructors.
+ data().HasTrivialConstructor = false;
+
+ // Note when we have a user-declared copy constructor, which will
+ // suppress the implicit declaration of a copy constructor.
+ if (ConDecl->isCopyConstructor()) {
+ data().UserDeclaredCopyConstructor = true;
+
+ // C++ [class.copy]p6:
+ // A copy constructor is trivial if it is implicitly declared.
+ // FIXME: C++0x: don't do this for "= default" copy constructors.
+ data().HasTrivialCopyConstructor = false;
+ }
+}
+
+void CXXRecordDecl::addedAssignmentOperator(ASTContext &Context,
+ CXXMethodDecl *OpDecl) {
+ // We're interested specifically in copy assignment operators.
+ const FunctionProtoType *FnType = OpDecl->getType()->getAs<FunctionProtoType>();
+ assert(FnType && "Overloaded operator has no proto function type.");
+ assert(FnType->getNumArgs() == 1 && !FnType->isVariadic());
+
+ // Copy assignment operators must be non-templates.
+ if (OpDecl->getPrimaryTemplate() || OpDecl->getDescribedFunctionTemplate())
+ return;
+
+ QualType ArgType = FnType->getArgType(0);
+ if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>())
+ ArgType = Ref->getPointeeType();
+
+ ArgType = ArgType.getUnqualifiedType();
+ QualType ClassType = Context.getCanonicalType(Context.getTypeDeclType(
+ const_cast<CXXRecordDecl*>(this)));
+
+ if (!Context.hasSameUnqualifiedType(ClassType, ArgType))
+ return;
+
+ // This is a copy assignment operator.
+ // Note on the decl that it is a copy assignment operator.
+ OpDecl->setCopyAssignment(true);
+
+ // Suppress the implicit declaration of a copy constructor.
+ data().UserDeclaredCopyAssignment = true;
+
+ // C++ [class.copy]p11:
+ // A copy assignment operator is trivial if it is implicitly declared.
+ // FIXME: C++0x: don't do this for "= default" copy operators.
+ data().HasTrivialCopyAssignment = false;
+
+ // C++ [class]p4:
+ // A POD-struct is an aggregate class that [...] has no user-defined copy
+ // assignment operator [...].
+ data().PlainOldData = false;
+}
+
+void
+CXXRecordDecl::collectConversionFunctions(
+ llvm::SmallPtrSet<CanQualType, 8>& ConversionsTypeSet) const
+{
+ const UnresolvedSetImpl *Cs = getConversionFunctions();
+ for (UnresolvedSetImpl::iterator I = Cs->begin(), E = Cs->end();
+ I != E; ++I) {
+ NamedDecl *TopConv = *I;
+ CanQualType TConvType;
+ if (FunctionTemplateDecl *TConversionTemplate =
+ dyn_cast<FunctionTemplateDecl>(TopConv))
+ TConvType =
+ getASTContext().getCanonicalType(
+ TConversionTemplate->getTemplatedDecl()->getResultType());
+ else
+ TConvType =
+ getASTContext().getCanonicalType(
+ cast<CXXConversionDecl>(TopConv)->getConversionType());
+ ConversionsTypeSet.insert(TConvType);
+ }
+}
+
+/// getNestedVisibleConversionFunctions - imports unique conversion
+/// functions from base classes into the visible conversion function
+/// list of the class 'RD'. This is a private helper method.
+/// TopConversionsTypeSet is the set of conversion functions of the class
+/// we are interested in. HiddenConversionTypes is set of conversion functions
+/// of the immediate derived class which hides the conversion functions found
+/// in current class.
+void
+CXXRecordDecl::getNestedVisibleConversionFunctions(CXXRecordDecl *RD,
+ const llvm::SmallPtrSet<CanQualType, 8> &TopConversionsTypeSet,
+ const llvm::SmallPtrSet<CanQualType, 8> &HiddenConversionTypes)
+{
+ bool inTopClass = (RD == this);
+ QualType ClassType = getASTContext().getTypeDeclType(this);
+ if (const RecordType *Record = ClassType->getAs<RecordType>()) {
+ const UnresolvedSetImpl *Cs
+ = cast<CXXRecordDecl>(Record->getDecl())->getConversionFunctions();
+
+ for (UnresolvedSetImpl::iterator I = Cs->begin(), E = Cs->end();
+ I != E; ++I) {
+ NamedDecl *Conv = *I;
+ // Only those conversions not exact match of conversions in current
+ // class are candidateconversion routines.
