Check in LLVM r95781.
diff --git a/lib/AST/Expr.cpp b/lib/AST/Expr.cpp
new file mode 100644
index 0000000..4e6cdca
--- /dev/null
+++ b/lib/AST/Expr.cpp
@@ -0,0 +1,2615 @@
+//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Expr class and subclasses.
+//
+//===----------------------------------------------------------------------===//
+
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclCXX.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/Builtins.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+using namespace clang;
+
+//===----------------------------------------------------------------------===//
+// Primary Expressions.
+//===----------------------------------------------------------------------===//
+
+void ExplicitTemplateArgumentList::initializeFrom(
+                                      const TemplateArgumentListInfo &Info) {
+  LAngleLoc = Info.getLAngleLoc();
+  RAngleLoc = Info.getRAngleLoc();
+  NumTemplateArgs = Info.size();
+
+  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
+  for (unsigned i = 0; i != NumTemplateArgs; ++i)
+    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
+}
+
+void ExplicitTemplateArgumentList::copyInto(
+                                      TemplateArgumentListInfo &Info) const {
+  Info.setLAngleLoc(LAngleLoc);
+  Info.setRAngleLoc(RAngleLoc);
+  for (unsigned I = 0; I != NumTemplateArgs; ++I)
+    Info.addArgument(getTemplateArgs()[I]);
+}
+
+std::size_t ExplicitTemplateArgumentList::sizeFor(
+                                      const TemplateArgumentListInfo &Info) {
+  return sizeof(ExplicitTemplateArgumentList) +
+         sizeof(TemplateArgumentLoc) * Info.size();
+}
+
+void DeclRefExpr::computeDependence() {
+  TypeDependent = false;
+  ValueDependent = false;
+  
+  NamedDecl *D = getDecl();
+
+  // (TD) C++ [temp.dep.expr]p3:
+  //   An id-expression is type-dependent if it contains:
+  //
+  // and 
+  //
+  // (VD) C++ [temp.dep.constexpr]p2:
+  //  An identifier is value-dependent if it is:
+
+  //  (TD)  - an identifier that was declared with dependent type
+  //  (VD)  - a name declared with a dependent type,
+  if (getType()->isDependentType()) {
+    TypeDependent = true;
+    ValueDependent = true;
+  }
+  //  (TD)  - a conversion-function-id that specifies a dependent type
+  else if (D->getDeclName().getNameKind() 
+                               == DeclarationName::CXXConversionFunctionName &&
+           D->getDeclName().getCXXNameType()->isDependentType()) {
+    TypeDependent = true;
+    ValueDependent = true;
+  }
+  //  (TD)  - a template-id that is dependent,
+  else if (hasExplicitTemplateArgumentList() && 
+           TemplateSpecializationType::anyDependentTemplateArguments(
+                                                       getTemplateArgs(), 
+                                                       getNumTemplateArgs())) {
+    TypeDependent = true;
+    ValueDependent = true;
+  }
+  //  (VD)  - the name of a non-type template parameter,
+  else if (isa<NonTypeTemplateParmDecl>(D))
+    ValueDependent = true;
+  //  (VD) - a constant with integral or enumeration type and is
+  //         initialized with an expression that is value-dependent.
+  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
+    if (Var->getType()->isIntegralType() &&
+        Var->getType().getCVRQualifiers() == Qualifiers::Const) {
+      if (const Expr *Init = Var->getAnyInitializer())
+        if (Init->isValueDependent())
+          ValueDependent = true;
+    }
+  }
+  //  (TD)  - a nested-name-specifier or a qualified-id that names a
+  //          member of an unknown specialization.
+  //        (handled by DependentScopeDeclRefExpr)
+}
+
+DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier, 
+                         SourceRange QualifierRange,
+                         ValueDecl *D, SourceLocation NameLoc,
+                         const TemplateArgumentListInfo *TemplateArgs,
+                         QualType T)
+  : Expr(DeclRefExprClass, T, false, false),
+    DecoratedD(D,
+               (Qualifier? HasQualifierFlag : 0) |
+               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
+    Loc(NameLoc) {
+  if (Qualifier) {
+    NameQualifier *NQ = getNameQualifier();
+    NQ->NNS = Qualifier;
+    NQ->Range = QualifierRange;
+  }
+      
+  if (TemplateArgs)
+    getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
+
+  computeDependence();
+}
+
+DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
+                                 NestedNameSpecifier *Qualifier,
+                                 SourceRange QualifierRange,
+                                 ValueDecl *D,
+                                 SourceLocation NameLoc,
+                                 QualType T,
+                                 const TemplateArgumentListInfo *TemplateArgs) {
+  std::size_t Size = sizeof(DeclRefExpr);
+  if (Qualifier != 0)
+    Size += sizeof(NameQualifier);
+  
+  if (TemplateArgs)
+    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
+  
+  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
+  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
+                               TemplateArgs, T);
+}
+
+SourceRange DeclRefExpr::getSourceRange() const {
+  // FIXME: Does not handle multi-token names well, e.g., operator[].
+  SourceRange R(Loc);
+  
+  if (hasQualifier())
+    R.setBegin(getQualifierRange().getBegin());
+  if (hasExplicitTemplateArgumentList())
+    R.setEnd(getRAngleLoc());
+  return R;
+}
+
+// FIXME: Maybe this should use DeclPrinter with a special "print predefined
+// expr" policy instead.
+std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentType IT,
+                                        const Decl *CurrentDecl) {
+  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
+    if (IT != PrettyFunction)
+      return FD->getNameAsString();
+
+    llvm::SmallString<256> Name;
+    llvm::raw_svector_ostream Out(Name);
+
+    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
+      if (MD->isVirtual())
+        Out << "virtual ";
+      if (MD->isStatic())
+        Out << "static ";
+    }
+
+    PrintingPolicy Policy(Context.getLangOptions());
+    Policy.SuppressTagKind = true;
+
+    std::string Proto = FD->getQualifiedNameAsString(Policy);
+
+    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
+    const FunctionProtoType *FT = 0;
+    if (FD->hasWrittenPrototype())
+      FT = dyn_cast<FunctionProtoType>(AFT);
+
+    Proto += "(";
+    if (FT) {
+      llvm::raw_string_ostream POut(Proto);
+      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
+        if (i) POut << ", ";
+        std::string Param;
+        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
+        POut << Param;
+      }
+
+      if (FT->isVariadic()) {
+        if (FD->getNumParams()) POut << ", ";
+        POut << "...";
+      }
+    }
+    Proto += ")";
+
+    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
+      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
+      if (ThisQuals.hasConst())
+        Proto += " const";
+      if (ThisQuals.hasVolatile())
+        Proto += " volatile";
+    }
+
+    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
+      AFT->getResultType().getAsStringInternal(Proto, Policy);
+
+    Out << Proto;
+
+    Out.flush();
+    return Name.str().str();
+  }
+  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
+    llvm::SmallString<256> Name;
+    llvm::raw_svector_ostream Out(Name);
+    Out << (MD->isInstanceMethod() ? '-' : '+');
+    Out << '[';
+    Out << MD->getClassInterface()->getNameAsString();
+    if (const ObjCCategoryImplDecl *CID =
+        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) {
+      Out << '(';
+      Out <<  CID->getNameAsString();
+      Out <<  ')';
+    }
+    Out <<  ' ';
+    Out << MD->getSelector().getAsString();
+    Out <<  ']';
+
+    Out.flush();
+    return Name.str().str();
+  }
+  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
+    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
+    return "top level";
+  }
+  return "";
+}
+
+/// getValueAsApproximateDouble - This returns the value as an inaccurate
+/// double.  Note that this may cause loss of precision, but is useful for
+/// debugging dumps, etc.
+double FloatingLiteral::getValueAsApproximateDouble() const {
+  llvm::APFloat V = getValue();
+  bool ignored;
+  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
+            &ignored);
+  return V.convertToDouble();
+}
+
+StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
+                                     unsigned ByteLength, bool Wide,
+                                     QualType Ty,
+                                     const SourceLocation *Loc,
+                                     unsigned NumStrs) {
+  // Allocate enough space for the StringLiteral plus an array of locations for
+  // any concatenated string tokens.
+  void *Mem = C.Allocate(sizeof(StringLiteral)+
+                         sizeof(SourceLocation)*(NumStrs-1),
+                         llvm::alignof<StringLiteral>());
+  StringLiteral *SL = new (Mem) StringLiteral(Ty);
+
+  // OPTIMIZE: could allocate this appended to the StringLiteral.
+  char *AStrData = new (C, 1) char[ByteLength];
+  memcpy(AStrData, StrData, ByteLength);
+  SL->StrData = AStrData;
+  SL->ByteLength = ByteLength;
+  SL->IsWide = Wide;
+  SL->TokLocs[0] = Loc[0];
+  SL->NumConcatenated = NumStrs;
+
+  if (NumStrs != 1)
+    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
+  return SL;
+}
+
+StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
+  void *Mem = C.Allocate(sizeof(StringLiteral)+
+                         sizeof(SourceLocation)*(NumStrs-1),
+                         llvm::alignof<StringLiteral>());
+  StringLiteral *SL = new (Mem) StringLiteral(QualType());
+  SL->StrData = 0;
+  SL->ByteLength = 0;
+  SL->NumConcatenated = NumStrs;
+  return SL;
+}
+
+void StringLiteral::DoDestroy(ASTContext &C) {
+  C.Deallocate(const_cast<char*>(StrData));
+  Expr::DoDestroy(C);
+}
+
+void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
+  if (StrData)
+    C.Deallocate(const_cast<char*>(StrData));
+
+  char *AStrData = new (C, 1) char[Str.size()];
+  memcpy(AStrData, Str.data(), Str.size());
+  StrData = AStrData;
+  ByteLength = Str.size();
+}
+
+/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
+/// corresponds to, e.g. "sizeof" or "[pre]++".
