Check in LLVM r95781.
diff --git a/lib/CodeGen/CGStmt.cpp b/lib/CodeGen/CGStmt.cpp
new file mode 100644
index 0000000..008a480
--- /dev/null
+++ b/lib/CodeGen/CGStmt.cpp
@@ -0,0 +1,1138 @@
+//===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Stmt nodes as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGDebugInfo.h"
+#include "CodeGenModule.h"
+#include "CodeGenFunction.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/PrettyStackTrace.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/InlineAsm.h"
+#include "llvm/Intrinsics.h"
+#include "llvm/Target/TargetData.h"
+using namespace clang;
+using namespace CodeGen;
+
+//===----------------------------------------------------------------------===//
+//                              Statement Emission
+//===----------------------------------------------------------------------===//
+
+void CodeGenFunction::EmitStopPoint(const Stmt *S) {
+  if (CGDebugInfo *DI = getDebugInfo()) {
+    DI->setLocation(S->getLocStart());
+    DI->EmitStopPoint(CurFn, Builder);
+  }
+}
+
+void CodeGenFunction::EmitStmt(const Stmt *S) {
+  assert(S && "Null statement?");
+
+  // Check if we can handle this without bothering to generate an
+  // insert point or debug info.
+  if (EmitSimpleStmt(S))
+    return;
+
+  // Check if we are generating unreachable code.
+  if (!HaveInsertPoint()) {
+    // If so, and the statement doesn't contain a label, then we do not need to
+    // generate actual code. This is safe because (1) the current point is
+    // unreachable, so we don't need to execute the code, and (2) we've already
+    // handled the statements which update internal data structures (like the
+    // local variable map) which could be used by subsequent statements.
+    if (!ContainsLabel(S)) {
+      // Verify that any decl statements were handled as simple, they may be in
+      // scope of subsequent reachable statements.
+      assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
+      return;
+    }
+
+    // Otherwise, make a new block to hold the code.
+    EnsureInsertPoint();
+  }
+
+  // Generate a stoppoint if we are emitting debug info.
+  EmitStopPoint(S);
+
+  switch (S->getStmtClass()) {
+  default:
+    // Must be an expression in a stmt context.  Emit the value (to get
+    // side-effects) and ignore the result.
+    if (!isa<Expr>(S))
+      ErrorUnsupported(S, "statement");
+
+    EmitAnyExpr(cast<Expr>(S), 0, false, true);
+
+    // Expression emitters don't handle unreachable blocks yet, so look for one
+    // explicitly here. This handles the common case of a call to a noreturn
+    // function.
+    if (llvm::BasicBlock *CurBB = Builder.GetInsertBlock()) {
+      if (CurBB->empty() && CurBB->use_empty()) {
+        CurBB->eraseFromParent();
+        Builder.ClearInsertionPoint();
+      }
+    }
+    break;
+  case Stmt::IndirectGotoStmtClass:
+    EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
+
+  case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
+  case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
+  case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
+  case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
+
+  case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
+
+  case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
+  case Stmt::AsmStmtClass:      EmitAsmStmt(cast<AsmStmt>(*S));           break;
+
+  case Stmt::ObjCAtTryStmtClass:
+    EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
+    break;
+  case Stmt::ObjCAtCatchStmtClass:
+    assert(0 && "@catch statements should be handled by EmitObjCAtTryStmt");
+    break;
+  case Stmt::ObjCAtFinallyStmtClass:
+    assert(0 && "@finally statements should be handled by EmitObjCAtTryStmt");
+    break;
+  case Stmt::ObjCAtThrowStmtClass:
+    EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
+    break;
+  case Stmt::ObjCAtSynchronizedStmtClass:
+    EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
+    break;
+  case Stmt::ObjCForCollectionStmtClass:
+    EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
+    break;
+      
+  case Stmt::CXXTryStmtClass:
+    EmitCXXTryStmt(cast<CXXTryStmt>(*S));
+    break;
+  }
+}
+
+bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
+  switch (S->getStmtClass()) {
+  default: return false;
+  case Stmt::NullStmtClass: break;
+  case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
+  case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
+  case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
+  case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
+  case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
+  case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
+  case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
+  case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
+  }
+
+  return true;
+}
+
+/// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
+/// this captures the expression result of the last sub-statement and returns it
+/// (for use by the statement expression extension).
+RValue CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
+                                         llvm::Value *AggLoc, bool isAggVol) {
+  PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
+                             "LLVM IR generation of compound statement ('{}')");
+
+  CGDebugInfo *DI = getDebugInfo();
+  if (DI) {
+    DI->setLocation(S.getLBracLoc());
+    DI->EmitRegionStart(CurFn, Builder);
+  }
+
+  // Keep track of the current cleanup stack depth.