+ CanQualType ConvType;
+ if (FunctionTemplateDecl *ConversionTemplate =
+ dyn_cast<FunctionTemplateDecl>(Conv))
+ ConvType =
+ getASTContext().getCanonicalType(
+ ConversionTemplate->getTemplatedDecl()->getResultType());
+ else
+ ConvType =
+ getASTContext().getCanonicalType(
+ cast<CXXConversionDecl>(Conv)->getConversionType());
+ // We only add conversion functions found in the base class if they
+ // are not hidden by those found in HiddenConversionTypes which are
+ // the conversion functions in its derived class.
+ if (inTopClass ||
+ (!TopConversionsTypeSet.count(ConvType) &&
+ !HiddenConversionTypes.count(ConvType)) ) {
+ if (FunctionTemplateDecl *ConversionTemplate =
+ dyn_cast<FunctionTemplateDecl>(Conv))
+ RD->addVisibleConversionFunction(ConversionTemplate);
+ else
+ RD->addVisibleConversionFunction(cast<CXXConversionDecl>(Conv));
+ }
+ }
+ }
+
+ if (getNumBases() == 0 && getNumVBases() == 0)
+ return;
+
+ llvm::SmallPtrSet<CanQualType, 8> ConversionFunctions;
+ if (!inTopClass)
+ collectConversionFunctions(ConversionFunctions);
+
+ for (CXXRecordDecl::base_class_iterator VBase = vbases_begin(),
+ E = vbases_end(); VBase != E; ++VBase) {
+ if (const RecordType *RT = VBase->getType()->getAs<RecordType>()) {
+ CXXRecordDecl *VBaseClassDecl
+ = cast<CXXRecordDecl>(RT->getDecl());
+ VBaseClassDecl->getNestedVisibleConversionFunctions(RD,
+ TopConversionsTypeSet,
+ (inTopClass ? TopConversionsTypeSet : ConversionFunctions));
+ }
+ }
+ for (CXXRecordDecl::base_class_iterator Base = bases_begin(),
+ E = bases_end(); Base != E; ++Base) {
+ if (Base->isVirtual())
+ continue;
+ if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
+ CXXRecordDecl *BaseClassDecl
+ = cast<CXXRecordDecl>(RT->getDecl());
+
+ BaseClassDecl->getNestedVisibleConversionFunctions(RD,
+ TopConversionsTypeSet,
+ (inTopClass ? TopConversionsTypeSet : ConversionFunctions));
+ }
+ }
+}
+
+/// getVisibleConversionFunctions - get all conversion functions visible
+/// in current class; including conversion function templates.
+const UnresolvedSetImpl *CXXRecordDecl::getVisibleConversionFunctions() {
+ // If root class, all conversions are visible.
+ if (bases_begin() == bases_end())
+ return &data().Conversions;
+ // If visible conversion list is already evaluated, return it.