+const char *UnaryOperator::getOpcodeStr(Opcode Op) {
+  switch (Op) {
+  default: assert(0 && "Unknown unary operator");
+  case PostInc: return "++";
+  case PostDec: return "--";
+  case PreInc:  return "++";
+  case PreDec:  return "--";
+  case AddrOf:  return "&";
+  case Deref:   return "*";
+  case Plus:    return "+";
+  case Minus:   return "-";
+  case Not:     return "~";
+  case LNot:    return "!";
+  case Real:    return "__real";
+  case Imag:    return "__imag";
+  case Extension: return "__extension__";
+  case OffsetOf: return "__builtin_offsetof";
+  }
+}
+
+UnaryOperator::Opcode
+UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
+  switch (OO) {
+  default: assert(false && "No unary operator for overloaded function");
+  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
+  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
+  case OO_Amp:        return AddrOf;
+  case OO_Star:       return Deref;
+  case OO_Plus:       return Plus;
+  case OO_Minus:      return Minus;
+  case OO_Tilde:      return Not;
+  case OO_Exclaim:    return LNot;
+  }
+}
+
+OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
+  switch (Opc) {
+  case PostInc: case PreInc: return OO_PlusPlus;
+  case PostDec: case PreDec: return OO_MinusMinus;
+  case AddrOf: return OO_Amp;
+  case Deref: return OO_Star;
+  case Plus: return OO_Plus;
+  case Minus: return OO_Minus;
+  case Not: return OO_Tilde;
+  case LNot: return OO_Exclaim;
+  default: return OO_None;
+  }
+}
+
+
+//===----------------------------------------------------------------------===//
+// Postfix Operators.
+//===----------------------------------------------------------------------===//
+
+CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
+                   unsigned numargs, QualType t, SourceLocation rparenloc)
+  : Expr(SC, t,
+         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
+         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
+    NumArgs(numargs) {
+
+  SubExprs = new (C) Stmt*[numargs+1];
+  SubExprs[FN] = fn;
+  for (unsigned i = 0; i != numargs; ++i)
+    SubExprs[i+ARGS_START] = args[i];
+
+  RParenLoc = rparenloc;
+}
+
+CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
+                   QualType t, SourceLocation rparenloc)
+  : Expr(CallExprClass, t,
+         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
+         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
+    NumArgs(numargs) {
+
+  SubExprs = new (C) Stmt*[numargs+1];
+  SubExprs[FN] = fn;
+  for (unsigned i = 0; i != numargs; ++i)
+    SubExprs[i+ARGS_START] = args[i];
+
+  RParenLoc = rparenloc;
+}
+
+CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
+  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
+  SubExprs = new (C) Stmt*[1];
+}
+
+void CallExpr::DoDestroy(ASTContext& C) {
+  DestroyChildren(C);
+  if (SubExprs) C.Deallocate(SubExprs);
+  this->~CallExpr();
+  C.Deallocate(this);
+}
+
+Decl *CallExpr::getCalleeDecl() {
+  Expr *CEE = getCallee()->IgnoreParenCasts();
+  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
+    return DRE->getDecl();
+  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
+    return ME->getMemberDecl();
+
+  return 0;
+}
+
+FunctionDecl *CallExpr::getDirectCallee() {
+  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
+}
+
+/// setNumArgs - This changes the number of arguments present in this call.
+/// Any orphaned expressions are deleted by this, and any new operands are set
+/// to null.
+void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
+  // No change, just return.
+  if (NumArgs == getNumArgs()) return;
+
+  // If shrinking # arguments, just delete the extras and forgot them.
+  if (NumArgs < getNumArgs()) {
+    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
+      getArg(i)->Destroy(C);
+    this->NumArgs = NumArgs;
+    return;
+  }
+
+  // Otherwise, we are growing the # arguments.  New an bigger argument array.
+  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
+  // Copy over args.
+  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
+    NewSubExprs[i] = SubExprs[i];
+  // Null out new args.
+  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
+    NewSubExprs[i] = 0;
+
+  if (SubExprs) C.Deallocate(SubExprs);
+  SubExprs = NewSubExprs;
+  this->NumArgs = NumArgs;
+}
+
+/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
+/// not, return 0.
+unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
+  // All simple function calls (e.g. func()) are implicitly cast to pointer to
+  // function. As a result, we try and obtain the DeclRefExpr from the
+  // ImplicitCastExpr.
+  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
+  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
+    return 0;
+
+  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
+  if (!DRE)
+    return 0;
+
+  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
+  if (!FDecl)
+    return 0;
+
+  if (!FDecl->getIdentifier())
+    return 0;
+
+  return FDecl->getBuiltinID();
+}
+
+QualType CallExpr::getCallReturnType() const {
+  QualType CalleeType = getCallee()->getType();
+  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
+    CalleeType = FnTypePtr->getPointeeType();
+  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
+    CalleeType = BPT->getPointeeType();
+
+  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
+  return FnType->getResultType();
+}
+
+MemberExpr::MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
+                       SourceRange qualrange, ValueDecl *memberdecl,
+                       SourceLocation l, const TemplateArgumentListInfo *targs,
+                       QualType ty)
+  : Expr(MemberExprClass, ty,
+         base->isTypeDependent() || (qual && qual->isDependent()),
+         base->isValueDependent() || (qual && qual->isDependent())),
+    Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
+    HasQualifier(qual != 0), HasExplicitTemplateArgumentList(targs) {
+  // Initialize the qualifier, if any.
+  if (HasQualifier) {
+    NameQualifier *NQ = getMemberQualifier();
+    NQ->NNS = qual;
+    NQ->Range = qualrange;
+  }
+
+  // Initialize the explicit template argument list, if any.
+  if (targs)
+    getExplicitTemplateArgumentList()->initializeFrom(*targs);
+}
+
+MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
+                               NestedNameSpecifier *qual,
+                               SourceRange qualrange,
+                               ValueDecl *memberdecl,
+                               SourceLocation l,
+                               const TemplateArgumentListInfo *targs,
+                               QualType ty) {
+  std::size_t Size = sizeof(MemberExpr);
+  if (qual != 0)
+    Size += sizeof(NameQualifier);
+
+  if (targs)
+    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
+
+  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
+  return new (Mem) MemberExpr(base, isarrow, qual, qualrange, memberdecl, l,
+                              targs, ty);
+}
+
+const char *CastExpr::getCastKindName() const {
+  switch (getCastKind()) {
+  case CastExpr::CK_Unknown:
+    return "Unknown";
+  case CastExpr::CK_BitCast:
+    return "BitCast";
+  case CastExpr::CK_NoOp:
+    return "NoOp";
+  case CastExpr::CK_BaseToDerived:
+    return "BaseToDerived";
+  case CastExpr::CK_DerivedToBase:
+    return "DerivedToBase";
+  case CastExpr::CK_Dynamic:
+    return "Dynamic";
+  case CastExpr::CK_ToUnion:
+    return "ToUnion";
+  case CastExpr::CK_ArrayToPointerDecay:
+    return "ArrayToPointerDecay";
+  case CastExpr::CK_FunctionToPointerDecay:
+    return "FunctionToPointerDecay";
+  case CastExpr::CK_NullToMemberPointer:
+    return "NullToMemberPointer";
+  case CastExpr::CK_BaseToDerivedMemberPointer:
+    return "BaseToDerivedMemberPointer";
+  case CastExpr::CK_DerivedToBaseMemberPointer:
+    return "DerivedToBaseMemberPointer";
+  case CastExpr::CK_UserDefinedConversion:
+    return "UserDefinedConversion";
+  case CastExpr::CK_ConstructorConversion:
+    return "ConstructorConversion";
+  case CastExpr::CK_IntegralToPointer:
+    return "IntegralToPointer";
+  case CastExpr::CK_PointerToIntegral:
+    return "PointerToIntegral";
+  case CastExpr::CK_ToVoid:
+    return "ToVoid";
+  case CastExpr::CK_VectorSplat:
+    return "VectorSplat";
+  case CastExpr::CK_IntegralCast:
+    return "IntegralCast";
+  case CastExpr::CK_IntegralToFloating:
+    return "IntegralToFloating";
+  case CastExpr::CK_FloatingToIntegral:
+    return "FloatingToIntegral";
+  case CastExpr::CK_FloatingCast:
+    return "FloatingCast";
+  case CastExpr::CK_MemberPointerToBoolean:
+    return "MemberPointerToBoolean";
+  case CastExpr::CK_AnyPointerToObjCPointerCast:
+    return "AnyPointerToObjCPointerCast";
+  case CastExpr::CK_AnyPointerToBlockPointerCast:
+    return "AnyPointerToBlockPointerCast";
+  }
+
+  assert(0 && "Unhandled cast kind!");
+  return 0;
+}
+
+Expr *CastExpr::getSubExprAsWritten() {
+  Expr *SubExpr = 0;
+  CastExpr *E = this;
+  do {
+    SubExpr = E->getSubExpr();
+    
+    // Skip any temporary bindings; they're implicit.
+    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
+      SubExpr = Binder->getSubExpr();
+    
+    // Conversions by constructor and conversion functions have a
+    // subexpression describing the call; strip it off.
+    if (E->getCastKind() == CastExpr::CK_ConstructorConversion)
+      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
+    else if (E->getCastKind() == CastExpr::CK_UserDefinedConversion)
+      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
+    
+    // If the subexpression we're left with is an implicit cast, look
+    // through that, too.
+  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));  
+  
+  return SubExpr;
+}
+
+/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
+/// corresponds to, e.g. "<<=".
