Check in LLVM r95781.
diff --git a/lib/CodeGen/CGExprScalar.cpp b/lib/CodeGen/CGExprScalar.cpp
new file mode 100644
index 0000000..cb3fb61
--- /dev/null
+++ b/lib/CodeGen/CGExprScalar.cpp
@@ -0,0 +1,1905 @@
+//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGObjCRuntime.h"
+#include "CodeGenModule.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/Constants.h"
+#include "llvm/Function.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/Module.h"
+#include "llvm/Support/CFG.h"
+#include "llvm/Target/TargetData.h"
+#include <cstdarg>
+
+using namespace clang;
+using namespace CodeGen;
+using llvm::Value;
+
+//===----------------------------------------------------------------------===//
+//                         Scalar Expression Emitter
+//===----------------------------------------------------------------------===//
+
+struct BinOpInfo {
+  Value *LHS;
+  Value *RHS;
+  QualType Ty;  // Computation Type.
+  const BinaryOperator *E;
+};
+
+namespace {
+class ScalarExprEmitter
+  : public StmtVisitor<ScalarExprEmitter, Value*> {
+  CodeGenFunction &CGF;
+  CGBuilderTy &Builder;
+  bool IgnoreResultAssign;
+  llvm::LLVMContext &VMContext;
+public:
+
+  ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
+    : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
+      VMContext(cgf.getLLVMContext()) {
+  }
+
+  //===--------------------------------------------------------------------===//
+  //                               Utilities
+  //===--------------------------------------------------------------------===//
+
+  bool TestAndClearIgnoreResultAssign() {
+    bool I = IgnoreResultAssign;
+    IgnoreResultAssign = false;
+    return I;
+  }
+
+  const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
+  LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
+  LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
+
+  Value *EmitLoadOfLValue(LValue LV, QualType T) {
+    return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
+  }
+
+  /// EmitLoadOfLValue - Given an expression with complex type that represents a
+  /// value l-value, this method emits the address of the l-value, then loads
+  /// and returns the result.
+  Value *EmitLoadOfLValue(const Expr *E) {
+    return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
+  }
+
+  /// EmitConversionToBool - Convert the specified expression value to a
+  /// boolean (i1) truth value.  This is equivalent to "Val != 0".
+  Value *EmitConversionToBool(Value *Src, QualType DstTy);
+
+  /// EmitScalarConversion - Emit a conversion from the specified type to the
+  /// specified destination type, both of which are LLVM scalar types.
+  Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
+
+  /// EmitComplexToScalarConversion - Emit a conversion from the specified
+  /// complex type to the specified destination type, where the destination type
+  /// is an LLVM scalar type.
+  Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
+                                       QualType SrcTy, QualType DstTy);
+
+  //===--------------------------------------------------------------------===//
+  //                            Visitor Methods
+  //===--------------------------------------------------------------------===//
+
+  Value *VisitStmt(Stmt *S) {
+    S->dump(CGF.getContext().getSourceManager());
+    assert(0 && "Stmt can't have complex result type!");
+    return 0;
+  }
+  Value *VisitExpr(Expr *S);
+  
+  Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
+
+  // Leaves.
+  Value *VisitIntegerLiteral(const IntegerLiteral *E) {
+    return llvm::ConstantInt::get(VMContext, E->getValue());
+  }
+  Value *VisitFloatingLiteral(const FloatingLiteral *E) {
+    return llvm::ConstantFP::get(VMContext, E->getValue());
+  }
+  Value *VisitCharacterLiteral(const CharacterLiteral *E) {
+    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
+  }
+  Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
+    return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
+  }
+  Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
+    return llvm::Constant::getNullValue(ConvertType(E->getType()));
+  }
+  Value *VisitGNUNullExpr(const GNUNullExpr *E) {
+    return llvm::Constant::getNullValue(ConvertType(E->getType()));
+  }
+  Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
+    return llvm::ConstantInt::get(ConvertType(E->getType()),
+                                  CGF.getContext().typesAreCompatible(
+                                    E->getArgType1(), E->getArgType2()));
+  }
+  Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
+  Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
+    llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
+    return Builder.CreateBitCast(V, ConvertType(E->getType()));
+  }
+
+  // l-values.
+  Value *VisitDeclRefExpr(DeclRefExpr *E) {
+    Expr::EvalResult Result;
+    if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
+      assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
+      return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
+    }
+    return EmitLoadOfLValue(E);
+  }
+  Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
+    return CGF.EmitObjCSelectorExpr(E);
+  }
+  Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
+    return CGF.EmitObjCProtocolExpr(E);
+  }
+  Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
+    return EmitLoadOfLValue(E);
+  }
+  Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
+    return EmitLoadOfLValue(E);
+  }
+  Value *VisitObjCImplicitSetterGetterRefExpr(
+                        ObjCImplicitSetterGetterRefExpr *E) {
+    return EmitLoadOfLValue(E);
+  }
+  Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
+    return CGF.EmitObjCMessageExpr(E).getScalarVal();
+  }
+
+  Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
+    LValue LV = CGF.EmitObjCIsaExpr(E);
+    Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
+    return V;
+  }
+
+  Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
+  Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
+  Value *VisitMemberExpr(MemberExpr *E);
+  Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
+  Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
+    return EmitLoadOfLValue(E);
+  }
+
+  Value *VisitInitListExpr(InitListExpr *E);
+
+  Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
+    return llvm::Constant::getNullValue(ConvertType(E->getType()));
+  }
+  Value *VisitCastExpr(CastExpr *E) {
+    // Make sure to evaluate VLA bounds now so that we have them for later.
+    if (E->getType()->isVariablyModifiedType())
+      CGF.EmitVLASize(E->getType());
+
+    return EmitCastExpr(E);
+  }
+  Value *EmitCastExpr(CastExpr *E);
+
+  Value *VisitCallExpr(const CallExpr *E) {
+    if (E->getCallReturnType()->isReferenceType())
+      return EmitLoadOfLValue(E);
+
+    return CGF.EmitCallExpr(E).getScalarVal();
+  }
+
+  Value *VisitStmtExpr(const StmtExpr *E);
+
+  Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
+
+  // Unary Operators.
+  Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre) {
+    LValue LV = EmitLValue(E->getSubExpr());
+    return CGF.EmitScalarPrePostIncDec(E, LV, isInc, isPre);
+  }
+  Value *VisitUnaryPostDec(const UnaryOperator *E) {
+    return VisitPrePostIncDec(E, false, false);
+  }
+  Value *VisitUnaryPostInc(const UnaryOperator *E) {
+    return VisitPrePostIncDec(E, true, false);
+  }
+  Value *VisitUnaryPreDec(const UnaryOperator *E) {
+    return VisitPrePostIncDec(E, false, true);
+  }
+  Value *VisitUnaryPreInc(const UnaryOperator *E) {
+    return VisitPrePostIncDec(E, true, true);
+  }
+  Value *VisitUnaryAddrOf(const UnaryOperator *E) {
+    return EmitLValue(E->getSubExpr()).getAddress();
+  }
+  Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
+  Value *VisitUnaryPlus(const UnaryOperator *E) {
+    // This differs from gcc, though, most likely due to a bug in gcc.