+ if (data().ComputedVisibleConversions)
+ return &data().VisibleConversions;
+ llvm::SmallPtrSet<CanQualType, 8> TopConversionsTypeSet;
+ collectConversionFunctions(TopConversionsTypeSet);
+ getNestedVisibleConversionFunctions(this, TopConversionsTypeSet,
+ TopConversionsTypeSet);
+ data().ComputedVisibleConversions = true;
+ return &data().VisibleConversions;
+}
+
+void CXXRecordDecl::addVisibleConversionFunction(
+ CXXConversionDecl *ConvDecl) {
+ assert(!ConvDecl->getDescribedFunctionTemplate() &&
+ "Conversion function templates should cast to FunctionTemplateDecl.");
+ data().VisibleConversions.addDecl(ConvDecl);
+}
+
+void CXXRecordDecl::addVisibleConversionFunction(
+ FunctionTemplateDecl *ConvDecl) {
+ assert(isa<CXXConversionDecl>(ConvDecl->getTemplatedDecl()) &&
+ "Function template is not a conversion function template");
+ data().VisibleConversions.addDecl(ConvDecl);
+}
+
+void CXXRecordDecl::addConversionFunction(CXXConversionDecl *ConvDecl) {
+ assert(!ConvDecl->getDescribedFunctionTemplate() &&
+ "Conversion function templates should cast to FunctionTemplateDecl.");
+ data().Conversions.addDecl(ConvDecl);
+}
+
+void CXXRecordDecl::addConversionFunction(FunctionTemplateDecl *ConvDecl) {
+ assert(isa<CXXConversionDecl>(ConvDecl->getTemplatedDecl()) &&
+ "Function template is not a conversion function template");
+ data().Conversions.addDecl(ConvDecl);
+}
+
+
+void CXXRecordDecl::setMethodAsVirtual(FunctionDecl *Method) {
+ Method->setVirtualAsWritten(true);
+ setAggregate(false);
+ setPOD(false);
+ setEmpty(false);
+ setPolymorphic(true);
+ setHasTrivialConstructor(false);
+ setHasTrivialCopyConstructor(false);
+ setHasTrivialCopyAssignment(false);
+}
+
+CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const {
+ if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
+ return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom());
+
+ return 0;
+}
+
+MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const {
+ return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
+}
+
+void
+CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD,
+ TemplateSpecializationKind TSK) {
+ assert(TemplateOrInstantiation.isNull() &&
+ "Previous template or instantiation?");
+ assert(!isa<ClassTemplateSpecializationDecl>(this));
+ TemplateOrInstantiation
+ = new (getASTContext()) MemberSpecializationInfo(RD, TSK);
+}
+
+TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{
+ if (const ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(this))
+ return Spec->getSpecializationKind();
+
+ if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo())
+ return MSInfo->getTemplateSpecializationKind();
+
+ return TSK_Undeclared;
+}
+
+void
+CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) {
+ if (ClassTemplateSpecializationDecl *Spec
+ = dyn_cast<ClassTemplateSpecializationDecl>(this)) {
+ Spec->setSpecializationKind(TSK);
+ return;
+ }
+
+ if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
+ MSInfo->setTemplateSpecializationKind(TSK);
+ return;
+ }
+
+ assert(false && "Not a class template or member class specialization");
+}
+
+CXXConstructorDecl *
+CXXRecordDecl::getDefaultConstructor(ASTContext &Context) {
+ QualType ClassType = Context.getTypeDeclType(this);
+ DeclarationName ConstructorName
+ = Context.DeclarationNames.getCXXConstructorName(
+ Context.getCanonicalType(ClassType.getUnqualifiedType()));
+
+ DeclContext::lookup_const_iterator Con, ConEnd;
+ for (llvm::tie(Con, ConEnd) = lookup(ConstructorName);
+ Con != ConEnd; ++Con) {
+ // FIXME: In C++0x, a constructor template can be a default constructor.
+ if (isa<FunctionTemplateDecl>(*Con))
+ continue;
+
+ CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
+ if (Constructor->isDefaultConstructor())
+ return Constructor;
+ }
+ return 0;
+}
+
+CXXDestructorDecl *CXXRecordDecl::getDestructor(ASTContext &Context) {
+ QualType ClassType = Context.getTypeDeclType(this);
+
+ DeclarationName Name
+ = Context.DeclarationNames.getCXXDestructorName(
+ Context.getCanonicalType(ClassType));
+
+ DeclContext::lookup_iterator I, E;
+ llvm::tie(I, E) = lookup(Name);
+ assert(I != E && "Did not find a destructor!");
+
+ CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(*I);
+ assert(++I == E && "Found more than one destructor!");
+
+ return Dtor;
+}
+
+CXXMethodDecl *
+CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD,
+ SourceLocation L, DeclarationName N,
+ QualType T, TypeSourceInfo *TInfo,
+ bool isStatic, bool isInline) {
+ return new (C) CXXMethodDecl(CXXMethod, RD, L, N, T, TInfo,
+ isStatic, isInline);
+}
+
+bool CXXMethodDecl::isUsualDeallocationFunction() const {
+ if (getOverloadedOperator() != OO_Delete &&
+ getOverloadedOperator() != OO_Array_Delete)
+ return false;
+
+ // C++ [basic.stc.dynamic.deallocation]p2:
+ // If a class T has a member deallocation function named operator delete
+ // with exactly one parameter, then that function is a usual (non-placement)
+ // deallocation function. [...]