+const char *BinaryOperator::getOpcodeStr(Opcode Op) {
+  switch (Op) {
+  case PtrMemD:   return ".*";
+  case PtrMemI:   return "->*";
+  case Mul:       return "*";
+  case Div:       return "/";
+  case Rem:       return "%";
+  case Add:       return "+";
+  case Sub:       return "-";
+  case Shl:       return "<<";
+  case Shr:       return ">>";
+  case LT:        return "<";
+  case GT:        return ">";
+  case LE:        return "<=";
+  case GE:        return ">=";
+  case EQ:        return "==";
+  case NE:        return "!=";
+  case And:       return "&";
+  case Xor:       return "^";
+  case Or:        return "|";
+  case LAnd:      return "&&";
+  case LOr:       return "||";
+  case Assign:    return "=";
+  case MulAssign: return "*=";
+  case DivAssign: return "/=";
+  case RemAssign: return "%=";
+  case AddAssign: return "+=";
+  case SubAssign: return "-=";
+  case ShlAssign: return "<<=";
+  case ShrAssign: return ">>=";
+  case AndAssign: return "&=";
+  case XorAssign: return "^=";
+  case OrAssign:  return "|=";
+  case Comma:     return ",";
+  }
+
+  return "";
+}
+
+BinaryOperator::Opcode
+BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
+  switch (OO) {
+  default: assert(false && "Not an overloadable binary operator");
+  case OO_Plus: return Add;
+  case OO_Minus: return Sub;
+  case OO_Star: return Mul;
+  case OO_Slash: return Div;
+  case OO_Percent: return Rem;
+  case OO_Caret: return Xor;
+  case OO_Amp: return And;
+  case OO_Pipe: return Or;
+  case OO_Equal: return Assign;
+  case OO_Less: return LT;
+  case OO_Greater: return GT;
+  case OO_PlusEqual: return AddAssign;
+  case OO_MinusEqual: return SubAssign;
+  case OO_StarEqual: return MulAssign;
+  case OO_SlashEqual: return DivAssign;
+  case OO_PercentEqual: return RemAssign;
+  case OO_CaretEqual: return XorAssign;
+  case OO_AmpEqual: return AndAssign;
+  case OO_PipeEqual: return OrAssign;
+  case OO_LessLess: return Shl;
+  case OO_GreaterGreater: return Shr;
+  case OO_LessLessEqual: return ShlAssign;
+  case OO_GreaterGreaterEqual: return ShrAssign;
+  case OO_EqualEqual: return EQ;
+  case OO_ExclaimEqual: return NE;
+  case OO_LessEqual: return LE;
+  case OO_GreaterEqual: return GE;
+  case OO_AmpAmp: return LAnd;
+  case OO_PipePipe: return LOr;
+  case OO_Comma: return Comma;
+  case OO_ArrowStar: return PtrMemI;
+  }
+}
+
+OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
+  static const OverloadedOperatorKind OverOps[] = {
+    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
+    OO_Star, OO_Slash, OO_Percent,
+    OO_Plus, OO_Minus,
+    OO_LessLess, OO_GreaterGreater,
+    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
+    OO_EqualEqual, OO_ExclaimEqual,
+    OO_Amp,
+    OO_Caret,
+    OO_Pipe,
+    OO_AmpAmp,
+    OO_PipePipe,
+    OO_Equal, OO_StarEqual,
+    OO_SlashEqual, OO_PercentEqual,
+    OO_PlusEqual, OO_MinusEqual,
+    OO_LessLessEqual, OO_GreaterGreaterEqual,
+    OO_AmpEqual, OO_CaretEqual,
+    OO_PipeEqual,
+    OO_Comma
+  };
+  return OverOps[Opc];
+}
+
+InitListExpr::InitListExpr(SourceLocation lbraceloc,
+                           Expr **initExprs, unsigned numInits,
+                           SourceLocation rbraceloc)
+  : Expr(InitListExprClass, QualType(), false, false),
+    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
+    UnionFieldInit(0), HadArrayRangeDesignator(false) 
+{      
+  for (unsigned I = 0; I != numInits; ++I) {
+    if (initExprs[I]->isTypeDependent())
+      TypeDependent = true;
+    if (initExprs[I]->isValueDependent())
+      ValueDependent = true;
+  }
+      
+  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
+}
+
+void InitListExpr::reserveInits(unsigned NumInits) {
+  if (NumInits > InitExprs.size())
+    InitExprs.reserve(NumInits);
+}
+
+void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
+  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
+       Idx < LastIdx; ++Idx)
+    InitExprs[Idx]->Destroy(Context);
+  InitExprs.resize(NumInits, 0);
+}
+
+Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
+  if (Init >= InitExprs.size()) {
+    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
+    InitExprs.back() = expr;
+    return 0;
+  }
+
+  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
+  InitExprs[Init] = expr;
+  return Result;
+}
+
+/// getFunctionType - Return the underlying function type for this block.
+///
+const FunctionType *BlockExpr::getFunctionType() const {
+  return getType()->getAs<BlockPointerType>()->
+                    getPointeeType()->getAs<FunctionType>();
+}
+
+SourceLocation BlockExpr::getCaretLocation() const {
+  return TheBlock->getCaretLocation();
+}
+const Stmt *BlockExpr::getBody() const {
+  return TheBlock->getBody();
+}
+Stmt *BlockExpr::getBody() {
+  return TheBlock->getBody();
+}
+
+
+//===----------------------------------------------------------------------===//
+// Generic Expression Routines
+//===----------------------------------------------------------------------===//
+
+/// isUnusedResultAWarning - Return true if this immediate expression should
+/// be warned about if the result is unused.  If so, fill in Loc and Ranges
+/// with location to warn on and the source range[s] to report with the
+/// warning.
+bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
+                                  SourceRange &R2, ASTContext &Ctx) const {
+  // Don't warn if the expr is type dependent. The type could end up
+  // instantiating to void.
+  if (isTypeDependent())
+    return false;
+
+  switch (getStmtClass()) {
+  default:
+    Loc = getExprLoc();
+    R1 = getSourceRange();
+    return true;
+  case ParenExprClass:
+    return cast<ParenExpr>(this)->getSubExpr()->
+      isUnusedResultAWarning(Loc, R1, R2, Ctx);
+  case UnaryOperatorClass: {
+    const UnaryOperator *UO = cast<UnaryOperator>(this);
+
+    switch (UO->getOpcode()) {
+    default: break;
+    case UnaryOperator::PostInc:
+    case UnaryOperator::PostDec:
+    case UnaryOperator::PreInc:
+    case UnaryOperator::PreDec:                 // ++/--
+      return false;  // Not a warning.
+    case UnaryOperator::Deref:
+      // Dereferencing a volatile pointer is a side-effect.
+      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
+        return false;
+      break;
+    case UnaryOperator::Real:
+    case UnaryOperator::Imag:
+      // accessing a piece of a volatile complex is a side-effect.
+      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
+          .isVolatileQualified())
+        return false;
+      break;
+    case UnaryOperator::Extension:
+      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
+    }
+    Loc = UO->getOperatorLoc();
+    R1 = UO->getSubExpr()->getSourceRange();
+    return true;
+  }
+  case BinaryOperatorClass: {
+    const BinaryOperator *BO = cast<BinaryOperator>(this);
+    // Consider comma to have side effects if the LHS or RHS does.
+    if (BO->getOpcode() == BinaryOperator::Comma)
+      return (BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
+              BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
+
+    if (BO->isAssignmentOp())
+      return false;
+    Loc = BO->getOperatorLoc();
+    R1 = BO->getLHS()->getSourceRange();
+    R2 = BO->getRHS()->getSourceRange();
+    return true;
+  }
+  case CompoundAssignOperatorClass:
+    return false;
+
+  case ConditionalOperatorClass: {
+    // The condition must be evaluated, but if either the LHS or RHS is a
+    // warning, warn about them.
+    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
+    if (Exp->getLHS() &&
+        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
+      return true;
+    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
+  }
+
+  case MemberExprClass:
+    // If the base pointer or element is to a volatile pointer/field, accessing
+    // it is a side effect.
+    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
+      return false;
+    Loc = cast<MemberExpr>(this)->getMemberLoc();
+    R1 = SourceRange(Loc, Loc);
+    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
+    return true;
+
+  case ArraySubscriptExprClass:
+    // If the base pointer or element is to a volatile pointer/field, accessing
+    // it is a side effect.
+    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
+      return false;
+    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
+    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
+    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
+    return true;
+
+  case CallExprClass:
+  case CXXOperatorCallExprClass:
+  case CXXMemberCallExprClass: {
+    // If this is a direct call, get the callee.
+    const CallExpr *CE = cast<CallExpr>(this);
+    if (const Decl *FD = CE->getCalleeDecl()) {
+      // If the callee has attribute pure, const, or warn_unused_result, warn
+      // about it. void foo() { strlen("bar"); } should warn.
+      //
+      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
+      // updated to match for QoI.
+      if (FD->getAttr<WarnUnusedResultAttr>() ||
+          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
+        Loc = CE->getCallee()->getLocStart();
+        R1 = CE->getCallee()->getSourceRange();
+
+        if (unsigned NumArgs = CE->getNumArgs())
+          R2 = SourceRange(CE->getArg(0)->getLocStart(),
+                           CE->getArg(NumArgs-1)->getLocEnd());
+        return true;
+      }
+    }
+    return false;
+  }
+
+  case CXXTemporaryObjectExprClass:
+  case CXXConstructExprClass:
+    return false;
+
+  case ObjCMessageExprClass:
+    return false;
+
+  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
+#if 0
+    const ObjCImplicitSetterGetterRefExpr *Ref =
+      cast<ObjCImplicitSetterGetterRefExpr>(this);
+    // FIXME: We really want the location of the '.' here.
+    Loc = Ref->getLocation();
+    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
+    if (Ref->getBase())
+      R2 = Ref->getBase()->getSourceRange();
+#else
+    Loc = getExprLoc();
+    R1 = getSourceRange();
+#endif
+    return true;
+  }
+  case StmtExprClass: {
+    // Statement exprs don't logically have side effects themselves, but are
+    // sometimes used in macros in ways that give them a type that is unused.
+    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
+    // however, if the result of the stmt expr is dead, we don't want to emit a
+    // warning.
+    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
+    if (!CS->body_empty())
+      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
+        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
+
+    Loc = cast<StmtExpr>(this)->getLParenLoc();
+    R1 = getSourceRange();
+    return true;
+  }
+  case CStyleCastExprClass:
+    // If this is an explicit cast to void, allow it.  People do this when they
+    // think they know what they're doing :).
+    if (getType()->isVoidType())
+      return false;
+    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
+    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
+    return true;
+  case CXXFunctionalCastExprClass: {
+    const CastExpr *CE = cast<CastExpr>(this);
+    
+    // If this is a cast to void or a constructor conversion, check the operand.
+    // Otherwise, the result of the cast is unused.