+    TestAndClearIgnoreResultAssign();
+    return Visit(E->getSubExpr());
+  }
+  Value *VisitUnaryMinus    (const UnaryOperator *E);
+  Value *VisitUnaryNot      (const UnaryOperator *E);
+  Value *VisitUnaryLNot     (const UnaryOperator *E);
+  Value *VisitUnaryReal     (const UnaryOperator *E);
+  Value *VisitUnaryImag     (const UnaryOperator *E);
+  Value *VisitUnaryExtension(const UnaryOperator *E) {
+    return Visit(E->getSubExpr());
+  }
+  Value *VisitUnaryOffsetOf(const UnaryOperator *E);
+
+  // C++
+  Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
+    return Visit(DAE->getExpr());
+  }
+  Value *VisitCXXThisExpr(CXXThisExpr *TE) {
+    return CGF.LoadCXXThis();
+  }
+
+  Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
+    return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
+  }
+  Value *VisitCXXNewExpr(const CXXNewExpr *E) {
+    return CGF.EmitCXXNewExpr(E);
+  }
+  Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
+    CGF.EmitCXXDeleteExpr(E);
+    return 0;
+  }
+  Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
+    return llvm::ConstantInt::get(Builder.getInt1Ty(),
+                                  E->EvaluateTrait(CGF.getContext()));
+  }
+
+  Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
+    // C++ [expr.pseudo]p1:
+    //   The result shall only be used as the operand for the function call
+    //   operator (), and the result of such a call has type void. The only
+    //   effect is the evaluation of the postfix-expression before the dot or
+    //   arrow.
+    CGF.EmitScalarExpr(E->getBase());
+    return 0;
+  }
+
+  Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
+    return llvm::Constant::getNullValue(ConvertType(E->getType()));
+  }
+
+  Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
+    CGF.EmitCXXThrowExpr(E);
+    return 0;
+  }
+
+  // Binary Operators.
+  Value *EmitMul(const BinOpInfo &Ops) {
+    if (CGF.getContext().getLangOptions().OverflowChecking
+        && Ops.Ty->isSignedIntegerType())
+      return EmitOverflowCheckedBinOp(Ops);
+    if (Ops.LHS->getType()->isFPOrFPVector())
+      return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
+    return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
+  }
+  /// Create a binary op that checks for overflow.
+  /// Currently only supports +, - and *.
+  Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
+  Value *EmitDiv(const BinOpInfo &Ops);
+  Value *EmitRem(const BinOpInfo &Ops);
+  Value *EmitAdd(const BinOpInfo &Ops);
+  Value *EmitSub(const BinOpInfo &Ops);
+  Value *EmitShl(const BinOpInfo &Ops);
+  Value *EmitShr(const BinOpInfo &Ops);
+  Value *EmitAnd(const BinOpInfo &Ops) {
+    return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
+  }
+  Value *EmitXor(const BinOpInfo &Ops) {
+    return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
+  }
+  Value *EmitOr (const BinOpInfo &Ops) {
+    return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
+  }
+
+  BinOpInfo EmitBinOps(const BinaryOperator *E);
+  Value *EmitCompoundAssign(const CompoundAssignOperator *E,
+                            Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
+
+  // Binary operators and binary compound assignment operators.
+#define HANDLEBINOP(OP) \
+  Value *VisitBin ## OP(const BinaryOperator *E) {                         \
+    return Emit ## OP(EmitBinOps(E));                                      \
+  }                                                                        \
+  Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
+    return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
+  }
+  HANDLEBINOP(Mul)
+  HANDLEBINOP(Div)
+  HANDLEBINOP(Rem)
+  HANDLEBINOP(Add)
+  HANDLEBINOP(Sub)
+  HANDLEBINOP(Shl)
+  HANDLEBINOP(Shr)
+  HANDLEBINOP(And)
+  HANDLEBINOP(Xor)
+  HANDLEBINOP(Or)
+#undef HANDLEBINOP
+
+  // Comparisons.
+  Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
+                     unsigned SICmpOpc, unsigned FCmpOpc);
+#define VISITCOMP(CODE, UI, SI, FP) \
+    Value *VisitBin##CODE(const BinaryOperator *E) { \
+      return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
+                         llvm::FCmpInst::FP); }
+  VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
+  VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
+  VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
+  VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
+  VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
+  VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
+#undef VISITCOMP
+
+  Value *VisitBinAssign     (const BinaryOperator *E);
+
+  Value *VisitBinLAnd       (const BinaryOperator *E);
+  Value *VisitBinLOr        (const BinaryOperator *E);
+  Value *VisitBinComma      (const BinaryOperator *E);
+
+  Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
+  Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
+
+  // Other Operators.
+  Value *VisitBlockExpr(const BlockExpr *BE);
+  Value *VisitConditionalOperator(const ConditionalOperator *CO);
+  Value *VisitChooseExpr(ChooseExpr *CE);
+  Value *VisitVAArgExpr(VAArgExpr *VE);
+  Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
+    return CGF.EmitObjCStringLiteral(E);
+  }
+};
+}  // end anonymous namespace.
+
+//===----------------------------------------------------------------------===//
+//                                Utilities
+//===----------------------------------------------------------------------===//
+
+/// EmitConversionToBool - Convert the specified expression value to a
+/// boolean (i1) truth value.  This is equivalent to "Val != 0".
+Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
+  assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
+
+  if (SrcType->isRealFloatingType()) {
+    // Compare against 0.0 for fp scalars.
+    llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
+    return Builder.CreateFCmpUNE(Src, Zero, "tobool");
+  }
+
+  if (SrcType->isMemberPointerType()) {
+    // Compare against -1.
+    llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
+    return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
+  }
+
+  assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
+         "Unknown scalar type to convert");
+
+  // Because of the type rules of C, we often end up computing a logical value,
+  // then zero extending it to int, then wanting it as a logical value again.
+  // Optimize this common case.
+  if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
+    if (ZI->getOperand(0)->getType() ==
+        llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
+      Value *Result = ZI->getOperand(0);
+      // If there aren't any more uses, zap the instruction to save space.
+      // Note that there can be more uses, for example if this
+      // is the result of an assignment.
+      if (ZI->use_empty())
+        ZI->eraseFromParent();
+      return Result;
+    }
+  }
+
+  // Compare against an integer or pointer null.
+  llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
+  return Builder.CreateICmpNE(Src, Zero, "tobool");
+}
+
+/// EmitScalarConversion - Emit a conversion from the specified type to the
+/// specified destination type, both of which are LLVM scalar types.
+Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
+                                               QualType DstType) {
+  SrcType = CGF.getContext().getCanonicalType(SrcType);
+  DstType = CGF.getContext().getCanonicalType(DstType);
+  if (SrcType == DstType) return Src;
+
+  if (DstType->isVoidType()) return 0;
+
+  llvm::LLVMContext &VMContext = CGF.getLLVMContext();
+
+  // Handle conversions to bool first, they are special: comparisons against 0.
+  if (DstType->isBooleanType())
+    return EmitConversionToBool(Src, SrcType);
+
+  const llvm::Type *DstTy = ConvertType(DstType);
+
+  // Ignore conversions like int -> uint.
+  if (Src->getType() == DstTy)
+    return Src;
+
+  // Handle pointer conversions next: pointers can only be converted to/from
+  // other pointers and integers. Check for pointer types in terms of LLVM, as
+  // some native types (like Obj-C id) may map to a pointer type.
+  if (isa<llvm::PointerType>(DstTy)) {
+    // The source value may be an integer, or a pointer.
+    if (isa<llvm::PointerType>(Src->getType()))
+      return Builder.CreateBitCast(Src, DstTy, "conv");
+
+    assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
+    // First, convert to the correct width so that we control the kind of
+    // extension.
+    const llvm::Type *MiddleTy =
+          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
+    bool InputSigned = SrcType->isSignedIntegerType();
+    llvm::Value* IntResult =
+        Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
+    // Then, cast to pointer.
+    return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
+  }
+
+  if (isa<llvm::PointerType>(Src->getType())) {
+    // Must be an ptr to int cast.
+    assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
+    return Builder.CreatePtrToInt(Src, DstTy, "conv");
+  }
+
+  // A scalar can be splatted to an extended vector of the same element type
+  if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
+    // Cast the scalar to element type
+    QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
+    llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
+
+    // Insert the element in element zero of an undef vector
+    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
+    llvm::Value *Idx =
+        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
+    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
+
+    // Splat the element across to all elements
+    llvm::SmallVector<llvm::Constant*, 16> Args;
+    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
+    for (unsigned i = 0; i < NumElements; i++)
+      Args.push_back(llvm::ConstantInt::get(
+                                        llvm::Type::getInt32Ty(VMContext), 0));
+
+    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
+    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
+    return Yay;
+  }
+
+  // Allow bitcast from vector to integer/fp of the same size.