+  CleanupScope Scope(*this);
+
+  for (CompoundStmt::const_body_iterator I = S.body_begin(),
+       E = S.body_end()-GetLast; I != E; ++I)
+    EmitStmt(*I);
+
+  if (DI) {
+    DI->setLocation(S.getLBracLoc());
+    DI->EmitRegionEnd(CurFn, Builder);
+  }
+
+  RValue RV;
+  if (!GetLast)
+    RV = RValue::get(0);
+  else {
+    // We have to special case labels here.  They are statements, but when put
+    // at the end of a statement expression, they yield the value of their
+    // subexpression.  Handle this by walking through all labels we encounter,
+    // emitting them before we evaluate the subexpr.
+    const Stmt *LastStmt = S.body_back();
+    while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
+      EmitLabel(*LS);
+      LastStmt = LS->getSubStmt();
+    }
+
+    EnsureInsertPoint();
+
+    RV = EmitAnyExpr(cast<Expr>(LastStmt), AggLoc);
+  }
+
+  return RV;
+}
+
+void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
+  llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
+
+  // If there is a cleanup stack, then we it isn't worth trying to
+  // simplify this block (we would need to remove it from the scope map
+  // and cleanup entry).
+  if (!CleanupEntries.empty())
+    return;
+
+  // Can only simplify direct branches.
+  if (!BI || !BI->isUnconditional())
+    return;
+
+  BB->replaceAllUsesWith(BI->getSuccessor(0));
+  BI->eraseFromParent();
+  BB->eraseFromParent();
+}
+
+void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
+  // Fall out of the current block (if necessary).
+  EmitBranch(BB);
+
+  if (IsFinished && BB->use_empty()) {
+    delete BB;
+    return;
+  }
+
+  // If necessary, associate the block with the cleanup stack size.
+  if (!CleanupEntries.empty()) {
+    // Check if the basic block has already been inserted.
+    BlockScopeMap::iterator I = BlockScopes.find(BB);
+    if (I != BlockScopes.end()) {
+      assert(I->second == CleanupEntries.size() - 1);
+    } else {
+      BlockScopes[BB] = CleanupEntries.size() - 1;
+      CleanupEntries.back().Blocks.push_back(BB);
+    }
+  }
+
+  CurFn->getBasicBlockList().push_back(BB);
+  Builder.SetInsertPoint(BB);
+}
+
+void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
+  // Emit a branch from the current block to the target one if this
+  // was a real block.  If this was just a fall-through block after a
+  // terminator, don't emit it.
+  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
+
+  if (!CurBB || CurBB->getTerminator()) {
+    // If there is no insert point or the previous block is already
+    // terminated, don't touch it.
+  } else {
+    // Otherwise, create a fall-through branch.
+    Builder.CreateBr(Target);
+  }
+
+  Builder.ClearInsertionPoint();
+}
+
+void CodeGenFunction::EmitLabel(const LabelStmt &S) {
+  EmitBlock(getBasicBlockForLabel(&S));
+}
+
+
+void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
+  EmitLabel(S);
+  EmitStmt(S.getSubStmt());
+}
+
+void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
+  // If this code is reachable then emit a stop point (if generating
+  // debug info). We have to do this ourselves because we are on the
+  // "simple" statement path.
+  if (HaveInsertPoint())
+    EmitStopPoint(&S);
+
+  EmitBranchThroughCleanup(getBasicBlockForLabel(S.getLabel()));
+}
+
+
+void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
+  // Ensure that we have an i8* for our PHI node.
+  llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
+                                         llvm::Type::getInt8PtrTy(VMContext),
+                                          "addr");
+  llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
+  
+
+  // Get the basic block for the indirect goto.
+  llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
+  
+  // The first instruction in the block has to be the PHI for the switch dest,
+  // add an entry for this branch.
+  cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
+  
+  EmitBranch(IndGotoBB);
+}
+
+void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
+  // C99 6.8.4.1: The first substatement is executed if the expression compares
+  // unequal to 0.  The condition must be a scalar type.
+  CleanupScope ConditionScope(*this);
+
+  if (S.getConditionVariable())
+    EmitLocalBlockVarDecl(*S.getConditionVariable());
+
+  // If the condition constant folds and can be elided, try to avoid emitting
+  // the condition and the dead arm of the if/else.
+  if (int Cond = ConstantFoldsToSimpleInteger(S.getCond())) {
+    // Figure out which block (then or else) is executed.
+    const Stmt *Executed = S.getThen(), *Skipped  = S.getElse();
+    if (Cond == -1)  // Condition false?
+      std::swap(Executed, Skipped);
+
+    // If the skipped block has no labels in it, just emit the executed block.
+    // This avoids emitting dead code and simplifies the CFG substantially.
+    if (!ContainsLabel(Skipped)) {
+      if (Executed) {
+        CleanupScope ExecutedScope(*this);
+        EmitStmt(Executed);
+      }
+      return;
+    }
+  }
+
+  // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
+  // the conditional branch.
+  llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
+  llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
+  llvm::BasicBlock *ElseBlock = ContBlock;
+  if (S.getElse())
+    ElseBlock = createBasicBlock("if.else");
+  EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
+
+  // Emit the 'then' code.
+  EmitBlock(ThenBlock); 
+  {
+    CleanupScope ThenScope(*this);
+    EmitStmt(S.getThen());
+  }
+  EmitBranch(ContBlock);
+
+  // Emit the 'else' code if present.
+  if (const Stmt *Else = S.getElse()) {
+    EmitBlock(ElseBlock);
+    {
+      CleanupScope ElseScope(*this);
+      EmitStmt(Else);
+    }
+    EmitBranch(ContBlock);
+  }
+
+  // Emit the continuation block for code after the if.
+  EmitBlock(ContBlock, true);
+}
+
+void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
+  // Emit the header for the loop, insert it, which will create an uncond br to
+  // it.
+  llvm::BasicBlock *LoopHeader = createBasicBlock("while.cond");
+  EmitBlock(LoopHeader);
+
+  // Create an exit block for when the condition fails, create a block for the
+  // body of the loop.
+  llvm::BasicBlock *ExitBlock = createBasicBlock("while.end");
+  llvm::BasicBlock *LoopBody  = createBasicBlock("while.body");
+  llvm::BasicBlock *CleanupBlock = 0;
+  llvm::BasicBlock *EffectiveExitBlock = ExitBlock;
+
+  // Store the blocks to use for break and continue.
+  BreakContinueStack.push_back(BreakContinue(ExitBlock, LoopHeader));
+
+  // C++ [stmt.while]p2:
+  //   When the condition of a while statement is a declaration, the
+  //   scope of the variable that is declared extends from its point
+  //   of declaration (3.3.2) to the end of the while statement.
+  //   [...]
+  //   The object created in a condition is destroyed and created
+  //   with each iteration of the loop.
+  CleanupScope ConditionScope(*this);
+
+  if (S.getConditionVariable()) {
+    EmitLocalBlockVarDecl(*S.getConditionVariable());
+
+    // If this condition variable requires cleanups, create a basic
+    // block to handle those cleanups.
+    if (ConditionScope.requiresCleanups()) {
+      CleanupBlock = createBasicBlock("while.cleanup");
+      EffectiveExitBlock = CleanupBlock;
+    }
+  }
+  
+  // Evaluate the conditional in the while header.  C99 6.8.5.1: The
+  // evaluation of the controlling expression takes place before each
+  // execution of the loop body.
+  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
+   
+  // while(1) is common, avoid extra exit blocks.  Be sure
+  // to correctly handle break/continue though.
+  bool EmitBoolCondBranch = true;
+  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
+    if (C->isOne())
+      EmitBoolCondBranch = false;
+
+  // As long as the condition is true, go to the loop body.
+  if (EmitBoolCondBranch)
+    Builder.CreateCondBr(BoolCondVal, LoopBody, EffectiveExitBlock);
+ 
+  // Emit the loop body.
+  {
+    CleanupScope BodyScope(*this);
+    EmitBlock(LoopBody);
+    EmitStmt(S.getBody());
+  }
+
+  BreakContinueStack.pop_back();
+
+  if (CleanupBlock) {
+    // If we have a cleanup block, jump there to perform cleanups
+    // before looping.
+    EmitBranch(CleanupBlock);
+
+    // Emit the cleanup block, performing cleanups for the condition
+    // and then jumping to either the loop header or the exit block.
+    EmitBlock(CleanupBlock);
+    ConditionScope.ForceCleanup();
+    Builder.CreateCondBr(BoolCondVal, LoopHeader, ExitBlock);
+  } else {
+    // Cycle to the condition.
+    EmitBranch(LoopHeader);
+  }
+
+  // Emit the exit block.
+  EmitBlock(ExitBlock, true);
+
+
+  // The LoopHeader typically is just a branch if we skipped emitting
+  // a branch, try to erase it.
+  if (!EmitBoolCondBranch && !CleanupBlock)
+    SimplifyForwardingBlocks(LoopHeader);
+}
+
+void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
+  // Emit the body for the loop, insert it, which will create an uncond br to
+  // it.
+  llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
+  llvm::BasicBlock *AfterDo = createBasicBlock("do.end");
+  EmitBlock(LoopBody);
+
+  llvm::BasicBlock *DoCond = createBasicBlock("do.cond");
+
+  // Store the blocks to use for break and continue.
+  BreakContinueStack.push_back(BreakContinue(AfterDo, DoCond));
+
+  // Emit the body of the loop into the block.
+  EmitStmt(S.getBody());
+
+  BreakContinueStack.pop_back();
+
+  EmitBlock(DoCond);
+
+  // C99 6.8.5.2: "The evaluation of the controlling expression takes place
+  // after each execution of the loop body."
+
+  // Evaluate the conditional in the while header.
+  // C99 6.8.5p2/p4: The first substatement is executed if the expression
+  // compares unequal to 0.  The condition must be a scalar type.
+  llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
+
+  // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
+  // to correctly handle break/continue though.
+  bool EmitBoolCondBranch = true;
+  if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
+    if (C->isZero())
+      EmitBoolCondBranch = false;
+
+  // As long as the condition is true, iterate the loop.
+  if (EmitBoolCondBranch)
+    Builder.CreateCondBr(BoolCondVal, LoopBody, AfterDo);
+
+  // Emit the exit block.
+  EmitBlock(AfterDo);
+
+  // The DoCond block typically is just a branch if we skipped
+  // emitting a branch, try to erase it.
+  if (!EmitBoolCondBranch)
+    SimplifyForwardingBlocks(DoCond);
+}
+
+void CodeGenFunction::EmitForStmt(const ForStmt &S) {
+  // FIXME: What do we do if the increment (f.e.) contains a stmt expression,
+  // which contains a continue/break?
+  CleanupScope ForScope(*this);
+
+  // Evaluate the first part before the loop.
+  if (S.getInit())
+    EmitStmt(S.getInit());
+
+  // Start the loop with a block that tests the condition.
+  llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
+  llvm::BasicBlock *AfterFor = createBasicBlock("for.end");
+  llvm::BasicBlock *IncBlock = 0;
+  llvm::BasicBlock *CondCleanup = 0;
+  llvm::BasicBlock *EffectiveExitBlock = AfterFor;
+  EmitBlock(CondBlock);
+
+  // Create a cleanup scope for the condition variable cleanups.
+  CleanupScope ConditionScope(*this);
+  
+  llvm::Value *BoolCondVal = 0;
+  if (S.getCond()) {
+    // If the for statement has a condition scope, emit the local variable
+    // declaration.
+    if (S.getConditionVariable()) {
+      EmitLocalBlockVarDecl(*S.getConditionVariable());
+      
+      if (ConditionScope.requiresCleanups()) {
+        CondCleanup = createBasicBlock("for.cond.cleanup");
+        EffectiveExitBlock = CondCleanup;
+      }
+    }
+    
+    // As long as the condition is true, iterate the loop.
+    llvm::BasicBlock *ForBody = createBasicBlock("for.body");
+
+    // C99 6.8.5p2/p4: The first substatement is executed if the expression
+    // compares unequal to 0.  The condition must be a scalar type.
+    BoolCondVal = EvaluateExprAsBool(S.getCond());
+    Builder.CreateCondBr(BoolCondVal, ForBody, EffectiveExitBlock);
+
+    EmitBlock(ForBody);
+  } else {
+    // Treat it as a non-zero constant.  Don't even create a new block for the
+    // body, just fall into it.
+  }
+
+  // If the for loop doesn't have an increment we can just use the
+  // condition as the continue block.
+  llvm::BasicBlock *ContinueBlock;
+  if (S.getInc())
+    ContinueBlock = IncBlock = createBasicBlock("for.inc");
+  else
+    ContinueBlock = CondBlock;
+
+  // Store the blocks to use for break and continue.
+  BreakContinueStack.push_back(BreakContinue(AfterFor, ContinueBlock));
+
+  // If the condition is true, execute the body of the for stmt.
+  CGDebugInfo *DI = getDebugInfo();
+  if (DI) {
+    DI->setLocation(S.getSourceRange().getBegin());
+    DI->EmitRegionStart(CurFn, Builder);
+  }
+
+  {
+    // Create a separate cleanup scope for the body, in case it is not
+    // a compound statement.
+    CleanupScope BodyScope(*this);
+    EmitStmt(S.getBody());
+  }
+
+  BreakContinueStack.pop_back();
+
+  // If there is an increment, emit it next.
+  if (S.getInc()) {
+    EmitBlock(IncBlock);
+    EmitStmt(S.getInc());
+  }
+
+  // Finally, branch back up to the condition for the next iteration.
+  if (CondCleanup) {
+    // Branch to the cleanup block.
+    EmitBranch(CondCleanup);
+
+    // Emit the cleanup block, which branches back to the loop body or
+    // outside of the for statement once it is done.
+    EmitBlock(CondCleanup);
+    ConditionScope.ForceCleanup();
+    Builder.CreateCondBr(BoolCondVal, CondBlock, AfterFor);
+  } else
+    EmitBranch(CondBlock);
+  if (DI) {
+    DI->setLocation(S.getSourceRange().getEnd());
+    DI->EmitRegionEnd(CurFn, Builder);
+  }
+
+  // Emit the fall-through block.
+  EmitBlock(AfterFor, true);
+}
+
+void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
+  if (RV.isScalar()) {
+    Builder.CreateStore(RV.getScalarVal(), ReturnValue);
+  } else if (RV.isAggregate()) {
+    EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
+  } else {
+    StoreComplexToAddr(RV.getComplexVal(), ReturnValue, false);
+  }
+  EmitBranchThroughCleanup(ReturnBlock);
+}
+
+/// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
+/// if the function returns void, or may be missing one if the function returns
+/// non-void.  Fun stuff :).
+void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
+  // Emit the result value, even if unused, to evalute the side effects.
+  const Expr *RV = S.getRetValue();
+
+  // FIXME: Clean this up by using an LValue for ReturnTemp,
+  // EmitStoreThroughLValue, and EmitAnyExpr.
+  if (!ReturnValue) {
+    // Make sure not to return anything, but evaluate the expression
+    // for side effects.
+    if (RV)
+      EmitAnyExpr(RV);
+  } else if (RV == 0) {
+    // Do nothing (return value is left uninitialized)
+  } else if (FnRetTy->isReferenceType()) {
+    // If this function returns a reference, take the address of the expression
+    // rather than the value.
+    Builder.CreateStore(EmitLValue(RV).getAddress(), ReturnValue);
+  } else if (!hasAggregateLLVMType(RV->getType())) {
+    Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
+  } else if (RV->getType()->isAnyComplexType()) {
+    EmitComplexExprIntoAddr(RV, ReturnValue, false);
+  } else {
+    EmitAggExpr(RV, ReturnValue, false);
+  }
+
+  EmitBranchThroughCleanup(ReturnBlock);
+}
+
+void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
+  // As long as debug info is modeled with instructions, we have to ensure we
+  // have a place to insert here and write the stop point here.
+  if (getDebugInfo()) {
+    EnsureInsertPoint();
+    EmitStopPoint(&S);
+  }
+
+  for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
+       I != E; ++I)
+    EmitDecl(**I);
+}
+
+void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
+  assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
+
+  // If this code is reachable then emit a stop point (if generating
+  // debug info). We have to do this ourselves because we are on the
+  // "simple" statement path.
+  if (HaveInsertPoint())
+    EmitStopPoint(&S);
+
+  llvm::BasicBlock *Block = BreakContinueStack.back().BreakBlock;
+  EmitBranchThroughCleanup(Block);
+}
+
+void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
+  assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
+
+  // If this code is reachable then emit a stop point (if generating
+  // debug info). We have to do this ourselves because we are on the
+  // "simple" statement path.
+  if (HaveInsertPoint())
+    EmitStopPoint(&S);
+
+  llvm::BasicBlock *Block = BreakContinueStack.back().ContinueBlock;
+  EmitBranchThroughCleanup(Block);
+}
+
+/// EmitCaseStmtRange - If case statement range is not too big then
+/// add multiple cases to switch instruction, one for each value within
+/// the range. If range is too big then emit "if" condition check.
+void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
+  assert(S.getRHS() && "Expected RHS value in CaseStmt");
+
+  llvm::APSInt LHS = S.getLHS()->EvaluateAsInt(getContext());
+  llvm::APSInt RHS = S.getRHS()->EvaluateAsInt(getContext());
+
+  // Emit the code for this case. We do this first to make sure it is
+  // properly chained from our predecessor before generating the
+  // switch machinery to enter this block.
+  EmitBlock(createBasicBlock("sw.bb"));
+  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
+  EmitStmt(S.getSubStmt());
+
+  // If range is empty, do nothing.
+  if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
+    return;
+
+  llvm::APInt Range = RHS - LHS;
+  // FIXME: parameters such as this should not be hardcoded.
+  if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
+    // Range is small enough to add multiple switch instruction cases.
+    for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
+      SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, LHS), CaseDest);
+      LHS++;
+    }
+    return;
+  }
+
+  // The range is too big. Emit "if" condition into a new block,
+  // making sure to save and restore the current insertion point.
+  llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
+
+  // Push this test onto the chain of range checks (which terminates
+  // in the default basic block). The switch's default will be changed
+  // to the top of this chain after switch emission is complete.
+  llvm::BasicBlock *FalseDest = CaseRangeBlock;
+  CaseRangeBlock = createBasicBlock("sw.caserange");
+
+  CurFn->getBasicBlockList().push_back(CaseRangeBlock);
+  Builder.SetInsertPoint(CaseRangeBlock);
+
+  // Emit range check.
+  llvm::Value *Diff =
+    Builder.CreateSub(SwitchInsn->getCondition(),
+                      llvm::ConstantInt::get(VMContext, LHS),  "tmp");
+  llvm::Value *Cond =
+    Builder.CreateICmpULE(Diff,
+                          llvm::ConstantInt::get(VMContext, Range), "tmp");
+  Builder.CreateCondBr(Cond, CaseDest, FalseDest);
+
+  // Restore the appropriate insertion point.
+  if (RestoreBB)
+    Builder.SetInsertPoint(RestoreBB);
+  else
+    Builder.ClearInsertionPoint();
+}
+
+void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
+  if (S.getRHS()) {
+    EmitCaseStmtRange(S);
+    return;
+  }
+
+  EmitBlock(createBasicBlock("sw.bb"));
+  llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
+  llvm::APSInt CaseVal = S.getLHS()->EvaluateAsInt(getContext());
+  SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest);
+
+  // Recursively emitting the statement is acceptable, but is not wonderful for
+  // code where we have many case statements nested together, i.e.:
+  //  case 1:
+  //    case 2:
+  //      case 3: etc.
+  // Handling this recursively will create a new block for each case statement
+  // that falls through to the next case which is IR intensive.  It also causes
+  // deep recursion which can run into stack depth limitations.  Handle
+  // sequential non-range case statements specially.
+  const CaseStmt *CurCase = &S;
+  const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
+
+  // Otherwise, iteratively add consequtive cases to this switch stmt.
+  while (NextCase && NextCase->getRHS() == 0) {
+    CurCase = NextCase;
+    CaseVal = CurCase->getLHS()->EvaluateAsInt(getContext());
+    SwitchInsn->addCase(llvm::ConstantInt::get(VMContext, CaseVal), CaseDest);
+
+    NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
+  }
+
+  // Normal default recursion for non-cases.
+  EmitStmt(CurCase->getSubStmt());
+}
+
+void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
+  llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
+  assert(DefaultBlock->empty() &&
+         "EmitDefaultStmt: Default block already defined?");
+  EmitBlock(DefaultBlock);
+  EmitStmt(S.getSubStmt());
+}
+
+void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
+  CleanupScope ConditionScope(*this);
+
+  if (S.getConditionVariable())
+    EmitLocalBlockVarDecl(*S.getConditionVariable());
+
+  llvm::Value *CondV = EmitScalarExpr(S.getCond());
+
+  // Handle nested switch statements.
+  llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
+  llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
+
+  // Create basic block to hold stuff that comes after switch
+  // statement. We also need to create a default block now so that
+  // explicit case ranges tests can have a place to jump to on
+  // failure.
+  llvm::BasicBlock *NextBlock = createBasicBlock("sw.epilog");
+  llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
+  SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
+  CaseRangeBlock = DefaultBlock;
+
+  // Clear the insertion point to indicate we are in unreachable code.
+  Builder.ClearInsertionPoint();
+
+  // All break statements jump to NextBlock. If BreakContinueStack is non empty
+  // then reuse last ContinueBlock.
+  llvm::BasicBlock *ContinueBlock = 0;
+  if (!BreakContinueStack.empty())
+    ContinueBlock = BreakContinueStack.back().ContinueBlock;
+
+  // Ensure any vlas created between there and here, are undone
+  BreakContinueStack.push_back(BreakContinue(NextBlock, ContinueBlock));
+
+  // Emit switch body.
+  EmitStmt(S.getBody());
+
+  BreakContinueStack.pop_back();
+
+  // Update the default block in case explicit case range tests have
+  // been chained on top.
+  SwitchInsn->setSuccessor(0, CaseRangeBlock);
+
+  // If a default was never emitted then reroute any jumps to it and
+  // discard.
+  if (!DefaultBlock->getParent()) {
+    DefaultBlock->replaceAllUsesWith(NextBlock);
+    delete DefaultBlock;
+  }
+
+  // Emit continuation.
+  EmitBlock(NextBlock, true);
+
+  SwitchInsn = SavedSwitchInsn;
+  CaseRangeBlock = SavedCRBlock;
+}
+
+static std::string
+SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
+                 llvm::SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
+  std::string Result;
+
+  while (*Constraint) {
+    switch (*Constraint) {
+    default:
+      Result += Target.convertConstraint(*Constraint);
+      break;
+    // Ignore these
+    case '*':
+    case '?':
+    case '!':
+      break;
+    case 'g':
+      Result += "imr";
+      break;
+    case '[': {
+      assert(OutCons &&
+             "Must pass output names to constraints with a symbolic name");
+      unsigned Index;
+      bool result = Target.resolveSymbolicName(Constraint,
+                                               &(*OutCons)[0],
+                                               OutCons->size(), Index);
+      assert(result && "Could not resolve symbolic name"); result=result;
+      Result += llvm::utostr(Index);
+      break;
+    }
+    }
+
+    Constraint++;
+  }
+
+  return Result;
+}
+
+llvm::Value* CodeGenFunction::EmitAsmInput(const AsmStmt &S,
+                                         const TargetInfo::ConstraintInfo &Info,
+                                           const Expr *InputExpr,
+                                           std::string &ConstraintStr) {
+  llvm::Value *Arg;
+  if (Info.allowsRegister() || !Info.allowsMemory()) {
+    if (!CodeGenFunction::hasAggregateLLVMType(InputExpr->getType())) {
+      Arg = EmitScalarExpr(InputExpr);
+    } else {
+      InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
+      LValue Dest = EmitLValue(InputExpr);
+
+      const llvm::Type *Ty = ConvertType(InputExpr->getType());
+      uint64_t Size = CGM.getTargetData().getTypeSizeInBits(Ty);
+      if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
+        Ty = llvm::IntegerType::get(VMContext, Size);
+        Ty = llvm::PointerType::getUnqual(Ty);
+
+        Arg = Builder.CreateLoad(Builder.CreateBitCast(Dest.getAddress(), Ty));
+      } else {
+        Arg = Dest.getAddress();
+        ConstraintStr += '*';
+      }
+    }
+  } else {
+    InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
+    LValue Dest = EmitLValue(InputExpr);
+    Arg = Dest.getAddress();
+    ConstraintStr += '*';
+  }
+
+  return Arg;
+}
+
+void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
+  // Analyze the asm string to decompose it into its pieces.  We know that Sema
+  // has already done this, so it is guaranteed to be successful.
+  llvm::SmallVector<AsmStmt::AsmStringPiece, 4> Pieces;
+  unsigned DiagOffs;
+  S.AnalyzeAsmString(Pieces, getContext(), DiagOffs);
+
+  // Assemble the pieces into the final asm string.
+  std::string AsmString;
+  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
+    if (Pieces[i].isString())
+      AsmString += Pieces[i].getString();
+    else if (Pieces[i].getModifier() == '\0')
+      AsmString += '$' + llvm::utostr(Pieces[i].getOperandNo());
+    else
+      AsmString += "${" + llvm::utostr(Pieces[i].getOperandNo()) + ':' +
+                   Pieces[i].getModifier() + '}';
+  }
+
+  // Get all the output and input constraints together.
+  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
+  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
+
+  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
+    TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i),
+                                    S.getOutputName(i));
+    assert(Target.validateOutputConstraint(Info) && 
+           "Failed to parse output constraint");
+    OutputConstraintInfos.push_back(Info);
+  }
+
+  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
+    TargetInfo::ConstraintInfo Info(S.getInputConstraint(i),
+                                    S.getInputName(i));
+    assert(Target.validateInputConstraint(OutputConstraintInfos.data(),
+                                          S.getNumOutputs(),
+                                          Info) &&
+           "Failed to parse input constraint");
+    InputConstraintInfos.push_back(Info);
+  }
+
+  std::string Constraints;
+
+  std::vector<LValue> ResultRegDests;
+  std::vector<QualType> ResultRegQualTys;
+  std::vector<const llvm::Type *> ResultRegTypes;
+  std::vector<const llvm::Type *> ResultTruncRegTypes;
+  std::vector<const llvm::Type*> ArgTypes;
+  std::vector<llvm::Value*> Args;
+
+  // Keep track of inout constraints.
+  std::string InOutConstraints;
+  std::vector<llvm::Value*> InOutArgs;
+  std::vector<const llvm::Type*> InOutArgTypes;
+
+  for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
+    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
+
+    // Simplify the output constraint.
+    std::string OutputConstraint(S.getOutputConstraint(i));
+    OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, Target);
+
+    const Expr *OutExpr = S.getOutputExpr(i);
+    OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
+
+    LValue Dest = EmitLValue(OutExpr);
+    if (!Constraints.empty())
+      Constraints += ',';
+
+    // If this is a register output, then make the inline asm return it
+    // by-value.  If this is a memory result, return the value by-reference.
+    if (!Info.allowsMemory() && !hasAggregateLLVMType(OutExpr->getType())) {
+      Constraints += "=" + OutputConstraint;
+      ResultRegQualTys.push_back(OutExpr->getType());
+      ResultRegDests.push_back(Dest);
+      ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
+      ResultTruncRegTypes.push_back(ResultRegTypes.back());
+
+      // If this output is tied to an input, and if the input is larger, then
+      // we need to set the actual result type of the inline asm node to be the
+      // same as the input type.
+      if (Info.hasMatchingInput()) {
+        unsigned InputNo;
+        for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
+          TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
+          if (Input.hasTiedOperand() &&
+              Input.getTiedOperand() == i)
+            break;
+        }
+        assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
+
+        QualType InputTy = S.getInputExpr(InputNo)->getType();
+        QualType OutputTy = OutExpr->getType();
+
+        uint64_t InputSize = getContext().getTypeSize(InputTy);
+        if (getContext().getTypeSize(OutputTy) < InputSize) {
+          // Form the asm to return the value as a larger integer type.
+          ResultRegTypes.back() = llvm::IntegerType::get(VMContext, (unsigned)InputSize);
+        }
+      }
+    } else {
+      ArgTypes.push_back(Dest.getAddress()->getType());
+      Args.push_back(Dest.getAddress());
+      Constraints += "=*";
+      Constraints += OutputConstraint;
+    }
+
+    if (Info.isReadWrite()) {
+      InOutConstraints += ',';
+
+      const Expr *InputExpr = S.getOutputExpr(i);
+      llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, InOutConstraints);
+
+      if (Info.allowsRegister())
+        InOutConstraints += llvm::utostr(i);
+      else
+        InOutConstraints += OutputConstraint;
+
+      InOutArgTypes.push_back(Arg->getType());
+      InOutArgs.push_back(Arg);
+    }
+  }
+
+  unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
+
+  for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
+    const Expr *InputExpr = S.getInputExpr(i);
+
+    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
+
+    if (!Constraints.empty())
+      Constraints += ',';
+
+    // Simplify the input constraint.
+    std::string InputConstraint(S.getInputConstraint(i));
+    InputConstraint = SimplifyConstraint(InputConstraint.c_str(), Target,
+                                         &OutputConstraintInfos);
+
+    llvm::Value *Arg = EmitAsmInput(S, Info, InputExpr, Constraints);
+
+    // If this input argument is tied to a larger output result, extend the
+    // input to be the same size as the output.  The LLVM backend wants to see
+    // the input and output of a matching constraint be the same size.  Note
+    // that GCC does not define what the top bits are here.  We use zext because
+    // that is usually cheaper, but LLVM IR should really get an anyext someday.
+    if (Info.hasTiedOperand()) {
+      unsigned Output = Info.getTiedOperand();
+      QualType OutputTy = S.getOutputExpr(Output)->getType();
+      QualType InputTy = InputExpr->getType();
+
+      if (getContext().getTypeSize(OutputTy) >
+          getContext().getTypeSize(InputTy)) {
+        // Use ptrtoint as appropriate so that we can do our extension.
+        if (isa<llvm::PointerType>(Arg->getType()))
+          Arg = Builder.CreatePtrToInt(Arg,
+                                      llvm::IntegerType::get(VMContext, LLVMPointerWidth));
+        unsigned OutputSize = (unsigned)getContext().getTypeSize(OutputTy);
+        Arg = Builder.CreateZExt(Arg, llvm::IntegerType::get(VMContext, OutputSize));
+      }
+    }
+
+
+    ArgTypes.push_back(Arg->getType());
+    Args.push_back(Arg);
+    Constraints += InputConstraint;
+  }
+
+  // Append the "input" part of inout constraints last.
+  for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
+    ArgTypes.push_back(InOutArgTypes[i]);
+    Args.push_back(InOutArgs[i]);
+  }
+  Constraints += InOutConstraints;
+
+  // Clobbers
+  for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
+    llvm::StringRef Clobber = S.getClobber(i)->getString();
+
+    Clobber = Target.getNormalizedGCCRegisterName(Clobber);
+
+    if (i != 0 || NumConstraints != 0)
+      Constraints += ',';
+
+    Constraints += "~{";
+    Constraints += Clobber;
+    Constraints += '}';
+  }
+
+  // Add machine specific clobbers
+  std::string MachineClobbers = Target.getClobbers();
+  if (!MachineClobbers.empty()) {
+    if (!Constraints.empty())
+      Constraints += ',';
+    Constraints += MachineClobbers;
+  }
+
+  const llvm::Type *ResultType;
+  if (ResultRegTypes.empty())
+    ResultType = llvm::Type::getVoidTy(VMContext);
+  else if (ResultRegTypes.size() == 1)
+    ResultType = ResultRegTypes[0];
+  else
+    ResultType = llvm::StructType::get(VMContext, ResultRegTypes);
+
+  const llvm::FunctionType *FTy =
+    llvm::FunctionType::get(ResultType, ArgTypes, false);
+
+  llvm::InlineAsm *IA =
+    llvm::InlineAsm::get(FTy, AsmString, Constraints,
+                         S.isVolatile() || S.getNumOutputs() == 0);
+  llvm::CallInst *Result = Builder.CreateCall(IA, Args.begin(), Args.end());
+  Result->addAttribute(~0, llvm::Attribute::NoUnwind);
+
+
+  // Extract all of the register value results from the asm.
+  std::vector<llvm::Value*> RegResults;
+  if (ResultRegTypes.size() == 1) {
+    RegResults.push_back(Result);
+  } else {
+    for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
+      llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
+      RegResults.push_back(Tmp);
+    }
+  }
+
+  for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
+    llvm::Value *Tmp = RegResults[i];
+
+    // If the result type of the LLVM IR asm doesn't match the result type of
+    // the expression, do the conversion.
+    if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
+      const llvm::Type *TruncTy = ResultTruncRegTypes[i];
+      // Truncate the integer result to the right size, note that
+      // ResultTruncRegTypes can be a pointer.
+      uint64_t ResSize = CGM.getTargetData().getTypeSizeInBits(TruncTy);
+      Tmp = Builder.CreateTrunc(Tmp, llvm::IntegerType::get(VMContext, (unsigned)ResSize));
+
+      if (Tmp->getType() != TruncTy) {
+        assert(isa<llvm::PointerType>(TruncTy));
+        Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
+      }
+    }
+
+    EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i],
+                           ResultRegQualTys[i]);
+  }
+}