+    if (CE->getCastKind() == CastExpr::CK_ToVoid ||
+        CE->getCastKind() == CastExpr::CK_ConstructorConversion)
+      return (cast<CastExpr>(this)->getSubExpr()
+              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
+    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
+    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
+    return true;
+  }
+
+  case ImplicitCastExprClass:
+    // Check the operand, since implicit casts are inserted by Sema
+    return (cast<ImplicitCastExpr>(this)
+            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
+
+  case CXXDefaultArgExprClass:
+    return (cast<CXXDefaultArgExpr>(this)
+            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
+
+  case CXXNewExprClass:
+    // FIXME: In theory, there might be new expressions that don't have side
+    // effects (e.g. a placement new with an uninitialized POD).
+  case CXXDeleteExprClass:
+    return false;
+  case CXXBindTemporaryExprClass:
+    return (cast<CXXBindTemporaryExpr>(this)
+            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
+  case CXXExprWithTemporariesClass:
+    return (cast<CXXExprWithTemporaries>(this)
+            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
+  }
+}
+
+/// DeclCanBeLvalue - Determine whether the given declaration can be
+/// an lvalue. This is a helper routine for isLvalue.
+static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
+  // C++ [temp.param]p6:
+  //   A non-type non-reference template-parameter is not an lvalue.
+  if (const NonTypeTemplateParmDecl *NTTParm
+        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
+    return NTTParm->getType()->isReferenceType();
+
+  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
+    // C++ 3.10p2: An lvalue refers to an object or function.
+    (Ctx.getLangOptions().CPlusPlus &&
+     (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl)));
+}
+
+/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
+/// incomplete type other than void. Nonarray expressions that can be lvalues:
+///  - name, where name must be a variable
+///  - e[i]
+///  - (e), where e must be an lvalue
+///  - e.name, where e must be an lvalue
+///  - e->name
+///  - *e, the type of e cannot be a function type
+///  - string-constant
+///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
+///  - reference type [C++ [expr]]
+///
+Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
+  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
+
+  isLvalueResult Res = isLvalueInternal(Ctx);
+  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
+    return Res;
+
+  // first, check the type (C99 6.3.2.1). Expressions with function
+  // type in C are not lvalues, but they can be lvalues in C++.
+  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
+    return LV_NotObjectType;
+
+  // Allow qualified void which is an incomplete type other than void (yuck).
+  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
+    return LV_IncompleteVoidType;
+
+  return LV_Valid;
+}
+
+// Check whether the expression can be sanely treated like an l-value
+Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
+  switch (getStmtClass()) {
+  case ObjCIsaExprClass:
+  case StringLiteralClass:  // C99 6.5.1p4
+  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
+    return LV_Valid;
+  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
+    // For vectors, make sure base is an lvalue (i.e. not a function call).
+    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
+      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
+    return LV_Valid;
+  case DeclRefExprClass: { // C99 6.5.1p2
+    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
+    if (DeclCanBeLvalue(RefdDecl, Ctx))
+      return LV_Valid;
+    break;
+  }
+  case BlockDeclRefExprClass: {
+    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
+    if (isa<VarDecl>(BDR->getDecl()))
+      return LV_Valid;
+    break;
+  }
+  case MemberExprClass: {
+    const MemberExpr *m = cast<MemberExpr>(this);
+    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
+      NamedDecl *Member = m->getMemberDecl();
+      // C++ [expr.ref]p4:
+      //   If E2 is declared to have type "reference to T", then E1.E2
+      //   is an lvalue.
+      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
+        if (Value->getType()->isReferenceType())
+          return LV_Valid;
+
+      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
+      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
+        return LV_Valid;
+
+      //   -- If E2 is a non-static data member [...]. If E1 is an
+      //      lvalue, then E1.E2 is an lvalue.
+      if (isa<FieldDecl>(Member)) {
+        if (m->isArrow())
+          return LV_Valid;
+        Expr *BaseExp = m->getBase();
+        return (BaseExp->getStmtClass() == ObjCPropertyRefExprClass) ?
+                 LV_SubObjCPropertySetting : BaseExp->isLvalue(Ctx);        
+      }
+
+      //   -- If it refers to a static member function [...], then
+      //      E1.E2 is an lvalue.
+      //   -- Otherwise, if E1.E2 refers to a non-static member
+      //      function [...], then E1.E2 is not an lvalue.
+      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
+        return Method->isStatic()? LV_Valid : LV_MemberFunction;
+
+      //   -- If E2 is a member enumerator [...], the expression E1.E2
+      //      is not an lvalue.
+      if (isa<EnumConstantDecl>(Member))
+        return LV_InvalidExpression;
+
+        // Not an lvalue.
+      return LV_InvalidExpression;
+    }
+    
+    // C99 6.5.2.3p4
+    if (m->isArrow())
+      return LV_Valid;
+    Expr *BaseExp = m->getBase();
+    return (BaseExp->getStmtClass() == ObjCPropertyRefExprClass) ?
+             LV_SubObjCPropertySetting : BaseExp->isLvalue(Ctx);
+  }
+  case UnaryOperatorClass:
+    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
+      return LV_Valid; // C99 6.5.3p4
+
+    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
+        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
+        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
+      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
+
+    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
+        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
+         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
+      return LV_Valid;
+    break;
+  case ImplicitCastExprClass:
+    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
+                                                       : LV_InvalidExpression;
+  case ParenExprClass: // C99 6.5.1p5
+    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
+  case BinaryOperatorClass:
+  case CompoundAssignOperatorClass: {
+    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
+
+    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
+        BinOp->getOpcode() == BinaryOperator::Comma)
+      return BinOp->getRHS()->isLvalue(Ctx);
+
+    // C++ [expr.mptr.oper]p6
+    // The result of a .* expression is an lvalue only if its first operand is 
+    // an lvalue and its second operand is a pointer to data member. 
+    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
+        !BinOp->getType()->isFunctionType())
+      return BinOp->getLHS()->isLvalue(Ctx);
+
+    // The result of an ->* expression is an lvalue only if its second operand 
+    // is a pointer to data member.
+    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
+        !BinOp->getType()->isFunctionType()) {
+      QualType Ty = BinOp->getRHS()->getType();
+      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
+        return LV_Valid;
+    }
+    
+    if (!BinOp->isAssignmentOp())
+      return LV_InvalidExpression;
+
+    if (Ctx.getLangOptions().CPlusPlus)
+      // C++ [expr.ass]p1:
+      //   The result of an assignment operation [...] is an lvalue.
+      return LV_Valid;
+
+
+    // C99 6.5.16:
+    //   An assignment expression [...] is not an lvalue.
+    return LV_InvalidExpression;
+  }
+  case CallExprClass:
+  case CXXOperatorCallExprClass:
+  case CXXMemberCallExprClass: {
+    // C++0x [expr.call]p10
+    //   A function call is an lvalue if and only if the result type
+    //   is an lvalue reference.
+    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
+    if (ReturnType->isLValueReferenceType())
+      return LV_Valid;
+
+    break;
+  }
+  case CompoundLiteralExprClass: // C99 6.5.2.5p5
+    return LV_Valid;
+  case ChooseExprClass:
+    // __builtin_choose_expr is an lvalue if the selected operand is.
+    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
+  case ExtVectorElementExprClass:
+    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
+      return LV_DuplicateVectorComponents;
+    return LV_Valid;
+  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
+    return LV_Valid;
+  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
+    return LV_Valid;
+  case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
+    return LV_Valid;
+  case PredefinedExprClass:
+    return LV_Valid;
+  case UnresolvedLookupExprClass:
+    return LV_Valid;
+  case CXXDefaultArgExprClass:
+    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
+  case CStyleCastExprClass:
+  case CXXFunctionalCastExprClass:
+  case CXXStaticCastExprClass:
+  case CXXDynamicCastExprClass:
+  case CXXReinterpretCastExprClass:
+  case CXXConstCastExprClass:
+    // The result of an explicit cast is an lvalue if the type we are
+    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
+    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
+    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
+    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
+          isLValueReferenceType())
+      return LV_Valid;
+    break;
+  case CXXTypeidExprClass:
+    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
+    return LV_Valid;
+  case CXXBindTemporaryExprClass:
+    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
+      isLvalueInternal(Ctx);
+  case CXXBindReferenceExprClass:
+    // Something that's bound to a reference is always an lvalue.
+    return LV_Valid;
+  case ConditionalOperatorClass: {
+    // Complicated handling is only for C++.
+    if (!Ctx.getLangOptions().CPlusPlus)
+      return LV_InvalidExpression;
+
+    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
+    // everywhere there's an object converted to an rvalue. Also, any other
+    // casts should be wrapped by ImplicitCastExprs. There's just the special
+    // case involving throws to work out.
+    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
+    Expr *True = Cond->getTrueExpr();
+    Expr *False = Cond->getFalseExpr();
+    // C++0x 5.16p2
+    //   If either the second or the third operand has type (cv) void, [...]
+    //   the result [...] is an rvalue.
+    if (True->getType()->isVoidType() || False->getType()->isVoidType())
+      return LV_InvalidExpression;
+
+    // Both sides must be lvalues for the result to be an lvalue.
+    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
+      return LV_InvalidExpression;
+
+    // That's it.
+    return LV_Valid;
+  }
+
+  case Expr::CXXExprWithTemporariesClass:
+    return cast<CXXExprWithTemporaries>(this)->getSubExpr()->isLvalue(Ctx);
+
+  case Expr::ObjCMessageExprClass:
+    if (const ObjCMethodDecl *Method
+          = cast<ObjCMessageExpr>(this)->getMethodDecl())
+      if (Method->getResultType()->isLValueReferenceType())
+        return LV_Valid;
+    break;
+
+  default:
+    break;
+  }
+  return LV_InvalidExpression;
+}
+
+/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
+/// does not have an incomplete type, does not have a const-qualified type, and
+/// if it is a structure or union, does not have any member (including,
+/// recursively, any member or element of all contained aggregates or unions)
+/// with a const-qualified type.
+Expr::isModifiableLvalueResult
+Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
+  isLvalueResult lvalResult = isLvalue(Ctx);
+
+  switch (lvalResult) {
+  case LV_Valid:
+    // C++ 3.10p11: Functions cannot be modified, but pointers to
+    // functions can be modifiable.
+    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
+      return MLV_NotObjectType;
+    break;
+
+  case LV_NotObjectType: return MLV_NotObjectType;
+  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
+  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
+  case LV_InvalidExpression:
+    // If the top level is a C-style cast, and the subexpression is a valid
+    // lvalue, then this is probably a use of the old-school "cast as lvalue"
+    // GCC extension.  We don't support it, but we want to produce good
+    // diagnostics when it happens so that the user knows why.