+  if (isa<llvm::VectorType>(Src->getType()) ||
+      isa<llvm::VectorType>(DstTy))
+    return Builder.CreateBitCast(Src, DstTy, "conv");
+
+  // Finally, we have the arithmetic types: real int/float.
+  if (isa<llvm::IntegerType>(Src->getType())) {
+    bool InputSigned = SrcType->isSignedIntegerType();
+    if (isa<llvm::IntegerType>(DstTy))
+      return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
+    else if (InputSigned)
+      return Builder.CreateSIToFP(Src, DstTy, "conv");
+    else
+      return Builder.CreateUIToFP(Src, DstTy, "conv");
+  }
+
+  assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
+  if (isa<llvm::IntegerType>(DstTy)) {
+    if (DstType->isSignedIntegerType())
+      return Builder.CreateFPToSI(Src, DstTy, "conv");
+    else
+      return Builder.CreateFPToUI(Src, DstTy, "conv");
+  }
+
+  assert(DstTy->isFloatingPoint() && "Unknown real conversion");
+  if (DstTy->getTypeID() < Src->getType()->getTypeID())
+    return Builder.CreateFPTrunc(Src, DstTy, "conv");
+  else
+    return Builder.CreateFPExt(Src, DstTy, "conv");
+}
+
+/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
+/// type to the specified destination type, where the destination type is an
+/// LLVM scalar type.
+Value *ScalarExprEmitter::
+EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
+                              QualType SrcTy, QualType DstTy) {
+  // Get the source element type.
+  SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
+
+  // Handle conversions to bool first, they are special: comparisons against 0.
+  if (DstTy->isBooleanType()) {
+    //  Complex != 0  -> (Real != 0) | (Imag != 0)
+    Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
+    Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
+    return Builder.CreateOr(Src.first, Src.second, "tobool");
+  }
+
+  // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
+  // the imaginary part of the complex value is discarded and the value of the
+  // real part is converted according to the conversion rules for the
+  // corresponding real type.
+  return EmitScalarConversion(Src.first, SrcTy, DstTy);
+}
+
+
+//===----------------------------------------------------------------------===//
+//                            Visitor Methods
+//===----------------------------------------------------------------------===//
+
+Value *ScalarExprEmitter::VisitExpr(Expr *E) {
+  CGF.ErrorUnsupported(E, "scalar expression");
+  if (E->getType()->isVoidType())
+    return 0;
+  return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
+}
+
+Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
+  llvm::SmallVector<llvm::Constant*, 32> indices;
+  for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
+    indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
+  }
+  Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
+  Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
+  Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
+  return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
+}
+Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
+  Expr::EvalResult Result;
+  if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
+    if (E->isArrow())
+      CGF.EmitScalarExpr(E->getBase());
+    else
+      EmitLValue(E->getBase());
+    return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
+  }
+  return EmitLoadOfLValue(E);
+}
+
+Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
+  TestAndClearIgnoreResultAssign();
+
+  // Emit subscript expressions in rvalue context's.  For most cases, this just
+  // loads the lvalue formed by the subscript expr.  However, we have to be
+  // careful, because the base of a vector subscript is occasionally an rvalue,
+  // so we can't get it as an lvalue.
+  if (!E->getBase()->getType()->isVectorType())
+    return EmitLoadOfLValue(E);
+
+  // Handle the vector case.  The base must be a vector, the index must be an
+  // integer value.
+  Value *Base = Visit(E->getBase());
+  Value *Idx  = Visit(E->getIdx());
+  bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
+  Idx = Builder.CreateIntCast(Idx,
+                              llvm::Type::getInt32Ty(CGF.getLLVMContext()),
+                              IdxSigned,
+                              "vecidxcast");
+  return Builder.CreateExtractElement(Base, Idx, "vecext");
+}
+
+static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
+                                  unsigned Off, const llvm::Type *I32Ty) {
+  int MV = SVI->getMaskValue(Idx);
+  if (MV == -1) 
+    return llvm::UndefValue::get(I32Ty);
+  return llvm::ConstantInt::get(I32Ty, Off+MV);
+}
+
+Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
+  bool Ignore = TestAndClearIgnoreResultAssign();
+  (void)Ignore;
+  assert (Ignore == false && "init list ignored");
+  unsigned NumInitElements = E->getNumInits();
+  
+  if (E->hadArrayRangeDesignator())
+    CGF.ErrorUnsupported(E, "GNU array range designator extension");
+  
+  const llvm::VectorType *VType =
+    dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
+  
+  // We have a scalar in braces. Just use the first element.
+  if (!VType)
+    return Visit(E->getInit(0));
+  
+  unsigned ResElts = VType->getNumElements();
+  const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext());
+  
+  // Loop over initializers collecting the Value for each, and remembering 
+  // whether the source was swizzle (ExtVectorElementExpr).  This will allow
+  // us to fold the shuffle for the swizzle into the shuffle for the vector
+  // initializer, since LLVM optimizers generally do not want to touch
+  // shuffles.
+  unsigned CurIdx = 0;
+  bool VIsUndefShuffle = false;
+  llvm::Value *V = llvm::UndefValue::get(VType);
+  for (unsigned i = 0; i != NumInitElements; ++i) {
+    Expr *IE = E->getInit(i);
+    Value *Init = Visit(IE);
+    llvm::SmallVector<llvm::Constant*, 16> Args;
+    
+    const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
+    
+    // Handle scalar elements.  If the scalar initializer is actually one
+    // element of a different vector of the same width, use shuffle instead of 
+    // extract+insert.
+    if (!VVT) {
+      if (isa<ExtVectorElementExpr>(IE)) {
+        llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
+
+        if (EI->getVectorOperandType()->getNumElements() == ResElts) {
+          llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
+          Value *LHS = 0, *RHS = 0;
+          if (CurIdx == 0) {
+            // insert into undef -> shuffle (src, undef)
+            Args.push_back(C);
+            for (unsigned j = 1; j != ResElts; ++j)
+              Args.push_back(llvm::UndefValue::get(I32Ty));
+
+            LHS = EI->getVectorOperand();
+            RHS = V;
+            VIsUndefShuffle = true;
+          } else if (VIsUndefShuffle) {
+            // insert into undefshuffle && size match -> shuffle (v, src)
+            llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
+            for (unsigned j = 0; j != CurIdx; ++j)
+              Args.push_back(getMaskElt(SVV, j, 0, I32Ty));
+            Args.push_back(llvm::ConstantInt::get(I32Ty, 
+                                                  ResElts + C->getZExtValue()));
+            for (unsigned j = CurIdx + 1; j != ResElts; ++j)
+              Args.push_back(llvm::UndefValue::get(I32Ty));
+            
+            LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
+            RHS = EI->getVectorOperand();
+            VIsUndefShuffle = false;
+          }
+          if (!Args.empty()) {
+            llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
+            V = Builder.CreateShuffleVector(LHS, RHS, Mask);
+            ++CurIdx;
+            continue;
+          }
+        }
+      }
+      Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
+      V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
+      VIsUndefShuffle = false;
+      ++CurIdx;
+      continue;
+    }
+    
+    unsigned InitElts = VVT->getNumElements();
+
+    // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 
+    // input is the same width as the vector being constructed, generate an
+    // optimized shuffle of the swizzle input into the result.
+    unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
+    if (isa<ExtVectorElementExpr>(IE)) {
+      llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
+      Value *SVOp = SVI->getOperand(0);
+      const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
+      
+      if (OpTy->getNumElements() == ResElts) {
+        for (unsigned j = 0; j != CurIdx; ++j) {
+          // If the current vector initializer is a shuffle with undef, merge
+          // this shuffle directly into it.