+ if (getNumParams() == 1)
+ return true;
+
+ // C++ [basic.stc.dynamic.deallocation]p2:
+ // [...] If class T does not declare such an operator delete but does
+ // declare a member deallocation function named operator delete with
+ // exactly two parameters, the second of which has type std::size_t (18.1),
+ // then this function is a usual deallocation function.
+ ASTContext &Context = getASTContext();
+ if (getNumParams() != 2 ||
+ !Context.hasSameUnqualifiedType(getParamDecl(1)->getType(),
+ Context.getSizeType()))
+ return false;
+
+ // This function is a usual deallocation function if there are no
+ // single-parameter deallocation functions of the same kind.
+ for (DeclContext::lookup_const_result R = getDeclContext()->lookup(getDeclName());
+ R.first != R.second; ++R.first) {
+ if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*R.first))
+ if (FD->getNumParams() == 1)
+ return false;
+ }
+
+ return true;
+}
+
+typedef llvm::DenseMap<const CXXMethodDecl*,
+ std::vector<const CXXMethodDecl *> *>
+ OverriddenMethodsMapTy;
+
+// FIXME: We hate static data. This doesn't survive PCH saving/loading, and
+// the vtable building code uses it at CG time.
+static OverriddenMethodsMapTy *OverriddenMethods = 0;
+
+void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) {
+ assert(MD->isCanonicalDecl() && "Method is not canonical!");
+ assert(!MD->getParent()->isDependentContext() &&
+ "Can't add an overridden method to a class template!");
+
+ // FIXME: The CXXMethodDecl dtor needs to remove and free the entry.
+
+ if (!OverriddenMethods)
+ OverriddenMethods = new OverriddenMethodsMapTy();
+
+ std::vector<const CXXMethodDecl *> *&Methods = (*OverriddenMethods)[this];
+ if (!Methods)
+ Methods = new std::vector<const CXXMethodDecl *>;
+
+ Methods->push_back(MD);
+}
+
+CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const {
+ if (!OverriddenMethods)
+ return 0;
+
+ OverriddenMethodsMapTy::iterator it = OverriddenMethods->find(this);
+ if (it == OverriddenMethods->end() || it->second->empty())
+ return 0;
+
+ return &(*it->second)[0];
+}
+
+CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const {
+ if (!OverriddenMethods)
+ return 0;
+
+ OverriddenMethodsMapTy::iterator it = OverriddenMethods->find(this);
+ if (it == OverriddenMethods->end() || it->second->empty())
+ return 0;
+
+ return &(*it->second)[0] + it->second->size();
+}
+
+QualType CXXMethodDecl::getThisType(ASTContext &C) const {
+ // C++ 9.3.2p1: The type of this in a member function of a class X is X*.
+ // If the member function is declared const, the type of this is const X*,
+ // if the member function is declared volatile, the type of this is
+ // volatile X*, and if the member function is declared const volatile,
+ // the type of this is const volatile X*.
+
+ assert(isInstance() && "No 'this' for static methods!");
+
+ QualType ClassTy;
+ if (ClassTemplateDecl *TD = getParent()->getDescribedClassTemplate())
+ ClassTy = TD->getInjectedClassNameType(C);
+ else
+ ClassTy = C.getTagDeclType(getParent());
+ ClassTy = C.getQualifiedType(ClassTy,
+ Qualifiers::fromCVRMask(getTypeQualifiers()));
+ return C.getPointerType(ClassTy);
+}
+
+bool CXXMethodDecl::hasInlineBody() const {
+ // If this function is a template instantiation, look at the template from
+ // which it was instantiated.
+ const FunctionDecl *CheckFn = getTemplateInstantiationPattern();
+ if (!CheckFn)
+ CheckFn = this;
+
+ const FunctionDecl *fn;
+ return CheckFn->getBody(fn) && !fn->isOutOfLine();
+}
+
+CXXBaseOrMemberInitializer::
+CXXBaseOrMemberInitializer(ASTContext &Context,
+ TypeSourceInfo *TInfo,
+ SourceLocation L, Expr *Init, SourceLocation R)
+ : BaseOrMember(TInfo), Init(Init), AnonUnionMember(0),
+ LParenLoc(L), RParenLoc(R)
+{
+}
+
+CXXBaseOrMemberInitializer::
+CXXBaseOrMemberInitializer(ASTContext &Context,
+ FieldDecl *Member, SourceLocation MemberLoc,
+ SourceLocation L, Expr *Init, SourceLocation R)
+ : BaseOrMember(Member), MemberLocation(MemberLoc), Init(Init),
+ AnonUnionMember(0), LParenLoc(L), RParenLoc(R)
+{
+}
+
+void CXXBaseOrMemberInitializer::Destroy(ASTContext &Context) {
+ if (Init)
+ Init->Destroy(Context);
+ this->~CXXBaseOrMemberInitializer();
+}
+
+TypeLoc CXXBaseOrMemberInitializer::getBaseClassLoc() const {
+ if (isBaseInitializer())
+ return BaseOrMember.get<TypeSourceInfo*>()->getTypeLoc();
+ else
+ return TypeLoc();
+}
+
+Type *CXXBaseOrMemberInitializer::getBaseClass() {
+ if (isBaseInitializer())
+ return BaseOrMember.get<TypeSourceInfo*>()->getType().getTypePtr();
+ else
+ return 0;
+}
+
+const Type *CXXBaseOrMemberInitializer::getBaseClass() const {
+ if (isBaseInitializer())
+ return BaseOrMember.get<TypeSourceInfo*>()->getType().getTypePtr();
+ else
+ return 0;
+}
+
+SourceLocation CXXBaseOrMemberInitializer::getSourceLocation() const {
+ if (isMemberInitializer())
+ return getMemberLocation();
+
+ return getBaseClassLoc().getSourceRange().getBegin();
+}
+
+SourceRange CXXBaseOrMemberInitializer::getSourceRange() const {
+ return SourceRange(getSourceLocation(), getRParenLoc());
+}
+
+CXXConstructorDecl *
+CXXConstructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
+ SourceLocation L, DeclarationName N,
+ QualType T, TypeSourceInfo *TInfo,
+ bool isExplicit,
+ bool isInline, bool isImplicitlyDeclared) {
+ assert(N.getNameKind() == DeclarationName::CXXConstructorName &&
+ "Name must refer to a constructor");
+ return new (C) CXXConstructorDecl(RD, L, N, T, TInfo, isExplicit, isInline,
+ isImplicitlyDeclared);
+}
+
+bool CXXConstructorDecl::isDefaultConstructor() const {
+ // C++ [class.ctor]p5:
+ // A default constructor for a class X is a constructor of class
+ // X that can be called without an argument.
+ return (getNumParams() == 0) ||
+ (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg());
+}
+
+bool
+CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const {
+ // C++ [class.copy]p2:
+ // A non-template constructor for class X is a copy constructor
+ // if its first parameter is of type X&, const X&, volatile X& or
+ // const volatile X&, and either there are no other parameters
+ // or else all other parameters have default arguments (8.3.6).
+ if ((getNumParams() < 1) ||
+ (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
+ (getPrimaryTemplate() != 0) ||
+ (getDescribedFunctionTemplate() != 0))
+ return false;
+
+ const ParmVarDecl *Param = getParamDecl(0);
+
+ // Do we have a reference type? Rvalue references don't count.
+ const LValueReferenceType *ParamRefType =
+ Param->getType()->getAs<LValueReferenceType>();
+ if (!ParamRefType)
+ return false;
+
+ // Is it a reference to our class type?
+ ASTContext &Context = getASTContext();
+
+ CanQualType PointeeType
+ = Context.getCanonicalType(ParamRefType->getPointeeType());
+ CanQualType ClassTy
+ = Context.getCanonicalType(Context.getTagDeclType(getParent()));
+ if (PointeeType.getUnqualifiedType() != ClassTy)
+ return false;
+
+ // FIXME: other qualifiers?
+
+ // We have a copy constructor.
+ TypeQuals = PointeeType.getCVRQualifiers();
+ return true;
+}
+
+bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const {
+ // C++ [class.conv.ctor]p1:
+ // A constructor declared without the function-specifier explicit
+ // that can be called with a single parameter specifies a
+ // conversion from the type of its first parameter to the type of
+ // its class. Such a constructor is called a converting
+ // constructor.
+ if (isExplicit() && !AllowExplicit)
+ return false;
+
+ return (getNumParams() == 0 &&
+ getType()->getAs<FunctionProtoType>()->isVariadic()) ||
+ (getNumParams() == 1) ||
+ (getNumParams() > 1 && getParamDecl(1)->hasDefaultArg());
+}
+
+bool CXXConstructorDecl::isCopyConstructorLikeSpecialization() const {
+ if ((getNumParams() < 1) ||
+ (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) ||
+ (getPrimaryTemplate() == 0) ||
+ (getDescribedFunctionTemplate() != 0))
+ return false;
+
+ const ParmVarDecl *Param = getParamDecl(0);
+
+ ASTContext &Context = getASTContext();
+ CanQualType ParamType = Context.getCanonicalType(Param->getType());
+
+ // Strip off the lvalue reference, if any.
+ if (CanQual<LValueReferenceType> ParamRefType
+ = ParamType->getAs<LValueReferenceType>())
+ ParamType = ParamRefType->getPointeeType();
+
+
+ // Is it the same as our our class type?
+ CanQualType ClassTy
+ = Context.getCanonicalType(Context.getTagDeclType(getParent()));
+ if (ParamType.getUnqualifiedType() != ClassTy)
+ return false;
+
+ return true;
+}
+
+CXXDestructorDecl *
+CXXDestructorDecl::Create(ASTContext &C, CXXRecordDecl *RD,
+ SourceLocation L, DeclarationName N,
+ QualType T, bool isInline,
+ bool isImplicitlyDeclared) {
+ assert(N.getNameKind() == DeclarationName::CXXDestructorName &&
+ "Name must refer to a destructor");
+ return new (C) CXXDestructorDecl(RD, L, N, T, isInline,
+ isImplicitlyDeclared);
+}
+
+void
+CXXConstructorDecl::Destroy(ASTContext& C) {
+ C.Deallocate(BaseOrMemberInitializers);
+ CXXMethodDecl::Destroy(C);
+}
+
+CXXConversionDecl *
+CXXConversionDecl::Create(ASTContext &C, CXXRecordDecl *RD,
+ SourceLocation L, DeclarationName N,
+ QualType T, TypeSourceInfo *TInfo,
+ bool isInline, bool isExplicit) {
+ assert(N.getNameKind() == DeclarationName::CXXConversionFunctionName &&
+ "Name must refer to a conversion function");
+ return new (C) CXXConversionDecl(RD, L, N, T, TInfo, isInline, isExplicit);
+}
+
+FriendDecl *FriendDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L,
+ FriendUnion Friend,
+ SourceLocation FriendL) {
+#ifndef NDEBUG
+ if (Friend.is<NamedDecl*>()) {
+ NamedDecl *D = Friend.get<NamedDecl*>();
+ assert(isa<FunctionDecl>(D) ||
+ isa<CXXRecordDecl>(D) ||
+ isa<FunctionTemplateDecl>(D) ||
+ isa<ClassTemplateDecl>(D));
+
+ // As a temporary hack, we permit template instantiation to point
+ // to the original declaration when instantiating members.
+ assert(D->getFriendObjectKind() ||
+ (cast<CXXRecordDecl>(DC)->getTemplateSpecializationKind()));
+ }
+#endif
+
+ return new (C) FriendDecl(DC, L, Friend, FriendL);
+}
+
+LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C,
+ DeclContext *DC,
+ SourceLocation L,
+ LanguageIDs Lang, bool Braces) {
+ return new (C) LinkageSpecDecl(DC, L, Lang, Braces);
+}
+
+UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L,
+ SourceLocation NamespaceLoc,
+ SourceRange QualifierRange,
+ NestedNameSpecifier *Qualifier,
+ SourceLocation IdentLoc,
+ NamedDecl *Used,
+ DeclContext *CommonAncestor) {
+ if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Used))
+ Used = NS->getOriginalNamespace();
+ return new (C) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierRange,
+ Qualifier, IdentLoc, Used, CommonAncestor);
+}
+
+NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() {
+ if (NamespaceAliasDecl *NA =
+ dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace))
+ return NA->getNamespace();
+ return cast_or_null<NamespaceDecl>(NominatedNamespace);
+}
+
+NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L,
+ SourceLocation AliasLoc,
+ IdentifierInfo *Alias,
+ SourceRange QualifierRange,
+ NestedNameSpecifier *Qualifier,
+ SourceLocation IdentLoc,
+ NamedDecl *Namespace) {
+ if (NamespaceDecl *NS = dyn_cast_or_null<NamespaceDecl>(Namespace))
+ Namespace = NS->getOriginalNamespace();
+ return new (C) NamespaceAliasDecl(DC, L, AliasLoc, Alias, QualifierRange,
+ Qualifier, IdentLoc, Namespace);
+}
+
+UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L, SourceRange NNR, SourceLocation UL,
+ NestedNameSpecifier* TargetNNS, DeclarationName Name,
+ bool IsTypeNameArg) {
+ return new (C) UsingDecl(DC, L, NNR, UL, TargetNNS, Name, IsTypeNameArg);
+}
+
+UnresolvedUsingValueDecl *
+UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation UsingLoc,
+ SourceRange TargetNNR,
+ NestedNameSpecifier *TargetNNS,
+ SourceLocation TargetNameLoc,
+ DeclarationName TargetName) {
+ return new (C) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc,
+ TargetNNR, TargetNNS,
+ TargetNameLoc, TargetName);
+}
+
+UnresolvedUsingTypenameDecl *
+UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation UsingLoc,
+ SourceLocation TypenameLoc,
+ SourceRange TargetNNR,
+ NestedNameSpecifier *TargetNNS,
+ SourceLocation TargetNameLoc,
+ DeclarationName TargetName) {
+ return new (C) UnresolvedUsingTypenameDecl(DC, UsingLoc, TypenameLoc,
+ TargetNNR, TargetNNS,
+ TargetNameLoc,
+ TargetName.getAsIdentifierInfo());
+}
+
+StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC,
+ SourceLocation L, Expr *AssertExpr,
+ StringLiteral *Message) {
+ return new (C) StaticAssertDecl(DC, L, AssertExpr, Message);
+}
+
+void StaticAssertDecl::Destroy(ASTContext& C) {
+ AssertExpr->Destroy(C);
+ Message->Destroy(C);
+ this->~StaticAssertDecl();
+ C.Deallocate((void *)this);
+}
+
+StaticAssertDecl::~StaticAssertDecl() {
+}
+
+static const char *getAccessName(AccessSpecifier AS) {
+ switch (AS) {
+ default:
+ case AS_none:
+ assert("Invalid access specifier!");
+ return 0;
+ case AS_public:
+ return "public";
+ case AS_private:
+ return "private";
+ case AS_protected:
+ return "protected";
+ }
+}
+
+const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB,
+ AccessSpecifier AS) {
+ return DB << getAccessName(AS);
+}
+
+