+    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
+      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
+        if (Loc)
+          *Loc = CE->getLParenLoc();
+        return MLV_LValueCast;
+      }
+    }
+    return MLV_InvalidExpression;
+  case LV_MemberFunction: return MLV_MemberFunction;
+    case LV_SubObjCPropertySetting: return MLV_SubObjCPropertySetting;
+  }
+
+  // The following is illegal:
+  //   void takeclosure(void (^C)(void));
+  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
+  //
+  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
+    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
+      return MLV_NotBlockQualified;
+  }
+
+  // Assigning to an 'implicit' property?
+  if (const ObjCImplicitSetterGetterRefExpr* Expr =
+        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
+    if (Expr->getSetterMethod() == 0)
+      return MLV_NoSetterProperty;
+  }
+
+  QualType CT = Ctx.getCanonicalType(getType());
+
+  if (CT.isConstQualified())
+    return MLV_ConstQualified;
+  if (CT->isArrayType())
+    return MLV_ArrayType;
+  if (CT->isIncompleteType())
+    return MLV_IncompleteType;
+
+  if (const RecordType *r = CT->getAs<RecordType>()) {
+    if (r->hasConstFields())
+      return MLV_ConstQualified;
+  }
+
+  return MLV_Valid;
+}
+
+/// isOBJCGCCandidate - Check if an expression is objc gc'able.
+/// returns true, if it is; false otherwise.
+bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
+  switch (getStmtClass()) {
+  default:
+    return false;
+  case ObjCIvarRefExprClass:
+    return true;
+  case Expr::UnaryOperatorClass:
+    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
+  case ParenExprClass:
+    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
+  case ImplicitCastExprClass:
+    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
+  case CStyleCastExprClass:
+    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
+  case DeclRefExprClass: {
+    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
+    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
+      if (VD->hasGlobalStorage())
+        return true;
+      QualType T = VD->getType();
+      // dereferencing to a  pointer is always a gc'able candidate,
+      // unless it is __weak.
+      return T->isPointerType() &&
+             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
+    }
+    return false;
+  }
+  case MemberExprClass: {
+    const MemberExpr *M = cast<MemberExpr>(this);
+    return M->getBase()->isOBJCGCCandidate(Ctx);
+  }
+  case ArraySubscriptExprClass:
+    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
+  }
+}
+Expr* Expr::IgnoreParens() {
+  Expr* E = this;
+  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
+    E = P->getSubExpr();
+
+  return E;
+}
+
+/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
+/// or CastExprs or ImplicitCastExprs, returning their operand.
+Expr *Expr::IgnoreParenCasts() {
+  Expr *E = this;
+  while (true) {
+    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
+      E = P->getSubExpr();
+    else if (CastExpr *P = dyn_cast<CastExpr>(E))
+      E = P->getSubExpr();
+    else
+      return E;
+  }
+}
+
+/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
+/// value (including ptr->int casts of the same size).  Strip off any
+/// ParenExpr or CastExprs, returning their operand.
+Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
+  Expr *E = this;
+  while (true) {
+    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
+      E = P->getSubExpr();
+      continue;
+    }
+
+    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
+      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
+      // ptr<->int casts of the same width.  We also ignore all identify casts.
+      Expr *SE = P->getSubExpr();
+
+      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
+        E = SE;
+        continue;
+      }
+
+      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
+          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
+          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
+        E = SE;
+        continue;
+      }
+    }
+
+    return E;
+  }
+}
+
+bool Expr::isDefaultArgument() const {
+  const Expr *E = this;
+  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
+    E = ICE->getSubExprAsWritten();
+  
+  return isa<CXXDefaultArgExpr>(E);
+}
+
+/// hasAnyTypeDependentArguments - Determines if any of the expressions
+/// in Exprs is type-dependent.
+bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
+  for (unsigned I = 0; I < NumExprs; ++I)
+    if (Exprs[I]->isTypeDependent())
+      return true;
+
+  return false;
+}
+
+/// hasAnyValueDependentArguments - Determines if any of the expressions
+/// in Exprs is value-dependent.
+bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
+  for (unsigned I = 0; I < NumExprs; ++I)
+    if (Exprs[I]->isValueDependent())
+      return true;
+
+  return false;
+}
+
+bool Expr::isConstantInitializer(ASTContext &Ctx) const {
+  // This function is attempting whether an expression is an initializer
+  // which can be evaluated at compile-time.  isEvaluatable handles most
+  // of the cases, but it can't deal with some initializer-specific
+  // expressions, and it can't deal with aggregates; we deal with those here,
+  // and fall back to isEvaluatable for the other cases.
+
+  // FIXME: This function assumes the variable being assigned to
+  // isn't a reference type!
+
+  switch (getStmtClass()) {
+  default: break;
+  case StringLiteralClass:
+  case ObjCStringLiteralClass:
+  case ObjCEncodeExprClass:
+    return true;
+  case CompoundLiteralExprClass: {
+    // This handles gcc's extension that allows global initializers like
+    // "struct x {int x;} x = (struct x) {};".
+    // FIXME: This accepts other cases it shouldn't!
+    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
+    return Exp->isConstantInitializer(Ctx);
+  }
+  case InitListExprClass: {
+    // FIXME: This doesn't deal with fields with reference types correctly.
+    // FIXME: This incorrectly allows pointers cast to integers to be assigned
+    // to bitfields.
+    const InitListExpr *Exp = cast<InitListExpr>(this);
+    unsigned numInits = Exp->getNumInits();
+    for (unsigned i = 0; i < numInits; i++) {
+      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
+        return false;
+    }
+    return true;
+  }
+  case ImplicitValueInitExprClass:
+    return true;
+  case ParenExprClass:
+    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
+  case UnaryOperatorClass: {
+    const UnaryOperator* Exp = cast<UnaryOperator>(this);
+    if (Exp->getOpcode() == UnaryOperator::Extension)
+      return Exp->getSubExpr()->isConstantInitializer(Ctx);
+    break;
+  }
+  case BinaryOperatorClass: {
+    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
+    // but this handles the common case.
+    const BinaryOperator *Exp = cast<BinaryOperator>(this);
+    if (Exp->getOpcode() == BinaryOperator::Sub &&
+        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
+        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
+      return true;
+    break;
+  }
+  case ImplicitCastExprClass:
+  case CStyleCastExprClass:
+    // Handle casts with a destination that's a struct or union; this
+    // deals with both the gcc no-op struct cast extension and the
+    // cast-to-union extension.
+    if (getType()->isRecordType())
+      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
+      
+    // Integer->integer casts can be handled here, which is important for
+    // things like (int)(&&x-&&y).  Scary but true.
+    if (getType()->isIntegerType() &&
+        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
+      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
+      
+    break;
+  }
+  return isEvaluatable(Ctx);
+}
+
+/// isIntegerConstantExpr - this recursive routine will test if an expression is
+/// an integer constant expression.
+
+/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
+/// comma, etc
+///
+/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
+/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
+/// cast+dereference.
+
+// CheckICE - This function does the fundamental ICE checking: the returned
+// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
+// Note that to reduce code duplication, this helper does no evaluation
+// itself; the caller checks whether the expression is evaluatable, and
+// in the rare cases where CheckICE actually cares about the evaluated
+// value, it calls into Evalute.
+//
+// Meanings of Val:
+// 0: This expression is an ICE if it can be evaluated by Evaluate.
+// 1: This expression is not an ICE, but if it isn't evaluated, it's
+//    a legal subexpression for an ICE. This return value is used to handle
+//    the comma operator in C99 mode.
+// 2: This expression is not an ICE, and is not a legal subexpression for one.
+
+struct ICEDiag {
+  unsigned Val;
+  SourceLocation Loc;
+
+  public:
+  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
+  ICEDiag() : Val(0) {}
+};
+
+ICEDiag NoDiag() { return ICEDiag(); }
+
+static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
+  Expr::EvalResult EVResult;
+  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
+      !EVResult.Val.isInt()) {
+    return ICEDiag(2, E->getLocStart());
+  }
+  return NoDiag();
+}
+
+static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
+  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
+  if (!E->getType()->isIntegralType()) {
+    return ICEDiag(2, E->getLocStart());
+  }
+
+  switch (E->getStmtClass()) {
+#define STMT(Node, Base) case Expr::Node##Class:
+#define EXPR(Node, Base)
+#include "clang/AST/StmtNodes.def"
+  case Expr::PredefinedExprClass:
+  case Expr::FloatingLiteralClass:
+  case Expr::ImaginaryLiteralClass:
+  case Expr::StringLiteralClass:
+  case Expr::ArraySubscriptExprClass:
+  case Expr::MemberExprClass:
+  case Expr::CompoundAssignOperatorClass:
+  case Expr::CompoundLiteralExprClass:
+  case Expr::ExtVectorElementExprClass:
+  case Expr::InitListExprClass:
+  case Expr::DesignatedInitExprClass:
+  case Expr::ImplicitValueInitExprClass:
+  case Expr::ParenListExprClass:
+  case Expr::VAArgExprClass:
+  case Expr::AddrLabelExprClass:
+  case Expr::StmtExprClass:
+  case Expr::CXXMemberCallExprClass:
+  case Expr::CXXDynamicCastExprClass:
+  case Expr::CXXTypeidExprClass:
+  case Expr::CXXNullPtrLiteralExprClass:
+  case Expr::CXXThisExprClass:
+  case Expr::CXXThrowExprClass:
+  case Expr::CXXNewExprClass:
+  case Expr::CXXDeleteExprClass:
+  case Expr::CXXPseudoDestructorExprClass:
+  case Expr::UnresolvedLookupExprClass:
+  case Expr::DependentScopeDeclRefExprClass:
+  case Expr::CXXConstructExprClass:
+  case Expr::CXXBindTemporaryExprClass:
+  case Expr::CXXBindReferenceExprClass:
+  case Expr::CXXExprWithTemporariesClass:
+  case Expr::CXXTemporaryObjectExprClass:
+  case Expr::CXXUnresolvedConstructExprClass:
+  case Expr::CXXDependentScopeMemberExprClass:
+  case Expr::UnresolvedMemberExprClass:
+  case Expr::ObjCStringLiteralClass:
+  case Expr::ObjCEncodeExprClass:
+  case Expr::ObjCMessageExprClass:
+  case Expr::ObjCSelectorExprClass:
+  case Expr::ObjCProtocolExprClass:
+  case Expr::ObjCIvarRefExprClass:
+  case Expr::ObjCPropertyRefExprClass:
+  case Expr::ObjCImplicitSetterGetterRefExprClass:
+  case Expr::ObjCSuperExprClass:
+  case Expr::ObjCIsaExprClass:
+  case Expr::ShuffleVectorExprClass:
+  case Expr::BlockExprClass:
+  case Expr::BlockDeclRefExprClass:
+  case Expr::NoStmtClass:
+    return ICEDiag(2, E->getLocStart());
+
+  case Expr::GNUNullExprClass:
+    // GCC considers the GNU __null value to be an integral constant expression.