+          if (VIsUndefShuffle) {
+            Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
+                                      I32Ty));
+          } else {
+            Args.push_back(llvm::ConstantInt::get(I32Ty, j));
+          }
+        }
+        for (unsigned j = 0, je = InitElts; j != je; ++j)
+          Args.push_back(getMaskElt(SVI, j, Offset, I32Ty));
+        for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
+          Args.push_back(llvm::UndefValue::get(I32Ty));
+
+        if (VIsUndefShuffle)
+          V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
+
+        Init = SVOp;
+      }
+    }
+
+    // Extend init to result vector length, and then shuffle its contribution
+    // to the vector initializer into V.
+    if (Args.empty()) {
+      for (unsigned j = 0; j != InitElts; ++j)
+        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
+      for (unsigned j = InitElts; j != ResElts; ++j)
+        Args.push_back(llvm::UndefValue::get(I32Ty));
+      llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
+      Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
+                                         Mask, "vext");
+
+      Args.clear();
+      for (unsigned j = 0; j != CurIdx; ++j)
+        Args.push_back(llvm::ConstantInt::get(I32Ty, j));
+      for (unsigned j = 0; j != InitElts; ++j)
+        Args.push_back(llvm::ConstantInt::get(I32Ty, j+Offset));
+      for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
+        Args.push_back(llvm::UndefValue::get(I32Ty));
+    }
+
+    // If V is undef, make sure it ends up on the RHS of the shuffle to aid
+    // merging subsequent shuffles into this one.
+    if (CurIdx == 0)
+      std::swap(V, Init);
+    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
+    V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
+    VIsUndefShuffle = isa<llvm::UndefValue>(Init);
+    CurIdx += InitElts;
+  }
+  
+  // FIXME: evaluate codegen vs. shuffling against constant null vector.
+  // Emit remaining default initializers.
+  const llvm::Type *EltTy = VType->getElementType();
+  
+  // Emit remaining default initializers
+  for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
+    Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
+    llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
+    V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
+  }
+  return V;
+}
+
+static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
+  const Expr *E = CE->getSubExpr();
+  
+  if (isa<CXXThisExpr>(E)) {
+    // We always assume that 'this' is never null.
+    return false;
+  }
+  
+  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
+    // And that lvalue casts are never null.
+    if (ICE->isLvalueCast())
+      return false;
+  }
+
+  return true;
+}
+
+// VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
+// have to handle a more broad range of conversions than explicit casts, as they
+// handle things like function to ptr-to-function decay etc.
+Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
+  Expr *E = CE->getSubExpr();
+  QualType DestTy = CE->getType();
+  CastExpr::CastKind Kind = CE->getCastKind();
+  
+  if (!DestTy->isVoidType())
+    TestAndClearIgnoreResultAssign();
+
+  // Since almost all cast kinds apply to scalars, this switch doesn't have
+  // a default case, so the compiler will warn on a missing case.  The cases
+  // are in the same order as in the CastKind enum.
+  switch (Kind) {
+  case CastExpr::CK_Unknown:
+    // FIXME: All casts should have a known kind!
+    //assert(0 && "Unknown cast kind!");
+    break;
+
+  case CastExpr::CK_AnyPointerToObjCPointerCast:
+  case CastExpr::CK_AnyPointerToBlockPointerCast:
+  case CastExpr::CK_BitCast: {
+    Value *Src = Visit(const_cast<Expr*>(E));
+    return Builder.CreateBitCast(Src, ConvertType(DestTy));
+  }
+  case CastExpr::CK_NoOp:
+  case CastExpr::CK_UserDefinedConversion:
+    return Visit(const_cast<Expr*>(E));
+
+  case CastExpr::CK_BaseToDerived: {
+    const CXXRecordDecl *BaseClassDecl = 
+      E->getType()->getCXXRecordDeclForPointerType();
+    const CXXRecordDecl *DerivedClassDecl = 
+      DestTy->getCXXRecordDeclForPointerType();
+    
+    Value *Src = Visit(const_cast<Expr*>(E));
+    
+    bool NullCheckValue = ShouldNullCheckClassCastValue(CE);
+    return CGF.GetAddressOfDerivedClass(Src, BaseClassDecl, DerivedClassDecl, 
+                                        NullCheckValue);
+  }
+  case CastExpr::CK_DerivedToBase: {
+    const RecordType *DerivedClassTy = 
+      E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
+    CXXRecordDecl *DerivedClassDecl = 
+      cast<CXXRecordDecl>(DerivedClassTy->getDecl());
+
+    const RecordType *BaseClassTy = 
+      DestTy->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
+    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseClassTy->getDecl());
+    
+    Value *Src = Visit(const_cast<Expr*>(E));
+
+    bool NullCheckValue = ShouldNullCheckClassCastValue(CE);
+    return CGF.GetAddressOfBaseClass(Src, DerivedClassDecl, BaseClassDecl,
+                                     NullCheckValue);
+  }
+  case CastExpr::CK_Dynamic: {
+    Value *V = Visit(const_cast<Expr*>(E));
+    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
+    return CGF.EmitDynamicCast(V, DCE);
+  }
+  case CastExpr::CK_ToUnion:
+    assert(0 && "Should be unreachable!");
+    break;
+
+  case CastExpr::CK_ArrayToPointerDecay: {
+    assert(E->getType()->isArrayType() &&
+           "Array to pointer decay must have array source type!");
+
+    Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
+
+    // Note that VLA pointers are always decayed, so we don't need to do
+    // anything here.
+    if (!E->getType()->isVariableArrayType()) {
+      assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
+      assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
+                                 ->getElementType()) &&
+             "Expected pointer to array");
+      V = Builder.CreateStructGEP(V, 0, "arraydecay");
+    }
+
+    return V;
+  }
+  case CastExpr::CK_FunctionToPointerDecay:
+    return EmitLValue(E).getAddress();
+
+  case CastExpr::CK_NullToMemberPointer:
+    return CGF.CGM.EmitNullConstant(DestTy);
+
+  case CastExpr::CK_BaseToDerivedMemberPointer:
+  case CastExpr::CK_DerivedToBaseMemberPointer: {
+    Value *Src = Visit(E);
+
+    // See if we need to adjust the pointer.
+    const CXXRecordDecl *BaseDecl = 
+      cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()->
+                          getClass()->getAs<RecordType>()->getDecl());
+    const CXXRecordDecl *DerivedDecl = 
+      cast<CXXRecordDecl>(CE->getType()->getAs<MemberPointerType>()->
+                          getClass()->getAs<RecordType>()->getDecl());
+    if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
+      std::swap(DerivedDecl, BaseDecl);
+
+    if (llvm::Constant *Adj = 
+          CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl, BaseDecl)) {
+      if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
+        Src = Builder.CreateSub(Src, Adj, "adj");
+      else
+        Src = Builder.CreateAdd(Src, Adj, "adj");
+    }
+    return Src;
+  }
+
+  case CastExpr::CK_ConstructorConversion:
+    assert(0 && "Should be unreachable!");
+    break;
+
+  case CastExpr::CK_IntegralToPointer: {
+    Value *Src = Visit(const_cast<Expr*>(E));
+    
+    // First, convert to the correct width so that we control the kind of
+    // extension.
+    const llvm::Type *MiddleTy =
+      llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
+    bool InputSigned = E->getType()->isSignedIntegerType();
+    llvm::Value* IntResult =
+      Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
+    
+    return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
+  }
+  case CastExpr::CK_PointerToIntegral: {
+    Value *Src = Visit(const_cast<Expr*>(E));
+    return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
+  }
+  case CastExpr::CK_ToVoid: {
+    CGF.EmitAnyExpr(E, 0, false, true);
+    return 0;
+  }
+  case CastExpr::CK_VectorSplat: {
+    const llvm::Type *DstTy = ConvertType(DestTy);
+    Value *Elt = Visit(const_cast<Expr*>(E));
+
+    // Insert the element in element zero of an undef vector
+    llvm::Value *UnV = llvm::UndefValue::get(DstTy);
+    llvm::Value *Idx =
+        llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
+    UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
+
+    // Splat the element across to all elements
+    llvm::SmallVector<llvm::Constant*, 16> Args;
+    unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
+    for (unsigned i = 0; i < NumElements; i++)
+      Args.push_back(llvm::ConstantInt::get(
+                                        llvm::Type::getInt32Ty(VMContext), 0));
+
+    llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
+    llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
+    return Yay;
+  }
+  case CastExpr::CK_IntegralCast:
+  case CastExpr::CK_IntegralToFloating:
+  case CastExpr::CK_FloatingToIntegral:
+  case CastExpr::CK_FloatingCast:
+    return EmitScalarConversion(Visit(E), E->getType(), DestTy);
+
+  case CastExpr::CK_MemberPointerToBoolean:
+    return CGF.EvaluateExprAsBool(E);
+  }
+
+  // Handle cases where the source is an non-complex type.
+
+  if (!CGF.hasAggregateLLVMType(E->getType())) {
+    Value *Src = Visit(const_cast<Expr*>(E));
+
+    // Use EmitScalarConversion to perform the conversion.
+    return EmitScalarConversion(Src, E->getType(), DestTy);
+  }
+
+  if (E->getType()->isAnyComplexType()) {
+    // Handle cases where the source is a complex type.
+    bool IgnoreImag = true;
+    bool IgnoreImagAssign = true;
+    bool IgnoreReal = IgnoreResultAssign;
+    bool IgnoreRealAssign = IgnoreResultAssign;
+    if (DestTy->isBooleanType())
+      IgnoreImagAssign = IgnoreImag = false;
+    else if (DestTy->isVoidType()) {
+      IgnoreReal = IgnoreImag = false;
+      IgnoreRealAssign = IgnoreImagAssign = true;
+    }
+    CodeGenFunction::ComplexPairTy V
+      = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
+                            IgnoreImagAssign);
+    return EmitComplexToScalarConversion(V, E->getType(), DestTy);
+  }
+
+  // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
+  // evaluate the result and return.
+  CGF.EmitAggExpr(E, 0, false, true);
+  return 0;
+}
+
+Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
+  return CGF.EmitCompoundStmt(*E->getSubStmt(),
+                              !E->getType()->isVoidType()).getScalarVal();
+}
+
+Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
+  llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
+  if (E->getType().isObjCGCWeak())
+    return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
+  return Builder.CreateLoad(V, "tmp");
+}
+
+//===----------------------------------------------------------------------===//
+//                             Unary Operators
+//===----------------------------------------------------------------------===//
+
+Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
+  TestAndClearIgnoreResultAssign();
+  Value *Op = Visit(E->getSubExpr());
+  if (Op->getType()->isFPOrFPVector())
+    return Builder.CreateFNeg(Op, "neg");
+  return Builder.CreateNeg(Op, "neg");
+}
+
+Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
+  TestAndClearIgnoreResultAssign();
+  Value *Op = Visit(E->getSubExpr());
+  return Builder.CreateNot(Op, "neg");
+}
+
+Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
+  // Compare operand to zero.
+  Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
+
+  // Invert value.
+  // TODO: Could dynamically modify easy computations here.  For example, if
+  // the operand is an icmp ne, turn into icmp eq.
+  BoolVal = Builder.CreateNot(BoolVal, "lnot");
+
+  // ZExt result to the expr type.
+  return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
+}
+
+/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
+/// argument of the sizeof expression as an integer.
+Value *
+ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
+  QualType TypeToSize = E->getTypeOfArgument();
+  if (E->isSizeOf()) {
+    if (const VariableArrayType *VAT =
+          CGF.getContext().getAsVariableArrayType(TypeToSize)) {
+      if (E->isArgumentType()) {
+        // sizeof(type) - make sure to emit the VLA size.
+        CGF.EmitVLASize(TypeToSize);
+      } else {
+        // C99 6.5.3.4p2: If the argument is an expression of type
+        // VLA, it is evaluated.
+        CGF.EmitAnyExpr(E->getArgumentExpr());
+      }
+
+      return CGF.GetVLASize(VAT);
+    }
+  }
+
+  // If this isn't sizeof(vla), the result must be constant; use the constant
+  // folding logic so we don't have to duplicate it here.
+  Expr::EvalResult Result;
+  E->Evaluate(Result, CGF.getContext());
+  return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
+}
+
+Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
+  Expr *Op = E->getSubExpr();
+  if (Op->getType()->isAnyComplexType())
+    return CGF.EmitComplexExpr(Op, false, true, false, true).first;
+  return Visit(Op);
+}
+Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
+  Expr *Op = E->getSubExpr();
+  if (Op->getType()->isAnyComplexType())
+    return CGF.EmitComplexExpr(Op, true, false, true, false).second;
+
+  // __imag on a scalar returns zero.  Emit the subexpr to ensure side
+  // effects are evaluated, but not the actual value.
+  if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
+    CGF.EmitLValue(Op);
+  else
+    CGF.EmitScalarExpr(Op, true);
+  return llvm::Constant::getNullValue(ConvertType(E->getType()));
+}
+
+Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
+  Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
+  const llvm::Type* ResultType = ConvertType(E->getType());
+  return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
+}
+
+//===----------------------------------------------------------------------===//
+//                           Binary Operators
+//===----------------------------------------------------------------------===//
+
+BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
+  TestAndClearIgnoreResultAssign();
+  BinOpInfo Result;
+  Result.LHS = Visit(E->getLHS());
+  Result.RHS = Visit(E->getRHS());
+  Result.Ty  = E->getType();
+  Result.E = E;
+  return Result;
+}
+
+Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
+                      Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
+  bool Ignore = TestAndClearIgnoreResultAssign();
+  QualType LHSTy = E->getLHS()->getType();
+
+  BinOpInfo OpInfo;
+
+  if (E->getComputationResultType()->isAnyComplexType()) {
+    // This needs to go through the complex expression emitter, but it's a tad
+    // complicated to do that... I'm leaving it out for now.  (Note that we do
+    // actually need the imaginary part of the RHS for multiplication and
+    // division.)
+    CGF.ErrorUnsupported(E, "complex compound assignment");
+    return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
+  }
+
+  // Emit the RHS first.  __block variables need to have the rhs evaluated
+  // first, plus this should improve codegen a little.
+  OpInfo.RHS = Visit(E->getRHS());
+  OpInfo.Ty = E->getComputationResultType();
+  OpInfo.E = E;
+  // Load/convert the LHS.
+  LValue LHSLV = EmitCheckedLValue(E->getLHS());
+  OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
+  OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
+                                    E->getComputationLHSType());
+
+  // Expand the binary operator.
+  Value *Result = (this->*Func)(OpInfo);
+
+  // Convert the result back to the LHS type.
+  Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
+
+  // Store the result value into the LHS lvalue. Bit-fields are handled
+  // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
+  // 'An assignment expression has the value of the left operand after the
+  // assignment...'.
+  if (LHSLV.isBitfield()) {
+    if (!LHSLV.isVolatileQualified()) {
+      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
+                                         &Result);
+      return Result;
+    } else
+      CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
+  } else
+    CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
+  if (Ignore)
+    return 0;
+  return EmitLoadOfLValue(LHSLV, E->getType());
+}
+
+
+Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
+  if (Ops.LHS->getType()->isFPOrFPVector())
+    return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
+  else if (Ops.Ty->isUnsignedIntegerType())
+    return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
+  else
+    return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
+}
+
+Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
+  // Rem in C can't be a floating point type: C99 6.5.5p2.
+  if (Ops.Ty->isUnsignedIntegerType())
+    return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
+  else
+    return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
+}
+
+Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
+  unsigned IID;
+  unsigned OpID = 0;
+
+  switch (Ops.E->getOpcode()) {
+  case BinaryOperator::Add:
+  case BinaryOperator::AddAssign:
+    OpID = 1;
+    IID = llvm::Intrinsic::sadd_with_overflow;
+    break;
+  case BinaryOperator::Sub:
+  case BinaryOperator::SubAssign:
+    OpID = 2;
+    IID = llvm::Intrinsic::ssub_with_overflow;
+    break;
+  case BinaryOperator::Mul:
+  case BinaryOperator::MulAssign:
+    OpID = 3;
+    IID = llvm::Intrinsic::smul_with_overflow;
+    break;
+  default:
+    assert(false && "Unsupported operation for overflow detection");
+    IID = 0;
+  }
+  OpID <<= 1;
+  OpID |= 1;
+
+  const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
+
+  llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
+
+  Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
+  Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
+  Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
+
+  // Branch in case of overflow.
+  llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
+  llvm::BasicBlock *overflowBB =
+    CGF.createBasicBlock("overflow", CGF.CurFn);
+  llvm::BasicBlock *continueBB =
+    CGF.createBasicBlock("overflow.continue", CGF.CurFn);
+
+  Builder.CreateCondBr(overflow, overflowBB, continueBB);
+
+  // Handle overflow
+
+  Builder.SetInsertPoint(overflowBB);
+
+  // Handler is:
+  // long long *__overflow_handler)(long long a, long long b, char op,
+  // char width)
+  std::vector<const llvm::Type*> handerArgTypes;
+  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
+  handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
+  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
+  handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
+  llvm::FunctionType *handlerTy = llvm::FunctionType::get(
+      llvm::Type::getInt64Ty(VMContext), handerArgTypes, false);
+  llvm::Value *handlerFunction =
+    CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
+        llvm::PointerType::getUnqual(handlerTy));
+  handlerFunction = Builder.CreateLoad(handlerFunction);
+
+  llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
+      Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
+      Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
+      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
+      llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
+        cast<llvm::IntegerType>(opTy)->getBitWidth()));
+
+  handlerResult = Builder.CreateTrunc(handlerResult, opTy);
+
+  Builder.CreateBr(continueBB);
+
+  // Set up the continuation
+  Builder.SetInsertPoint(continueBB);
+  // Get the correct result
+  llvm::PHINode *phi = Builder.CreatePHI(opTy);
+  phi->reserveOperandSpace(2);
+  phi->addIncoming(result, initialBB);
+  phi->addIncoming(handlerResult, overflowBB);
+
+  return phi;
+}
+
+Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
+  if (!Ops.Ty->isAnyPointerType()) {
+    if (CGF.getContext().getLangOptions().OverflowChecking &&
+        Ops.Ty->isSignedIntegerType())
+      return EmitOverflowCheckedBinOp(Ops);
+
+    if (Ops.LHS->getType()->isFPOrFPVector())
+      return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
+
+    // Signed integer overflow is undefined behavior.
+    if (Ops.Ty->isSignedIntegerType())
+      return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
+
+    return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
+  }
+
+  if (Ops.Ty->isPointerType() &&
+      Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
+    // The amount of the addition needs to account for the VLA size
+    CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
+  }
+  Value *Ptr, *Idx;
+  Expr *IdxExp;
+  const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
+  const ObjCObjectPointerType *OPT =
+    Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>();
+  if (PT || OPT) {
+    Ptr = Ops.LHS;
+    Idx = Ops.RHS;
+    IdxExp = Ops.E->getRHS();
+  } else {  // int + pointer
+    PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
+    OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>();
+    assert((PT || OPT) && "Invalid add expr");
+    Ptr = Ops.RHS;
+    Idx = Ops.LHS;
+    IdxExp = Ops.E->getLHS();
+  }
+
+  unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
+  if (Width < CGF.LLVMPointerWidth) {
+    // Zero or sign extend the pointer value based on whether the index is
+    // signed or not.
+    const llvm::Type *IdxType =
+        llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
+    if (IdxExp->getType()->isSignedIntegerType())
+      Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
+    else
+      Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
+  }
+  const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
+  // Handle interface types, which are not represented with a concrete type.
+  if (const ObjCInterfaceType *OIT = dyn_cast<ObjCInterfaceType>(ElementType)) {
+    llvm::Value *InterfaceSize =
+      llvm::ConstantInt::get(Idx->getType(),
+          CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
+    Idx = Builder.CreateMul(Idx, InterfaceSize);
+    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
+    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
+    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
+    return Builder.CreateBitCast(Res, Ptr->getType());
+  }
+
+  // Explicitly handle GNU void* and function pointer arithmetic extensions. The
+  // GNU void* casts amount to no-ops since our void* type is i8*, but this is
+  // future proof.
+  if (ElementType->isVoidType() || ElementType->isFunctionType()) {
+    const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
+    Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
+    Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
+    return Builder.CreateBitCast(Res, Ptr->getType());
+  }
+
+  return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
+}
+
+Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
+  if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
+    if (CGF.getContext().getLangOptions().OverflowChecking
+        && Ops.Ty->isSignedIntegerType())
+      return EmitOverflowCheckedBinOp(Ops);
+
+    if (Ops.LHS->getType()->isFPOrFPVector())
+      return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
+    return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
+  }
+
+  if (Ops.E->getLHS()->getType()->isPointerType() &&
+      Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
+    // The amount of the addition needs to account for the VLA size for
+    // ptr-int
+    // The amount of the division needs to account for the VLA size for
+    // ptr-ptr.
+    CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
+  }
+
+  const QualType LHSType = Ops.E->getLHS()->getType();
+  const QualType LHSElementType = LHSType->getPointeeType();
+  if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
+    // pointer - int
+    Value *Idx = Ops.RHS;
+    unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
+    if (Width < CGF.LLVMPointerWidth) {
+      // Zero or sign extend the pointer value based on whether the index is
+      // signed or not.
+      const llvm::Type *IdxType =
+          llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
+      if (Ops.E->getRHS()->getType()->isSignedIntegerType())
+        Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
+      else
+        Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
+    }
+    Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
+
+    // Handle interface types, which are not represented with a concrete type.
+    if (const ObjCInterfaceType *OIT =
+        dyn_cast<ObjCInterfaceType>(LHSElementType)) {
+      llvm::Value *InterfaceSize =
+        llvm::ConstantInt::get(Idx->getType(),
+                               CGF.getContext().
+                                 getTypeSizeInChars(OIT).getQuantity());
+      Idx = Builder.CreateMul(Idx, InterfaceSize);
+      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
+      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
+      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
+      return Builder.CreateBitCast(Res, Ops.LHS->getType());
+    }
+
+    // Explicitly handle GNU void* and function pointer arithmetic
+    // extensions. The GNU void* casts amount to no-ops since our void* type is
+    // i8*, but this is future proof.
+    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
+      const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
+      Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
+      Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
+      return Builder.CreateBitCast(Res, Ops.LHS->getType());
+    }
+
+    return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
+  } else {
+    // pointer - pointer
+    Value *LHS = Ops.LHS;
+    Value *RHS = Ops.RHS;
+
+    CharUnits ElementSize;
+
+    // Handle GCC extension for pointer arithmetic on void* and function pointer
+    // types.
+    if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
+      ElementSize = CharUnits::One();
+    } else {
+      ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
+    }
+
+    const llvm::Type *ResultType = ConvertType(Ops.Ty);
+    LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
+    RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
+    Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
+
+    // Optimize out the shift for element size of 1.
+    if (ElementSize.isOne())
+      return BytesBetween;
+
+    // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
+    // pointer difference in C is only defined in the case where both operands
+    // are pointing to elements of an array.
+    Value *BytesPerElt = 
+        llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
+    return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
+  }
+}
+
+Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
+  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
+  // RHS to the same size as the LHS.
+  Value *RHS = Ops.RHS;
+  if (Ops.LHS->getType() != RHS->getType())
+    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
+
+  if (CGF.CatchUndefined 
+      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
+    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
+    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
+    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
+                                 llvm::ConstantInt::get(RHS->getType(), Width)),
+                             Cont, CGF.getTrapBB());
+    CGF.EmitBlock(Cont);
+  }
+
+  return Builder.CreateShl(Ops.LHS, RHS, "shl");
+}
+
+Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
+  // LLVM requires the LHS and RHS to be the same type: promote or truncate the
+  // RHS to the same size as the LHS.
+  Value *RHS = Ops.RHS;
+  if (Ops.LHS->getType() != RHS->getType())
+    RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
+
+  if (CGF.CatchUndefined 
+      && isa<llvm::IntegerType>(Ops.LHS->getType())) {
+    unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
+    llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
+    CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
+                                 llvm::ConstantInt::get(RHS->getType(), Width)),
+                             Cont, CGF.getTrapBB());
+    CGF.EmitBlock(Cont);
+  }
+
+  if (Ops.Ty->isUnsignedIntegerType())
+    return Builder.CreateLShr(Ops.LHS, RHS, "shr");
+  return Builder.CreateAShr(Ops.LHS, RHS, "shr");
+}
+
+Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
+                                      unsigned SICmpOpc, unsigned FCmpOpc) {
+  TestAndClearIgnoreResultAssign();
+  Value *Result;
+  QualType LHSTy = E->getLHS()->getType();
+  if (LHSTy->isMemberFunctionPointerType()) {
+    Value *LHSPtr = CGF.EmitAnyExprToTemp(E->getLHS()).getAggregateAddr();
+    Value *RHSPtr = CGF.EmitAnyExprToTemp(E->getRHS()).getAggregateAddr();
+    llvm::Value *LHSFunc = Builder.CreateStructGEP(LHSPtr, 0);
+    LHSFunc = Builder.CreateLoad(LHSFunc);
+    llvm::Value *RHSFunc = Builder.CreateStructGEP(RHSPtr, 0);
+    RHSFunc = Builder.CreateLoad(RHSFunc);
+    Value *ResultF = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+                                        LHSFunc, RHSFunc, "cmp.func");
+    Value *NullPtr = llvm::Constant::getNullValue(LHSFunc->getType());
+    Value *ResultNull = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+                                           LHSFunc, NullPtr, "cmp.null");
+    llvm::Value *LHSAdj = Builder.CreateStructGEP(LHSPtr, 1);
+    LHSAdj = Builder.CreateLoad(LHSAdj);
+    llvm::Value *RHSAdj = Builder.CreateStructGEP(RHSPtr, 1);
+    RHSAdj = Builder.CreateLoad(RHSAdj);
+    Value *ResultA = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+                                        LHSAdj, RHSAdj, "cmp.adj");
+    if (E->getOpcode() == BinaryOperator::EQ) {
+      Result = Builder.CreateOr(ResultNull, ResultA, "or.na");
+      Result = Builder.CreateAnd(Result, ResultF, "and.f");
+    } else {
+      assert(E->getOpcode() == BinaryOperator::NE &&
+             "Member pointer comparison other than == or != ?");
+      Result = Builder.CreateAnd(ResultNull, ResultA, "and.na");
+      Result = Builder.CreateOr(Result, ResultF, "or.f");
+    }
+  } else if (!LHSTy->isAnyComplexType()) {
+    Value *LHS = Visit(E->getLHS());
+    Value *RHS = Visit(E->getRHS());
+
+    if (LHS->getType()->isFPOrFPVector()) {
+      Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
+                                  LHS, RHS, "cmp");
+    } else if (LHSTy->isSignedIntegerType()) {
+      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
+                                  LHS, RHS, "cmp");
+    } else {
+      // Unsigned integers and pointers.
+      Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+                                  LHS, RHS, "cmp");
+    }
+
+    // If this is a vector comparison, sign extend the result to the appropriate
+    // vector integer type and return it (don't convert to bool).
+    if (LHSTy->isVectorType())
+      return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
+
+  } else {
+    // Complex Comparison: can only be an equality comparison.
+    CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
+    CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
+
+    QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
+
+    Value *ResultR, *ResultI;
+    if (CETy->isRealFloatingType()) {
+      ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
+                                   LHS.first, RHS.first, "cmp.r");
+      ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
+                                   LHS.second, RHS.second, "cmp.i");
+    } else {
+      // Complex comparisons can only be equality comparisons.  As such, signed
+      // and unsigned opcodes are the same.
+      ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+                                   LHS.first, RHS.first, "cmp.r");
+      ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
+                                   LHS.second, RHS.second, "cmp.i");
+    }
+
+    if (E->getOpcode() == BinaryOperator::EQ) {
+      Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
+    } else {
+      assert(E->getOpcode() == BinaryOperator::NE &&
+             "Complex comparison other than == or != ?");
+      Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
+    }
+  }
+
+  return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
+}
+
+Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
+  bool Ignore = TestAndClearIgnoreResultAssign();
+
+  // __block variables need to have the rhs evaluated first, plus this should
+  // improve codegen just a little.
+  Value *RHS = Visit(E->getRHS());
+  LValue LHS = EmitCheckedLValue(E->getLHS());
+
+  // Store the value into the LHS.  Bit-fields are handled specially
+  // because the result is altered by the store, i.e., [C99 6.5.16p1]
+  // 'An assignment expression has the value of the left operand after
+  // the assignment...'.
+  if (LHS.isBitfield()) {
+    if (!LHS.isVolatileQualified()) {
+      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
+                                         &RHS);
+      return RHS;
+    } else
+      CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
+  } else
+    CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
+  if (Ignore)
+    return 0;
+  return EmitLoadOfLValue(LHS, E->getType());
+}
+
+Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
+  const llvm::Type *ResTy = ConvertType(E->getType());
+  
+  // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
+  // If we have 1 && X, just emit X without inserting the control flow.
+  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
+    if (Cond == 1) { // If we have 1 && X, just emit X.
+      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+      // ZExt result to int or bool.
+      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
+    }
+
+    // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
+    if (!CGF.ContainsLabel(E->getRHS()))
+      return llvm::Constant::getNullValue(ResTy);
+  }
+
+  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
+  llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
+
+  // Branch on the LHS first.  If it is false, go to the failure (cont) block.
+  CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
+
+  // Any edges into the ContBlock are now from an (indeterminate number of)
+  // edges from this first condition.  All of these values will be false.  Start
+  // setting up the PHI node in the Cont Block for this.
+  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
+                                            "", ContBlock);
+  PN->reserveOperandSpace(2);  // Normal case, two inputs.
+  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
+       PI != PE; ++PI)
+    PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
+
+  CGF.BeginConditionalBranch();
+  CGF.EmitBlock(RHSBlock);
+  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+  CGF.EndConditionalBranch();
+
+  // Reaquire the RHS block, as there may be subblocks inserted.
+  RHSBlock = Builder.GetInsertBlock();
+
+  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
+  // into the phi node for the edge with the value of RHSCond.
+  CGF.EmitBlock(ContBlock);
+  PN->addIncoming(RHSCond, RHSBlock);
+
+  // ZExt result to int.
+  return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
+}
+
+Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
+  const llvm::Type *ResTy = ConvertType(E->getType());
+  
+  // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
+  // If we have 0 || X, just emit X without inserting the control flow.
+  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
+    if (Cond == -1) { // If we have 0 || X, just emit X.
+      Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+      // ZExt result to int or bool.
+      return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
+    }
+
+    // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
+    if (!CGF.ContainsLabel(E->getRHS()))
+      return llvm::ConstantInt::get(ResTy, 1);
+  }
+
+  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
+  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
+
+  // Branch on the LHS first.  If it is true, go to the success (cont) block.
+  CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
+
+  // Any edges into the ContBlock are now from an (indeterminate number of)
+  // edges from this first condition.  All of these values will be true.  Start
+  // setting up the PHI node in the Cont Block for this.
+  llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
+                                            "", ContBlock);
+  PN->reserveOperandSpace(2);  // Normal case, two inputs.
+  for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
+       PI != PE; ++PI)
+    PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
+
+  CGF.BeginConditionalBranch();
+
+  // Emit the RHS condition as a bool value.
+  CGF.EmitBlock(RHSBlock);
+  Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
+
+  CGF.EndConditionalBranch();
+
+  // Reaquire the RHS block, as there may be subblocks inserted.
+  RHSBlock = Builder.GetInsertBlock();
+
+  // Emit an unconditional branch from this block to ContBlock.  Insert an entry
+  // into the phi node for the edge with the value of RHSCond.
+  CGF.EmitBlock(ContBlock);
+  PN->addIncoming(RHSCond, RHSBlock);
+
+  // ZExt result to int.
+  return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
+}
+
+Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
+  CGF.EmitStmt(E->getLHS());
+  CGF.EnsureInsertPoint();
+  return Visit(E->getRHS());
+}
+
+//===----------------------------------------------------------------------===//
+//                             Other Operators
+//===----------------------------------------------------------------------===//
+
+/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
+/// expression is cheap enough and side-effect-free enough to evaluate
+/// unconditionally instead of conditionally.  This is used to convert control
+/// flow into selects in some cases.
+static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
+                                                   CodeGenFunction &CGF) {
+  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
+    return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
+
+  // TODO: Allow anything we can constant fold to an integer or fp constant.
+  if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
+      isa<FloatingLiteral>(E))
+    return true;
+
+  // Non-volatile automatic variables too, to get "cond ? X : Y" where
+  // X and Y are local variables.
+  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+    if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
+      if (VD->hasLocalStorage() && !(CGF.getContext()
+                                     .getCanonicalType(VD->getType())
+                                     .isVolatileQualified()))
+        return true;
+
+  return false;
+}
+
+
+Value *ScalarExprEmitter::
+VisitConditionalOperator(const ConditionalOperator *E) {
+  TestAndClearIgnoreResultAssign();
+  // If the condition constant folds and can be elided, try to avoid emitting
+  // the condition and the dead arm.
+  if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
+    Expr *Live = E->getLHS(), *Dead = E->getRHS();
+    if (Cond == -1)
+      std::swap(Live, Dead);
+
+    // If the dead side doesn't have labels we need, and if the Live side isn't
+    // the gnu missing ?: extension (which we could handle, but don't bother
+    // to), just emit the Live part.
+    if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
+        Live)                                   // Live part isn't missing.
+      return Visit(Live);
+  }
+
+
+  // If this is a really simple expression (like x ? 4 : 5), emit this as a
+  // select instead of as control flow.  We can only do this if it is cheap and
+  // safe to evaluate the LHS and RHS unconditionally.
+  if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
+                                                            CGF) &&
+      isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
+    llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
+    llvm::Value *LHS = Visit(E->getLHS());
+    llvm::Value *RHS = Visit(E->getRHS());
+    return Builder.CreateSelect(CondV, LHS, RHS, "cond");
+  }
+
+
+  llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
+  llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
+  llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
+  Value *CondVal = 0;
+
+  // If we don't have the GNU missing condition extension, emit a branch on bool
+  // the normal way.
+  if (E->getLHS()) {
+    // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
+    // the branch on bool.
+    CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
+  } else {
+    // Otherwise, for the ?: extension, evaluate the conditional and then
+    // convert it to bool the hard way.  We do this explicitly because we need
+    // the unconverted value for the missing middle value of the ?:.
+    CondVal = CGF.EmitScalarExpr(E->getCond());
+
+    // In some cases, EmitScalarConversion will delete the "CondVal" expression
+    // if there are no extra uses (an optimization).  Inhibit this by making an
+    // extra dead use, because we're going to add a use of CondVal later.  We
+    // don't use the builder for this, because we don't want it to get optimized
+    // away.  This leaves dead code, but the ?: extension isn't common.
+    new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
+                          Builder.GetInsertBlock());
+
+    Value *CondBoolVal =
+      CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
+                               CGF.getContext().BoolTy);
+    Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
+  }
+
+  CGF.BeginConditionalBranch();
+  CGF.EmitBlock(LHSBlock);
+
+  // Handle the GNU extension for missing LHS.
+  Value *LHS;
+  if (E->getLHS())
+    LHS = Visit(E->getLHS());
+  else    // Perform promotions, to handle cases like "short ?: int"
+    LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
+
+  CGF.EndConditionalBranch();
+  LHSBlock = Builder.GetInsertBlock();
+  CGF.EmitBranch(ContBlock);
+
+  CGF.BeginConditionalBranch();
+  CGF.EmitBlock(RHSBlock);
+
+  Value *RHS = Visit(E->getRHS());
+  CGF.EndConditionalBranch();
+  RHSBlock = Builder.GetInsertBlock();
+  CGF.EmitBranch(ContBlock);
+
+  CGF.EmitBlock(ContBlock);
+
+  // If the LHS or RHS is a throw expression, it will be legitimately null.
+  if (!LHS)
+    return RHS;
+  if (!RHS)
+    return LHS;
+
+  // Create a PHI node for the real part.
+  llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
+  PN->reserveOperandSpace(2);
+  PN->addIncoming(LHS, LHSBlock);
+  PN->addIncoming(RHS, RHSBlock);
+  return PN;
+}
+
+Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
+  return Visit(E->getChosenSubExpr(CGF.getContext()));
+}
+
+Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
+  llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
+  llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
+
+  // If EmitVAArg fails, we fall back to the LLVM instruction.
+  if (!ArgPtr)
+    return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
+
+  // FIXME Volatility.
+  return Builder.CreateLoad(ArgPtr);
+}
+
+Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
+  return CGF.BuildBlockLiteralTmp(BE);
+}
+
+//===----------------------------------------------------------------------===//
+//                         Entry Point into this File
+//===----------------------------------------------------------------------===//
+
+/// EmitScalarExpr - Emit the computation of the specified expression of scalar
+/// type, ignoring the result.
+Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
+  assert(E && !hasAggregateLLVMType(E->getType()) &&
+         "Invalid scalar expression to emit");
+
+  return ScalarExprEmitter(*this, IgnoreResultAssign)
+    .Visit(const_cast<Expr*>(E));
+}
+
+/// EmitScalarConversion - Emit a conversion from the specified type to the
+/// specified destination type, both of which are LLVM scalar types.
+Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
+                                             QualType DstTy) {
+  assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
+         "Invalid scalar expression to emit");
+  return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
+}
+
+/// EmitComplexToScalarConversion - Emit a conversion from the specified complex
+/// type to the specified destination type, where the destination type is an
+/// LLVM scalar type.
+Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
+                                                      QualType SrcTy,
+                                                      QualType DstTy) {
+  assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
+         "Invalid complex -> scalar conversion");
+  return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
+                                                                DstTy);
+}
+
+LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
+  llvm::Value *V;
+  // object->isa or (*object).isa
+  // Generate code as for: *(Class*)object
+  // build Class* type
+  const llvm::Type *ClassPtrTy = ConvertType(E->getType());
+
+  Expr *BaseExpr = E->getBase();
+  if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
+    V = CreateTempAlloca(ClassPtrTy, "resval");
+    llvm::Value *Src = EmitScalarExpr(BaseExpr);
+    Builder.CreateStore(Src, V);
+  }
+  else {
+      if (E->isArrow())
+        V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
+      else
+        V  = EmitLValue(BaseExpr).getAddress();
+  }
+  
+  // build Class* type
+  ClassPtrTy = ClassPtrTy->getPointerTo();
+  V = Builder.CreateBitCast(V, ClassPtrTy);
+  LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
+  return LV;
+}
+