Check in LLVM r95781.
diff --git a/lib/Sema/SemaCXXScopeSpec.cpp b/lib/Sema/SemaCXXScopeSpec.cpp
new file mode 100644
index 0000000..52e9e9b
--- /dev/null
+++ b/lib/Sema/SemaCXXScopeSpec.cpp
@@ -0,0 +1,665 @@
+//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements C++ semantic analysis for scope specifiers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "Lookup.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/NestedNameSpecifier.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Parse/DeclSpec.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Support/raw_ostream.h"
+using namespace clang;
+
+/// \brief Find the current instantiation that associated with the given type.
+static CXXRecordDecl *
+getCurrentInstantiationOf(ASTContext &Context, DeclContext *CurContext, 
+                          QualType T) {
+  if (T.isNull())
+    return 0;
+  
+  T = Context.getCanonicalType(T).getUnqualifiedType();
+  
+  for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
+    // If we've hit a namespace or the global scope, then the
+    // nested-name-specifier can't refer to the current instantiation.
+    if (Ctx->isFileContext())
+      return 0;
+    
+    // Skip non-class contexts.
+    CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
+    if (!Record)
+      continue;
+    
+    // If this record type is not dependent,
+    if (!Record->isDependentType())
+      return 0;
+    
+    // C++ [temp.dep.type]p1:
+    //
+    //   In the definition of a class template, a nested class of a
+    //   class template, a member of a class template, or a member of a
+    //   nested class of a class template, a name refers to the current
+    //   instantiation if it is
+    //     -- the injected-class-name (9) of the class template or
+    //        nested class,
+    //     -- in the definition of a primary class template, the name
+    //        of the class template followed by the template argument
+    //        list of the primary template (as described below)
+    //        enclosed in <>,
+    //     -- in the definition of a nested class of a class template,
+    //        the name of the nested class referenced as a member of
+    //        the current instantiation, or
+    //     -- in the definition of a partial specialization, the name
+    //        of the class template followed by the template argument
+    //        list of the partial specialization enclosed in <>. If
+    //        the nth template parameter is a parameter pack, the nth
+    //        template argument is a pack expansion (14.6.3) whose
+    //        pattern is the name of the parameter pack.
+    //        (FIXME: parameter packs)
+    //
+    // All of these options come down to having the
+    // nested-name-specifier type that is equivalent to the
+    // injected-class-name of one of the types that is currently in
+    // our context.
+    if (Context.getCanonicalType(Context.getTypeDeclType(Record)) == T)
+      return Record;
+    
+    if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) {
+      QualType InjectedClassName
+        = Template->getInjectedClassNameType(Context);
+      if (T == Context.getCanonicalType(InjectedClassName))
+        return Template->getTemplatedDecl();
+    }
+    // FIXME: check for class template partial specializations
+  }  
+  
+  return 0;
+}
+
+/// \brief Compute the DeclContext that is associated with the given type.
+///
+/// \param T the type for which we are attempting to find a DeclContext.
+///
+/// \returns the declaration context represented by the type T,
+/// or NULL if the declaration context cannot be computed (e.g., because it is
+/// dependent and not the current instantiation).
+DeclContext *Sema::computeDeclContext(QualType T) {
+  if (const TagType *Tag = T->getAs<TagType>())
+    return Tag->getDecl();
+
+  return ::getCurrentInstantiationOf(Context, CurContext, T);
+}
+
+/// \brief Compute the DeclContext that is associated with the given
+/// scope specifier.
+///
+/// \param SS the C++ scope specifier as it appears in the source
+///
+/// \param EnteringContext when true, we will be entering the context of
+/// this scope specifier, so we can retrieve the declaration context of a
+/// class template or class template partial specialization even if it is
+/// not the current instantiation.
+///
+/// \returns the declaration context represented by the scope specifier @p SS,
+/// or NULL if the declaration context cannot be computed (e.g., because it is
+/// dependent and not the current instantiation).
+DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
+                                      bool EnteringContext) {
+  if (!SS.isSet() || SS.isInvalid())
+    return 0;
+
+  NestedNameSpecifier *NNS
+    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
+  if (NNS->isDependent()) {
+    // If this nested-name-specifier refers to the current
+    // instantiation, return its DeclContext.
+    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
+      return Record;
+
+    if (EnteringContext) {
+      if (const TemplateSpecializationType *SpecType
+            = dyn_cast_or_null<TemplateSpecializationType>(NNS->getAsType())) {
+        // We are entering the context of the nested name specifier, so try to
+        // match the nested name specifier to either a primary class template
+        // or a class template partial specialization.
+        if (ClassTemplateDecl *ClassTemplate
+              = dyn_cast_or_null<ClassTemplateDecl>(
+                            SpecType->getTemplateName().getAsTemplateDecl())) {
+          QualType ContextType
+            = Context.getCanonicalType(QualType(SpecType, 0));
+
+          // If the type of the nested name specifier is the same as the
+          // injected class name of the named class template, we're entering
+          // into that class template definition.
+          QualType Injected = ClassTemplate->getInjectedClassNameType(Context);
+          if (Context.hasSameType(Injected, ContextType))
+            return ClassTemplate->getTemplatedDecl();
+
+          // If the type of the nested name specifier is the same as the
+          // type of one of the class template's class template partial
+          // specializations, we're entering into the definition of that
+          // class template partial specialization.
+          if (ClassTemplatePartialSpecializationDecl *PartialSpec
+                = ClassTemplate->findPartialSpecialization(ContextType))
+            return PartialSpec;
+        }
+      } else if (const RecordType *RecordT
+                   = dyn_cast_or_null<RecordType>(NNS->getAsType())) {
+        // The nested name specifier refers to a member of a class template.
+        return RecordT->getDecl();
+      }
+    }
+
+    return 0;
+  }
+
+  switch (NNS->getKind()) {
+  case NestedNameSpecifier::Identifier:
+    assert(false && "Dependent nested-name-specifier has no DeclContext");
+    break;
+
+  case NestedNameSpecifier::Namespace:
+    return NNS->getAsNamespace();
+
+  case NestedNameSpecifier::TypeSpec:
+  case NestedNameSpecifier::TypeSpecWithTemplate: {
+    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
+    assert(Tag && "Non-tag type in nested-name-specifier");
+    return Tag->getDecl();
+  } break;
+
+  case NestedNameSpecifier::Global:
+    return Context.getTranslationUnitDecl();
+  }
+
+  // Required to silence a GCC warning.
+  return 0;
+}
+
+bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
+  if (!SS.isSet() || SS.isInvalid())
+    return false;
+
+  NestedNameSpecifier *NNS
+    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
+  return NNS->isDependent();
+}
+
+// \brief Determine whether this C++ scope specifier refers to an
+// unknown specialization, i.e., a dependent type that is not the
+// current instantiation.
+bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
+  if (!isDependentScopeSpecifier(SS))
+    return false;
+
+  NestedNameSpecifier *NNS
+    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
+  return getCurrentInstantiationOf(NNS) == 0;
+}
+
+/// \brief If the given nested name specifier refers to the current
+/// instantiation, return the declaration that corresponds to that
+/// current instantiation (C++0x [temp.dep.type]p1).
+///
+/// \param NNS a dependent nested name specifier.
+CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
+  assert(getLangOptions().CPlusPlus && "Only callable in C++");
+  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
+
+  if (!NNS->getAsType())
+    return 0;
+
+  QualType T = QualType(NNS->getAsType(), 0);
+  return ::getCurrentInstantiationOf(Context, CurContext, T);
+}
+
+/// \brief Require that the context specified by SS be complete.
+///
+/// If SS refers to a type, this routine checks whether the type is
+/// complete enough (or can be made complete enough) for name lookup
+/// into the DeclContext. A type that is not yet completed can be
+/// considered "complete enough" if it is a class/struct/union/enum
+/// that is currently being defined. Or, if we have a type that names
+/// a class template specialization that is not a complete type, we
+/// will attempt to instantiate that class template.
+bool Sema::RequireCompleteDeclContext(const CXXScopeSpec &SS) {
+  if (!SS.isSet() || SS.isInvalid())
+    return false;
+
+  DeclContext *DC = computeDeclContext(SS, true);
+  if (TagDecl *Tag = dyn_cast<TagDecl>(DC)) {
+    // If this is a dependent type, then we consider it complete.
+    if (Tag->isDependentContext())
+      return false;
+
+    // If we're currently defining this type, then lookup into the
+    // type is okay: don't complain that it isn't complete yet.
+    const TagType *TagT = Context.getTypeDeclType(Tag)->getAs<TagType>();
+    if (TagT->isBeingDefined())
+      return false;
+
+    // The type must be complete.
+    return RequireCompleteType(SS.getRange().getBegin(),
+                               Context.getTypeDeclType(Tag),
+                               PDiag(diag::err_incomplete_nested_name_spec)
+                                 << SS.getRange());
+  }
+
+  return false;
+}
+
+/// ActOnCXXGlobalScopeSpecifier - Return the object that represents the
+/// global scope ('::').
+Sema::CXXScopeTy *Sema::ActOnCXXGlobalScopeSpecifier(Scope *S,
+                                                     SourceLocation CCLoc) {
+  return NestedNameSpecifier::GlobalSpecifier(Context);
+}
+
+/// \brief Determines whether the given declaration is an valid acceptable
+/// result for name lookup of a nested-name-specifier.
+bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
+  if (!SD)
+    return false;
+
+  // Namespace and namespace aliases are fine.
+  if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
+    return true;
+
+  if (!isa<TypeDecl>(SD))
+    return false;
+
+  // Determine whether we have a class (or, in C++0x, an enum) or
+  // a typedef thereof. If so, build the nested-name-specifier.
+  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
+  if (T->isDependentType())
+    return true;
+  else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(SD)) {
+    if (TD->getUnderlyingType()->isRecordType() ||
+        (Context.getLangOptions().CPlusPlus0x &&
+         TD->getUnderlyingType()->isEnumeralType()))
+      return true;
+  } else if (isa<RecordDecl>(SD) ||
+             (Context.getLangOptions().CPlusPlus0x && isa<EnumDecl>(SD)))
+    return true;
+
+  return false;
+}
+
+/// \brief If the given nested-name-specifier begins with a bare identifier
+/// (e.g., Base::), perform name lookup for that identifier as a
+/// nested-name-specifier within the given scope, and return the result of that
+/// name lookup.
+NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
+  if (!S || !NNS)
+    return 0;
+
+  while (NNS->getPrefix())
+    NNS = NNS->getPrefix();
+
+  if (NNS->getKind() != NestedNameSpecifier::Identifier)
+    return 0;
+
+  LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
+                     LookupNestedNameSpecifierName);
+  LookupName(Found, S);
+  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
+
+  if (!Found.isSingleResult())
+    return 0;
+
+  NamedDecl *Result = Found.getFoundDecl();
+  if (isAcceptableNestedNameSpecifier(Result))
+    return Result;
+
+  return 0;
+}
+
+/// \brief Build a new nested-name-specifier for "identifier::", as described
+/// by ActOnCXXNestedNameSpecifier.
+///
+/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
+/// that it contains an extra parameter \p ScopeLookupResult, which provides
+/// the result of name lookup within the scope of the nested-name-specifier
+/// that was computed at template definition time.
+///
+/// If ErrorRecoveryLookup is true, then this call is used to improve error
+/// recovery.  This means that it should not emit diagnostics, it should
+/// just return null on failure.  It also means it should only return a valid
+/// scope if it *knows* that the result is correct.  It should not return in a
+/// dependent context, for example.
+Sema::CXXScopeTy *Sema::BuildCXXNestedNameSpecifier(Scope *S,
+                                                    const CXXScopeSpec &SS,
+                                                    SourceLocation IdLoc,
+                                                    SourceLocation CCLoc,
+                                                    IdentifierInfo &II,
+                                                    QualType ObjectType,
+                                                  NamedDecl *ScopeLookupResult,
+                                                    bool EnteringContext,
+                                                    bool ErrorRecoveryLookup) {
+  NestedNameSpecifier *Prefix
+    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
+
+  LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
+
+  // Determine where to perform name lookup
+  DeclContext *LookupCtx = 0;
+  bool isDependent = false;
+  if (!ObjectType.isNull()) {
+    // This nested-name-specifier occurs in a member access expression, e.g.,
+    // x->B::f, and we are looking into the type of the object.
+    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
+    LookupCtx = computeDeclContext(ObjectType);
+    isDependent = ObjectType->isDependentType();
+  } else if (SS.isSet()) {
+    // This nested-name-specifier occurs after another nested-name-specifier,
+    // so long into the context associated with the prior nested-name-specifier.
+    LookupCtx = computeDeclContext(SS, EnteringContext);
+    isDependent = isDependentScopeSpecifier(SS);
+    Found.setContextRange(SS.getRange());
+  }
+
+
+  bool ObjectTypeSearchedInScope = false;
+  if (LookupCtx) {
+    // Perform "qualified" name lookup into the declaration context we
+    // computed, which is either the type of the base of a member access
+    // expression or the declaration context associated with a prior
+    // nested-name-specifier.
+
+    // The declaration context must be complete.
+    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(SS))
+      return 0;
+
+    LookupQualifiedName(Found, LookupCtx);
+
+    if (!ObjectType.isNull() && Found.empty()) {
+      // C++ [basic.lookup.classref]p4:
+      //   If the id-expression in a class member access is a qualified-id of
+      //   the form
+      //
+      //        class-name-or-namespace-name::...
+      //
+      //   the class-name-or-namespace-name following the . or -> operator is
+      //   looked up both in the context of the entire postfix-expression and in
+      //   the scope of the class of the object expression. If the name is found
+      //   only in the scope of the class of the object expression, the name
+      //   shall refer to a class-name. If the name is found only in the
+      //   context of the entire postfix-expression, the name shall refer to a
+      //   class-name or namespace-name. [...]
+      //
+      // Qualified name lookup into a class will not find a namespace-name,
+      // so we do not need to diagnoste that case specifically. However,
+      // this qualified name lookup may find nothing. In that case, perform
+      // unqualified name lookup in the given scope (if available) or
+      // reconstruct the result from when name lookup was performed at template
+      // definition time.
+      if (S)
+        LookupName(Found, S);
+      else if (ScopeLookupResult)
+        Found.addDecl(ScopeLookupResult);
+
+      ObjectTypeSearchedInScope = true;
+    }
+  } else if (isDependent) {
+    // Don't speculate if we're just trying to improve error recovery.
+    if (ErrorRecoveryLookup)
+      return 0;
+    
+    // We were not able to compute the declaration context for a dependent
+    // base object type or prior nested-name-specifier, so this
+    // nested-name-specifier refers to an unknown specialization. Just build
+    // a dependent nested-name-specifier.
+    if (!Prefix)
+      return NestedNameSpecifier::Create(Context, &II);
+
+    return NestedNameSpecifier::Create(Context, Prefix, &II);
+  } else {
+    // Perform unqualified name lookup in the current scope.
+    LookupName(Found, S);
+  }
+
+  // FIXME: Deal with ambiguities cleanly.
+
+  if (Found.empty() && !ErrorRecoveryLookup) {
+    // We haven't found anything, and we're not recovering from a
+    // different kind of error, so look for typos.
+    DeclarationName Name = Found.getLookupName();
+    if (CorrectTypo(Found, S, &SS, LookupCtx, EnteringContext) &&
+        Found.isSingleResult() &&
+        isAcceptableNestedNameSpecifier(Found.getAsSingle<NamedDecl>())) {
+      if (LookupCtx)
+        Diag(Found.getNameLoc(), diag::err_no_member_suggest)
+          << Name << LookupCtx << Found.getLookupName() << SS.getRange()
+          << CodeModificationHint::CreateReplacement(Found.getNameLoc(),
+                                           Found.getLookupName().getAsString());
+      else
+        Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
+          << Name << Found.getLookupName()
+          << CodeModificationHint::CreateReplacement(Found.getNameLoc(),
+                                           Found.getLookupName().getAsString());
+      
+      if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
+        Diag(ND->getLocation(), diag::note_previous_decl)
+          << ND->getDeclName();
+    } else
+      Found.clear();
+  }
+
+  NamedDecl *SD = Found.getAsSingle<NamedDecl>();
+  if (isAcceptableNestedNameSpecifier(SD)) {
+    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
+      // C++ [basic.lookup.classref]p4:
+      //   [...] If the name is found in both contexts, the
+      //   class-name-or-namespace-name shall refer to the same entity.
+      //
+      // We already found the name in the scope of the object. Now, look
+      // into the current scope (the scope of the postfix-expression) to
+      // see if we can find the same name there. As above, if there is no
+      // scope, reconstruct the result from the template instantiation itself.
+      NamedDecl *OuterDecl;
+      if (S) {
+        LookupResult FoundOuter(*this, &II, IdLoc, LookupNestedNameSpecifierName);
+        LookupName(FoundOuter, S);
+        OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
+      } else
+        OuterDecl = ScopeLookupResult;
+
+      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
+          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
+          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
+           !Context.hasSameType(
+                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
+                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
+             if (ErrorRecoveryLookup)
+               return 0;
+             
+             Diag(IdLoc, diag::err_nested_name_member_ref_lookup_ambiguous)
+               << &II;
+             Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
+               << ObjectType;
+             Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
+
+             // Fall through so that we'll pick the name we found in the object
+             // type, since that's probably what the user wanted anyway.
+           }
+    }
+
+    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD))
+      return NestedNameSpecifier::Create(Context, Prefix, Namespace);
+
+    // FIXME: It would be nice to maintain the namespace alias name, then
+    // see through that alias when resolving the nested-name-specifier down to
+    // a declaration context.
+    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD))
+      return NestedNameSpecifier::Create(Context, Prefix,
+
+                                         Alias->getNamespace());
+
+    QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
+    return NestedNameSpecifier::Create(Context, Prefix, false,
+                                       T.getTypePtr());
+  }
+
+  // Otherwise, we have an error case.  If we don't want diagnostics, just
+  // return an error now.
+  if (ErrorRecoveryLookup)
+    return 0;
+
+  // If we didn't find anything during our lookup, try again with
+  // ordinary name lookup, which can help us produce better error
+  // messages.
+  if (Found.empty()) {
+    Found.clear(LookupOrdinaryName);
+    LookupName(Found, S);
+  }
+
+  unsigned DiagID;
+  if (!Found.empty())
+    DiagID = diag::err_expected_class_or_namespace;
+  else if (SS.isSet()) {
+    Diag(IdLoc, diag::err_no_member) << &II << LookupCtx << SS.getRange();
+    return 0;
+  } else
+    DiagID = diag::err_undeclared_var_use;
+
+  if (SS.isSet())
+    Diag(IdLoc, DiagID) << &II << SS.getRange();
+  else
+    Diag(IdLoc, DiagID) << &II;
+
+  return 0;
+}
+
+/// ActOnCXXNestedNameSpecifier - Called during parsing of a
+/// nested-name-specifier. e.g. for "foo::bar::" we parsed "foo::" and now
+/// we want to resolve "bar::". 'SS' is empty or the previously parsed
+/// nested-name part ("foo::"), 'IdLoc' is the source location of 'bar',
+/// 'CCLoc' is the location of '::' and 'II' is the identifier for 'bar'.
+/// Returns a CXXScopeTy* object representing the C++ scope.
+Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
+                                                    const CXXScopeSpec &SS,
+                                                    SourceLocation IdLoc,
+                                                    SourceLocation CCLoc,
+                                                    IdentifierInfo &II,
+                                                    TypeTy *ObjectTypePtr,
+                                                    bool EnteringContext) {
+  return BuildCXXNestedNameSpecifier(S, SS, IdLoc, CCLoc, II,
+                                     QualType::getFromOpaquePtr(ObjectTypePtr),
+                                     /*ScopeLookupResult=*/0, EnteringContext,
+                                     false);
+}
+
+/// IsInvalidUnlessNestedName - This method is used for error recovery
+/// purposes to determine whether the specified identifier is only valid as
+/// a nested name specifier, for example a namespace name.  It is
+/// conservatively correct to always return false from this method.
+///
+/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
+bool Sema::IsInvalidUnlessNestedName(Scope *S, const CXXScopeSpec &SS,
+                                     IdentifierInfo &II, TypeTy *ObjectType,
+                                     bool EnteringContext) {
+  return BuildCXXNestedNameSpecifier(S, SS, SourceLocation(), SourceLocation(),
+                                     II, QualType::getFromOpaquePtr(ObjectType),
+                                     /*ScopeLookupResult=*/0, EnteringContext,
+                                     true);
+}
+
+Sema::CXXScopeTy *Sema::ActOnCXXNestedNameSpecifier(Scope *S,
+                                                    const CXXScopeSpec &SS,
+                                                    TypeTy *Ty,
+                                                    SourceRange TypeRange,
+                                                    SourceLocation CCLoc) {
+  NestedNameSpecifier *Prefix
+    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
+  QualType T = GetTypeFromParser(Ty);
+  return NestedNameSpecifier::Create(Context, Prefix, /*FIXME:*/false,
+                                     T.getTypePtr());
+}
+
+bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
+  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
+
+  NestedNameSpecifier *Qualifier =
+    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
+
+  // There are only two places a well-formed program may qualify a
+  // declarator: first, when defining a namespace or class member
+  // out-of-line, and second, when naming an explicitly-qualified
+  // friend function.  The latter case is governed by
+  // C++03 [basic.lookup.unqual]p10:
+  //   In a friend declaration naming a member function, a name used
+  //   in the function declarator and not part of a template-argument
+  //   in a template-id is first looked up in the scope of the member
+  //   function's class. If it is not found, or if the name is part of
+  //   a template-argument in a template-id, the look up is as
+  //   described for unqualified names in the definition of the class
+  //   granting friendship.
+  // i.e. we don't push a scope unless it's a class member.
+
+  switch (Qualifier->getKind()) {
+  case NestedNameSpecifier::Global:
+  case NestedNameSpecifier::Namespace:
+    // These are always namespace scopes.  We never want to enter a
+    // namespace scope from anything but a file context.
+    return CurContext->getLookupContext()->isFileContext();
+
+  case NestedNameSpecifier::Identifier:
+  case NestedNameSpecifier::TypeSpec:
+  case NestedNameSpecifier::TypeSpecWithTemplate:
+    // These are never namespace scopes.
+    return true;
+  }
+
+  // Silence bogus warning.
+  return false;
+}
+
+/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
+/// scope or nested-name-specifier) is parsed, part of a declarator-id.
+/// After this method is called, according to [C++ 3.4.3p3], names should be
+/// looked up in the declarator-id's scope, until the declarator is parsed and
+/// ActOnCXXExitDeclaratorScope is called.
+/// The 'SS' should be a non-empty valid CXXScopeSpec.
+bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
+  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
+
+  if (SS.isInvalid()) return true;
+
+  DeclContext *DC = computeDeclContext(SS, true);
+  if (!DC) return true;
+
+  // Before we enter a declarator's context, we need to make sure that
+  // it is a complete declaration context.
+  if (!DC->isDependentContext() && RequireCompleteDeclContext(SS))
+    return true;
+    
+  EnterDeclaratorContext(S, DC);
+  return false;
+}
+
+/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
+/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
+/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
+/// Used to indicate that names should revert to being looked up in the
+/// defining scope.
+void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
+  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
+  if (SS.isInvalid())
+    return;
+  assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
+         "exiting declarator scope we never really entered");
+  ExitDeclaratorContext(S);
+}