+    return NoDiag();
+
+  case Expr::ParenExprClass:
+    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
+  case Expr::IntegerLiteralClass:
+  case Expr::CharacterLiteralClass:
+  case Expr::CXXBoolLiteralExprClass:
+  case Expr::CXXZeroInitValueExprClass:
+  case Expr::TypesCompatibleExprClass:
+  case Expr::UnaryTypeTraitExprClass:
+    return NoDiag();
+  case Expr::CallExprClass:
+  case Expr::CXXOperatorCallExprClass: {
+    const CallExpr *CE = cast<CallExpr>(E);
+    if (CE->isBuiltinCall(Ctx))
+      return CheckEvalInICE(E, Ctx);
+    return ICEDiag(2, E->getLocStart());
+  }
+  case Expr::DeclRefExprClass:
+    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
+      return NoDiag();
+    if (Ctx.getLangOptions().CPlusPlus &&
+        E->getType().getCVRQualifiers() == Qualifiers::Const) {
+      // C++ 7.1.5.1p2
+      //   A variable of non-volatile const-qualified integral or enumeration
+      //   type initialized by an ICE can be used in ICEs.
+      if (const VarDecl *Dcl =
+              dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
+        Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
+        if (Quals.hasVolatile() || !Quals.hasConst())
+          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
+        
+        // Look for a declaration of this variable that has an initializer.
+        const VarDecl *ID = 0;
+        const Expr *Init = Dcl->getAnyInitializer(ID);
+        if (Init) {
+          if (ID->isInitKnownICE()) {
+            // We have already checked whether this subexpression is an
+            // integral constant expression.
+            if (ID->isInitICE())
+              return NoDiag();
+            else
+              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
+          }
+
+          // It's an ICE whether or not the definition we found is
+          // out-of-line.  See DR 721 and the discussion in Clang PR
+          // 6206 for details.
+
+          if (Dcl->isCheckingICE()) {
+            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
+          }
+
+          Dcl->setCheckingICE();
+          ICEDiag Result = CheckICE(Init, Ctx);
+          // Cache the result of the ICE test.
+          Dcl->setInitKnownICE(Result.Val == 0);
+          return Result;
+        }
+      }
+    }
+    return ICEDiag(2, E->getLocStart());
+  case Expr::UnaryOperatorClass: {
+    const UnaryOperator *Exp = cast<UnaryOperator>(E);
+    switch (Exp->getOpcode()) {
+    case UnaryOperator::PostInc:
+    case UnaryOperator::PostDec:
+    case UnaryOperator::PreInc:
+    case UnaryOperator::PreDec:
+    case UnaryOperator::AddrOf:
+    case UnaryOperator::Deref:
+      return ICEDiag(2, E->getLocStart());
+
+    case UnaryOperator::Extension:
+    case UnaryOperator::LNot:
+    case UnaryOperator::Plus:
+    case UnaryOperator::Minus:
+    case UnaryOperator::Not:
+    case UnaryOperator::Real:
+    case UnaryOperator::Imag:
+      return CheckICE(Exp->getSubExpr(), Ctx);
+    case UnaryOperator::OffsetOf:
+      // Note that per C99, offsetof must be an ICE. And AFAIK, using
+      // Evaluate matches the proposed gcc behavior for cases like
+      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
+      // compliance: we should warn earlier for offsetof expressions with
+      // array subscripts that aren't ICEs, and if the array subscripts
+      // are ICEs, the value of the offsetof must be an integer constant.
+      return CheckEvalInICE(E, Ctx);
+    }
+  }
+  case Expr::SizeOfAlignOfExprClass: {
+    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
+    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
+      return ICEDiag(2, E->getLocStart());
+    return NoDiag();
+  }
+  case Expr::BinaryOperatorClass: {
+    const BinaryOperator *Exp = cast<BinaryOperator>(E);
+    switch (Exp->getOpcode()) {
+    case BinaryOperator::PtrMemD:
+    case BinaryOperator::PtrMemI:
+    case BinaryOperator::Assign:
+    case BinaryOperator::MulAssign:
+    case BinaryOperator::DivAssign:
+    case BinaryOperator::RemAssign:
+    case BinaryOperator::AddAssign:
+    case BinaryOperator::SubAssign:
+    case BinaryOperator::ShlAssign:
+    case BinaryOperator::ShrAssign:
+    case BinaryOperator::AndAssign:
+    case BinaryOperator::XorAssign:
+    case BinaryOperator::OrAssign:
+      return ICEDiag(2, E->getLocStart());
+
+    case BinaryOperator::Mul:
+    case BinaryOperator::Div:
+    case BinaryOperator::Rem:
+    case BinaryOperator::Add:
+    case BinaryOperator::Sub:
+    case BinaryOperator::Shl:
+    case BinaryOperator::Shr:
+    case BinaryOperator::LT:
+    case BinaryOperator::GT:
+    case BinaryOperator::LE:
+    case BinaryOperator::GE:
+    case BinaryOperator::EQ:
+    case BinaryOperator::NE:
+    case BinaryOperator::And:
+    case BinaryOperator::Xor:
+    case BinaryOperator::Or:
+    case BinaryOperator::Comma: {
+      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
+      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
+      if (Exp->getOpcode() == BinaryOperator::Div ||
+          Exp->getOpcode() == BinaryOperator::Rem) {
+        // Evaluate gives an error for undefined Div/Rem, so make sure
+        // we don't evaluate one.
+        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
+          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
+          if (REval == 0)
+            return ICEDiag(1, E->getLocStart());
+          if (REval.isSigned() && REval.isAllOnesValue()) {
+            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
+            if (LEval.isMinSignedValue())
+              return ICEDiag(1, E->getLocStart());
+          }
+        }
+      }
+      if (Exp->getOpcode() == BinaryOperator::Comma) {
+        if (Ctx.getLangOptions().C99) {
+          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
+          // if it isn't evaluated.
+          if (LHSResult.Val == 0 && RHSResult.Val == 0)
+            return ICEDiag(1, E->getLocStart());
+        } else {
+          // In both C89 and C++, commas in ICEs are illegal.
+          return ICEDiag(2, E->getLocStart());
+        }
+      }
+      if (LHSResult.Val >= RHSResult.Val)
+        return LHSResult;
+      return RHSResult;
+    }
+    case BinaryOperator::LAnd:
+    case BinaryOperator::LOr: {
+      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
+      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
+      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
+        // Rare case where the RHS has a comma "side-effect"; we need
+        // to actually check the condition to see whether the side
+        // with the comma is evaluated.
+        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
+            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
+          return RHSResult;
+        return NoDiag();
+      }
+
+      if (LHSResult.Val >= RHSResult.Val)
+        return LHSResult;
+      return RHSResult;
+    }
+    }
+  }
+  case Expr::ImplicitCastExprClass:
+  case Expr::CStyleCastExprClass:
+  case Expr::CXXFunctionalCastExprClass:
+  case Expr::CXXNamedCastExprClass:
+  case Expr::CXXStaticCastExprClass:
+  case Expr::CXXReinterpretCastExprClass:
+  case Expr::CXXConstCastExprClass: {
+    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
+    if (SubExpr->getType()->isIntegralType())
+      return CheckICE(SubExpr, Ctx);
+    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
+      return NoDiag();
+    return ICEDiag(2, E->getLocStart());
+  }
+  case Expr::ConditionalOperatorClass: {
+    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
+    // If the condition (ignoring parens) is a __builtin_constant_p call,
+    // then only the true side is actually considered in an integer constant
+    // expression, and it is fully evaluated.  This is an important GNU
+    // extension.  See GCC PR38377 for discussion.
+    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
+      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
+        Expr::EvalResult EVResult;
+        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
+            !EVResult.Val.isInt()) {
+          return ICEDiag(2, E->getLocStart());
+        }
+        return NoDiag();
+      }
+    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
+    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
+    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
+    if (CondResult.Val == 2)
+      return CondResult;
+    if (TrueResult.Val == 2)
+      return TrueResult;
+    if (FalseResult.Val == 2)
+      return FalseResult;
+    if (CondResult.Val == 1)
+      return CondResult;
+    if (TrueResult.Val == 0 && FalseResult.Val == 0)
+      return NoDiag();
+    // Rare case where the diagnostics depend on which side is evaluated
+    // Note that if we get here, CondResult is 0, and at least one of
+    // TrueResult and FalseResult is non-zero.
+    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
+      return FalseResult;
+    }
+    return TrueResult;
+  }
+  case Expr::CXXDefaultArgExprClass:
+    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
+  case Expr::ChooseExprClass: {
+    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
+  }
+  }
+
+  // Silence a GCC warning
+  return ICEDiag(2, E->getLocStart());
+}
+
+bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
+                                 SourceLocation *Loc, bool isEvaluated) const {
+  ICEDiag d = CheckICE(this, Ctx);
+  if (d.Val != 0) {
+    if (Loc) *Loc = d.Loc;
+    return false;
+  }
+  EvalResult EvalResult;
+  if (!Evaluate(EvalResult, Ctx))
+    llvm_unreachable("ICE cannot be evaluated!");
+  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
+  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
+  Result = EvalResult.Val.getInt();
+  return true;
+}
+
+/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
+/// integer constant expression with the value zero, or if this is one that is
+/// cast to void*.
+bool Expr::isNullPointerConstant(ASTContext &Ctx,
+                                 NullPointerConstantValueDependence NPC) const {
+  if (isValueDependent()) {
+    switch (NPC) {
+    case NPC_NeverValueDependent:
+      assert(false && "Unexpected value dependent expression!");
+      // If the unthinkable happens, fall through to the safest alternative.
+        
+    case NPC_ValueDependentIsNull:
+      return isTypeDependent() || getType()->isIntegralType();
+        
+    case NPC_ValueDependentIsNotNull:
+      return false;
+    }
+  }
+
+  // Strip off a cast to void*, if it exists. Except in C++.
+  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
+    if (!Ctx.getLangOptions().CPlusPlus) {
+      // Check that it is a cast to void*.
+      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
+        QualType Pointee = PT->getPointeeType();
+        if (!Pointee.hasQualifiers() &&
+            Pointee->isVoidType() &&                              // to void*
+            CE->getSubExpr()->getType()->isIntegerType())         // from int.
+          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
+      }
+    }
+  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
+    // Ignore the ImplicitCastExpr type entirely.
+    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
+  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
+    // Accept ((void*)0) as a null pointer constant, as many other
+    // implementations do.
+    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
+  } else if (const CXXDefaultArgExpr *DefaultArg
+               = dyn_cast<CXXDefaultArgExpr>(this)) {
+    // See through default argument expressions
+    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
+  } else if (isa<GNUNullExpr>(this)) {
+    // The GNU __null extension is always a null pointer constant.
+    return true;
+  }
+
+  // C++0x nullptr_t is always a null pointer constant.
+  if (getType()->isNullPtrType())
+    return true;
+
+  // This expression must be an integer type.
+  if (!getType()->isIntegerType() || 
+      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
+    return false;
+
+  // If we have an integer constant expression, we need to *evaluate* it and
+  // test for the value 0.
+  llvm::APSInt Result;
+  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
+}
+
+FieldDecl *Expr::getBitField() {
+  Expr *E = this->IgnoreParens();
+
+  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
+      E = ICE->getSubExpr()->IgnoreParens();
+    else
+      break;
+  }
+
+  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
+    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
+      if (Field->isBitField())
+        return Field;
+
+  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
+    if (BinOp->isAssignmentOp() && BinOp->getLHS())
+      return BinOp->getLHS()->getBitField();
+
+  return 0;
+}
+
+bool Expr::refersToVectorElement() const {
+  const Expr *E = this->IgnoreParens();
+  
+  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
+    if (ICE->isLvalueCast() && ICE->getCastKind() == CastExpr::CK_NoOp)
+      E = ICE->getSubExpr()->IgnoreParens();
+    else
+      break;
+  }
+  
+  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
+    return ASE->getBase()->getType()->isVectorType();
+
+  if (isa<ExtVectorElementExpr>(E))
+    return true;
+
+  return false;
+}
+
+/// isArrow - Return true if the base expression is a pointer to vector,
+/// return false if the base expression is a vector.
+bool ExtVectorElementExpr::isArrow() const {
+  return getBase()->getType()->isPointerType();
+}
+
+unsigned ExtVectorElementExpr::getNumElements() const {
+  if (const VectorType *VT = getType()->getAs<VectorType>())
+    return VT->getNumElements();
+  return 1;
+}
+
+/// containsDuplicateElements - Return true if any element access is repeated.
+bool ExtVectorElementExpr::containsDuplicateElements() const {
+  // FIXME: Refactor this code to an accessor on the AST node which returns the
+  // "type" of component access, and share with code below and in Sema.
+  llvm::StringRef Comp = Accessor->getName();
+
+  // Halving swizzles do not contain duplicate elements.
+  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
+    return false;
+
+  // Advance past s-char prefix on hex swizzles.
+  if (Comp[0] == 's' || Comp[0] == 'S')
+    Comp = Comp.substr(1);
+
+  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
+    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
+        return true;
+
+  return false;
+}
+
+/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
+void ExtVectorElementExpr::getEncodedElementAccess(
+                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
+  llvm::StringRef Comp = Accessor->getName();
+  if (Comp[0] == 's' || Comp[0] == 'S')
+    Comp = Comp.substr(1);
+
+  bool isHi =   Comp == "hi";
+  bool isLo =   Comp == "lo";
+  bool isEven = Comp == "even";
+  bool isOdd  = Comp == "odd";
+
+  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
+    uint64_t Index;
+
+    if (isHi)
+      Index = e + i;
+    else if (isLo)
+      Index = i;
+    else if (isEven)
+      Index = 2 * i;
+    else if (isOdd)
+      Index = 2 * i + 1;
+    else
+      Index = ExtVectorType::getAccessorIdx(Comp[i]);
+
+    Elts.push_back(Index);
+  }
+}
+
+// constructor for instance messages.
+ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
+                QualType retType, ObjCMethodDecl *mproto,
+                SourceLocation LBrac, SourceLocation RBrac,
+                Expr **ArgExprs, unsigned nargs)
+  : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
+    MethodProto(mproto) {
+  NumArgs = nargs;
+  SubExprs = new Stmt*[NumArgs+1];
+  SubExprs[RECEIVER] = receiver;
+  if (NumArgs) {
+    for (unsigned i = 0; i != NumArgs; ++i)
+      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
+  }
+  LBracloc = LBrac;
+  RBracloc = RBrac;
+}
+
+// constructor for class messages.
+// FIXME: clsName should be typed to ObjCInterfaceType
+ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
+                QualType retType, ObjCMethodDecl *mproto,
+                SourceLocation LBrac, SourceLocation RBrac,
+                Expr **ArgExprs, unsigned nargs)
+  : Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
+    MethodProto(mproto) {
+  NumArgs = nargs;
+  SubExprs = new Stmt*[NumArgs+1];
+  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
+  if (NumArgs) {
+    for (unsigned i = 0; i != NumArgs; ++i)
+      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
+  }
+  LBracloc = LBrac;
+  RBracloc = RBrac;
+}
+
+// constructor for class messages.
+ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
+                                 QualType retType, ObjCMethodDecl *mproto,
+                                 SourceLocation LBrac, SourceLocation RBrac,
+                                 Expr **ArgExprs, unsigned nargs)
+: Expr(ObjCMessageExprClass, retType, false, false), SelName(selInfo),
+MethodProto(mproto) {
+  NumArgs = nargs;
+  SubExprs = new Stmt*[NumArgs+1];
+  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
+  if (NumArgs) {
+    for (unsigned i = 0; i != NumArgs; ++i)
+      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
+  }
+  LBracloc = LBrac;
+  RBracloc = RBrac;
+}
+
+ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
+  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
+  switch (x & Flags) {
+    default:
+      assert(false && "Invalid ObjCMessageExpr.");
+    case IsInstMeth:
+      return ClassInfo(0, 0);
+    case IsClsMethDeclUnknown:
+      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
+    case IsClsMethDeclKnown: {
+      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
+      return ClassInfo(D, D->getIdentifier());
+    }
+  }
+}
+
+void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
+  if (CI.first == 0 && CI.second == 0)
+    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
+  else if (CI.first == 0)
+    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
+  else
+    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
+}
+
+
+bool ChooseExpr::isConditionTrue(ASTContext &C) const {
+  return getCond()->EvaluateAsInt(C) != 0;
+}
+
+void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
+                                 unsigned NumExprs) {
+  if (SubExprs) C.Deallocate(SubExprs);
+
+  SubExprs = new (C) Stmt* [NumExprs];
+  this->NumExprs = NumExprs;
+  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
+}
+
+void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
+  DestroyChildren(C);
+  if (SubExprs) C.Deallocate(SubExprs);
+  this->~ShuffleVectorExpr();
+  C.Deallocate(this);
+}
+
+void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
+  // Override default behavior of traversing children. If this has a type
+  // operand and the type is a variable-length array, the child iteration
+  // will iterate over the size expression. However, this expression belongs
+  // to the type, not to this, so we don't want to delete it.
+  // We still want to delete this expression.
+  if (isArgumentType()) {
+    this->~SizeOfAlignOfExpr();
+    C.Deallocate(this);
+  }
+  else
+    Expr::DoDestroy(C);
+}
+
+//===----------------------------------------------------------------------===//
+//  DesignatedInitExpr
+//===----------------------------------------------------------------------===//
+
+IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
+  assert(Kind == FieldDesignator && "Only valid on a field designator");
+  if (Field.NameOrField & 0x01)
+    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
+  else
+    return getField()->getIdentifier();
+}
+
+DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty, 
+                                       unsigned NumDesignators,
+                                       const Designator *Designators,
+                                       SourceLocation EqualOrColonLoc,
+                                       bool GNUSyntax,
+                                       Expr **IndexExprs,
+                                       unsigned NumIndexExprs,
+                                       Expr *Init)
+  : Expr(DesignatedInitExprClass, Ty,
+         Init->isTypeDependent(), Init->isValueDependent()),
+    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
+    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
+  this->Designators = new (C) Designator[NumDesignators];
+
+  // Record the initializer itself.
+  child_iterator Child = child_begin();
+  *Child++ = Init;
+
+  // Copy the designators and their subexpressions, computing
+  // value-dependence along the way.
+  unsigned IndexIdx = 0;
+  for (unsigned I = 0; I != NumDesignators; ++I) {
+    this->Designators[I] = Designators[I];
+
+    if (this->Designators[I].isArrayDesignator()) {
+      // Compute type- and value-dependence.
+      Expr *Index = IndexExprs[IndexIdx];
+      ValueDependent = ValueDependent ||
+        Index->isTypeDependent() || Index->isValueDependent();
+
+      // Copy the index expressions into permanent storage.
+      *Child++ = IndexExprs[IndexIdx++];
+    } else if (this->Designators[I].isArrayRangeDesignator()) {
+      // Compute type- and value-dependence.
+      Expr *Start = IndexExprs[IndexIdx];
+      Expr *End = IndexExprs[IndexIdx + 1];
+      ValueDependent = ValueDependent ||
+        Start->isTypeDependent() || Start->isValueDependent() ||
+        End->isTypeDependent() || End->isValueDependent();
+
+      // Copy the start/end expressions into permanent storage.
+      *Child++ = IndexExprs[IndexIdx++];
+      *Child++ = IndexExprs[IndexIdx++];
+    }
+  }
+
+  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
+}
+
+DesignatedInitExpr *
+DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
+                           unsigned NumDesignators,
+                           Expr **IndexExprs, unsigned NumIndexExprs,
+                           SourceLocation ColonOrEqualLoc,
+                           bool UsesColonSyntax, Expr *Init) {
+  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
+                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
+  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
+                                      ColonOrEqualLoc, UsesColonSyntax,
+                                      IndexExprs, NumIndexExprs, Init);
+}
+
+DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
+                                                    unsigned NumIndexExprs) {
+  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
+                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
+  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
+}
+
+void DesignatedInitExpr::setDesignators(ASTContext &C,
+                                        const Designator *Desigs,
+                                        unsigned NumDesigs) {
+  DestroyDesignators(C);
+
+  Designators = new (C) Designator[NumDesigs];
+  NumDesignators = NumDesigs;
+  for (unsigned I = 0; I != NumDesigs; ++I)
+    Designators[I] = Desigs[I];
+}
+
+SourceRange DesignatedInitExpr::getSourceRange() const {
+  SourceLocation StartLoc;
+  Designator &First =
+    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
+  if (First.isFieldDesignator()) {
+    if (GNUSyntax)
+      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
+    else
+      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
+  } else
+    StartLoc =
+      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
+  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
+}
+
+Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
+  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
+  char* Ptr = static_cast<char*>(static_cast<void *>(this));
+  Ptr += sizeof(DesignatedInitExpr);
+  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
+  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
+}
+
+Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
+  assert(D.Kind == Designator::ArrayRangeDesignator &&
+         "Requires array range designator");
+  char* Ptr = static_cast<char*>(static_cast<void *>(this));
+  Ptr += sizeof(DesignatedInitExpr);
+  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
+  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
+}
+
+Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
+  assert(D.Kind == Designator::ArrayRangeDesignator &&
+         "Requires array range designator");
+  char* Ptr = static_cast<char*>(static_cast<void *>(this));
+  Ptr += sizeof(DesignatedInitExpr);
+  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
+  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
+}
+
+/// \brief Replaces the designator at index @p Idx with the series
+/// of designators in [First, Last).
+void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
+                                          const Designator *First,
+                                          const Designator *Last) {
+  unsigned NumNewDesignators = Last - First;
+  if (NumNewDesignators == 0) {
+    std::copy_backward(Designators + Idx + 1,
+                       Designators + NumDesignators,
+                       Designators + Idx);
+    --NumNewDesignators;
+    return;
+  } else if (NumNewDesignators == 1) {
+    Designators[Idx] = *First;
+    return;
+  }
+
+  Designator *NewDesignators
+    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
+  std::copy(Designators, Designators + Idx, NewDesignators);
+  std::copy(First, Last, NewDesignators + Idx);
+  std::copy(Designators + Idx + 1, Designators + NumDesignators,
+            NewDesignators + Idx + NumNewDesignators);
+  DestroyDesignators(C);
+  Designators = NewDesignators;
+  NumDesignators = NumDesignators - 1 + NumNewDesignators;
+}
+
+void DesignatedInitExpr::DoDestroy(ASTContext &C) {
+  DestroyDesignators(C);
+  Expr::DoDestroy(C);
+}
+
+void DesignatedInitExpr::DestroyDesignators(ASTContext &C) {
+  for (unsigned I = 0; I != NumDesignators; ++I)
+    Designators[I].~Designator();
+  C.Deallocate(Designators);
+  Designators = 0;
+}
+
+ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
+                             Expr **exprs, unsigned nexprs,
+                             SourceLocation rparenloc)
+: Expr(ParenListExprClass, QualType(),
+       hasAnyTypeDependentArguments(exprs, nexprs),
+       hasAnyValueDependentArguments(exprs, nexprs)),
+  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
+
+  Exprs = new (C) Stmt*[nexprs];
+  for (unsigned i = 0; i != nexprs; ++i)
+    Exprs[i] = exprs[i];
+}
+
+void ParenListExpr::DoDestroy(ASTContext& C) {
+  DestroyChildren(C);
+  if (Exprs) C.Deallocate(Exprs);
+  this->~ParenListExpr();
+  C.Deallocate(this);
+}
+
+//===----------------------------------------------------------------------===//
+//  ExprIterator.
+//===----------------------------------------------------------------------===//
+
+Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
+Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
+Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
+const Expr* ConstExprIterator::operator[](size_t idx) const {
+  return cast<Expr>(I[idx]);
+}
+const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
+const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
+
+//===----------------------------------------------------------------------===//
+//  Child Iterators for iterating over subexpressions/substatements
+//===----------------------------------------------------------------------===//
+
+// DeclRefExpr
+Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
+Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
+
+// ObjCIvarRefExpr
+Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
+Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
+
+// ObjCPropertyRefExpr
+Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
+Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
+
+// ObjCImplicitSetterGetterRefExpr
+Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
+  return &Base;
+}
+Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
+  return &Base+1;
+}
+
+// ObjCSuperExpr
+Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
+Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
+
+// ObjCIsaExpr
+Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
+Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
+
+// PredefinedExpr
+Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
+Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
+
+// IntegerLiteral
+Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
+Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
+
+// CharacterLiteral
+Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
+Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
+
+// FloatingLiteral
+Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
+Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
+
+// ImaginaryLiteral
+Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
+Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
+
+// StringLiteral
+Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
+Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
+
+// ParenExpr
+Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
+Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
+
+// UnaryOperator
+Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
+Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
+
+// SizeOfAlignOfExpr
+Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
+  // If this is of a type and the type is a VLA type (and not a typedef), the
+  // size expression of the VLA needs to be treated as an executable expression.
+  // Why isn't this weirdness documented better in StmtIterator?
+  if (isArgumentType()) {
+    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
+                                   getArgumentType().getTypePtr()))
+      return child_iterator(T);
+    return child_iterator();
+  }
+  return child_iterator(&Argument.Ex);
+}
+Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
+  if (isArgumentType())
+    return child_iterator();
+  return child_iterator(&Argument.Ex + 1);
+}
+
+// ArraySubscriptExpr
+Stmt::child_iterator ArraySubscriptExpr::child_begin() {
+  return &SubExprs[0];
+}
+Stmt::child_iterator ArraySubscriptExpr::child_end() {
+  return &SubExprs[0]+END_EXPR;
+}
+
+// CallExpr
+Stmt::child_iterator CallExpr::child_begin() {
+  return &SubExprs[0];
+}
+Stmt::child_iterator CallExpr::child_end() {
+  return &SubExprs[0]+NumArgs+ARGS_START;
+}
+
+// MemberExpr
+Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
+Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
+
+// ExtVectorElementExpr
+Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
+Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
+
+// CompoundLiteralExpr
+Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
+Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
+
+// CastExpr
+Stmt::child_iterator CastExpr::child_begin() { return &Op; }
+Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
+
+// BinaryOperator
+Stmt::child_iterator BinaryOperator::child_begin() {
+  return &SubExprs[0];
+}
+Stmt::child_iterator BinaryOperator::child_end() {
+  return &SubExprs[0]+END_EXPR;
+}
+
+// ConditionalOperator
+Stmt::child_iterator ConditionalOperator::child_begin() {
+  return &SubExprs[0];
+}
+Stmt::child_iterator ConditionalOperator::child_end() {
+  return &SubExprs[0]+END_EXPR;
+}
+
+// AddrLabelExpr
+Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
+Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
+
+// StmtExpr
+Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
+Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
+
+// TypesCompatibleExpr
+Stmt::child_iterator TypesCompatibleExpr::child_begin() {
+  return child_iterator();
+}
+
+Stmt::child_iterator TypesCompatibleExpr::child_end() {
+  return child_iterator();
+}
+
+// ChooseExpr
+Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
+Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
+
+// GNUNullExpr
+Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
+Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
+
+// ShuffleVectorExpr
+Stmt::child_iterator ShuffleVectorExpr::child_begin() {
+  return &SubExprs[0];
+}
+Stmt::child_iterator ShuffleVectorExpr::child_end() {
+  return &SubExprs[0]+NumExprs;
+}
+
+// VAArgExpr
+Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
+Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
+
+// InitListExpr
+Stmt::child_iterator InitListExpr::child_begin() {
+  return InitExprs.size() ? &InitExprs[0] : 0;
+}
+Stmt::child_iterator InitListExpr::child_end() {
+  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
+}
+
+// DesignatedInitExpr
+Stmt::child_iterator DesignatedInitExpr::child_begin() {
+  char* Ptr = static_cast<char*>(static_cast<void *>(this));
+  Ptr += sizeof(DesignatedInitExpr);
+  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
+}
+Stmt::child_iterator DesignatedInitExpr::child_end() {
+  return child_iterator(&*child_begin() + NumSubExprs);
+}
+
+// ImplicitValueInitExpr
+Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
+  return child_iterator();
+}
+
+Stmt::child_iterator ImplicitValueInitExpr::child_end() {
+  return child_iterator();
+}
+
+// ParenListExpr
+Stmt::child_iterator ParenListExpr::child_begin() {
+  return &Exprs[0];
+}
+Stmt::child_iterator ParenListExpr::child_end() {
+  return &Exprs[0]+NumExprs;
+}
+
+// ObjCStringLiteral
+Stmt::child_iterator ObjCStringLiteral::child_begin() {
+  return &String;
+}
+Stmt::child_iterator ObjCStringLiteral::child_end() {
+  return &String+1;
+}
+
+// ObjCEncodeExpr
+Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
+Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
+
+// ObjCSelectorExpr
+Stmt::child_iterator ObjCSelectorExpr::child_begin() {
+  return child_iterator();
+}
+Stmt::child_iterator ObjCSelectorExpr::child_end() {
+  return child_iterator();
+}
+
+// ObjCProtocolExpr
+Stmt::child_iterator ObjCProtocolExpr::child_begin() {
+  return child_iterator();
+}
+Stmt::child_iterator ObjCProtocolExpr::child_end() {
+  return child_iterator();
+}
+
+// ObjCMessageExpr
+Stmt::child_iterator ObjCMessageExpr::child_begin() {
+  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
+}
+Stmt::child_iterator ObjCMessageExpr::child_end() {
+  return &SubExprs[0]+ARGS_START+getNumArgs();
+}
+
+// Blocks
+Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
+Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
+
+Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
+Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }