Check in LLVM r95781.
diff --git a/lib/Sema/SemaDecl.cpp b/lib/Sema/SemaDecl.cpp
new file mode 100644
index 0000000..e12902b
--- /dev/null
+++ b/lib/Sema/SemaDecl.cpp
@@ -0,0 +1,6123 @@
+//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//  This file implements semantic analysis for declarations.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "SemaInit.h"
+#include "Lookup.h"
+#include "clang/Analysis/AnalysisContext.h"
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/Parse/DeclSpec.h"
+#include "clang/Parse/ParseDiagnostic.h"
+#include "clang/Parse/Template.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Lex/HeaderSearch.h"
+#include "llvm/ADT/Triple.h"
+#include <algorithm>
+#include <cstring>
+#include <functional>
+using namespace clang;
+
+/// getDeclName - Return a pretty name for the specified decl if possible, or
+/// an empty string if not.  This is used for pretty crash reporting.
+std::string Sema::getDeclName(DeclPtrTy d) {
+  Decl *D = d.getAs<Decl>();
+  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
+    return DN->getQualifiedNameAsString();
+  return "";
+}
+
+Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
+  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
+}
+
+/// \brief If the identifier refers to a type name within this scope,
+/// return the declaration of that type.
+///
+/// This routine performs ordinary name lookup of the identifier II
+/// within the given scope, with optional C++ scope specifier SS, to
+/// determine whether the name refers to a type. If so, returns an
+/// opaque pointer (actually a QualType) corresponding to that
+/// type. Otherwise, returns NULL.
+///
+/// If name lookup results in an ambiguity, this routine will complain
+/// and then return NULL.
+Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
+                                Scope *S, const CXXScopeSpec *SS,
+                                bool isClassName,
+                                TypeTy *ObjectTypePtr) {
+  // Determine where we will perform name lookup.
+  DeclContext *LookupCtx = 0;
+  if (ObjectTypePtr) {
+    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
+    if (ObjectType->isRecordType())
+      LookupCtx = computeDeclContext(ObjectType);
+  } else if (SS && SS->isSet()) {
+    LookupCtx = computeDeclContext(*SS, false);
+
+    if (!LookupCtx) {
+      if (isDependentScopeSpecifier(*SS)) {
+        // C++ [temp.res]p3:
+        //   A qualified-id that refers to a type and in which the
+        //   nested-name-specifier depends on a template-parameter (14.6.2)
+        //   shall be prefixed by the keyword typename to indicate that the
+        //   qualified-id denotes a type, forming an
+        //   elaborated-type-specifier (7.1.5.3).
+        //
+        // We therefore do not perform any name lookup if the result would
+        // refer to a member of an unknown specialization.
+        if (!isClassName)
+          return 0;
+        
+        // We know from the grammar that this name refers to a type, so build a
+        // TypenameType node to describe the type.
+        // FIXME: Record somewhere that this TypenameType node has no "typename"
+        // keyword associated with it.
+        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
+                                 II, SS->getRange()).getAsOpaquePtr();
+      }
+      
+      return 0;
+    }
+    
+    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
+      return 0;
+  }
+
+  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
+  // lookup for class-names.
+  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
+                                      LookupOrdinaryName;
+  LookupResult Result(*this, &II, NameLoc, Kind);
+  if (LookupCtx) {
+    // Perform "qualified" name lookup into the declaration context we
+    // computed, which is either the type of the base of a member access
+    // expression or the declaration context associated with a prior
+    // nested-name-specifier.
+    LookupQualifiedName(Result, LookupCtx);
+
+    if (ObjectTypePtr && Result.empty()) {
+      // C++ [basic.lookup.classref]p3:
+      //   If the unqualified-id is ~type-name, the type-name is looked up
+      //   in the context of the entire postfix-expression. If the type T of 
+      //   the object expression is of a class type C, the type-name is also
+      //   looked up in the scope of class C. At least one of the lookups shall
+      //   find a name that refers to (possibly cv-qualified) T.
+      LookupName(Result, S);
+    }
+  } else {
+    // Perform unqualified name lookup.
+    LookupName(Result, S);
+  }
+  
+  NamedDecl *IIDecl = 0;
+  switch (Result.getResultKind()) {
+  case LookupResult::NotFound:
+  case LookupResult::NotFoundInCurrentInstantiation:
+  case LookupResult::FoundOverloaded:
+  case LookupResult::FoundUnresolvedValue:
+    Result.suppressDiagnostics();
+    return 0;
+
+  case LookupResult::Ambiguous:
+    // Recover from type-hiding ambiguities by hiding the type.  We'll
+    // do the lookup again when looking for an object, and we can
+    // diagnose the error then.  If we don't do this, then the error
+    // about hiding the type will be immediately followed by an error
+    // that only makes sense if the identifier was treated like a type.
+    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
+      Result.suppressDiagnostics();
+      return 0;
+    }
+
+    // Look to see if we have a type anywhere in the list of results.
+    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
+         Res != ResEnd; ++Res) {
+      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
+        if (!IIDecl ||
+            (*Res)->getLocation().getRawEncoding() <
+              IIDecl->getLocation().getRawEncoding())
+          IIDecl = *Res;
+      }
+    }
+
+    if (!IIDecl) {
+      // None of the entities we found is a type, so there is no way
+      // to even assume that the result is a type. In this case, don't
+      // complain about the ambiguity. The parser will either try to
+      // perform this lookup again (e.g., as an object name), which
+      // will produce the ambiguity, or will complain that it expected
+      // a type name.
+      Result.suppressDiagnostics();
+      return 0;
+    }
+
+    // We found a type within the ambiguous lookup; diagnose the
+    // ambiguity and then return that type. This might be the right
+    // answer, or it might not be, but it suppresses any attempt to
+    // perform the name lookup again.
+    break;
+
+  case LookupResult::Found:
+    IIDecl = Result.getFoundDecl();
+    break;
+  }
+
+  assert(IIDecl && "Didn't find decl");
+
+  QualType T;
+  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
+    DiagnoseUseOfDecl(IIDecl, NameLoc);
+
+    // C++ [temp.local]p2:
+    //   Within the scope of a class template specialization or
+    //   partial specialization, when the injected-class-name is
+    //   not followed by a <, it is equivalent to the
+    //   injected-class-name followed by the template-argument s
+    //   of the class template specialization or partial
+    //   specialization enclosed in <>.
+    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
+      if (RD->isInjectedClassName())
+        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
+          T = Template->getInjectedClassNameType(Context);
+
+    if (T.isNull())
+      T = Context.getTypeDeclType(TD);
+    
+    if (SS)
+      T = getQualifiedNameType(*SS, T);
+    
+  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
+    T = Context.getObjCInterfaceType(IDecl);
+  } else if (UnresolvedUsingTypenameDecl *UUDecl =
+               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
+    // FIXME: preserve source structure information.
+    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
+  } else {
+    // If it's not plausibly a type, suppress diagnostics.
+    Result.suppressDiagnostics();
+    return 0;
+  }
+
+  return T.getAsOpaquePtr();
+}
+
+/// isTagName() - This method is called *for error recovery purposes only*
+/// to determine if the specified name is a valid tag name ("struct foo").  If
+/// so, this returns the TST for the tag corresponding to it (TST_enum,
+/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
+/// where the user forgot to specify the tag.
+DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
+  // Do a tag name lookup in this scope.
+  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
+  LookupName(R, S, false);
+  R.suppressDiagnostics();
+  if (R.getResultKind() == LookupResult::Found)
+    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
+      switch (TD->getTagKind()) {
+      case TagDecl::TK_struct: return DeclSpec::TST_struct;
+      case TagDecl::TK_union:  return DeclSpec::TST_union;
+      case TagDecl::TK_class:  return DeclSpec::TST_class;
+      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
+      }
+    }
+
+  return DeclSpec::TST_unspecified;
+}
+
+bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II, 
+                                   SourceLocation IILoc,
+                                   Scope *S,
+                                   const CXXScopeSpec *SS,
+                                   TypeTy *&SuggestedType) {
+  // We don't have anything to suggest (yet).
+  SuggestedType = 0;
+  
+  // There may have been a typo in the name of the type. Look up typo
+  // results, in case we have something that we can suggest.
+  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName, 
+                      NotForRedeclaration);
+
+  // FIXME: It would be nice if we could correct for typos in built-in
+  // names, such as "itn" for "int".
+
+  if (CorrectTypo(Lookup, S, SS) && Lookup.isSingleResult()) {
+    NamedDecl *Result = Lookup.getAsSingle<NamedDecl>();
+    if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
+        !Result->isInvalidDecl()) {
+      // We found a similarly-named type or interface; suggest that.
+      if (!SS || !SS->isSet())
+        Diag(IILoc, diag::err_unknown_typename_suggest)
+          << &II << Lookup.getLookupName()
+          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
+                                                     Result->getNameAsString());
+      else if (DeclContext *DC = computeDeclContext(*SS, false))
+        Diag(IILoc, diag::err_unknown_nested_typename_suggest) 
+          << &II << DC << Lookup.getLookupName() << SS->getRange()
+          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
+                                                     Result->getNameAsString());
+      else
+        llvm_unreachable("could not have corrected a typo here");
+
+      Diag(Result->getLocation(), diag::note_previous_decl)
+        << Result->getDeclName();
+      
+      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
+      return true;
+    }
+  }
+
+  // FIXME: Should we move the logic that tries to recover from a missing tag
+  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
+  
+  if (!SS || (!SS->isSet() && !SS->isInvalid()))
+    Diag(IILoc, diag::err_unknown_typename) << &II;
+  else if (DeclContext *DC = computeDeclContext(*SS, false))
+    Diag(IILoc, diag::err_typename_nested_not_found) 
+      << &II << DC << SS->getRange();
+  else if (isDependentScopeSpecifier(*SS)) {
+    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
+      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
+      << SourceRange(SS->getRange().getBegin(), IILoc)
+      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
+                                               "typename ");
+    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
+  } else {
+    assert(SS && SS->isInvalid() && 
+           "Invalid scope specifier has already been diagnosed");
+  }
+  
+  return true;
+}
+
+// Determines the context to return to after temporarily entering a
+// context.  This depends in an unnecessarily complicated way on the
+// exact ordering of callbacks from the parser.
+DeclContext *Sema::getContainingDC(DeclContext *DC) {
+
+  // Functions defined inline within classes aren't parsed until we've
+  // finished parsing the top-level class, so the top-level class is
+  // the context we'll need to return to.
+  if (isa<FunctionDecl>(DC)) {
+    DC = DC->getLexicalParent();
+
+    // A function not defined within a class will always return to its
+    // lexical context.
+    if (!isa<CXXRecordDecl>(DC))
+      return DC;
+
+    // A C++ inline method/friend is parsed *after* the topmost class
+    // it was declared in is fully parsed ("complete");  the topmost
+    // class is the context we need to return to.
+    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
+      DC = RD;
+
+    // Return the declaration context of the topmost class the inline method is
+    // declared in.
+    return DC;
+  }
+
+  if (isa<ObjCMethodDecl>(DC))
+    return Context.getTranslationUnitDecl();
+
+  return DC->getLexicalParent();
+}
+
+void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
+  assert(getContainingDC(DC) == CurContext &&
+      "The next DeclContext should be lexically contained in the current one.");
+  CurContext = DC;
+  S->setEntity(DC);
+}
+
+void Sema::PopDeclContext() {
+  assert(CurContext && "DeclContext imbalance!");
+
+  CurContext = getContainingDC(CurContext);
+}
+
+/// EnterDeclaratorContext - Used when we must lookup names in the context
+/// of a declarator's nested name specifier.
+///
+void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
+  // C++0x [basic.lookup.unqual]p13:
+  //   A name used in the definition of a static data member of class
+  //   X (after the qualified-id of the static member) is looked up as
+  //   if the name was used in a member function of X.
+  // C++0x [basic.lookup.unqual]p14:
+  //   If a variable member of a namespace is defined outside of the
+  //   scope of its namespace then any name used in the definition of
+  //   the variable member (after the declarator-id) is looked up as
+  //   if the definition of the variable member occurred in its
+  //   namespace.
+  // Both of these imply that we should push a scope whose context
+  // is the semantic context of the declaration.  We can't use
+  // PushDeclContext here because that context is not necessarily
+  // lexically contained in the current context.  Fortunately,
+  // the containing scope should have the appropriate information.
+
+  assert(!S->getEntity() && "scope already has entity");
+
+#ifndef NDEBUG
+  Scope *Ancestor = S->getParent();
+  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
+  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
+#endif
+
+  CurContext = DC;
+  S->setEntity(DC);
+}
+
+void Sema::ExitDeclaratorContext(Scope *S) {
+  assert(S->getEntity() == CurContext && "Context imbalance!");
+
+  // Switch back to the lexical context.  The safety of this is
+  // enforced by an assert in EnterDeclaratorContext.
+  Scope *Ancestor = S->getParent();
+  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
+  CurContext = (DeclContext*) Ancestor->getEntity();
+
+  // We don't need to do anything with the scope, which is going to
+  // disappear.
+}
+
+/// \brief Determine whether we allow overloading of the function
+/// PrevDecl with another declaration.
+///
+/// This routine determines whether overloading is possible, not
+/// whether some new function is actually an overload. It will return
+/// true in C++ (where we can always provide overloads) or, as an
+/// extension, in C when the previous function is already an
+/// overloaded function declaration or has the "overloadable"
+/// attribute.
+static bool AllowOverloadingOfFunction(LookupResult &Previous,
+                                       ASTContext &Context) {
+  if (Context.getLangOptions().CPlusPlus)
+    return true;
+
+  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
+    return true;
+
+  return (Previous.getResultKind() == LookupResult::Found
+          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
+}
+
+/// Add this decl to the scope shadowed decl chains.
+void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
+  // Move up the scope chain until we find the nearest enclosing
+  // non-transparent context. The declaration will be introduced into this
+  // scope.
+  while (S->getEntity() &&
+         ((DeclContext *)S->getEntity())->isTransparentContext())
+    S = S->getParent();
+
+  // Add scoped declarations into their context, so that they can be
+  // found later. Declarations without a context won't be inserted
+  // into any context.
+  if (AddToContext)
+    CurContext->addDecl(D);
+
+  // Out-of-line function and variable definitions should not be pushed into
+  // scope.
+  if ((isa<FunctionTemplateDecl>(D) &&
+       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
+      (isa<FunctionDecl>(D) &&
+       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
+        cast<FunctionDecl>(D)->isOutOfLine())) ||
+      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
+    return;
+
+  // If this replaces anything in the current scope, 
+  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
+                               IEnd = IdResolver.end();
+  for (; I != IEnd; ++I) {
+    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
+      S->RemoveDecl(DeclPtrTy::make(*I));
+      IdResolver.RemoveDecl(*I);
+
+      // Should only need to replace one decl.
+      break;
+    }
+  }
+
+  S->AddDecl(DeclPtrTy::make(D));
+  IdResolver.AddDecl(D);
+}
+
+bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
+  return IdResolver.isDeclInScope(D, Ctx, Context, S);
+}
+
+static bool isOutOfScopePreviousDeclaration(NamedDecl *,
+                                            DeclContext*,
+                                            ASTContext&);
+
+/// Filters out lookup results that don't fall within the given scope
+/// as determined by isDeclInScope.
+static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
+                                 DeclContext *Ctx, Scope *S,
+                                 bool ConsiderLinkage) {
+  LookupResult::Filter F = R.makeFilter();
+  while (F.hasNext()) {
+    NamedDecl *D = F.next();
+
+    if (SemaRef.isDeclInScope(D, Ctx, S))
+      continue;
+
+    if (ConsiderLinkage &&
+        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
+      continue;
+    
+    F.erase();
+  }
+
+  F.done();
+}
+
+static bool isUsingDecl(NamedDecl *D) {
+  return isa<UsingShadowDecl>(D) ||
+         isa<UnresolvedUsingTypenameDecl>(D) ||
+         isa<UnresolvedUsingValueDecl>(D);
+}
+
+/// Removes using shadow declarations from the lookup results.
+static void RemoveUsingDecls(LookupResult &R) {
+  LookupResult::Filter F = R.makeFilter();
+  while (F.hasNext())
+    if (isUsingDecl(F.next()))
+      F.erase();
+
+  F.done();
+}
+
+static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
+  if (D->isInvalidDecl())
+    return false;
+
+  if (D->isUsed() || D->hasAttr<UnusedAttr>())
+    return false;
+
+  // White-list anything that isn't a local variable.
+  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
+      !D->getDeclContext()->isFunctionOrMethod())
+    return false;
+
+  // Types of valid local variables should be complete, so this should succeed.
+  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
+    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
+      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
+        if (!RD->hasTrivialConstructor())
+          return false;
+        if (!RD->hasTrivialDestructor())
+          return false;
+      }
+    }
+  }
+  
+  return true;
+}
+
+void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
+  if (S->decl_empty()) return;
+  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
+         "Scope shouldn't contain decls!");
+
+  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
+       I != E; ++I) {
+    Decl *TmpD = (*I).getAs<Decl>();
+    assert(TmpD && "This decl didn't get pushed??");
+
+    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
+    NamedDecl *D = cast<NamedDecl>(TmpD);
+
+    if (!D->getDeclName()) continue;
+
+    // Diagnose unused variables in this scope.
+    if (ShouldDiagnoseUnusedDecl(D))
+      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
+    
+    // Remove this name from our lexical scope.
+    IdResolver.RemoveDecl(D);
+  }
+}
+
+/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
+/// return 0 if one not found.
+///
+/// \param Id the name of the Objective-C class we're looking for. If
+/// typo-correction fixes this name, the Id will be updated
+/// to the fixed name.
+///
+/// \param RecoverLoc if provided, this routine will attempt to
+/// recover from a typo in the name of an existing Objective-C class
+/// and, if successful, will return the lookup that results from
+/// typo-correction.
+ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
+                                              SourceLocation RecoverLoc) {
+  // The third "scope" argument is 0 since we aren't enabling lazy built-in
+  // creation from this context.
+  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
+
+  if (!IDecl && !RecoverLoc.isInvalid()) {
+    // Perform typo correction at the given location, but only if we
+    // find an Objective-C class name.
+    LookupResult R(*this, Id, RecoverLoc, LookupOrdinaryName);
+    if (CorrectTypo(R, TUScope, 0) &&
+        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
+      Diag(RecoverLoc, diag::err_undef_interface_suggest)
+        << Id << IDecl->getDeclName() 
+        << CodeModificationHint::CreateReplacement(RecoverLoc, 
+                                                   IDecl->getNameAsString());
+      Diag(IDecl->getLocation(), diag::note_previous_decl)
+        << IDecl->getDeclName();
+      
+      Id = IDecl->getIdentifier();
+    }
+  }
+
+  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
+}
+
+/// getNonFieldDeclScope - Retrieves the innermost scope, starting
+/// from S, where a non-field would be declared. This routine copes
+/// with the difference between C and C++ scoping rules in structs and
+/// unions. For example, the following code is well-formed in C but
+/// ill-formed in C++:
+/// @code
+/// struct S6 {
+///   enum { BAR } e;
+/// };
+///
+/// void test_S6() {
+///   struct S6 a;
+///   a.e = BAR;
+/// }
+/// @endcode
+/// For the declaration of BAR, this routine will return a different
+/// scope. The scope S will be the scope of the unnamed enumeration
+/// within S6. In C++, this routine will return the scope associated
+/// with S6, because the enumeration's scope is a transparent
+/// context but structures can contain non-field names. In C, this
+/// routine will return the translation unit scope, since the
+/// enumeration's scope is a transparent context and structures cannot
+/// contain non-field names.
+Scope *Sema::getNonFieldDeclScope(Scope *S) {
+  while (((S->getFlags() & Scope::DeclScope) == 0) ||
+         (S->getEntity() &&
+          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
+         (S->isClassScope() && !getLangOptions().CPlusPlus))
+    S = S->getParent();
+  return S;
+}
+
+void Sema::InitBuiltinVaListType() {
+  if (!Context.getBuiltinVaListType().isNull())
+    return;
+
+  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
+  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
+  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
+  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
+}
+
+/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
+/// file scope.  lazily create a decl for it. ForRedeclaration is true
+/// if we're creating this built-in in anticipation of redeclaring the
+/// built-in.
+NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
+                                     Scope *S, bool ForRedeclaration,
+                                     SourceLocation Loc) {
+  Builtin::ID BID = (Builtin::ID)bid;
+
+  if (Context.BuiltinInfo.hasVAListUse(BID))
+    InitBuiltinVaListType();
+
+  ASTContext::GetBuiltinTypeError Error;
+  QualType R = Context.GetBuiltinType(BID, Error);
+  switch (Error) {
+  case ASTContext::GE_None:
+    // Okay
+    break;
+
+  case ASTContext::GE_Missing_stdio:
+    if (ForRedeclaration)
+      Diag(Loc, diag::err_implicit_decl_requires_stdio)
+        << Context.BuiltinInfo.GetName(BID);
+    return 0;
+
+  case ASTContext::GE_Missing_setjmp:
+    if (ForRedeclaration)
+      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
+        << Context.BuiltinInfo.GetName(BID);
+    return 0;
+  }
+
+  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
+    Diag(Loc, diag::ext_implicit_lib_function_decl)
+      << Context.BuiltinInfo.GetName(BID)
+      << R;
+    if (Context.BuiltinInfo.getHeaderName(BID) &&
+        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
+          != Diagnostic::Ignored)
+      Diag(Loc, diag::note_please_include_header)
+        << Context.BuiltinInfo.getHeaderName(BID)
+        << Context.BuiltinInfo.GetName(BID);
+  }
+
+  FunctionDecl *New = FunctionDecl::Create(Context,
+                                           Context.getTranslationUnitDecl(),
+                                           Loc, II, R, /*TInfo=*/0,
+                                           FunctionDecl::Extern, false,
+                                           /*hasPrototype=*/true);
+  New->setImplicit();
+
+  // Create Decl objects for each parameter, adding them to the
+  // FunctionDecl.
+  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
+    llvm::SmallVector<ParmVarDecl*, 16> Params;
+    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
+      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
+                                           FT->getArgType(i), /*TInfo=*/0,
+                                           VarDecl::None, 0));
+    New->setParams(Context, Params.data(), Params.size());
+  }
+
+  AddKnownFunctionAttributes(New);
+
+  // TUScope is the translation-unit scope to insert this function into.
+  // FIXME: This is hideous. We need to teach PushOnScopeChains to
+  // relate Scopes to DeclContexts, and probably eliminate CurContext
+  // entirely, but we're not there yet.
+  DeclContext *SavedContext = CurContext;
+  CurContext = Context.getTranslationUnitDecl();
+  PushOnScopeChains(New, TUScope);
+  CurContext = SavedContext;
+  return New;
+}
+
+/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
+/// same name and scope as a previous declaration 'Old'.  Figure out
+/// how to resolve this situation, merging decls or emitting
+/// diagnostics as appropriate. If there was an error, set New to be invalid.
+///
+void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
+  // If the new decl is known invalid already, don't bother doing any
+  // merging checks.
+  if (New->isInvalidDecl()) return;
+
+  // Allow multiple definitions for ObjC built-in typedefs.
+  // FIXME: Verify the underlying types are equivalent!
+  if (getLangOptions().ObjC1) {
+    const IdentifierInfo *TypeID = New->getIdentifier();
+    switch (TypeID->getLength()) {
+    default: break;
+    case 2:
+      if (!TypeID->isStr("id"))
+        break;
+      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
+      // Install the built-in type for 'id', ignoring the current definition.
+      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
+      return;
+    case 5:
+      if (!TypeID->isStr("Class"))
+        break;
+      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
+      // Install the built-in type for 'Class', ignoring the current definition.
+      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
+      return;
+    case 3:
+      if (!TypeID->isStr("SEL"))
+        break;
+      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
+      // Install the built-in type for 'SEL', ignoring the current definition.
+      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
+      return;
+    case 8:
+      if (!TypeID->isStr("Protocol"))
+        break;
+      Context.setObjCProtoType(New->getUnderlyingType());
+      return;
+    }
+    // Fall through - the typedef name was not a builtin type.
+  }
+
+  // Verify the old decl was also a type.
+  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
+  if (!Old) {
+    Diag(New->getLocation(), diag::err_redefinition_different_kind)
+      << New->getDeclName();
+
+    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
+    if (OldD->getLocation().isValid())
+      Diag(OldD->getLocation(), diag::note_previous_definition);
+
+    return New->setInvalidDecl();
+  }
+
+  // If the old declaration is invalid, just give up here.
+  if (Old->isInvalidDecl())
+    return New->setInvalidDecl();
+
+  // Determine the "old" type we'll use for checking and diagnostics.
+  QualType OldType;
+  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
+    OldType = OldTypedef->getUnderlyingType();
+  else
+    OldType = Context.getTypeDeclType(Old);
+
+  // If the typedef types are not identical, reject them in all languages and
+  // with any extensions enabled.
+
+  if (OldType != New->getUnderlyingType() &&
+      Context.getCanonicalType(OldType) !=
+      Context.getCanonicalType(New->getUnderlyingType())) {
+    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
+      << New->getUnderlyingType() << OldType;
+    if (Old->getLocation().isValid())
+      Diag(Old->getLocation(), diag::note_previous_definition);
+    return New->setInvalidDecl();
+  }
+
+  // The types match.  Link up the redeclaration chain if the old
+  // declaration was a typedef.
+  // FIXME: this is a potential source of wierdness if the type
+  // spellings don't match exactly.
+  if (isa<TypedefDecl>(Old))
+    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
+
+  if (getLangOptions().Microsoft)
+    return;
+
+  if (getLangOptions().CPlusPlus) {
+    // C++ [dcl.typedef]p2:
+    //   In a given non-class scope, a typedef specifier can be used to
+    //   redefine the name of any type declared in that scope to refer
+    //   to the type to which it already refers.
+    if (!isa<CXXRecordDecl>(CurContext))
+      return;
+
+    // C++0x [dcl.typedef]p4:
+    //   In a given class scope, a typedef specifier can be used to redefine 
+    //   any class-name declared in that scope that is not also a typedef-name
+    //   to refer to the type to which it already refers.
+    //
+    // This wording came in via DR424, which was a correction to the
+    // wording in DR56, which accidentally banned code like:
+    //
+    //   struct S {
+    //     typedef struct A { } A;
+    //   };
+    //
+    // in the C++03 standard. We implement the C++0x semantics, which
+    // allow the above but disallow
+    //
+    //   struct S {
+    //     typedef int I;
+    //     typedef int I;
+    //   };
+    //
+    // since that was the intent of DR56.
+    if (!isa<TypedefDecl >(Old))
+      return;
+
+    Diag(New->getLocation(), diag::err_redefinition)
+      << New->getDeclName();
+    Diag(Old->getLocation(), diag::note_previous_definition);
+    return New->setInvalidDecl();
+  }
+
+  // If we have a redefinition of a typedef in C, emit a warning.  This warning
+  // is normally mapped to an error, but can be controlled with
+  // -Wtypedef-redefinition.  If either the original or the redefinition is
+  // in a system header, don't emit this for compatibility with GCC.
+  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
+      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
+       Context.getSourceManager().isInSystemHeader(New->getLocation())))
+    return;
+
+  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
+    << New->getDeclName();
+  Diag(Old->getLocation(), diag::note_previous_definition);
+  return;
+}
+
+/// DeclhasAttr - returns true if decl Declaration already has the target
+/// attribute.
+static bool
+DeclHasAttr(const Decl *decl, const Attr *target) {
+  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
+    if (attr->getKind() == target->getKind())
+      return true;
+
+  return false;
+}
+
+/// MergeAttributes - append attributes from the Old decl to the New one.
+static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
+  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
+    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
+      Attr *NewAttr = attr->clone(C);
+      NewAttr->setInherited(true);
+      New->addAttr(NewAttr);
+    }
+  }
+}
+
+/// Used in MergeFunctionDecl to keep track of function parameters in
+/// C.
+struct GNUCompatibleParamWarning {
+  ParmVarDecl *OldParm;
+  ParmVarDecl *NewParm;
+  QualType PromotedType;
+};
+
+
+/// getSpecialMember - get the special member enum for a method.
+static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
+                                               const CXXMethodDecl *MD) {
+  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
+    if (Ctor->isDefaultConstructor())
+      return Sema::CXXDefaultConstructor;
+    if (Ctor->isCopyConstructor())
+      return Sema::CXXCopyConstructor;
+  } 
+  
+  if (isa<CXXDestructorDecl>(MD))
+    return Sema::CXXDestructor;
+  
+  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
+  return Sema::CXXCopyAssignment;
+}
+
+/// MergeFunctionDecl - We just parsed a function 'New' from
+/// declarator D which has the same name and scope as a previous
+/// declaration 'Old'.  Figure out how to resolve this situation,
+/// merging decls or emitting diagnostics as appropriate.
+///
+/// In C++, New and Old must be declarations that are not
+/// overloaded. Use IsOverload to determine whether New and Old are
+/// overloaded, and to select the Old declaration that New should be
+/// merged with.
+///
+/// Returns true if there was an error, false otherwise.
+bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
+  // Verify the old decl was also a function.
+  FunctionDecl *Old = 0;
+  if (FunctionTemplateDecl *OldFunctionTemplate
+        = dyn_cast<FunctionTemplateDecl>(OldD))
+    Old = OldFunctionTemplate->getTemplatedDecl();
+  else
+    Old = dyn_cast<FunctionDecl>(OldD);
+  if (!Old) {
+    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
+      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
+      Diag(Shadow->getTargetDecl()->getLocation(),
+           diag::note_using_decl_target);
+      Diag(Shadow->getUsingDecl()->getLocation(),
+           diag::note_using_decl) << 0;
+      return true;
+    }
+
+    Diag(New->getLocation(), diag::err_redefinition_different_kind)
+      << New->getDeclName();
+    Diag(OldD->getLocation(), diag::note_previous_definition);
+    return true;
+  }
+
+  // Determine whether the previous declaration was a definition,
+  // implicit declaration, or a declaration.
+  diag::kind PrevDiag;
+  if (Old->isThisDeclarationADefinition())
+    PrevDiag = diag::note_previous_definition;
+  else if (Old->isImplicit())
+    PrevDiag = diag::note_previous_implicit_declaration;
+  else
+    PrevDiag = diag::note_previous_declaration;
+
+  QualType OldQType = Context.getCanonicalType(Old->getType());
+  QualType NewQType = Context.getCanonicalType(New->getType());
+
+  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
+      New->getStorageClass() == FunctionDecl::Static &&
+      Old->getStorageClass() != FunctionDecl::Static) {
+    Diag(New->getLocation(), diag::err_static_non_static)
+      << New;
+    Diag(Old->getLocation(), PrevDiag);
+    return true;
+  }
+
+  // If a function is first declared with a calling convention, but is
+  // later declared or defined without one, the second decl assumes the
+  // calling convention of the first.
+  //
+  // For the new decl, we have to look at the NON-canonical type to tell the
+  // difference between a function that really doesn't have a calling
+  // convention and one that is declared cdecl. That's because in
+  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
+  // because it is the default calling convention.
+  //
+  // Note also that we DO NOT return at this point, because we still have
+  // other tests to run.
+  const FunctionType *OldType = OldQType->getAs<FunctionType>();
+  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
+  if (OldType->getCallConv() != CC_Default &&
+      NewType->getCallConv() == CC_Default) {
+    NewQType = Context.getCallConvType(NewQType, OldType->getCallConv());
+    New->setType(NewQType);
+    NewQType = Context.getCanonicalType(NewQType);
+  } else if (!Context.isSameCallConv(OldType->getCallConv(),
+                                     NewType->getCallConv())) {
+    // Calling conventions really aren't compatible, so complain.
+    Diag(New->getLocation(), diag::err_cconv_change)
+      << FunctionType::getNameForCallConv(NewType->getCallConv())
+      << (OldType->getCallConv() == CC_Default)
+      << (OldType->getCallConv() == CC_Default ? "" :
+          FunctionType::getNameForCallConv(OldType->getCallConv()));
+    Diag(Old->getLocation(), diag::note_previous_declaration);
+    return true;
+  }
+
+  // FIXME: diagnose the other way around?
+  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
+    NewQType = Context.getNoReturnType(NewQType);
+    New->setType(NewQType);
+    assert(NewQType.isCanonical());
+  }
+
+  if (getLangOptions().CPlusPlus) {
+    // (C++98 13.1p2):
+    //   Certain function declarations cannot be overloaded:
+    //     -- Function declarations that differ only in the return type
+    //        cannot be overloaded.
+    QualType OldReturnType
+      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
+    QualType NewReturnType
+      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
+    if (OldReturnType != NewReturnType) {
+      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
+      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
+      return true;
+    }
+
+    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
+    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
+    if (OldMethod && NewMethod) {
+      if (!NewMethod->getFriendObjectKind() &&
+          NewMethod->getLexicalDeclContext()->isRecord()) {
+        //    -- Member function declarations with the same name and the
+        //       same parameter types cannot be overloaded if any of them
+        //       is a static member function declaration.
+        if (OldMethod->isStatic() || NewMethod->isStatic()) {
+          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
+          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
+          return true;
+        }
+      
+        // C++ [class.mem]p1:
+        //   [...] A member shall not be declared twice in the
+        //   member-specification, except that a nested class or member
+        //   class template can be declared and then later defined.
+        unsigned NewDiag;
+        if (isa<CXXConstructorDecl>(OldMethod))
+          NewDiag = diag::err_constructor_redeclared;
+        else if (isa<CXXDestructorDecl>(NewMethod))
+          NewDiag = diag::err_destructor_redeclared;
+        else if (isa<CXXConversionDecl>(NewMethod))
+          NewDiag = diag::err_conv_function_redeclared;
+        else
+          NewDiag = diag::err_member_redeclared;
+
+        Diag(New->getLocation(), NewDiag);
+        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
+      } else {
+        if (OldMethod->isImplicit()) {
+          Diag(NewMethod->getLocation(),
+               diag::err_definition_of_implicitly_declared_member) 
+          << New << getSpecialMember(Context, OldMethod);
+        
+          Diag(OldMethod->getLocation(),
+               diag::note_previous_implicit_declaration);
+          return true;
+        }
+      }
+    }
+
+    // (C++98 8.3.5p3):
+    //   All declarations for a function shall agree exactly in both the
+    //   return type and the parameter-type-list.
+    // attributes should be ignored when comparing.
+    if (Context.getNoReturnType(OldQType, false) ==
+        Context.getNoReturnType(NewQType, false))
+      return MergeCompatibleFunctionDecls(New, Old);
+
+    // Fall through for conflicting redeclarations and redefinitions.
+  }
+
+  // C: Function types need to be compatible, not identical. This handles
+  // duplicate function decls like "void f(int); void f(enum X);" properly.
+  if (!getLangOptions().CPlusPlus &&
+      Context.typesAreCompatible(OldQType, NewQType)) {
+    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
+    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
+    const FunctionProtoType *OldProto = 0;
+    if (isa<FunctionNoProtoType>(NewFuncType) &&
+        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
+      // The old declaration provided a function prototype, but the
+      // new declaration does not. Merge in the prototype.
+      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
+      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
+                                                 OldProto->arg_type_end());
+      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
+                                         ParamTypes.data(), ParamTypes.size(),
+                                         OldProto->isVariadic(),
+                                         OldProto->getTypeQuals());
+      New->setType(NewQType);
+      New->setHasInheritedPrototype();
+
+      // Synthesize a parameter for each argument type.
+      llvm::SmallVector<ParmVarDecl*, 16> Params;
+      for (FunctionProtoType::arg_type_iterator
+             ParamType = OldProto->arg_type_begin(),
+             ParamEnd = OldProto->arg_type_end();
+           ParamType != ParamEnd; ++ParamType) {
+        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
+                                                 SourceLocation(), 0,
+                                                 *ParamType, /*TInfo=*/0,
+                                                 VarDecl::None, 0);
+        Param->setImplicit();
+        Params.push_back(Param);
+      }
+
+      New->setParams(Context, Params.data(), Params.size());
+    }
+
+    return MergeCompatibleFunctionDecls(New, Old);
+  }
+
+  // GNU C permits a K&R definition to follow a prototype declaration
+  // if the declared types of the parameters in the K&R definition
+  // match the types in the prototype declaration, even when the
+  // promoted types of the parameters from the K&R definition differ
+  // from the types in the prototype. GCC then keeps the types from
+  // the prototype.
+  //
+  // If a variadic prototype is followed by a non-variadic K&R definition,
+  // the K&R definition becomes variadic.  This is sort of an edge case, but
+  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
+  // C99 6.9.1p8.
+  if (!getLangOptions().CPlusPlus &&
+      Old->hasPrototype() && !New->hasPrototype() &&
+      New->getType()->getAs<FunctionProtoType>() &&
+      Old->getNumParams() == New->getNumParams()) {
+    llvm::SmallVector<QualType, 16> ArgTypes;
+    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
+    const FunctionProtoType *OldProto
+      = Old->getType()->getAs<FunctionProtoType>();
+    const FunctionProtoType *NewProto
+      = New->getType()->getAs<FunctionProtoType>();
+
+    // Determine whether this is the GNU C extension.
+    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
+                                               NewProto->getResultType());
+    bool LooseCompatible = !MergedReturn.isNull();
+    for (unsigned Idx = 0, End = Old->getNumParams();
+         LooseCompatible && Idx != End; ++Idx) {
+      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
+      ParmVarDecl *NewParm = New->getParamDecl(Idx);
+      if (Context.typesAreCompatible(OldParm->getType(),
+                                     NewProto->getArgType(Idx))) {
+        ArgTypes.push_back(NewParm->getType());
+      } else if (Context.typesAreCompatible(OldParm->getType(),
+                                            NewParm->getType())) {
+        GNUCompatibleParamWarning Warn
+          = { OldParm, NewParm, NewProto->getArgType(Idx) };
+        Warnings.push_back(Warn);
+        ArgTypes.push_back(NewParm->getType());
+      } else
+        LooseCompatible = false;
+    }
+
+    if (LooseCompatible) {
+      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
+        Diag(Warnings[Warn].NewParm->getLocation(),
+             diag::ext_param_promoted_not_compatible_with_prototype)
+          << Warnings[Warn].PromotedType
+          << Warnings[Warn].OldParm->getType();
+        Diag(Warnings[Warn].OldParm->getLocation(),
+             diag::note_previous_declaration);
+      }
+
+      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
+                                           ArgTypes.size(),
+                                           OldProto->isVariadic(), 0));
+      return MergeCompatibleFunctionDecls(New, Old);
+    }
+
+    // Fall through to diagnose conflicting types.
+  }
+
+  // A function that has already been declared has been redeclared or defined
+  // with a different type- show appropriate diagnostic
+  if (unsigned BuiltinID = Old->getBuiltinID()) {
+    // The user has declared a builtin function with an incompatible
+    // signature.
+    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
+      // The function the user is redeclaring is a library-defined
+      // function like 'malloc' or 'printf'. Warn about the
+      // redeclaration, then pretend that we don't know about this
+      // library built-in.
+      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
+      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
+        << Old << Old->getType();
+      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
+      Old->setInvalidDecl();
+      return false;
+    }
+
+    PrevDiag = diag::note_previous_builtin_declaration;
+  }
+
+  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
+  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
+  return true;
+}
+
+/// \brief Completes the merge of two function declarations that are
+/// known to be compatible.
+///
+/// This routine handles the merging of attributes and other
+/// properties of function declarations form the old declaration to
+/// the new declaration, once we know that New is in fact a
+/// redeclaration of Old.
+///
+/// \returns false
+bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
+  // Merge the attributes
+  MergeAttributes(New, Old, Context);
+
+  // Merge the storage class.
+  if (Old->getStorageClass() != FunctionDecl::Extern &&
+      Old->getStorageClass() != FunctionDecl::None)
+    New->setStorageClass(Old->getStorageClass());
+
+  // Merge "pure" flag.
+  if (Old->isPure())
+    New->setPure();
+
+  // Merge the "deleted" flag.
+  if (Old->isDeleted())
+    New->setDeleted();
+
+  if (getLangOptions().CPlusPlus)
+    return MergeCXXFunctionDecl(New, Old);
+
+  return false;
+}
+
+/// MergeVarDecl - We just parsed a variable 'New' which has the same name
+/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
+/// situation, merging decls or emitting diagnostics as appropriate.
+///
+/// Tentative definition rules (C99 6.9.2p2) are checked by
+/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
+/// definitions here, since the initializer hasn't been attached.
+///
+void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
+  // If the new decl is already invalid, don't do any other checking.
+  if (New->isInvalidDecl())
+    return;
+
+  // Verify the old decl was also a variable.
+  VarDecl *Old = 0;
+  if (!Previous.isSingleResult() ||
+      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
+    Diag(New->getLocation(), diag::err_redefinition_different_kind)
+      << New->getDeclName();
+    Diag(Previous.getRepresentativeDecl()->getLocation(),
+         diag::note_previous_definition);
+    return New->setInvalidDecl();
+  }
+
+  MergeAttributes(New, Old, Context);
+
+  // Merge the types
+  QualType MergedT;
+  if (getLangOptions().CPlusPlus) {
+    if (Context.hasSameType(New->getType(), Old->getType()))
+      MergedT = New->getType();
+    // C++ [basic.link]p10:
+    //   [...] the types specified by all declarations referring to a given
+    //   object or function shall be identical, except that declarations for an
+    //   array object can specify array types that differ by the presence or
+    //   absence of a major array bound (8.3.4).
+    else if (Old->getType()->isIncompleteArrayType() &&
+             New->getType()->isArrayType()) {
+      CanQual<ArrayType> OldArray
+        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
+      CanQual<ArrayType> NewArray
+        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
+      if (OldArray->getElementType() == NewArray->getElementType())
+        MergedT = New->getType();
+    } else if (Old->getType()->isArrayType() &&
+             New->getType()->isIncompleteArrayType()) {
+      CanQual<ArrayType> OldArray
+        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
+      CanQual<ArrayType> NewArray
+        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
+      if (OldArray->getElementType() == NewArray->getElementType())
+        MergedT = Old->getType();
+    }
+  } else {
+    MergedT = Context.mergeTypes(New->getType(), Old->getType());
+  }
+  if (MergedT.isNull()) {
+    Diag(New->getLocation(), diag::err_redefinition_different_type)
+      << New->getDeclName();
+    Diag(Old->getLocation(), diag::note_previous_definition);
+    return New->setInvalidDecl();
+  }
+  New->setType(MergedT);
+
+  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
+  if (New->getStorageClass() == VarDecl::Static &&
+      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
+    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
+    Diag(Old->getLocation(), diag::note_previous_definition);
+    return New->setInvalidDecl();
+  }
+  // C99 6.2.2p4:
+  //   For an identifier declared with the storage-class specifier
+  //   extern in a scope in which a prior declaration of that
+  //   identifier is visible,23) if the prior declaration specifies
+  //   internal or external linkage, the linkage of the identifier at
+  //   the later declaration is the same as the linkage specified at
+  //   the prior declaration. If no prior declaration is visible, or
+  //   if the prior declaration specifies no linkage, then the
+  //   identifier has external linkage.
+  if (New->hasExternalStorage() && Old->hasLinkage())
+    /* Okay */;
+  else if (New->getStorageClass() != VarDecl::Static &&
+           Old->getStorageClass() == VarDecl::Static) {
+    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
+    Diag(Old->getLocation(), diag::note_previous_definition);
+    return New->setInvalidDecl();
+  }
+
+  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
+
+  // FIXME: The test for external storage here seems wrong? We still
+  // need to check for mismatches.
+  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
+      // Don't complain about out-of-line definitions of static members.
+      !(Old->getLexicalDeclContext()->isRecord() &&
+        !New->getLexicalDeclContext()->isRecord())) {
+    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
+    Diag(Old->getLocation(), diag::note_previous_definition);
+    return New->setInvalidDecl();
+  }
+
+  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
+    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
+    Diag(Old->getLocation(), diag::note_previous_definition);
+  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
+    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
+    Diag(Old->getLocation(), diag::note_previous_definition);
+  }
+
+  // C++ doesn't have tentative definitions, so go right ahead and check here.
+  const VarDecl *Def;
+  if (getLangOptions().CPlusPlus &&
+      New->isThisDeclarationADefinition() == VarDecl::Definition &&
+      (Def = Old->getDefinition())) {
+    Diag(New->getLocation(), diag::err_redefinition)
+      << New->getDeclName();
+    Diag(Def->getLocation(), diag::note_previous_definition);
+    New->setInvalidDecl();
+    return;
+  }
+
+  // Keep a chain of previous declarations.
+  New->setPreviousDeclaration(Old);
+
+  // Inherit access appropriately.
+  New->setAccess(Old->getAccess());
+}
+
+/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
+/// no declarator (e.g. "struct foo;") is parsed.
+Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
+  // FIXME: Error on auto/register at file scope
+  // FIXME: Error on inline/virtual/explicit
+  // FIXME: Warn on useless __thread
+  // FIXME: Warn on useless const/volatile
+  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
+  // FIXME: Warn on useless attributes
+  Decl *TagD = 0;
+  TagDecl *Tag = 0;
+  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
+      DS.getTypeSpecType() == DeclSpec::TST_struct ||
+      DS.getTypeSpecType() == DeclSpec::TST_union ||
+      DS.getTypeSpecType() == DeclSpec::TST_enum) {
+    TagD = static_cast<Decl *>(DS.getTypeRep());
+
+    if (!TagD) // We probably had an error
+      return DeclPtrTy();
+
+    // Note that the above type specs guarantee that the
+    // type rep is a Decl, whereas in many of the others
+    // it's a Type.
+    Tag = dyn_cast<TagDecl>(TagD);
+  }
+
+  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
+    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
+    // or incomplete types shall not be restrict-qualified."
+    if (TypeQuals & DeclSpec::TQ_restrict)
+      Diag(DS.getRestrictSpecLoc(),
+           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
+           << DS.getSourceRange();
+  }
+
+  if (DS.isFriendSpecified()) {
+    // If we're dealing with a class template decl, assume that the
+    // template routines are handling it.
+    if (TagD && isa<ClassTemplateDecl>(TagD))
+      return DeclPtrTy();
+    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
+  }
+         
+  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
+    // If there are attributes in the DeclSpec, apply them to the record.
+    if (const AttributeList *AL = DS.getAttributes())
+      ProcessDeclAttributeList(S, Record, AL);
+    
+    if (!Record->getDeclName() && Record->isDefinition() &&
+        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
+      if (getLangOptions().CPlusPlus ||
+          Record->getDeclContext()->isRecord())
+        return BuildAnonymousStructOrUnion(S, DS, Record);
+
+      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
+        << DS.getSourceRange();
+    }
+
+    // Microsoft allows unnamed struct/union fields. Don't complain
+    // about them.
+    // FIXME: Should we support Microsoft's extensions in this area?
+    if (Record->getDeclName() && getLangOptions().Microsoft)
+      return DeclPtrTy::make(Tag);
+  }
+  
+  if (!DS.isMissingDeclaratorOk() &&
+      DS.getTypeSpecType() != DeclSpec::TST_error) {
+    // Warn about typedefs of enums without names, since this is an
+    // extension in both Microsoft an GNU.
+    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
+        Tag && isa<EnumDecl>(Tag)) {
+      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
+        << DS.getSourceRange();
+      return DeclPtrTy::make(Tag);
+    }
+
+    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
+      << DS.getSourceRange();
+    return DeclPtrTy();
+  }
+
+  return DeclPtrTy::make(Tag);
+}
+
+/// We are trying to inject an anonymous member into the given scope;
+/// check if there's an existing declaration that can't be overloaded.
+///
+/// \return true if this is a forbidden redeclaration
+static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
+                                         Scope *S,
+                                         DeclContext *Owner,
+                                         DeclarationName Name,
+                                         SourceLocation NameLoc,
+                                         unsigned diagnostic) {
+  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
+                 Sema::ForRedeclaration);
+  if (!SemaRef.LookupName(R, S)) return false;
+
+  if (R.getAsSingle<TagDecl>())
+    return false;
+
+  // Pick a representative declaration.
+  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
+  if (PrevDecl && Owner->isRecord()) {
+    RecordDecl *Record = cast<RecordDecl>(Owner);
+    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
+      return false;
+  }
+
+  SemaRef.Diag(NameLoc, diagnostic) << Name;
+  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
+
+  return true;
+}
+
+/// InjectAnonymousStructOrUnionMembers - Inject the members of the
+/// anonymous struct or union AnonRecord into the owning context Owner
+/// and scope S. This routine will be invoked just after we realize
+/// that an unnamed union or struct is actually an anonymous union or
+/// struct, e.g.,
+///
+/// @code
+/// union {
+///   int i;
+///   float f;
+/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
+///    // f into the surrounding scope.x
+/// @endcode
+///
+/// This routine is recursive, injecting the names of nested anonymous
+/// structs/unions into the owning context and scope as well.
+bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
+                                               RecordDecl *AnonRecord) {
+  unsigned diagKind
+    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
+                            : diag::err_anonymous_struct_member_redecl;
+
+  bool Invalid = false;
+  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
+                               FEnd = AnonRecord->field_end();
+       F != FEnd; ++F) {
+    if ((*F)->getDeclName()) {
+      if (CheckAnonMemberRedeclaration(*this, S, Owner, (*F)->getDeclName(),
+                                       (*F)->getLocation(), diagKind)) {
+        // C++ [class.union]p2:
+        //   The names of the members of an anonymous union shall be
+        //   distinct from the names of any other entity in the
+        //   scope in which the anonymous union is declared.
+        Invalid = true;
+      } else {
+        // C++ [class.union]p2:
+        //   For the purpose of name lookup, after the anonymous union
+        //   definition, the members of the anonymous union are
+        //   considered to have been defined in the scope in which the
+        //   anonymous union is declared.
+        Owner->makeDeclVisibleInContext(*F);
+        S->AddDecl(DeclPtrTy::make(*F));
+        IdResolver.AddDecl(*F);
+      }
+    } else if (const RecordType *InnerRecordType
+                 = (*F)->getType()->getAs<RecordType>()) {
+      RecordDecl *InnerRecord = InnerRecordType->getDecl();
+      if (InnerRecord->isAnonymousStructOrUnion())
+        Invalid = Invalid ||
+          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
+    }
+  }
+
+  return Invalid;
+}
+
+/// ActOnAnonymousStructOrUnion - Handle the declaration of an
+/// anonymous structure or union. Anonymous unions are a C++ feature
+/// (C++ [class.union]) and a GNU C extension; anonymous structures
+/// are a GNU C and GNU C++ extension.
+Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
+                                                  RecordDecl *Record) {
+  DeclContext *Owner = Record->getDeclContext();
+
+  // Diagnose whether this anonymous struct/union is an extension.
+  if (Record->isUnion() && !getLangOptions().CPlusPlus)
+    Diag(Record->getLocation(), diag::ext_anonymous_union);
+  else if (!Record->isUnion())
+    Diag(Record->getLocation(), diag::ext_anonymous_struct);
+
+  // C and C++ require different kinds of checks for anonymous
+  // structs/unions.
+  bool Invalid = false;
+  if (getLangOptions().CPlusPlus) {
+    const char* PrevSpec = 0;
+    unsigned DiagID;
+    // C++ [class.union]p3:
+    //   Anonymous unions declared in a named namespace or in the
+    //   global namespace shall be declared static.
+    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
+        (isa<TranslationUnitDecl>(Owner) ||
+         (isa<NamespaceDecl>(Owner) &&
+          cast<NamespaceDecl>(Owner)->getDeclName()))) {
+      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
+      Invalid = true;
+
+      // Recover by adding 'static'.
+      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
+                             PrevSpec, DiagID);
+    }
+    // C++ [class.union]p3:
+    //   A storage class is not allowed in a declaration of an
+    //   anonymous union in a class scope.
+    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
+             isa<RecordDecl>(Owner)) {
+      Diag(DS.getStorageClassSpecLoc(),
+           diag::err_anonymous_union_with_storage_spec);
+      Invalid = true;
+
+      // Recover by removing the storage specifier.
+      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
+                             PrevSpec, DiagID);
+    }
+
+    // C++ [class.union]p2:
+    //   The member-specification of an anonymous union shall only
+    //   define non-static data members. [Note: nested types and
+    //   functions cannot be declared within an anonymous union. ]
+    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
+                                 MemEnd = Record->decls_end();
+         Mem != MemEnd; ++Mem) {
+      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
+        // C++ [class.union]p3:
+        //   An anonymous union shall not have private or protected
+        //   members (clause 11).
+        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
+          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
+            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
+          Invalid = true;
+        }
+      } else if ((*Mem)->isImplicit()) {
+        // Any implicit members are fine.
+      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
+        // This is a type that showed up in an
+        // elaborated-type-specifier inside the anonymous struct or
+        // union, but which actually declares a type outside of the
+        // anonymous struct or union. It's okay.
+      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
+        if (!MemRecord->isAnonymousStructOrUnion() &&
+            MemRecord->getDeclName()) {
+          // This is a nested type declaration.
+          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
+            << (int)Record->isUnion();
+          Invalid = true;
+        }
+      } else {
+        // We have something that isn't a non-static data
+        // member. Complain about it.
+        unsigned DK = diag::err_anonymous_record_bad_member;
+        if (isa<TypeDecl>(*Mem))
+          DK = diag::err_anonymous_record_with_type;
+        else if (isa<FunctionDecl>(*Mem))
+          DK = diag::err_anonymous_record_with_function;
+        else if (isa<VarDecl>(*Mem))
+          DK = diag::err_anonymous_record_with_static;
+        Diag((*Mem)->getLocation(), DK)
+            << (int)Record->isUnion();
+          Invalid = true;
+      }
+    }
+  }
+
+  if (!Record->isUnion() && !Owner->isRecord()) {
+    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
+      << (int)getLangOptions().CPlusPlus;
+    Invalid = true;
+  }
+
+  // Mock up a declarator.
+  Declarator Dc(DS, Declarator::TypeNameContext);
+  TypeSourceInfo *TInfo = 0;
+  GetTypeForDeclarator(Dc, S, &TInfo);
+  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
+
+  // Create a declaration for this anonymous struct/union.
+  NamedDecl *Anon = 0;
+  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
+    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
+                             /*IdentifierInfo=*/0,
+                             Context.getTypeDeclType(Record),
+                             TInfo,
+                             /*BitWidth=*/0, /*Mutable=*/false);
+    Anon->setAccess(AS_public);
+    if (getLangOptions().CPlusPlus)
+      FieldCollector->Add(cast<FieldDecl>(Anon));
+  } else {
+    VarDecl::StorageClass SC;
+    switch (DS.getStorageClassSpec()) {
+    default: assert(0 && "Unknown storage class!");
+    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
+    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
+    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
+    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
+    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
+    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
+    case DeclSpec::SCS_mutable:
+      // mutable can only appear on non-static class members, so it's always
+      // an error here
+      Diag(Record->getLocation(), diag::err_mutable_nonmember);
+      Invalid = true;
+      SC = VarDecl::None;
+      break;
+    }
+
+    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
+                           /*IdentifierInfo=*/0,
+                           Context.getTypeDeclType(Record),
+                           TInfo,
+                           SC);
+  }
+  Anon->setImplicit();
+
+  // Add the anonymous struct/union object to the current
+  // context. We'll be referencing this object when we refer to one of
+  // its members.
+  Owner->addDecl(Anon);
+
+  // Inject the members of the anonymous struct/union into the owning
+  // context and into the identifier resolver chain for name lookup
+  // purposes.
+  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
+    Invalid = true;
+
+  // Mark this as an anonymous struct/union type. Note that we do not
+  // do this until after we have already checked and injected the
+  // members of this anonymous struct/union type, because otherwise
+  // the members could be injected twice: once by DeclContext when it
+  // builds its lookup table, and once by
+  // InjectAnonymousStructOrUnionMembers.
+  Record->setAnonymousStructOrUnion(true);
+
+  if (Invalid)
+    Anon->setInvalidDecl();
+
+  return DeclPtrTy::make(Anon);
+}
+
+
+/// GetNameForDeclarator - Determine the full declaration name for the
+/// given Declarator.
+DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
+  return GetNameFromUnqualifiedId(D.getName());
+}
+
+/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
+DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
+  switch (Name.getKind()) {
+    case UnqualifiedId::IK_Identifier:
+      return DeclarationName(Name.Identifier);
+      
+    case UnqualifiedId::IK_OperatorFunctionId:
+      return Context.DeclarationNames.getCXXOperatorName(
+                                              Name.OperatorFunctionId.Operator);
+
+    case UnqualifiedId::IK_LiteralOperatorId:
+      return Context.DeclarationNames.getCXXLiteralOperatorName(
+                                                               Name.Identifier);
+
+    case UnqualifiedId::IK_ConversionFunctionId: {
+      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
+      if (Ty.isNull())
+        return DeclarationName();
+      
+      return Context.DeclarationNames.getCXXConversionFunctionName(
+                                                  Context.getCanonicalType(Ty));
+    }
+      
+    case UnqualifiedId::IK_ConstructorName: {
+      QualType Ty = GetTypeFromParser(Name.ConstructorName);
+      if (Ty.isNull())
+        return DeclarationName();
+      
+      return Context.DeclarationNames.getCXXConstructorName(
+                                                  Context.getCanonicalType(Ty));
+    }
+      
+    case UnqualifiedId::IK_ConstructorTemplateId: {
+      // In well-formed code, we can only have a constructor
+      // template-id that refers to the current context, so go there
+      // to find the actual type being constructed.
+      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
+      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
+        return DeclarationName();
+
+      // Determine the type of the class being constructed.
+      QualType CurClassType;
+      if (ClassTemplateDecl *ClassTemplate
+            = CurClass->getDescribedClassTemplate())
+        CurClassType = ClassTemplate->getInjectedClassNameType(Context);
+      else
+        CurClassType = Context.getTypeDeclType(CurClass);
+
+      // FIXME: Check two things: that the template-id names the same type as
+      // CurClassType, and that the template-id does not occur when the name
+      // was qualified.
+
+      return Context.DeclarationNames.getCXXConstructorName(
+                                       Context.getCanonicalType(CurClassType));
+    }
+
+    case UnqualifiedId::IK_DestructorName: {
+      QualType Ty = GetTypeFromParser(Name.DestructorName);
+      if (Ty.isNull())
+        return DeclarationName();
+      
+      return Context.DeclarationNames.getCXXDestructorName(
+                                                           Context.getCanonicalType(Ty));
+    }
+      
+    case UnqualifiedId::IK_TemplateId: {
+      TemplateName TName
+        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
+      return Context.getNameForTemplate(TName);
+    }
+  }
+  
+  assert(false && "Unknown name kind");
+  return DeclarationName();  
+}
+
+/// isNearlyMatchingFunction - Determine whether the C++ functions
+/// Declaration and Definition are "nearly" matching. This heuristic
+/// is used to improve diagnostics in the case where an out-of-line
+/// function definition doesn't match any declaration within
+/// the class or namespace.
+static bool isNearlyMatchingFunction(ASTContext &Context,
+                                     FunctionDecl *Declaration,
+                                     FunctionDecl *Definition) {
+  if (Declaration->param_size() != Definition->param_size())
+    return false;
+  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
+    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
+    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
+
+    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
+                                        DefParamTy.getNonReferenceType()))
+      return false;
+  }
+
+  return true;
+}
+
+Sema::DeclPtrTy
+Sema::HandleDeclarator(Scope *S, Declarator &D,
+                       MultiTemplateParamsArg TemplateParamLists,
+                       bool IsFunctionDefinition) {
+  DeclarationName Name = GetNameForDeclarator(D);
+
+  // All of these full declarators require an identifier.  If it doesn't have
+  // one, the ParsedFreeStandingDeclSpec action should be used.
+  if (!Name) {
+    if (!D.isInvalidType())  // Reject this if we think it is valid.
+      Diag(D.getDeclSpec().getSourceRange().getBegin(),
+           diag::err_declarator_need_ident)
+        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
+    return DeclPtrTy();
+  }
+
+  // The scope passed in may not be a decl scope.  Zip up the scope tree until
+  // we find one that is.
+  while ((S->getFlags() & Scope::DeclScope) == 0 ||
+         (S->getFlags() & Scope::TemplateParamScope) != 0)
+    S = S->getParent();
+
+  // If this is an out-of-line definition of a member of a class template
+  // or class template partial specialization, we may need to rebuild the
+  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
+  // for more information.
+  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
+  // handle expressions properly.
+  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
+  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
+      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
+      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
+       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
+       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
+       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
+    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
+      // FIXME: Preserve type source info.
+      QualType T = GetTypeFromParser(DS.getTypeRep());
+
+      DeclContext *SavedContext = CurContext;
+      CurContext = DC;
+      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
+      CurContext = SavedContext;
+
+      if (T.isNull())
+        return DeclPtrTy();
+      DS.UpdateTypeRep(T.getAsOpaquePtr());
+    }
+  }
+
+  DeclContext *DC;
+  NamedDecl *New;
+
+  TypeSourceInfo *TInfo = 0;
+  QualType R = GetTypeForDeclarator(D, S, &TInfo);
+
+  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
+                        ForRedeclaration);
+
+  // See if this is a redefinition of a variable in the same scope.
+  if (D.getCXXScopeSpec().isInvalid()) {
+    DC = CurContext;
+    D.setInvalidType();
+  } else if (!D.getCXXScopeSpec().isSet()) {
+    bool IsLinkageLookup = false;
+
+    // If the declaration we're planning to build will be a function
+    // or object with linkage, then look for another declaration with
+    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
+    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
+      /* Do nothing*/;
+    else if (R->isFunctionType()) {
+      if (CurContext->isFunctionOrMethod() ||
+          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
+        IsLinkageLookup = true;
+    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
+      IsLinkageLookup = true;
+    else if (CurContext->getLookupContext()->isTranslationUnit() &&
+             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
+      IsLinkageLookup = true;
+
+    if (IsLinkageLookup)
+      Previous.clear(LookupRedeclarationWithLinkage);
+
+    DC = CurContext;
+    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
+  } else { // Something like "int foo::x;"
+    DC = computeDeclContext(D.getCXXScopeSpec(), true);
+
+    if (!DC) {
+      // If we could not compute the declaration context, it's because the
+      // declaration context is dependent but does not refer to a class,
+      // class template, or class template partial specialization. Complain
+      // and return early, to avoid the coming semantic disaster.
+      Diag(D.getIdentifierLoc(),
+           diag::err_template_qualified_declarator_no_match)
+        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
+        << D.getCXXScopeSpec().getRange();
+      return DeclPtrTy();
+    }
+
+    if (!DC->isDependentContext() && 
+        RequireCompleteDeclContext(D.getCXXScopeSpec()))
+      return DeclPtrTy();
+
+    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
+      Diag(D.getIdentifierLoc(),
+           diag::err_member_def_undefined_record)
+        << Name << DC << D.getCXXScopeSpec().getRange();
+      D.setInvalidType();
+    }
+    
+    LookupQualifiedName(Previous, DC);
+
+    // Don't consider using declarations as previous declarations for
+    // out-of-line members.
+    RemoveUsingDecls(Previous);
+
+    // C++ 7.3.1.2p2:
+    // Members (including explicit specializations of templates) of a named
+    // namespace can also be defined outside that namespace by explicit
+    // qualification of the name being defined, provided that the entity being
+    // defined was already declared in the namespace and the definition appears
+    // after the point of declaration in a namespace that encloses the
+    // declarations namespace.
+    //
+    // Note that we only check the context at this point. We don't yet
+    // have enough information to make sure that PrevDecl is actually
+    // the declaration we want to match. For example, given:
+    //
+    //   class X {
+    //     void f();
+    //     void f(float);
+    //   };
+    //
+    //   void X::f(int) { } // ill-formed
+    //
+    // In this case, PrevDecl will point to the overload set
+    // containing the two f's declared in X, but neither of them
+    // matches.
+
+    // First check whether we named the global scope.
+    if (isa<TranslationUnitDecl>(DC)) {
+      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
+        << Name << D.getCXXScopeSpec().getRange();
+    } else {
+      DeclContext *Cur = CurContext;
+      while (isa<LinkageSpecDecl>(Cur))
+        Cur = Cur->getParent();
+      if (!Cur->Encloses(DC)) {
+        // The qualifying scope doesn't enclose the original declaration.
+        // Emit diagnostic based on current scope.
+        SourceLocation L = D.getIdentifierLoc();
+        SourceRange R = D.getCXXScopeSpec().getRange();
+        if (isa<FunctionDecl>(Cur))
+          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
+        else
+          Diag(L, diag::err_invalid_declarator_scope)
+            << Name << cast<NamedDecl>(DC) << R;
+        D.setInvalidType();
+      }
+    }
+  }
+
+  if (Previous.isSingleResult() &&
+      Previous.getFoundDecl()->isTemplateParameter()) {
+    // Maybe we will complain about the shadowed template parameter.
+    if (!D.isInvalidType())
+      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
+                                          Previous.getFoundDecl()))
+        D.setInvalidType();
+
+    // Just pretend that we didn't see the previous declaration.
+    Previous.clear();
+  }
+
+  // In C++, the previous declaration we find might be a tag type
+  // (class or enum). In this case, the new declaration will hide the
+  // tag type. Note that this does does not apply if we're declaring a
+  // typedef (C++ [dcl.typedef]p4).
+  if (Previous.isSingleTagDecl() &&
+      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
+    Previous.clear();
+
+  bool Redeclaration = false;
+  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
+    if (TemplateParamLists.size()) {
+      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
+      return DeclPtrTy();
+    }
+
+    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
+  } else if (R->isFunctionType()) {
+    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
+                                  move(TemplateParamLists),
+                                  IsFunctionDefinition, Redeclaration);
+  } else {
+    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
+                                  move(TemplateParamLists),
+                                  Redeclaration);
+  }
+
+  if (New == 0)
+    return DeclPtrTy();
+
+  // If this has an identifier and is not an invalid redeclaration or 
+  // function template specialization, add it to the scope stack.
+  if (Name && !(Redeclaration && New->isInvalidDecl()))
+    PushOnScopeChains(New, S);
+
+  return DeclPtrTy::make(New);
+}
+
+/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
+/// types into constant array types in certain situations which would otherwise
+/// be errors (for GCC compatibility).
+static QualType TryToFixInvalidVariablyModifiedType(QualType T,
+                                                    ASTContext &Context,
+                                                    bool &SizeIsNegative) {
+  // This method tries to turn a variable array into a constant
+  // array even when the size isn't an ICE.  This is necessary
+  // for compatibility with code that depends on gcc's buggy
+  // constant expression folding, like struct {char x[(int)(char*)2];}
+  SizeIsNegative = false;
+
+  QualifierCollector Qs;
+  const Type *Ty = Qs.strip(T);
+
+  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
+    QualType Pointee = PTy->getPointeeType();
+    QualType FixedType =
+        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
+    if (FixedType.isNull()) return FixedType;
+    FixedType = Context.getPointerType(FixedType);
+    return Qs.apply(FixedType);
+  }
+
+  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
+  if (!VLATy)
+    return QualType();
+  // FIXME: We should probably handle this case
+  if (VLATy->getElementType()->isVariablyModifiedType())
+    return QualType();
+
+  Expr::EvalResult EvalResult;
+  if (!VLATy->getSizeExpr() ||
+      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
+      !EvalResult.Val.isInt())
+    return QualType();
+
+  llvm::APSInt &Res = EvalResult.Val.getInt();
+  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
+    // TODO: preserve the size expression in declarator info
+    return Context.getConstantArrayType(VLATy->getElementType(),
+                                        Res, ArrayType::Normal, 0);
+  }
+
+  SizeIsNegative = true;
+  return QualType();
+}
+
+/// \brief Register the given locally-scoped external C declaration so
+/// that it can be found later for redeclarations
+void
+Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
+                                       const LookupResult &Previous,
+                                       Scope *S) {
+  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
+         "Decl is not a locally-scoped decl!");
+  // Note that we have a locally-scoped external with this name.
+  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
+
+  if (!Previous.isSingleResult())
+    return;
+
+  NamedDecl *PrevDecl = Previous.getFoundDecl();
+
+  // If there was a previous declaration of this variable, it may be
+  // in our identifier chain. Update the identifier chain with the new
+  // declaration.
+  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
+    // The previous declaration was found on the identifer resolver
+    // chain, so remove it from its scope.
+    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
+      S = S->getParent();
+
+    if (S)
+      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
+  }
+}
+
+/// \brief Diagnose function specifiers on a declaration of an identifier that
+/// does not identify a function.
+void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
+  // FIXME: We should probably indicate the identifier in question to avoid
+  // confusion for constructs like "inline int a(), b;"
+  if (D.getDeclSpec().isInlineSpecified())
+    Diag(D.getDeclSpec().getInlineSpecLoc(),
+         diag::err_inline_non_function);
+
+  if (D.getDeclSpec().isVirtualSpecified())
+    Diag(D.getDeclSpec().getVirtualSpecLoc(),
+         diag::err_virtual_non_function);
+
+  if (D.getDeclSpec().isExplicitSpecified())
+    Diag(D.getDeclSpec().getExplicitSpecLoc(),
+         diag::err_explicit_non_function);
+}
+
+NamedDecl*
+Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
+                             QualType R,  TypeSourceInfo *TInfo,
+                             LookupResult &Previous, bool &Redeclaration) {
+  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
+  if (D.getCXXScopeSpec().isSet()) {
+    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
+      << D.getCXXScopeSpec().getRange();
+    D.setInvalidType();
+    // Pretend we didn't see the scope specifier.
+    DC = 0;
+  }
+
+  if (getLangOptions().CPlusPlus) {
+    // Check that there are no default arguments (C++ only).
+    CheckExtraCXXDefaultArguments(D);
+  }
+
+  DiagnoseFunctionSpecifiers(D);
+
+  if (D.getDeclSpec().isThreadSpecified())
+    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
+
+  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
+  if (!NewTD) return 0;
+
+  // Handle attributes prior to checking for duplicates in MergeVarDecl
+  ProcessDeclAttributes(S, NewTD, D);
+
+  // Merge the decl with the existing one if appropriate. If the decl is
+  // in an outer scope, it isn't the same thing.
+  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
+  if (!Previous.empty()) {
+    Redeclaration = true;
+    MergeTypeDefDecl(NewTD, Previous);
+  }
+
+  // C99 6.7.7p2: If a typedef name specifies a variably modified type
+  // then it shall have block scope.
+  QualType T = NewTD->getUnderlyingType();
+  if (T->isVariablyModifiedType()) {
+    CurFunctionNeedsScopeChecking = true;
+
+    if (S->getFnParent() == 0) {
+      bool SizeIsNegative;
+      QualType FixedTy =
+          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
+      if (!FixedTy.isNull()) {
+        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
+        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
+      } else {
+        if (SizeIsNegative)
+          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
+        else if (T->isVariableArrayType())
+          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
+        else
+          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
+        NewTD->setInvalidDecl();
+      }
+    }
+  }
+
+  // If this is the C FILE type, notify the AST context.
+  if (IdentifierInfo *II = NewTD->getIdentifier())
+    if (!NewTD->isInvalidDecl() &&
+        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
+      if (II->isStr("FILE"))
+        Context.setFILEDecl(NewTD);
+      else if (II->isStr("jmp_buf"))
+        Context.setjmp_bufDecl(NewTD);
+      else if (II->isStr("sigjmp_buf"))
+        Context.setsigjmp_bufDecl(NewTD);
+    }
+
+  return NewTD;
+}
+
+/// \brief Determines whether the given declaration is an out-of-scope
+/// previous declaration.
+///
+/// This routine should be invoked when name lookup has found a
+/// previous declaration (PrevDecl) that is not in the scope where a
+/// new declaration by the same name is being introduced. If the new
+/// declaration occurs in a local scope, previous declarations with
+/// linkage may still be considered previous declarations (C99
+/// 6.2.2p4-5, C++ [basic.link]p6).
+///
+/// \param PrevDecl the previous declaration found by name
+/// lookup
+///
+/// \param DC the context in which the new declaration is being
+/// declared.
+///
+/// \returns true if PrevDecl is an out-of-scope previous declaration
+/// for a new delcaration with the same name.
+static bool
+isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
+                                ASTContext &Context) {
+  if (!PrevDecl)
+    return 0;
+
+  if (!PrevDecl->hasLinkage())
+    return false;
+
+  if (Context.getLangOptions().CPlusPlus) {
+    // C++ [basic.link]p6:
+    //   If there is a visible declaration of an entity with linkage
+    //   having the same name and type, ignoring entities declared
+    //   outside the innermost enclosing namespace scope, the block
+    //   scope declaration declares that same entity and receives the
+    //   linkage of the previous declaration.
+    DeclContext *OuterContext = DC->getLookupContext();
+    if (!OuterContext->isFunctionOrMethod())
+      // This rule only applies to block-scope declarations.
+      return false;
+    else {
+      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
+      if (PrevOuterContext->isRecord())
+        // We found a member function: ignore it.
+        return false;
+      else {
+        // Find the innermost enclosing namespace for the new and
+        // previous declarations.
+        while (!OuterContext->isFileContext())
+          OuterContext = OuterContext->getParent();
+        while (!PrevOuterContext->isFileContext())
+          PrevOuterContext = PrevOuterContext->getParent();
+
+        // The previous declaration is in a different namespace, so it
+        // isn't the same function.
+        if (OuterContext->getPrimaryContext() !=
+            PrevOuterContext->getPrimaryContext())
+          return false;
+      }
+    }
+  }
+
+  return true;
+}
+
+NamedDecl*
+Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
+                              QualType R, TypeSourceInfo *TInfo,
+                              LookupResult &Previous,
+                              MultiTemplateParamsArg TemplateParamLists,
+                              bool &Redeclaration) {
+  DeclarationName Name = GetNameForDeclarator(D);
+
+  // Check that there are no default arguments (C++ only).
+  if (getLangOptions().CPlusPlus)
+    CheckExtraCXXDefaultArguments(D);
+
+  VarDecl *NewVD;
+  VarDecl::StorageClass SC;
+  switch (D.getDeclSpec().getStorageClassSpec()) {
+  default: assert(0 && "Unknown storage class!");
+  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
+  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
+  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
+  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
+  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
+  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
+  case DeclSpec::SCS_mutable:
+    // mutable can only appear on non-static class members, so it's always
+    // an error here
+    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
+    D.setInvalidType();
+    SC = VarDecl::None;
+    break;
+  }
+
+  IdentifierInfo *II = Name.getAsIdentifierInfo();
+  if (!II) {
+    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
+      << Name.getAsString();
+    return 0;
+  }
+
+  DiagnoseFunctionSpecifiers(D);
+
+  if (!DC->isRecord() && S->getFnParent() == 0) {
+    // C99 6.9p2: The storage-class specifiers auto and register shall not
+    // appear in the declaration specifiers in an external declaration.
+    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
+
+      // If this is a register variable with an asm label specified, then this
+      // is a GNU extension.
+      if (SC == VarDecl::Register && D.getAsmLabel())
+        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
+      else
+        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
+      D.setInvalidType();
+    }
+  }
+  if (DC->isRecord() && !CurContext->isRecord()) {
+    // This is an out-of-line definition of a static data member.
+    if (SC == VarDecl::Static) {
+      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+           diag::err_static_out_of_line)
+        << CodeModificationHint::CreateRemoval(
+                                      D.getDeclSpec().getStorageClassSpecLoc());
+    } else if (SC == VarDecl::None)
+      SC = VarDecl::Static;
+  }
+  if (SC == VarDecl::Static) {
+    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
+      if (RD->isLocalClass())
+        Diag(D.getIdentifierLoc(),
+             diag::err_static_data_member_not_allowed_in_local_class)
+          << Name << RD->getDeclName();
+    }
+  }
+
+  // Match up the template parameter lists with the scope specifier, then
+  // determine whether we have a template or a template specialization.
+  bool isExplicitSpecialization = false;
+  if (TemplateParameterList *TemplateParams
+        = MatchTemplateParametersToScopeSpecifier(
+                                  D.getDeclSpec().getSourceRange().getBegin(),
+                                                  D.getCXXScopeSpec(),
+                        (TemplateParameterList**)TemplateParamLists.get(),
+                                                   TemplateParamLists.size(),
+                                                  isExplicitSpecialization)) {
+    if (TemplateParams->size() > 0) {
+      // There is no such thing as a variable template.
+      Diag(D.getIdentifierLoc(), diag::err_template_variable)
+        << II
+        << SourceRange(TemplateParams->getTemplateLoc(),
+                       TemplateParams->getRAngleLoc());
+      return 0;
+    } else {
+      // There is an extraneous 'template<>' for this variable. Complain
+      // about it, but allow the declaration of the variable.
+      Diag(TemplateParams->getTemplateLoc(),
+           diag::err_template_variable_noparams)
+        << II
+        << SourceRange(TemplateParams->getTemplateLoc(),
+                       TemplateParams->getRAngleLoc());
+      
+      isExplicitSpecialization = true;
+    }
+  }
+
+  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
+                          II, R, TInfo, SC);
+
+  if (D.isInvalidType())
+    NewVD->setInvalidDecl();
+
+  if (D.getDeclSpec().isThreadSpecified()) {
+    if (NewVD->hasLocalStorage())
+      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
+    else if (!Context.Target.isTLSSupported())
+      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
+    else
+      NewVD->setThreadSpecified(true);
+  }
+
+  // Set the lexical context. If the declarator has a C++ scope specifier, the
+  // lexical context will be different from the semantic context.
+  NewVD->setLexicalDeclContext(CurContext);
+
+  // Handle attributes prior to checking for duplicates in MergeVarDecl
+  ProcessDeclAttributes(S, NewVD, D);
+
+  // Handle GNU asm-label extension (encoded as an attribute).
+  if (Expr *E = (Expr*) D.getAsmLabel()) {
+    // The parser guarantees this is a string.
+    StringLiteral *SE = cast<StringLiteral>(E);
+    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
+  }
+
+  // Don't consider existing declarations that are in a different
+  // scope and are out-of-semantic-context declarations (if the new
+  // declaration has linkage).
+  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
+  
+  // Merge the decl with the existing one if appropriate.
+  if (!Previous.empty()) {
+    if (Previous.isSingleResult() &&
+        isa<FieldDecl>(Previous.getFoundDecl()) &&
+        D.getCXXScopeSpec().isSet()) {
+      // The user tried to define a non-static data member
+      // out-of-line (C++ [dcl.meaning]p1).
+      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
+        << D.getCXXScopeSpec().getRange();
+      Previous.clear();
+      NewVD->setInvalidDecl();
+    }
+  } else if (D.getCXXScopeSpec().isSet()) {
+    // No previous declaration in the qualifying scope.
+    Diag(D.getIdentifierLoc(), diag::err_no_member)
+      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
+      << D.getCXXScopeSpec().getRange();
+    NewVD->setInvalidDecl();
+  }
+
+  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
+
+  // This is an explicit specialization of a static data member. Check it.
+  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
+      CheckMemberSpecialization(NewVD, Previous))
+    NewVD->setInvalidDecl();
+
+  // attributes declared post-definition are currently ignored
+  if (Previous.isSingleResult()) {
+    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
+    if (Def && (Def = Def->getDefinition()) &&
+        Def != NewVD && D.hasAttributes()) {
+      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
+      Diag(Def->getLocation(), diag::note_previous_definition);
+    }
+  }
+
+  // If this is a locally-scoped extern C variable, update the map of
+  // such variables.
+  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
+      !NewVD->isInvalidDecl())
+    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
+
+  return NewVD;
+}
+
+/// \brief Perform semantic checking on a newly-created variable
+/// declaration.
+///
+/// This routine performs all of the type-checking required for a
+/// variable declaration once it has been built. It is used both to
+/// check variables after they have been parsed and their declarators
+/// have been translated into a declaration, and to check variables
+/// that have been instantiated from a template.
+///
+/// Sets NewVD->isInvalidDecl() if an error was encountered.
+void Sema::CheckVariableDeclaration(VarDecl *NewVD,
+                                    LookupResult &Previous,
+                                    bool &Redeclaration) {
+  // If the decl is already known invalid, don't check it.
+  if (NewVD->isInvalidDecl())
+    return;
+
+  QualType T = NewVD->getType();
+
+  if (T->isObjCInterfaceType()) {
+    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
+    return NewVD->setInvalidDecl();
+  }
+
+  // Emit an error if an address space was applied to decl with local storage.
+  // This includes arrays of objects with address space qualifiers, but not
+  // automatic variables that point to other address spaces.
+  // ISO/IEC TR 18037 S5.1.2
+  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
+    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
+    return NewVD->setInvalidDecl();
+  }
+
+  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
+      && !NewVD->hasAttr<BlocksAttr>())
+    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
+
+  bool isVM = T->isVariablyModifiedType();
+  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
+      NewVD->hasAttr<BlocksAttr>())
+    CurFunctionNeedsScopeChecking = true;
+
+  if ((isVM && NewVD->hasLinkage()) ||
+      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
+    bool SizeIsNegative;
+    QualType FixedTy =
+        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
+
+    if (FixedTy.isNull() && T->isVariableArrayType()) {
+      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
+      // FIXME: This won't give the correct result for
+      // int a[10][n];
+      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
+
+      if (NewVD->isFileVarDecl())
+        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
+        << SizeRange;
+      else if (NewVD->getStorageClass() == VarDecl::Static)
+        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
+        << SizeRange;
+      else
+        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
+        << SizeRange;
+      return NewVD->setInvalidDecl();
+    }
+
+    if (FixedTy.isNull()) {
+      if (NewVD->isFileVarDecl())
+        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
+      else
+        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
+      return NewVD->setInvalidDecl();
+    }
+
+    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
+    NewVD->setType(FixedTy);
+  }
+
+  if (Previous.empty() && NewVD->isExternC()) {
+    // Since we did not find anything by this name and we're declaring
+    // an extern "C" variable, look for a non-visible extern "C"
+    // declaration with the same name.
+    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
+      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
+    if (Pos != LocallyScopedExternalDecls.end())
+      Previous.addDecl(Pos->second);
+  }
+
+  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
+    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
+      << T;
+    return NewVD->setInvalidDecl();
+  }
+
+  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
+    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
+    return NewVD->setInvalidDecl();
+  }
+
+  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
+    Diag(NewVD->getLocation(), diag::err_block_on_vm);
+    return NewVD->setInvalidDecl();
+  }
+
+  if (!Previous.empty()) {
+    Redeclaration = true;
+    MergeVarDecl(NewVD, Previous);
+  }
+}
+
+/// \brief Data used with FindOverriddenMethod
+struct FindOverriddenMethodData {
+  Sema *S;
+  CXXMethodDecl *Method;
+};
+
+/// \brief Member lookup function that determines whether a given C++
+/// method overrides a method in a base class, to be used with
+/// CXXRecordDecl::lookupInBases().
+static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
+                                 CXXBasePath &Path,
+                                 void *UserData) {
+  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
+
+  FindOverriddenMethodData *Data 
+    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
+  
+  DeclarationName Name = Data->Method->getDeclName();
+  
+  // FIXME: Do we care about other names here too?
+  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
+    // We really want to find the base class constructor here.
+    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
+    CanQualType CT = Data->S->Context.getCanonicalType(T);
+    
+    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
+  }    
+  
+  for (Path.Decls = BaseRecord->lookup(Name);
+       Path.Decls.first != Path.Decls.second;
+       ++Path.Decls.first) {
+    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
+      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
+        return true;
+    }
+  }
+  
+  return false;
+}
+
+/// AddOverriddenMethods - See if a method overrides any in the base classes,
+/// and if so, check that it's a valid override and remember it.
+void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
+  // Look for virtual methods in base classes that this method might override.
+  CXXBasePaths Paths;
+  FindOverriddenMethodData Data;
+  Data.Method = MD;
+  Data.S = this;
+  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
+    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
+         E = Paths.found_decls_end(); I != E; ++I) {
+      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
+        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
+            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
+            !CheckOverridingFunctionAttributes(MD, OldMD))
+          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
+      }
+    }
+  }
+}
+
+NamedDecl*
+Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
+                              QualType R, TypeSourceInfo *TInfo,
+                              LookupResult &Previous,
+                              MultiTemplateParamsArg TemplateParamLists,
+                              bool IsFunctionDefinition, bool &Redeclaration) {
+  assert(R.getTypePtr()->isFunctionType());
+
+  DeclarationName Name = GetNameForDeclarator(D);
+  FunctionDecl::StorageClass SC = FunctionDecl::None;
+  switch (D.getDeclSpec().getStorageClassSpec()) {
+  default: assert(0 && "Unknown storage class!");
+  case DeclSpec::SCS_auto:
+  case DeclSpec::SCS_register:
+  case DeclSpec::SCS_mutable:
+    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+         diag::err_typecheck_sclass_func);
+    D.setInvalidType();
+    break;
+  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
+  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
+  case DeclSpec::SCS_static: {
+    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
+      // C99 6.7.1p5:
+      //   The declaration of an identifier for a function that has
+      //   block scope shall have no explicit storage-class specifier
+      //   other than extern
+      // See also (C++ [dcl.stc]p4).
+      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+           diag::err_static_block_func);
+      SC = FunctionDecl::None;
+    } else
+      SC = FunctionDecl::Static;
+    break;
+  }
+  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
+  }
+
+  if (D.getDeclSpec().isThreadSpecified())
+    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
+
+  bool isFriend = D.getDeclSpec().isFriendSpecified();
+  bool isInline = D.getDeclSpec().isInlineSpecified();
+  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
+  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
+
+  // Check that the return type is not an abstract class type.
+  // For record types, this is done by the AbstractClassUsageDiagnoser once
+  // the class has been completely parsed.
+  if (!DC->isRecord() &&
+      RequireNonAbstractType(D.getIdentifierLoc(),
+                             R->getAs<FunctionType>()->getResultType(),
+                             diag::err_abstract_type_in_decl,
+                             AbstractReturnType))
+    D.setInvalidType();
+
+  // Do not allow returning a objc interface by-value.
+  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
+    Diag(D.getIdentifierLoc(),
+         diag::err_object_cannot_be_passed_returned_by_value) << 0
+      << R->getAs<FunctionType>()->getResultType();
+    D.setInvalidType();
+  }
+
+  bool isVirtualOkay = false;
+  FunctionDecl *NewFD;
+
+  if (isFriend) {
+    // C++ [class.friend]p5
+    //   A function can be defined in a friend declaration of a
+    //   class . . . . Such a function is implicitly inline.
+    isInline |= IsFunctionDefinition;
+  }
+
+  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
+    // This is a C++ constructor declaration.
+    assert(DC->isRecord() &&
+           "Constructors can only be declared in a member context");
+
+    R = CheckConstructorDeclarator(D, R, SC);
+
+    // Create the new declaration
+    NewFD = CXXConstructorDecl::Create(Context,
+                                       cast<CXXRecordDecl>(DC),
+                                       D.getIdentifierLoc(), Name, R, TInfo,
+                                       isExplicit, isInline,
+                                       /*isImplicitlyDeclared=*/false);
+  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
+    // This is a C++ destructor declaration.
+    if (DC->isRecord()) {
+      R = CheckDestructorDeclarator(D, SC);
+
+      NewFD = CXXDestructorDecl::Create(Context,
+                                        cast<CXXRecordDecl>(DC),
+                                        D.getIdentifierLoc(), Name, R,
+                                        isInline,
+                                        /*isImplicitlyDeclared=*/false);
+
+      isVirtualOkay = true;
+    } else {
+      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
+
+      // Create a FunctionDecl to satisfy the function definition parsing
+      // code path.
+      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
+                                   Name, R, TInfo, SC, isInline,
+                                   /*hasPrototype=*/true);
+      D.setInvalidType();
+    }
+  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
+    if (!DC->isRecord()) {
+      Diag(D.getIdentifierLoc(),
+           diag::err_conv_function_not_member);
+      return 0;
+    }
+
+    CheckConversionDeclarator(D, R, SC);
+    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
+                                      D.getIdentifierLoc(), Name, R, TInfo,
+                                      isInline, isExplicit);
+
+    isVirtualOkay = true;
+  } else if (DC->isRecord()) {
+    // If the of the function is the same as the name of the record, then this
+    // must be an invalid constructor that has a return type.
+    // (The parser checks for a return type and makes the declarator a
+    // constructor if it has no return type).
+    // must have an invalid constructor that has a return type
+    if (Name.getAsIdentifierInfo() &&
+        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
+      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
+        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
+        << SourceRange(D.getIdentifierLoc());
+      return 0;
+    }
+
+    bool isStatic = SC == FunctionDecl::Static;
+    
+    // [class.free]p1:
+    // Any allocation function for a class T is a static member
+    // (even if not explicitly declared static).
+    if (Name.getCXXOverloadedOperator() == OO_New ||
+        Name.getCXXOverloadedOperator() == OO_Array_New)
+      isStatic = true;
+
+    // [class.free]p6 Any deallocation function for a class X is a static member
+    // (even if not explicitly declared static).
+    if (Name.getCXXOverloadedOperator() == OO_Delete ||
+        Name.getCXXOverloadedOperator() == OO_Array_Delete)
+      isStatic = true;
+    
+    // This is a C++ method declaration.
+    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
+                                  D.getIdentifierLoc(), Name, R, TInfo,
+                                  isStatic, isInline);
+
+    isVirtualOkay = !isStatic;
+  } else {
+    // Determine whether the function was written with a
+    // prototype. This true when:
+    //   - we're in C++ (where every function has a prototype),
+    //   - there is a prototype in the declarator, or
+    //   - the type R of the function is some kind of typedef or other reference
+    //     to a type name (which eventually refers to a function type).
+    bool HasPrototype =
+       getLangOptions().CPlusPlus ||
+       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
+       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
+
+    NewFD = FunctionDecl::Create(Context, DC,
+                                 D.getIdentifierLoc(),
+                                 Name, R, TInfo, SC, isInline, HasPrototype);
+  }
+
+  if (D.isInvalidType())
+    NewFD->setInvalidDecl();
+
+  // Set the lexical context. If the declarator has a C++
+  // scope specifier, or is the object of a friend declaration, the
+  // lexical context will be different from the semantic context.
+  NewFD->setLexicalDeclContext(CurContext);
+
+  // Match up the template parameter lists with the scope specifier, then
+  // determine whether we have a template or a template specialization.
+  FunctionTemplateDecl *FunctionTemplate = 0;
+  bool isExplicitSpecialization = false;
+  bool isFunctionTemplateSpecialization = false;
+  if (TemplateParameterList *TemplateParams
+        = MatchTemplateParametersToScopeSpecifier(
+                                  D.getDeclSpec().getSourceRange().getBegin(),
+                                  D.getCXXScopeSpec(),
+                           (TemplateParameterList**)TemplateParamLists.get(),
+                                                  TemplateParamLists.size(),
+                                                  isExplicitSpecialization)) {
+    if (TemplateParams->size() > 0) {
+      // This is a function template
+
+      // Check that we can declare a template here.
+      if (CheckTemplateDeclScope(S, TemplateParams))
+        return 0;
+
+      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
+                                                      NewFD->getLocation(),
+                                                      Name, TemplateParams,
+                                                      NewFD);
+      FunctionTemplate->setLexicalDeclContext(CurContext);
+      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
+    } else {
+      // This is a function template specialization.
+      isFunctionTemplateSpecialization = true;
+    }
+
+    // FIXME: Free this memory properly.
+    TemplateParamLists.release();
+  }
+  
+  // C++ [dcl.fct.spec]p5:
+  //   The virtual specifier shall only be used in declarations of
+  //   nonstatic class member functions that appear within a
+  //   member-specification of a class declaration; see 10.3.
+  //
+  if (isVirtual && !NewFD->isInvalidDecl()) {
+    if (!isVirtualOkay) {
+       Diag(D.getDeclSpec().getVirtualSpecLoc(),
+           diag::err_virtual_non_function);
+    } else if (!CurContext->isRecord()) {
+      // 'virtual' was specified outside of the class.
+      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
+        << CodeModificationHint::CreateRemoval(
+                                           D.getDeclSpec().getVirtualSpecLoc());
+    } else {
+      // Okay: Add virtual to the method.
+      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
+      CurClass->setMethodAsVirtual(NewFD);
+    }
+  }
+
+  // C++ [dcl.fct.spec]p6:
+  //  The explicit specifier shall be used only in the declaration of a
+  //  constructor or conversion function within its class definition; see 12.3.1
+  //  and 12.3.2.
+  if (isExplicit && !NewFD->isInvalidDecl()) {
+    if (!CurContext->isRecord()) {
+      // 'explicit' was specified outside of the class.
+      Diag(D.getDeclSpec().getExplicitSpecLoc(), 
+           diag::err_explicit_out_of_class)
+        << CodeModificationHint::CreateRemoval(
+                                          D.getDeclSpec().getExplicitSpecLoc());
+    } else if (!isa<CXXConstructorDecl>(NewFD) && 
+               !isa<CXXConversionDecl>(NewFD)) {
+      // 'explicit' was specified on a function that wasn't a constructor
+      // or conversion function.
+      Diag(D.getDeclSpec().getExplicitSpecLoc(),
+           diag::err_explicit_non_ctor_or_conv_function)
+        << CodeModificationHint::CreateRemoval(
+                                          D.getDeclSpec().getExplicitSpecLoc());
+    }      
+  }
+
+  // Filter out previous declarations that don't match the scope.
+  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
+
+  if (isFriend) {
+    // DC is the namespace in which the function is being declared.
+    assert((DC->isFileContext() || !Previous.empty()) &&
+           "previously-undeclared friend function being created "
+           "in a non-namespace context");
+
+    if (FunctionTemplate) {
+      FunctionTemplate->setObjectOfFriendDecl(
+                                   /* PreviouslyDeclared= */ !Previous.empty());
+      FunctionTemplate->setAccess(AS_public);
+    }
+    else
+      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
+
+    NewFD->setAccess(AS_public);
+  }
+
+  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
+      !CurContext->isRecord()) {
+    // C++ [class.static]p1:
+    //   A data or function member of a class may be declared static
+    //   in a class definition, in which case it is a static member of
+    //   the class.
+
+    // Complain about the 'static' specifier if it's on an out-of-line
+    // member function definition.
+    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
+         diag::err_static_out_of_line)
+      << CodeModificationHint::CreateRemoval(
+                                      D.getDeclSpec().getStorageClassSpecLoc());
+  }
+
+  // Handle GNU asm-label extension (encoded as an attribute).
+  if (Expr *E = (Expr*) D.getAsmLabel()) {
+    // The parser guarantees this is a string.
+    StringLiteral *SE = cast<StringLiteral>(E);
+    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
+  }
+
+  // Copy the parameter declarations from the declarator D to the function
+  // declaration NewFD, if they are available.  First scavenge them into Params.
+  llvm::SmallVector<ParmVarDecl*, 16> Params;
+  if (D.getNumTypeObjects() > 0) {
+    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
+
+    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
+    // function that takes no arguments, not a function that takes a
+    // single void argument.
+    // We let through "const void" here because Sema::GetTypeForDeclarator
+    // already checks for that case.
+    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
+        FTI.ArgInfo[0].Param &&
+        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
+      // Empty arg list, don't push any params.
+      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
+
+      // In C++, the empty parameter-type-list must be spelled "void"; a
+      // typedef of void is not permitted.
+      if (getLangOptions().CPlusPlus &&
+          Param->getType().getUnqualifiedType() != Context.VoidTy)
+        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
+      // FIXME: Leaks decl?
+    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
+      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
+        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
+        assert(Param->getDeclContext() != NewFD && "Was set before ?");
+        Param->setDeclContext(NewFD);
+        Params.push_back(Param);
+      }
+    }
+
+  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
+    // When we're declaring a function with a typedef, typeof, etc as in the
+    // following example, we'll need to synthesize (unnamed)
+    // parameters for use in the declaration.
+    //
+    // @code
+    // typedef void fn(int);
+    // fn f;
+    // @endcode
+
+    // Synthesize a parameter for each argument type.
+    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
+         AE = FT->arg_type_end(); AI != AE; ++AI) {
+      ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
+                                               SourceLocation(), 0,
+                                               *AI, /*TInfo=*/0,
+                                               VarDecl::None, 0);
+      Param->setImplicit();
+      Params.push_back(Param);
+    }
+  } else {
+    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
+           "Should not need args for typedef of non-prototype fn");
+  }
+  // Finally, we know we have the right number of parameters, install them.
+  NewFD->setParams(Context, Params.data(), Params.size());
+
+  // If the declarator is a template-id, translate the parser's template 
+  // argument list into our AST format.
+  bool HasExplicitTemplateArgs = false;
+  TemplateArgumentListInfo TemplateArgs;
+  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
+    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
+    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
+    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
+    ASTTemplateArgsPtr TemplateArgsPtr(*this,
+                                       TemplateId->getTemplateArgs(),
+                                       TemplateId->NumArgs);
+    translateTemplateArguments(TemplateArgsPtr,
+                               TemplateArgs);
+    TemplateArgsPtr.release();
+    
+    HasExplicitTemplateArgs = true;
+    
+    if (FunctionTemplate) {
+      // FIXME: Diagnose function template with explicit template
+      // arguments.
+      HasExplicitTemplateArgs = false;
+    } else if (!isFunctionTemplateSpecialization && 
+               !D.getDeclSpec().isFriendSpecified()) {
+      // We have encountered something that the user meant to be a 
+      // specialization (because it has explicitly-specified template
+      // arguments) but that was not introduced with a "template<>" (or had
+      // too few of them).
+      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
+        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
+        << CodeModificationHint::CreateInsertion(
+                                   D.getDeclSpec().getSourceRange().getBegin(),
+                                                 "template<> ");
+      isFunctionTemplateSpecialization = true;
+    }
+  }
+
+  if (isFunctionTemplateSpecialization) {
+      if (CheckFunctionTemplateSpecialization(NewFD,
+                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
+                                              Previous))
+        NewFD->setInvalidDecl();
+  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
+             CheckMemberSpecialization(NewFD, Previous))
+    NewFD->setInvalidDecl();
+    
+  // Perform semantic checking on the function declaration.
+  bool OverloadableAttrRequired = false; // FIXME: HACK!
+  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
+                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
+
+  assert((NewFD->isInvalidDecl() || !Redeclaration ||
+          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
+         "previous declaration set still overloaded");
+
+  // If we have a function template, check the template parameter
+  // list. This will check and merge default template arguments.
+  if (FunctionTemplate) {
+    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
+    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
+                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
+             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
+                                                : TPC_FunctionTemplate);
+  }
+
+  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
+    // Fake up an access specifier if it's supposed to be a class member.
+    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
+      NewFD->setAccess(AS_public);
+
+    // An out-of-line member function declaration must also be a
+    // definition (C++ [dcl.meaning]p1).
+    // Note that this is not the case for explicit specializations of
+    // function templates or member functions of class templates, per
+    // C++ [temp.expl.spec]p2.
+    if (!IsFunctionDefinition && !isFriend &&
+        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
+      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
+        << D.getCXXScopeSpec().getRange();
+      NewFD->setInvalidDecl();
+    } else if (!Redeclaration && 
+               !(isFriend && CurContext->isDependentContext())) {
+      // The user tried to provide an out-of-line definition for a
+      // function that is a member of a class or namespace, but there
+      // was no such member function declared (C++ [class.mfct]p2,
+      // C++ [namespace.memdef]p2). For example:
+      //
+      // class X {
+      //   void f() const;
+      // };
+      //
+      // void X::f() { } // ill-formed
+      //
+      // Complain about this problem, and attempt to suggest close
+      // matches (e.g., those that differ only in cv-qualifiers and
+      // whether the parameter types are references).
+      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
+        << Name << DC << D.getCXXScopeSpec().getRange();
+      NewFD->setInvalidDecl();
+
+      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
+                        ForRedeclaration);
+      LookupQualifiedName(Prev, DC);
+      assert(!Prev.isAmbiguous() &&
+             "Cannot have an ambiguity in previous-declaration lookup");
+      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
+           Func != FuncEnd; ++Func) {
+        if (isa<FunctionDecl>(*Func) &&
+            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
+          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
+      }
+    }
+  }
+
+  // Handle attributes. We need to have merged decls when handling attributes
+  // (for example to check for conflicts, etc).
+  // FIXME: This needs to happen before we merge declarations. Then,
+  // let attribute merging cope with attribute conflicts.
+  ProcessDeclAttributes(S, NewFD, D);
+
+  // attributes declared post-definition are currently ignored
+  if (Redeclaration && Previous.isSingleResult()) {
+    const FunctionDecl *Def;
+    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
+    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
+      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
+      Diag(Def->getLocation(), diag::note_previous_definition);
+    }
+  }
+
+  AddKnownFunctionAttributes(NewFD);
+
+  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
+    // If a function name is overloadable in C, then every function
+    // with that name must be marked "overloadable".
+    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
+      << Redeclaration << NewFD;
+    if (!Previous.empty())
+      Diag(Previous.getRepresentativeDecl()->getLocation(),
+           diag::note_attribute_overloadable_prev_overload);
+    NewFD->addAttr(::new (Context) OverloadableAttr());
+  }
+
+  // If this is a locally-scoped extern C function, update the
+  // map of such names.
+  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
+      && !NewFD->isInvalidDecl())
+    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
+
+  // Set this FunctionDecl's range up to the right paren.
+  NewFD->setLocEnd(D.getSourceRange().getEnd());
+
+  if (FunctionTemplate && NewFD->isInvalidDecl())
+    FunctionTemplate->setInvalidDecl();
+
+  if (FunctionTemplate)
+    return FunctionTemplate;
+
+  return NewFD;
+}
+
+/// \brief Perform semantic checking of a new function declaration.
+///
+/// Performs semantic analysis of the new function declaration
+/// NewFD. This routine performs all semantic checking that does not
+/// require the actual declarator involved in the declaration, and is
+/// used both for the declaration of functions as they are parsed
+/// (called via ActOnDeclarator) and for the declaration of functions
+/// that have been instantiated via C++ template instantiation (called
+/// via InstantiateDecl).
+///
+/// \param IsExplicitSpecialiation whether this new function declaration is
+/// an explicit specialization of the previous declaration.
+///
+/// This sets NewFD->isInvalidDecl() to true if there was an error.
+void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
+                                    LookupResult &Previous,
+                                    bool IsExplicitSpecialization,
+                                    bool &Redeclaration,
+                                    bool &OverloadableAttrRequired) {
+  // If NewFD is already known erroneous, don't do any of this checking.
+  if (NewFD->isInvalidDecl())
+    return;
+
+  if (NewFD->getResultType()->isVariablyModifiedType()) {
+    // Functions returning a variably modified type violate C99 6.7.5.2p2
+    // because all functions have linkage.
+    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
+    return NewFD->setInvalidDecl();
+  }
+
+  if (NewFD->isMain()) 
+    CheckMain(NewFD);
+
+  // Check for a previous declaration of this name.
+  if (Previous.empty() && NewFD->isExternC()) {
+    // Since we did not find anything by this name and we're declaring
+    // an extern "C" function, look for a non-visible extern "C"
+    // declaration with the same name.
+    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
+      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
+    if (Pos != LocallyScopedExternalDecls.end())
+      Previous.addDecl(Pos->second);
+  }
+
+  // Merge or overload the declaration with an existing declaration of
+  // the same name, if appropriate.
+  if (!Previous.empty()) {
+    // Determine whether NewFD is an overload of PrevDecl or
+    // a declaration that requires merging. If it's an overload,
+    // there's no more work to do here; we'll just add the new
+    // function to the scope.
+
+    NamedDecl *OldDecl = 0;
+    if (!AllowOverloadingOfFunction(Previous, Context)) {
+      Redeclaration = true;
+      OldDecl = Previous.getFoundDecl();
+    } else {
+      if (!getLangOptions().CPlusPlus) {
+        OverloadableAttrRequired = true;
+
+        // Functions marked "overloadable" must have a prototype (that
+        // we can't get through declaration merging).
+        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
+          Diag(NewFD->getLocation(),
+               diag::err_attribute_overloadable_no_prototype)
+            << NewFD;
+          Redeclaration = true;
+
+          // Turn this into a variadic function with no parameters.
+          QualType R = Context.getFunctionType(
+                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
+                     0, 0, true, 0);
+          NewFD->setType(R);
+          return NewFD->setInvalidDecl();
+        }
+      }
+
+      switch (CheckOverload(NewFD, Previous, OldDecl)) {
+      case Ovl_Match:
+        Redeclaration = true;
+        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
+          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
+          Redeclaration = false;
+        }
+        break;
+
+      case Ovl_NonFunction:
+        Redeclaration = true;
+        break;
+
+      case Ovl_Overload:
+        Redeclaration = false;
+        break;
+      }
+    }
+
+    if (Redeclaration) {
+      // NewFD and OldDecl represent declarations that need to be
+      // merged.
+      if (MergeFunctionDecl(NewFD, OldDecl))
+        return NewFD->setInvalidDecl();
+
+      Previous.clear();
+      Previous.addDecl(OldDecl);
+
+      if (FunctionTemplateDecl *OldTemplateDecl
+                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
+        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());        
+        FunctionTemplateDecl *NewTemplateDecl
+          = NewFD->getDescribedFunctionTemplate();
+        assert(NewTemplateDecl && "Template/non-template mismatch");
+        if (CXXMethodDecl *Method 
+              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
+          Method->setAccess(OldTemplateDecl->getAccess());
+          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
+        }
+        
+        // If this is an explicit specialization of a member that is a function
+        // template, mark it as a member specialization.
+        if (IsExplicitSpecialization && 
+            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
+          NewTemplateDecl->setMemberSpecialization();
+          assert(OldTemplateDecl->isMemberSpecialization());
+        }
+      } else {
+        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
+          NewFD->setAccess(OldDecl->getAccess());
+        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
+      }
+    }
+  }
+
+  // Semantic checking for this function declaration (in isolation).
+  if (getLangOptions().CPlusPlus) {
+    // C++-specific checks.
+    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
+      CheckConstructor(Constructor);
+    } else if (CXXDestructorDecl *Destructor = 
+                dyn_cast<CXXDestructorDecl>(NewFD)) {
+      CXXRecordDecl *Record = Destructor->getParent();
+      QualType ClassType = Context.getTypeDeclType(Record);
+      
+      // FIXME: Shouldn't we be able to perform thisc heck even when the class
+      // type is dependent? Both gcc and edg can handle that.
+      if (!ClassType->isDependentType()) {
+        DeclarationName Name
+          = Context.DeclarationNames.getCXXDestructorName(
+                                        Context.getCanonicalType(ClassType));
+        if (NewFD->getDeclName() != Name) {
+          Diag(NewFD->getLocation(), diag::err_destructor_name);
+          return NewFD->setInvalidDecl();
+        }
+      }
+
+      Record->setUserDeclaredDestructor(true);
+      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
+      // user-defined destructor.
+      Record->setPOD(false);
+
+      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
+      // declared destructor.
+      // FIXME: C++0x: don't do this for "= default" destructors
+      Record->setHasTrivialDestructor(false);
+    } else if (CXXConversionDecl *Conversion
+               = dyn_cast<CXXConversionDecl>(NewFD)) {
+      ActOnConversionDeclarator(Conversion);
+    }
+
+    // Find any virtual functions that this function overrides.
+    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
+      if (!Method->isFunctionTemplateSpecialization() && 
+          !Method->getDescribedFunctionTemplate())
+        AddOverriddenMethods(Method->getParent(), Method);
+    }
+
+    // Additional checks for the destructor; make sure we do this after we
+    // figure out whether the destructor is virtual.
+    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
+      if (!Destructor->getParent()->isDependentType())
+        CheckDestructor(Destructor);
+
+    // Extra checking for C++ overloaded operators (C++ [over.oper]).
+    if (NewFD->isOverloadedOperator() &&
+        CheckOverloadedOperatorDeclaration(NewFD))
+      return NewFD->setInvalidDecl();
+
+    // Extra checking for C++0x literal operators (C++0x [over.literal]).
+    if (NewFD->getLiteralIdentifier() &&
+        CheckLiteralOperatorDeclaration(NewFD))
+      return NewFD->setInvalidDecl();
+
+    // In C++, check default arguments now that we have merged decls. Unless
+    // the lexical context is the class, because in this case this is done
+    // during delayed parsing anyway.
+    if (!CurContext->isRecord())
+      CheckCXXDefaultArguments(NewFD);
+  }
+}
+
+void Sema::CheckMain(FunctionDecl* FD) {
+  // C++ [basic.start.main]p3:  A program that declares main to be inline
+  //   or static is ill-formed.
+  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
+  //   shall not appear in a declaration of main.
+  // static main is not an error under C99, but we should warn about it.
+  bool isInline = FD->isInlineSpecified();
+  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
+  if (isInline || isStatic) {
+    unsigned diagID = diag::warn_unusual_main_decl;
+    if (isInline || getLangOptions().CPlusPlus)
+      diagID = diag::err_unusual_main_decl;
+
+    int which = isStatic + (isInline << 1) - 1;
+    Diag(FD->getLocation(), diagID) << which;
+  }
+
+  QualType T = FD->getType();
+  assert(T->isFunctionType() && "function decl is not of function type");
+  const FunctionType* FT = T->getAs<FunctionType>();
+
+  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
+    // TODO: add a replacement fixit to turn the return type into 'int'.
+    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
+    FD->setInvalidDecl(true);
+  }
+
+  // Treat protoless main() as nullary.
+  if (isa<FunctionNoProtoType>(FT)) return;
+
+  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
+  unsigned nparams = FTP->getNumArgs();
+  assert(FD->getNumParams() == nparams);
+
+  bool HasExtraParameters = (nparams > 3);
+
+  // Darwin passes an undocumented fourth argument of type char**.  If
+  // other platforms start sprouting these, the logic below will start
+  // getting shifty.
+  if (nparams == 4 &&
+      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
+    HasExtraParameters = false;
+
+  if (HasExtraParameters) {
+    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
+    FD->setInvalidDecl(true);
+    nparams = 3;
+  }
+
+  // FIXME: a lot of the following diagnostics would be improved
+  // if we had some location information about types.
+
+  QualType CharPP =
+    Context.getPointerType(Context.getPointerType(Context.CharTy));
+  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
+
+  for (unsigned i = 0; i < nparams; ++i) {
+    QualType AT = FTP->getArgType(i);
+
+    bool mismatch = true;
+
+    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
+      mismatch = false;
+    else if (Expected[i] == CharPP) {
+      // As an extension, the following forms are okay:
+      //   char const **
+      //   char const * const *
+      //   char * const *
+
+      QualifierCollector qs;
+      const PointerType* PT;
+      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
+          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
+          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
+        qs.removeConst();
+        mismatch = !qs.empty();
+      }
+    }
+
+    if (mismatch) {
+      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
+      // TODO: suggest replacing given type with expected type
+      FD->setInvalidDecl(true);
+    }
+  }
+
+  if (nparams == 1 && !FD->isInvalidDecl()) {
+    Diag(FD->getLocation(), diag::warn_main_one_arg);
+  }
+}
+
+bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
+  // FIXME: Need strict checking.  In C89, we need to check for
+  // any assignment, increment, decrement, function-calls, or
+  // commas outside of a sizeof.  In C99, it's the same list,
+  // except that the aforementioned are allowed in unevaluated
+  // expressions.  Everything else falls under the
+  // "may accept other forms of constant expressions" exception.
+  // (We never end up here for C++, so the constant expression
+  // rules there don't matter.)
+  if (Init->isConstantInitializer(Context))
+    return false;
+  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
+    << Init->getSourceRange();
+  return true;
+}
+
+void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
+  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
+}
+
+/// AddInitializerToDecl - Adds the initializer Init to the
+/// declaration dcl. If DirectInit is true, this is C++ direct
+/// initialization rather than copy initialization.
+void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
+  Decl *RealDecl = dcl.getAs<Decl>();
+  // If there is no declaration, there was an error parsing it.  Just ignore
+  // the initializer.
+  if (RealDecl == 0)
+    return;
+
+  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
+    // With declarators parsed the way they are, the parser cannot
+    // distinguish between a normal initializer and a pure-specifier.
+    // Thus this grotesque test.
+    IntegerLiteral *IL;
+    Expr *Init = static_cast<Expr *>(init.get());
+    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
+        Context.getCanonicalType(IL->getType()) == Context.IntTy)
+      CheckPureMethod(Method, Init->getSourceRange());
+    else {
+      Diag(Method->getLocation(), diag::err_member_function_initialization)
+        << Method->getDeclName() << Init->getSourceRange();
+      Method->setInvalidDecl();
+    }
+    return;
+  }
+
+  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
+  if (!VDecl) {
+    if (getLangOptions().CPlusPlus &&
+        RealDecl->getLexicalDeclContext()->isRecord() &&
+        isa<NamedDecl>(RealDecl))
+      Diag(RealDecl->getLocation(), diag::err_member_initialization)
+        << cast<NamedDecl>(RealDecl)->getDeclName();
+    else
+      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
+    RealDecl->setInvalidDecl();
+    return;
+  }
+
+  // A definition must end up with a complete type, which means it must be
+  // complete with the restriction that an array type might be completed by the
+  // initializer; note that later code assumes this restriction.
+  QualType BaseDeclType = VDecl->getType();
+  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
+    BaseDeclType = Array->getElementType();
+  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
+                          diag::err_typecheck_decl_incomplete_type)) {
+    RealDecl->setInvalidDecl();
+    return;
+  }
+
+  // The variable can not have an abstract class type.
+  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
+                             diag::err_abstract_type_in_decl,
+                             AbstractVariableType))
+    VDecl->setInvalidDecl();
+
+  const VarDecl *Def;
+  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
+    Diag(VDecl->getLocation(), diag::err_redefinition)
+      << VDecl->getDeclName();
+    Diag(Def->getLocation(), diag::note_previous_definition);
+    VDecl->setInvalidDecl();
+    return;
+  }
+
+  // Take ownership of the expression, now that we're sure we have somewhere
+  // to put it.
+  Expr *Init = init.takeAs<Expr>();
+  assert(Init && "missing initializer");
+
+  // Capture the variable that is being initialized and the style of
+  // initialization.
+  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
+  
+  // FIXME: Poor source location information.
+  InitializationKind Kind
+    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
+                                                   Init->getLocStart(),
+                                                   Init->getLocEnd())
+                : InitializationKind::CreateCopy(VDecl->getLocation(),
+                                                 Init->getLocStart());
+  
+  // Get the decls type and save a reference for later, since
+  // CheckInitializerTypes may change it.
+  QualType DclT = VDecl->getType(), SavT = DclT;
+  if (VDecl->isBlockVarDecl()) {
+    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
+      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
+      VDecl->setInvalidDecl();
+    } else if (!VDecl->isInvalidDecl()) {
+      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
+      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
+                                          MultiExprArg(*this, (void**)&Init, 1),
+                                                &DclT);
+      if (Result.isInvalid()) {
+        VDecl->setInvalidDecl();
+        return;
+      }
+
+      Init = Result.takeAs<Expr>();
+
+      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
+      // Don't check invalid declarations to avoid emitting useless diagnostics.
+      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
+        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
+          CheckForConstantInitializer(Init, DclT);
+      }
+    }
+  } else if (VDecl->isStaticDataMember() &&
+             VDecl->getLexicalDeclContext()->isRecord()) {
+    // This is an in-class initialization for a static data member, e.g.,
+    //
+    // struct S {
+    //   static const int value = 17;
+    // };
+
+    // Attach the initializer
+    VDecl->setInit(Context, Init);
+
+    // C++ [class.mem]p4:
+    //   A member-declarator can contain a constant-initializer only
+    //   if it declares a static member (9.4) of const integral or
+    //   const enumeration type, see 9.4.2.
+    QualType T = VDecl->getType();
+    if (!T->isDependentType() &&
+        (!Context.getCanonicalType(T).isConstQualified() ||
+         !T->isIntegralType())) {
+      Diag(VDecl->getLocation(), diag::err_member_initialization)
+        << VDecl->getDeclName() << Init->getSourceRange();
+      VDecl->setInvalidDecl();
+    } else {
+      // C++ [class.static.data]p4:
+      //   If a static data member is of const integral or const
+      //   enumeration type, its declaration in the class definition
+      //   can specify a constant-initializer which shall be an
+      //   integral constant expression (5.19).
+      if (!Init->isTypeDependent() &&
+          !Init->getType()->isIntegralType()) {
+        // We have a non-dependent, non-integral or enumeration type.
+        Diag(Init->getSourceRange().getBegin(),
+             diag::err_in_class_initializer_non_integral_type)
+          << Init->getType() << Init->getSourceRange();
+        VDecl->setInvalidDecl();
+      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
+        // Check whether the expression is a constant expression.
+        llvm::APSInt Value;
+        SourceLocation Loc;
+        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
+          Diag(Loc, diag::err_in_class_initializer_non_constant)
+            << Init->getSourceRange();
+          VDecl->setInvalidDecl();
+        } else if (!VDecl->getType()->isDependentType())
+          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
+      }
+    }
+  } else if (VDecl->isFileVarDecl()) {
+    if (VDecl->getStorageClass() == VarDecl::Extern)
+      Diag(VDecl->getLocation(), diag::warn_extern_init);
+    if (!VDecl->isInvalidDecl()) {
+      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
+      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
+                                          MultiExprArg(*this, (void**)&Init, 1),
+                                                &DclT);
+      if (Result.isInvalid()) {
+        VDecl->setInvalidDecl();
+        return;
+      }
+
+      Init = Result.takeAs<Expr>();
+    }
+
+    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
+    // Don't check invalid declarations to avoid emitting useless diagnostics.
+    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
+      // C99 6.7.8p4. All file scoped initializers need to be constant.
+      CheckForConstantInitializer(Init, DclT);
+    }
+  }
+  // If the type changed, it means we had an incomplete type that was
+  // completed by the initializer. For example:
+  //   int ary[] = { 1, 3, 5 };
+  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
+  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
+    VDecl->setType(DclT);
+    Init->setType(DclT);
+  }
+
+  Init = MaybeCreateCXXExprWithTemporaries(Init);
+  // Attach the initializer to the decl.
+  VDecl->setInit(Context, Init);
+
+  if (getLangOptions().CPlusPlus) {
+    // Make sure we mark the destructor as used if necessary.
+    QualType InitType = VDecl->getType();
+    while (const ArrayType *Array = Context.getAsArrayType(InitType))
+      InitType = Context.getBaseElementType(Array);
+    if (const RecordType *Record = InitType->getAs<RecordType>())
+      FinalizeVarWithDestructor(VDecl, Record);
+  }
+
+  return;
+}
+
+void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
+                                  bool TypeContainsUndeducedAuto) {
+  Decl *RealDecl = dcl.getAs<Decl>();
+
+  // If there is no declaration, there was an error parsing it. Just ignore it.
+  if (RealDecl == 0)
+    return;
+
+  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
+    QualType Type = Var->getType();
+
+    // C++0x [dcl.spec.auto]p3
+    if (TypeContainsUndeducedAuto) {
+      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
+        << Var->getDeclName() << Type;
+      Var->setInvalidDecl();
+      return;
+    }
+
+    switch (Var->isThisDeclarationADefinition()) {
+    case VarDecl::Definition:
+      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
+        break;
+
+      // We have an out-of-line definition of a static data member
+      // that has an in-class initializer, so we type-check this like
+      // a declaration. 
+      //
+      // Fall through
+      
+    case VarDecl::DeclarationOnly:
+      // It's only a declaration. 
+
+      // Block scope. C99 6.7p7: If an identifier for an object is
+      // declared with no linkage (C99 6.2.2p6), the type for the
+      // object shall be complete.
+      if (!Type->isDependentType() && Var->isBlockVarDecl() && 
+          !Var->getLinkage() && !Var->isInvalidDecl() &&
+          RequireCompleteType(Var->getLocation(), Type,
+                              diag::err_typecheck_decl_incomplete_type))
+        Var->setInvalidDecl();
+
+      // Make sure that the type is not abstract.
+      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
+          RequireNonAbstractType(Var->getLocation(), Type,
+                                 diag::err_abstract_type_in_decl,
+                                 AbstractVariableType))
+        Var->setInvalidDecl();
+      return;
+
+    case VarDecl::TentativeDefinition:
+      // File scope. C99 6.9.2p2: A declaration of an identifier for an
+      // object that has file scope without an initializer, and without a
+      // storage-class specifier or with the storage-class specifier "static",
+      // constitutes a tentative definition. Note: A tentative definition with
+      // external linkage is valid (C99 6.2.2p5).
+      if (!Var->isInvalidDecl()) {
+        if (const IncompleteArrayType *ArrayT
+                                    = Context.getAsIncompleteArrayType(Type)) {
+          if (RequireCompleteType(Var->getLocation(),
+                                  ArrayT->getElementType(),
+                                  diag::err_illegal_decl_array_incomplete_type))
+            Var->setInvalidDecl();
+        } else if (Var->getStorageClass() == VarDecl::Static) {
+          // C99 6.9.2p3: If the declaration of an identifier for an object is
+          // a tentative definition and has internal linkage (C99 6.2.2p3), the
+          // declared type shall not be an incomplete type.
+          // NOTE: code such as the following
+          //     static struct s;
+          //     struct s { int a; };
+          // is accepted by gcc. Hence here we issue a warning instead of
+          // an error and we do not invalidate the static declaration.
+          // NOTE: to avoid multiple warnings, only check the first declaration.
+          if (Var->getPreviousDeclaration() == 0)
+            RequireCompleteType(Var->getLocation(), Type,
+                                diag::ext_typecheck_decl_incomplete_type);
+        }
+      }
+
+      // Record the tentative definition; we're done.
+      if (!Var->isInvalidDecl())
+        TentativeDefinitions.push_back(Var);
+      return;
+    }
+
+    // Provide a specific diagnostic for uninitialized variable
+    // definitions with incomplete array type.
+    if (Type->isIncompleteArrayType()) {
+      Diag(Var->getLocation(),
+           diag::err_typecheck_incomplete_array_needs_initializer);
+      Var->setInvalidDecl();
+      return;
+    }
+
+   // Provide a specific diagnostic for uninitialized variable
+   // definitions with reference type.
+   if (Type->isReferenceType()) {
+     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
+       << Var->getDeclName()
+       << SourceRange(Var->getLocation(), Var->getLocation());
+     Var->setInvalidDecl();
+     return;
+   }
+
+    // Do not attempt to type-check the default initializer for a
+    // variable with dependent type.
+    if (Type->isDependentType())
+      return;
+
+    if (Var->isInvalidDecl())
+      return;
+
+    if (RequireCompleteType(Var->getLocation(), 
+                            Context.getBaseElementType(Type),
+                            diag::err_typecheck_decl_incomplete_type)) {
+      Var->setInvalidDecl();
+      return;
+    }
+
+    // The variable can not have an abstract class type.
+    if (RequireNonAbstractType(Var->getLocation(), Type,
+                               diag::err_abstract_type_in_decl,
+                               AbstractVariableType)) {
+      Var->setInvalidDecl();
+      return;
+    }
+
+    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
+    InitializationKind Kind
+      = InitializationKind::CreateDefault(Var->getLocation());
+    
+    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
+    OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
+                                            MultiExprArg(*this, 0, 0));
+    if (Init.isInvalid())
+      Var->setInvalidDecl();
+    else {
+      if (Init.get())
+        Var->setInit(Context, 
+                     MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
+
+      if (getLangOptions().CPlusPlus)
+        if (const RecordType *Record
+                        = Context.getBaseElementType(Type)->getAs<RecordType>())
+          FinalizeVarWithDestructor(Var, Record);
+    }
+  }
+}
+
+Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
+                                                   DeclPtrTy *Group,
+                                                   unsigned NumDecls) {
+  llvm::SmallVector<Decl*, 8> Decls;
+
+  if (DS.isTypeSpecOwned())
+    Decls.push_back((Decl*)DS.getTypeRep());
+
+  for (unsigned i = 0; i != NumDecls; ++i)
+    if (Decl *D = Group[i].getAs<Decl>())
+      Decls.push_back(D);
+
+  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
+                                                   Decls.data(), Decls.size()));
+}
+
+
+/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
+/// to introduce parameters into function prototype scope.
+Sema::DeclPtrTy
+Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
+  const DeclSpec &DS = D.getDeclSpec();
+
+  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
+  VarDecl::StorageClass StorageClass = VarDecl::None;
+  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
+    StorageClass = VarDecl::Register;
+  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
+    Diag(DS.getStorageClassSpecLoc(),
+         diag::err_invalid_storage_class_in_func_decl);
+    D.getMutableDeclSpec().ClearStorageClassSpecs();
+  }
+
+  if (D.getDeclSpec().isThreadSpecified())
+    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
+
+  DiagnoseFunctionSpecifiers(D);
+
+  // Check that there are no default arguments inside the type of this
+  // parameter (C++ only).
+  if (getLangOptions().CPlusPlus)
+    CheckExtraCXXDefaultArguments(D);
+
+  TypeSourceInfo *TInfo = 0;
+  TagDecl *OwnedDecl = 0;
+  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
+
+  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
+    // C++ [dcl.fct]p6:
+    //   Types shall not be defined in return or parameter types.
+    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
+      << Context.getTypeDeclType(OwnedDecl);
+  }
+
+  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
+  // Can this happen for params?  We already checked that they don't conflict
+  // among each other.  Here they can only shadow globals, which is ok.
+  IdentifierInfo *II = D.getIdentifier();
+  if (II) {
+    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
+      if (PrevDecl->isTemplateParameter()) {
+        // Maybe we will complain about the shadowed template parameter.
+        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
+        // Just pretend that we didn't see the previous declaration.
+        PrevDecl = 0;
+      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
+        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
+
+        // Recover by removing the name
+        II = 0;
+        D.SetIdentifier(0, D.getIdentifierLoc());
+      }
+    }
+  }
+
+  // Parameters can not be abstract class types.
+  // For record types, this is done by the AbstractClassUsageDiagnoser once
+  // the class has been completely parsed.
+  if (!CurContext->isRecord() &&
+      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
+                             diag::err_abstract_type_in_decl,
+                             AbstractParamType))
+    D.setInvalidType(true);
+
+  QualType T = adjustParameterType(parmDeclType);
+
+  // Temporarily put parameter variables in the translation unit, not
+  // the enclosing context.  This prevents them from accidentally
+  // looking like class members in C++.
+  DeclContext *DC = Context.getTranslationUnitDecl();
+
+  ParmVarDecl *New
+    = ParmVarDecl::Create(Context, DC, D.getIdentifierLoc(), II,
+                          T, TInfo, StorageClass, 0);
+
+  if (D.isInvalidType())
+    New->setInvalidDecl();
+
+  // Parameter declarators cannot be interface types. All ObjC objects are
+  // passed by reference.
+  if (T->isObjCInterfaceType()) {
+    Diag(D.getIdentifierLoc(),
+         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
+    New->setInvalidDecl();
+  }
+
+  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
+  if (D.getCXXScopeSpec().isSet()) {
+    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
+      << D.getCXXScopeSpec().getRange();
+    New->setInvalidDecl();
+  }
+  
+  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage 
+  // duration shall not be qualified by an address-space qualifier."
+  // Since all parameters have automatic store duration, they can not have
+  // an address space.
+  if (T.getAddressSpace() != 0) {
+    Diag(D.getIdentifierLoc(),  
+         diag::err_arg_with_address_space);
+    New->setInvalidDecl();
+  }   
+  
+  
+  // Add the parameter declaration into this scope.
+  S->AddDecl(DeclPtrTy::make(New));
+  if (II)
+    IdResolver.AddDecl(New);
+
+  ProcessDeclAttributes(S, New, D);
+
+  if (New->hasAttr<BlocksAttr>()) {
+    Diag(New->getLocation(), diag::err_block_on_nonlocal);
+  }
+  return DeclPtrTy::make(New);
+}
+
+void Sema::ActOnObjCCatchParam(DeclPtrTy D) {
+  ParmVarDecl *Param = cast<ParmVarDecl>(D.getAs<Decl>());
+  Param->setDeclContext(CurContext);
+}
+
+void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
+                                           SourceLocation LocAfterDecls) {
+  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
+         "Not a function declarator!");
+  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
+
+  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
+  // for a K&R function.
+  if (!FTI.hasPrototype) {
+    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
+      --i;
+      if (FTI.ArgInfo[i].Param == 0) {
+        llvm::SmallString<256> Code;
+        llvm::raw_svector_ostream(Code) << "  int "
+                                        << FTI.ArgInfo[i].Ident->getName()
+                                        << ";\n";
+        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
+          << FTI.ArgInfo[i].Ident
+          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
+
+        // Implicitly declare the argument as type 'int' for lack of a better
+        // type.
+        DeclSpec DS;
+        const char* PrevSpec; // unused
+        unsigned DiagID; // unused
+        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
+                           PrevSpec, DiagID);
+        Declarator ParamD(DS, Declarator::KNRTypeListContext);
+        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
+        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
+      }
+    }
+  }
+}
+
+Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
+                                              Declarator &D) {
+  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
+  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
+         "Not a function declarator!");
+  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
+
+  if (FTI.hasPrototype) {
+    // FIXME: Diagnose arguments without names in C.
+  }
+
+  Scope *ParentScope = FnBodyScope->getParent();
+
+  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
+                                  MultiTemplateParamsArg(*this),
+                                  /*IsFunctionDefinition=*/true);
+  return ActOnStartOfFunctionDef(FnBodyScope, DP);
+}
+
+static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
+  // Don't warn about invalid declarations.
+  if (FD->isInvalidDecl())
+    return false;
+
+  // Or declarations that aren't global.
+  if (!FD->isGlobal())
+    return false;
+
+  // Don't warn about C++ member functions.
+  if (isa<CXXMethodDecl>(FD))
+    return false;
+
+  // Don't warn about 'main'.
+  if (FD->isMain())
+    return false;
+
+  // Don't warn about inline functions.
+  if (FD->isInlineSpecified())
+    return false;
+
+  // Don't warn about function templates.
+  if (FD->getDescribedFunctionTemplate())
+    return false;
+
+  // Don't warn about function template specializations.
+  if (FD->isFunctionTemplateSpecialization())
+    return false;
+
+  bool MissingPrototype = true;
+  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
+       Prev; Prev = Prev->getPreviousDeclaration()) {
+    // Ignore any declarations that occur in function or method
+    // scope, because they aren't visible from the header.
+    if (Prev->getDeclContext()->isFunctionOrMethod())
+      continue;
+      
+    MissingPrototype = !Prev->getType()->isFunctionProtoType();
+    break;
+  }
+    
+  return MissingPrototype;
+}
+
+Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
+  // Clear the last template instantiation error context.
+  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
+  
+  if (!D)
+    return D;
+  FunctionDecl *FD = 0;
+
+  if (FunctionTemplateDecl *FunTmpl
+        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
+    FD = FunTmpl->getTemplatedDecl();
+  else
+    FD = cast<FunctionDecl>(D.getAs<Decl>());
+
+  CurFunctionNeedsScopeChecking = false;
+
+  // See if this is a redefinition.
+  const FunctionDecl *Definition;
+  if (FD->getBody(Definition)) {
+    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
+    Diag(Definition->getLocation(), diag::note_previous_definition);
+  }
+
+  // Builtin functions cannot be defined.
+  if (unsigned BuiltinID = FD->getBuiltinID()) {
+    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
+      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
+      FD->setInvalidDecl();
+    }
+  }
+
+  // The return type of a function definition must be complete
+  // (C99 6.9.1p3, C++ [dcl.fct]p6).
+  QualType ResultType = FD->getResultType();
+  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
+      !FD->isInvalidDecl() &&
+      RequireCompleteType(FD->getLocation(), ResultType,
+                          diag::err_func_def_incomplete_result))
+    FD->setInvalidDecl();
+
+  // GNU warning -Wmissing-prototypes:
+  //   Warn if a global function is defined without a previous
+  //   prototype declaration. This warning is issued even if the
+  //   definition itself provides a prototype. The aim is to detect
+  //   global functions that fail to be declared in header files.
+  if (ShouldWarnAboutMissingPrototype(FD))
+    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
+
+  if (FnBodyScope)
+    PushDeclContext(FnBodyScope, FD);
+
+  // Check the validity of our function parameters
+  CheckParmsForFunctionDef(FD);
+
+  // Introduce our parameters into the function scope
+  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
+    ParmVarDecl *Param = FD->getParamDecl(p);
+    Param->setOwningFunction(FD);
+
+    // If this has an identifier, add it to the scope stack.
+    if (Param->getIdentifier() && FnBodyScope)
+      PushOnScopeChains(Param, FnBodyScope);
+  }
+
+  // Checking attributes of current function definition
+  // dllimport attribute.
+  if (FD->getAttr<DLLImportAttr>() &&
+      (!FD->getAttr<DLLExportAttr>())) {
+    // dllimport attribute cannot be applied to definition.
+    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
+      Diag(FD->getLocation(),
+           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
+        << "dllimport";
+      FD->setInvalidDecl();
+      return DeclPtrTy::make(FD);
+    } else {
+      // If a symbol previously declared dllimport is later defined, the
+      // attribute is ignored in subsequent references, and a warning is
+      // emitted.
+      Diag(FD->getLocation(),
+           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
+        << FD->getNameAsCString() << "dllimport";
+    }
+  }
+  return DeclPtrTy::make(FD);
+}
+
+Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
+  return ActOnFinishFunctionBody(D, move(BodyArg), false);
+}
+
+Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
+                                              bool IsInstantiation) {
+  Decl *dcl = D.getAs<Decl>();
+  Stmt *Body = BodyArg.takeAs<Stmt>();
+
+  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
+  // explosion for destrutors that can result and the compile time hit.
+  AnalysisContext AC(dcl, false);
+  FunctionDecl *FD = 0;
+  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
+  if (FunTmpl)
+    FD = FunTmpl->getTemplatedDecl();
+  else
+    FD = dyn_cast_or_null<FunctionDecl>(dcl);
+
+  if (FD) {
+    FD->setBody(Body);
+    if (FD->isMain())
+      // C and C++ allow for main to automagically return 0.
+      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
+      FD->setHasImplicitReturnZero(true);
+    else
+      CheckFallThroughForFunctionDef(FD, Body, AC);
+
+    if (!FD->isInvalidDecl())
+      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
+
+    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
+      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
+
+    assert(FD == getCurFunctionDecl() && "Function parsing confused");
+  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
+    assert(MD == getCurMethodDecl() && "Method parsing confused");
+    MD->setBody(Body);
+    CheckFallThroughForFunctionDef(MD, Body, AC);
+    MD->setEndLoc(Body->getLocEnd());
+
+    if (!MD->isInvalidDecl())
+      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
+  } else {
+    Body->Destroy(Context);
+    return DeclPtrTy();
+  }
+  if (!IsInstantiation)
+    PopDeclContext();
+
+  // Verify and clean out per-function state.
+
+  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
+
+  // Check goto/label use.
+  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
+       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
+    LabelStmt *L = I->second;
+
+    // Verify that we have no forward references left.  If so, there was a goto
+    // or address of a label taken, but no definition of it.  Label fwd
+    // definitions are indicated with a null substmt.
+    if (L->getSubStmt() != 0)
+      continue;
+
+    // Emit error.
+    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
+
+    // At this point, we have gotos that use the bogus label.  Stitch it into
+    // the function body so that they aren't leaked and that the AST is well
+    // formed.
+    if (Body == 0) {
+      // The whole function wasn't parsed correctly, just delete this.
+      L->Destroy(Context);
+      continue;
+    }
+
+    // Otherwise, the body is valid: we want to stitch the label decl into the
+    // function somewhere so that it is properly owned and so that the goto
+    // has a valid target.  Do this by creating a new compound stmt with the
+    // label in it.
+
+    // Give the label a sub-statement.
+    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
+
+    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
+                               cast<CXXTryStmt>(Body)->getTryBlock() :
+                               cast<CompoundStmt>(Body);
+    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
+    Elements.push_back(L);
+    Compound->setStmts(Context, &Elements[0], Elements.size());
+  }
+  FunctionLabelMap.clear();
+
+  if (!Body) return D;
+
+  CheckUnreachable(AC);
+
+  // Verify that that gotos and switch cases don't jump into scopes illegally.
+  if (CurFunctionNeedsScopeChecking)
+    DiagnoseInvalidJumps(Body);
+
+  // C++ constructors that have function-try-blocks can't have return
+  // statements in the handlers of that block. (C++ [except.handle]p14)
+  // Verify this.
+  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
+    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
+
+  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
+    MarkBaseAndMemberDestructorsReferenced(Destructor);
+  
+  // If any errors have occurred, clear out any temporaries that may have
+  // been leftover. This ensures that these temporaries won't be picked up for
+  // deletion in some later function.
+  if (PP.getDiagnostics().hasErrorOccurred())
+    ExprTemporaries.clear();
+  
+  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
+  return D;
+}
+
+/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
+/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
+NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
+                                          IdentifierInfo &II, Scope *S) {
+  // Before we produce a declaration for an implicitly defined
+  // function, see whether there was a locally-scoped declaration of
+  // this name as a function or variable. If so, use that
+  // (non-visible) declaration, and complain about it.
+  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
+    = LocallyScopedExternalDecls.find(&II);
+  if (Pos != LocallyScopedExternalDecls.end()) {
+    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
+    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
+    return Pos->second;
+  }
+
+  // Extension in C99.  Legal in C90, but warn about it.
+  if (II.getName().startswith("__builtin_"))
+    Diag(Loc, diag::warn_builtin_unknown) << &II;
+  else if (getLangOptions().C99)
+    Diag(Loc, diag::ext_implicit_function_decl) << &II;
+  else
+    Diag(Loc, diag::warn_implicit_function_decl) << &II;
+
+  // Set a Declarator for the implicit definition: int foo();
+  const char *Dummy;
+  DeclSpec DS;
+  unsigned DiagID;
+  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
+  Error = Error; // Silence warning.
+  assert(!Error && "Error setting up implicit decl!");
+  Declarator D(DS, Declarator::BlockContext);
+  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
+                                             0, 0, false, SourceLocation(),
+                                             false, 0,0,0, Loc, Loc, D),
+                SourceLocation());
+  D.SetIdentifier(&II, Loc);
+
+  // Insert this function into translation-unit scope.
+
+  DeclContext *PrevDC = CurContext;
+  CurContext = Context.getTranslationUnitDecl();
+
+  FunctionDecl *FD =
+ dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
+  FD->setImplicit();
+
+  CurContext = PrevDC;
+
+  AddKnownFunctionAttributes(FD);
+
+  return FD;
+}
+
+/// \brief Adds any function attributes that we know a priori based on
+/// the declaration of this function.
+///
+/// These attributes can apply both to implicitly-declared builtins
+/// (like __builtin___printf_chk) or to library-declared functions
+/// like NSLog or printf.
+void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
+  if (FD->isInvalidDecl())
+    return;
+
+  // If this is a built-in function, map its builtin attributes to
+  // actual attributes.
+  if (unsigned BuiltinID = FD->getBuiltinID()) {
+    // Handle printf-formatting attributes.
+    unsigned FormatIdx;
+    bool HasVAListArg;
+    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
+      if (!FD->getAttr<FormatAttr>())
+        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
+                                             HasVAListArg ? 0 : FormatIdx + 2));
+    }
+
+    // Mark const if we don't care about errno and that is the only
+    // thing preventing the function from being const. This allows
+    // IRgen to use LLVM intrinsics for such functions.
+    if (!getLangOptions().MathErrno &&
+        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
+      if (!FD->getAttr<ConstAttr>())
+        FD->addAttr(::new (Context) ConstAttr());
+    }
+
+    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
+      FD->setType(Context.getNoReturnType(FD->getType()));
+    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
+      FD->addAttr(::new (Context) NoThrowAttr());
+    if (Context.BuiltinInfo.isConst(BuiltinID))
+      FD->addAttr(::new (Context) ConstAttr());
+  }
+
+  IdentifierInfo *Name = FD->getIdentifier();
+  if (!Name)
+    return;
+  if ((!getLangOptions().CPlusPlus &&
+       FD->getDeclContext()->isTranslationUnit()) ||
+      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
+       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
+       LinkageSpecDecl::lang_c)) {
+    // Okay: this could be a libc/libm/Objective-C function we know
+    // about.
+  } else
+    return;
+
+  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
+    // FIXME: NSLog and NSLogv should be target specific
+    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
+      // FIXME: We known better than our headers.
+      const_cast<FormatAttr *>(Format)->setType("printf");
+    } else
+      FD->addAttr(::new (Context) FormatAttr("printf", 1,
+                                             Name->isStr("NSLogv") ? 0 : 2));
+  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
+    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
+    // target-specific builtins, perhaps?
+    if (!FD->getAttr<FormatAttr>())
+      FD->addAttr(::new (Context) FormatAttr("printf", 2,
+                                             Name->isStr("vasprintf") ? 0 : 3));
+  }
+}
+
+TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
+                                    TypeSourceInfo *TInfo) {
+  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
+  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
+
+  if (!TInfo) {
+    assert(D.isInvalidType() && "no declarator info for valid type");
+    TInfo = Context.getTrivialTypeSourceInfo(T);
+  }
+
+  // Scope manipulation handled by caller.
+  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
+                                           D.getIdentifierLoc(),
+                                           D.getIdentifier(),
+                                           TInfo);
+
+  if (const TagType *TT = T->getAs<TagType>()) {
+    TagDecl *TD = TT->getDecl();
+
+    // If the TagDecl that the TypedefDecl points to is an anonymous decl
+    // keep track of the TypedefDecl.
+    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
+      TD->setTypedefForAnonDecl(NewTD);
+  }
+
+  if (D.isInvalidType())
+    NewTD->setInvalidDecl();
+  return NewTD;
+}
+
+
+/// \brief Determine whether a tag with a given kind is acceptable
+/// as a redeclaration of the given tag declaration.
+///
+/// \returns true if the new tag kind is acceptable, false otherwise.
+bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
+                                        TagDecl::TagKind NewTag,
+                                        SourceLocation NewTagLoc,
+                                        const IdentifierInfo &Name) {
+  // C++ [dcl.type.elab]p3:
+  //   The class-key or enum keyword present in the
+  //   elaborated-type-specifier shall agree in kind with the
+  //   declaration to which the name in theelaborated-type-specifier
+  //   refers. This rule also applies to the form of
+  //   elaborated-type-specifier that declares a class-name or
+  //   friend class since it can be construed as referring to the
+  //   definition of the class. Thus, in any
+  //   elaborated-type-specifier, the enum keyword shall be used to
+  //   refer to an enumeration (7.2), the union class-keyshall be
+  //   used to refer to a union (clause 9), and either the class or
+  //   struct class-key shall be used to refer to a class (clause 9)
+  //   declared using the class or struct class-key.
+  TagDecl::TagKind OldTag = Previous->getTagKind();
+  if (OldTag == NewTag)
+    return true;
+
+  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
+      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
+    // Warn about the struct/class tag mismatch.
+    bool isTemplate = false;
+    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
+      isTemplate = Record->getDescribedClassTemplate();
+
+    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
+      << (NewTag == TagDecl::TK_class)
+      << isTemplate << &Name
+      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
+                              OldTag == TagDecl::TK_class? "class" : "struct");
+    Diag(Previous->getLocation(), diag::note_previous_use);
+    return true;
+  }
+  return false;
+}
+
+/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
+/// former case, Name will be non-null.  In the later case, Name will be null.
+/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
+/// reference/declaration/definition of a tag.
+Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
+                               SourceLocation KWLoc, const CXXScopeSpec &SS,
+                               IdentifierInfo *Name, SourceLocation NameLoc,
+                               AttributeList *Attr, AccessSpecifier AS,
+                               MultiTemplateParamsArg TemplateParameterLists,
+                               bool &OwnedDecl, bool &IsDependent) {
+  // If this is not a definition, it must have a name.
+  assert((Name != 0 || TUK == TUK_Definition) &&
+         "Nameless record must be a definition!");
+
+  OwnedDecl = false;
+  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
+
+  // FIXME: Check explicit specializations more carefully.
+  bool isExplicitSpecialization = false;
+  if (TUK != TUK_Reference) {
+    if (TemplateParameterList *TemplateParams
+          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
+                        (TemplateParameterList**)TemplateParameterLists.get(),
+                                              TemplateParameterLists.size(),
+                                                    isExplicitSpecialization)) {
+      if (TemplateParams->size() > 0) {
+        // This is a declaration or definition of a class template (which may
+        // be a member of another template).
+        OwnedDecl = false;
+        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
+                                               SS, Name, NameLoc, Attr,
+                                               TemplateParams,
+                                               AS);
+        TemplateParameterLists.release();
+        return Result.get();
+      } else {
+        // The "template<>" header is extraneous.
+        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
+          << ElaboratedType::getNameForTagKind(Kind) << Name;
+        isExplicitSpecialization = true;
+      }
+    }
+             
+    TemplateParameterLists.release();
+  }
+
+  DeclContext *SearchDC = CurContext;
+  DeclContext *DC = CurContext;
+  bool isStdBadAlloc = false;
+  bool Invalid = false;
+
+  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
+                                                   : NotForRedeclaration);
+
+  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
+
+  if (Name && SS.isNotEmpty()) {
+    // We have a nested-name tag ('struct foo::bar').
+
+    // Check for invalid 'foo::'.
+    if (SS.isInvalid()) {
+      Name = 0;
+      goto CreateNewDecl;
+    }
+
+    // If this is a friend or a reference to a class in a dependent
+    // context, don't try to make a decl for it.
+    if (TUK == TUK_Friend || TUK == TUK_Reference) {
+      DC = computeDeclContext(SS, false);
+      if (!DC) {
+        IsDependent = true;
+        return DeclPtrTy();
+      }
+    }
+
+    if (RequireCompleteDeclContext(SS))
+      return DeclPtrTy::make((Decl *)0);
+
+    DC = computeDeclContext(SS, true);
+    SearchDC = DC;
+    // Look-up name inside 'foo::'.
+    LookupQualifiedName(Previous, DC);
+
+    if (Previous.isAmbiguous())
+      return DeclPtrTy();
+
+    if (Previous.empty()) {
+      // Name lookup did not find anything. However, if the
+      // nested-name-specifier refers to the current instantiation,
+      // and that current instantiation has any dependent base
+      // classes, we might find something at instantiation time: treat
+      // this as a dependent elaborated-type-specifier.
+      if (Previous.wasNotFoundInCurrentInstantiation()) {
+        IsDependent = true;
+        return DeclPtrTy();
+      }
+
+      // A tag 'foo::bar' must already exist.
+      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
+      Name = 0;
+      Invalid = true;
+      goto CreateNewDecl;
+    }
+  } else if (Name) {
+    // If this is a named struct, check to see if there was a previous forward
+    // declaration or definition.
+    // FIXME: We're looking into outer scopes here, even when we
+    // shouldn't be. Doing so can result in ambiguities that we
+    // shouldn't be diagnosing.
+    LookupName(Previous, S);
+
+    // Note:  there used to be some attempt at recovery here.
+    if (Previous.isAmbiguous())
+      return DeclPtrTy();
+
+    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
+      // FIXME: This makes sure that we ignore the contexts associated
+      // with C structs, unions, and enums when looking for a matching
+      // tag declaration or definition. See the similar lookup tweak
+      // in Sema::LookupName; is there a better way to deal with this?
+      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
+        SearchDC = SearchDC->getParent();
+    }
+  }
+
+  if (Previous.isSingleResult() &&
+      Previous.getFoundDecl()->isTemplateParameter()) {
+    // Maybe we will complain about the shadowed template parameter.
+    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
+    // Just pretend that we didn't see the previous declaration.
+    Previous.clear();
+  }
+
+  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
+      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
+    // This is a declaration of or a reference to "std::bad_alloc".
+    isStdBadAlloc = true;
+    
+    if (Previous.empty() && StdBadAlloc) {
+      // std::bad_alloc has been implicitly declared (but made invisible to
+      // name lookup). Fill in this implicit declaration as the previous 
+      // declaration, so that the declarations get chained appropriately.
+      Previous.addDecl(StdBadAlloc);
+    }
+  }
+
+  if (!Previous.empty()) {
+    assert(Previous.isSingleResult());
+    NamedDecl *PrevDecl = Previous.getFoundDecl();
+    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
+      // If this is a use of a previous tag, or if the tag is already declared
+      // in the same scope (so that the definition/declaration completes or
+      // rementions the tag), reuse the decl.
+      if (TUK == TUK_Reference || TUK == TUK_Friend ||
+          isDeclInScope(PrevDecl, SearchDC, S)) {
+        // Make sure that this wasn't declared as an enum and now used as a
+        // struct or something similar.
+        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
+          bool SafeToContinue
+            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
+               Kind != TagDecl::TK_enum);
+          if (SafeToContinue)
+            Diag(KWLoc, diag::err_use_with_wrong_tag)
+              << Name
+              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
+                                                  PrevTagDecl->getKindName());
+          else
+            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
+          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
+
+          if (SafeToContinue)
+            Kind = PrevTagDecl->getTagKind();
+          else {
+            // Recover by making this an anonymous redefinition.
+            Name = 0;
+            Previous.clear();
+            Invalid = true;
+          }
+        }
+
+        if (!Invalid) {
+          // If this is a use, just return the declaration we found.
+
+          // FIXME: In the future, return a variant or some other clue
+          // for the consumer of this Decl to know it doesn't own it.
+          // For our current ASTs this shouldn't be a problem, but will
+          // need to be changed with DeclGroups.
+          if (TUK == TUK_Reference || TUK == TUK_Friend)
+            return DeclPtrTy::make(PrevTagDecl);
+
+          // Diagnose attempts to redefine a tag.
+          if (TUK == TUK_Definition) {
+            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
+              // If we're defining a specialization and the previous definition
+              // is from an implicit instantiation, don't emit an error
+              // here; we'll catch this in the general case below.
+              if (!isExplicitSpecialization ||
+                  !isa<CXXRecordDecl>(Def) ||
+                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind() 
+                                               == TSK_ExplicitSpecialization) {
+                Diag(NameLoc, diag::err_redefinition) << Name;
+                Diag(Def->getLocation(), diag::note_previous_definition);
+                // If this is a redefinition, recover by making this
+                // struct be anonymous, which will make any later
+                // references get the previous definition.
+                Name = 0;
+                Previous.clear();
+                Invalid = true;
+              }
+            } else {
+              // If the type is currently being defined, complain
+              // about a nested redefinition.
+              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
+              if (Tag->isBeingDefined()) {
+                Diag(NameLoc, diag::err_nested_redefinition) << Name;
+                Diag(PrevTagDecl->getLocation(),
+                     diag::note_previous_definition);
+                Name = 0;
+                Previous.clear();
+                Invalid = true;
+              }
+            }
+
+            // Okay, this is definition of a previously declared or referenced
+            // tag PrevDecl. We're going to create a new Decl for it.
+          }
+        }
+        // If we get here we have (another) forward declaration or we
+        // have a definition.  Just create a new decl.
+
+      } else {
+        // If we get here, this is a definition of a new tag type in a nested
+        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
+        // new decl/type.  We set PrevDecl to NULL so that the entities
+        // have distinct types.
+        Previous.clear();
+      }
+      // If we get here, we're going to create a new Decl. If PrevDecl
+      // is non-NULL, it's a definition of the tag declared by
+      // PrevDecl. If it's NULL, we have a new definition.
+    } else {
+      // PrevDecl is a namespace, template, or anything else
+      // that lives in the IDNS_Tag identifier namespace.
+      if (isDeclInScope(PrevDecl, SearchDC, S)) {
+        // The tag name clashes with a namespace name, issue an error and
+        // recover by making this tag be anonymous.
+        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
+        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+        Name = 0;
+        Previous.clear();
+        Invalid = true;
+      } else {
+        // The existing declaration isn't relevant to us; we're in a
+        // new scope, so clear out the previous declaration.
+        Previous.clear();
+      }
+    }
+  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
+    // C++ [basic.scope.pdecl]p5:
+    //   -- for an elaborated-type-specifier of the form
+    //
+    //          class-key identifier
+    //
+    //      if the elaborated-type-specifier is used in the
+    //      decl-specifier-seq or parameter-declaration-clause of a
+    //      function defined in namespace scope, the identifier is
+    //      declared as a class-name in the namespace that contains
+    //      the declaration; otherwise, except as a friend
+    //      declaration, the identifier is declared in the smallest
+    //      non-class, non-function-prototype scope that contains the
+    //      declaration.
+    //
+    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
+    // C structs and unions.
+    //
+    // It is an error in C++ to declare (rather than define) an enum
+    // type, including via an elaborated type specifier.  We'll
+    // diagnose that later; for now, declare the enum in the same
+    // scope as we would have picked for any other tag type.
+    //
+    // GNU C also supports this behavior as part of its incomplete
+    // enum types extension, while GNU C++ does not.
+    //
+    // Find the context where we'll be declaring the tag.
+    // FIXME: We would like to maintain the current DeclContext as the
+    // lexical context,
+    while (SearchDC->isRecord())
+      SearchDC = SearchDC->getParent();
+
+    // Find the scope where we'll be declaring the tag.
+    while (S->isClassScope() ||
+           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
+           ((S->getFlags() & Scope::DeclScope) == 0) ||
+           (S->getEntity() &&
+            ((DeclContext *)S->getEntity())->isTransparentContext()))
+      S = S->getParent();
+
+  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
+    // C++ [namespace.memdef]p3:
+    //   If a friend declaration in a non-local class first declares a
+    //   class or function, the friend class or function is a member of
+    //   the innermost enclosing namespace.
+    while (!SearchDC->isFileContext())
+      SearchDC = SearchDC->getParent();
+
+    // The entity of a decl scope is a DeclContext; see PushDeclContext.
+    while (S->getEntity() != SearchDC)
+      S = S->getParent();
+  }
+
+CreateNewDecl:
+
+  TagDecl *PrevDecl = 0;
+  if (Previous.isSingleResult())
+    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
+
+  // If there is an identifier, use the location of the identifier as the
+  // location of the decl, otherwise use the location of the struct/union
+  // keyword.
+  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
+
+  // Otherwise, create a new declaration. If there is a previous
+  // declaration of the same entity, the two will be linked via
+  // PrevDecl.
+  TagDecl *New;
+
+  if (Kind == TagDecl::TK_enum) {
+    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
+    // enum X { A, B, C } D;    D should chain to X.
+    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
+                           cast_or_null<EnumDecl>(PrevDecl));
+    // If this is an undefined enum, warn.
+    if (TUK != TUK_Definition && !Invalid)  {
+      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
+                                              : diag::ext_forward_ref_enum;
+      Diag(Loc, DK);
+    }
+  } else {
+    // struct/union/class
+
+    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
+    // struct X { int A; } D;    D should chain to X.
+    if (getLangOptions().CPlusPlus) {
+      // FIXME: Look for a way to use RecordDecl for simple structs.
+      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
+                                  cast_or_null<CXXRecordDecl>(PrevDecl));
+      
+      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
+        StdBadAlloc = cast<CXXRecordDecl>(New);
+    } else
+      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
+                               cast_or_null<RecordDecl>(PrevDecl));
+  }
+
+  if (Kind != TagDecl::TK_enum) {
+    // Handle #pragma pack: if the #pragma pack stack has non-default
+    // alignment, make up a packed attribute for this decl. These
+    // attributes are checked when the ASTContext lays out the
+    // structure.
+    //
+    // It is important for implementing the correct semantics that this
+    // happen here (in act on tag decl). The #pragma pack stack is
+    // maintained as a result of parser callbacks which can occur at
+    // many points during the parsing of a struct declaration (because
+    // the #pragma tokens are effectively skipped over during the
+    // parsing of the struct).
+    if (unsigned Alignment = getPragmaPackAlignment())
+      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
+  }
+
+  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
+    // C++ [dcl.typedef]p3:
+    //   [...] Similarly, in a given scope, a class or enumeration
+    //   shall not be declared with the same name as a typedef-name
+    //   that is declared in that scope and refers to a type other
+    //   than the class or enumeration itself.
+    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
+                        ForRedeclaration);
+    LookupName(Lookup, S);
+    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
+    NamedDecl *PrevTypedefNamed = PrevTypedef;
+    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
+        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
+          Context.getCanonicalType(Context.getTypeDeclType(New))) {
+      Diag(Loc, diag::err_tag_definition_of_typedef)
+        << Context.getTypeDeclType(New)
+        << PrevTypedef->getUnderlyingType();
+      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
+      Invalid = true;
+    }
+  }
+
+  // If this is a specialization of a member class (of a class template),
+  // check the specialization.
+  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
+    Invalid = true;
+      
+  if (Invalid)
+    New->setInvalidDecl();
+
+  if (Attr)
+    ProcessDeclAttributeList(S, New, Attr);
+
+  // If we're declaring or defining a tag in function prototype scope
+  // in C, note that this type can only be used within the function.
+  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
+    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
+
+  // Set the lexical context. If the tag has a C++ scope specifier, the
+  // lexical context will be different from the semantic context.
+  New->setLexicalDeclContext(CurContext);
+
+  // Mark this as a friend decl if applicable.
+  if (TUK == TUK_Friend)
+    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
+
+  // Set the access specifier.
+  if (!Invalid && TUK != TUK_Friend)
+    SetMemberAccessSpecifier(New, PrevDecl, AS);
+
+  if (TUK == TUK_Definition)
+    New->startDefinition();
+
+  // If this has an identifier, add it to the scope stack.
+  if (TUK == TUK_Friend) {
+    // We might be replacing an existing declaration in the lookup tables;
+    // if so, borrow its access specifier.
+    if (PrevDecl)
+      New->setAccess(PrevDecl->getAccess());
+
+    // Friend tag decls are visible in fairly strange ways.
+    if (!CurContext->isDependentContext()) {
+      DeclContext *DC = New->getDeclContext()->getLookupContext();
+      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
+      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
+        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
+    }
+  } else if (Name) {
+    S = getNonFieldDeclScope(S);
+    PushOnScopeChains(New, S);
+  } else {
+    CurContext->addDecl(New);
+  }
+
+  // If this is the C FILE type, notify the AST context.
+  if (IdentifierInfo *II = New->getIdentifier())
+    if (!New->isInvalidDecl() &&
+        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
+        II->isStr("FILE"))
+      Context.setFILEDecl(New);
+
+  OwnedDecl = true;
+  return DeclPtrTy::make(New);
+}
+
+void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
+  AdjustDeclIfTemplate(TagD);
+  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
+
+  // Enter the tag context.
+  PushDeclContext(S, Tag);
+}
+
+void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
+                                           SourceLocation LBraceLoc) {
+  AdjustDeclIfTemplate(TagD);
+  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
+
+  FieldCollector->StartClass();
+
+  if (!Record->getIdentifier())
+    return;
+
+  // C++ [class]p2:
+  //   [...] The class-name is also inserted into the scope of the
+  //   class itself; this is known as the injected-class-name. For
+  //   purposes of access checking, the injected-class-name is treated
+  //   as if it were a public member name.
+  CXXRecordDecl *InjectedClassName
+    = CXXRecordDecl::Create(Context, Record->getTagKind(),
+                            CurContext, Record->getLocation(),
+                            Record->getIdentifier(),
+                            Record->getTagKeywordLoc(),
+                            Record);
+  InjectedClassName->setImplicit();
+  InjectedClassName->setAccess(AS_public);
+  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
+      InjectedClassName->setDescribedClassTemplate(Template);
+  PushOnScopeChains(InjectedClassName, S);
+  assert(InjectedClassName->isInjectedClassName() &&
+         "Broken injected-class-name");
+}
+
+// Traverses the class and any nested classes, making a note of any 
+// dynamic classes that have no key function so that we can mark all of
+// their virtual member functions as "used" at the end of the translation
+// unit. This ensures that all functions needed by the vtable will get
+// instantiated/synthesized.
+static void 
+RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
+                                      SourceLocation Loc) {
+  // We don't look at dependent or undefined classes.
+  if (Record->isDependentContext() || !Record->isDefinition())
+    return;
+  
+  if (Record->isDynamicClass()) {
+    const CXXMethodDecl *KeyFunction = S.Context.getKeyFunction(Record);
+  
+    if (!KeyFunction)
+      S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record,
+                                                                   Loc));
+
+    if ((!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
+        && Record->getLinkage() == ExternalLinkage)
+      S.Diag(Record->getLocation(), diag::warn_weak_vtable) << Record;
+  }
+  for (DeclContext::decl_iterator D = Record->decls_begin(), 
+                               DEnd = Record->decls_end();
+       D != DEnd; ++D) {
+    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
+      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
+  }
+}
+
+void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
+                                    SourceLocation RBraceLoc) {
+  AdjustDeclIfTemplate(TagD);
+  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
+  Tag->setRBraceLoc(RBraceLoc);
+
+  if (isa<CXXRecordDecl>(Tag))
+    FieldCollector->FinishClass();
+
+  // Exit this scope of this tag's definition.
+  PopDeclContext();
+
+  if (isa<CXXRecordDecl>(Tag) && !Tag->getDeclContext()->isRecord())
+    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
+                                          RBraceLoc);
+                                          
+  // Notify the consumer that we've defined a tag.
+  Consumer.HandleTagDeclDefinition(Tag);
+}
+
+// Note that FieldName may be null for anonymous bitfields.
+bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
+                          QualType FieldTy, const Expr *BitWidth,
+                          bool *ZeroWidth) {
+  // Default to true; that shouldn't confuse checks for emptiness
+  if (ZeroWidth)
+    *ZeroWidth = true;
+
+  // C99 6.7.2.1p4 - verify the field type.
+  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
+  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
+    // Handle incomplete types with specific error.
+    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
+      return true;
+    if (FieldName)
+      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
+        << FieldName << FieldTy << BitWidth->getSourceRange();
+    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
+      << FieldTy << BitWidth->getSourceRange();
+  }
+
+  // If the bit-width is type- or value-dependent, don't try to check
+  // it now.
+  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
+    return false;
+
+  llvm::APSInt Value;
+  if (VerifyIntegerConstantExpression(BitWidth, &Value))
+    return true;
+
+  if (Value != 0 && ZeroWidth)
+    *ZeroWidth = false;
+
+  // Zero-width bitfield is ok for anonymous field.
+  if (Value == 0 && FieldName)
+    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
+
+  if (Value.isSigned() && Value.isNegative()) {
+    if (FieldName)
+      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
+               << FieldName << Value.toString(10);
+    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
+      << Value.toString(10);
+  }
+
+  if (!FieldTy->isDependentType()) {
+    uint64_t TypeSize = Context.getTypeSize(FieldTy);
+    if (Value.getZExtValue() > TypeSize) {
+      if (FieldName)
+        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
+          << FieldName << (unsigned)TypeSize;
+      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
+        << (unsigned)TypeSize;
+    }
+  }
+
+  return false;
+}
+
+/// ActOnField - Each field of a struct/union/class is passed into this in order
+/// to create a FieldDecl object for it.
+Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
+                                 SourceLocation DeclStart,
+                                 Declarator &D, ExprTy *BitfieldWidth) {
+  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
+                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
+                               AS_public);
+  return DeclPtrTy::make(Res);
+}
+
+/// HandleField - Analyze a field of a C struct or a C++ data member.
+///
+FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
+                             SourceLocation DeclStart,
+                             Declarator &D, Expr *BitWidth,
+                             AccessSpecifier AS) {
+  IdentifierInfo *II = D.getIdentifier();
+  SourceLocation Loc = DeclStart;
+  if (II) Loc = D.getIdentifierLoc();
+
+  TypeSourceInfo *TInfo = 0;
+  QualType T = GetTypeForDeclarator(D, S, &TInfo);
+  if (getLangOptions().CPlusPlus)
+    CheckExtraCXXDefaultArguments(D);
+
+  DiagnoseFunctionSpecifiers(D);
+
+  if (D.getDeclSpec().isThreadSpecified())
+    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
+
+  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
+                                         ForRedeclaration);
+
+  if (PrevDecl && PrevDecl->isTemplateParameter()) {
+    // Maybe we will complain about the shadowed template parameter.
+    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
+    // Just pretend that we didn't see the previous declaration.
+    PrevDecl = 0;
+  }
+
+  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
+    PrevDecl = 0;
+
+  bool Mutable
+    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
+  SourceLocation TSSL = D.getSourceRange().getBegin();
+  FieldDecl *NewFD
+    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
+                     AS, PrevDecl, &D);
+  if (NewFD->isInvalidDecl() && PrevDecl) {
+    // Don't introduce NewFD into scope; there's already something
+    // with the same name in the same scope.
+  } else if (II) {
+    PushOnScopeChains(NewFD, S);
+  } else
+    Record->addDecl(NewFD);
+
+  return NewFD;
+}
+
+/// \brief Build a new FieldDecl and check its well-formedness.
+///
+/// This routine builds a new FieldDecl given the fields name, type,
+/// record, etc. \p PrevDecl should refer to any previous declaration
+/// with the same name and in the same scope as the field to be
+/// created.
+///
+/// \returns a new FieldDecl.
+///
+/// \todo The Declarator argument is a hack. It will be removed once
+FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
+                                TypeSourceInfo *TInfo,
+                                RecordDecl *Record, SourceLocation Loc,
+                                bool Mutable, Expr *BitWidth,
+                                SourceLocation TSSL,
+                                AccessSpecifier AS, NamedDecl *PrevDecl,
+                                Declarator *D) {
+  IdentifierInfo *II = Name.getAsIdentifierInfo();
+  bool InvalidDecl = false;
+  if (D) InvalidDecl = D->isInvalidType();
+
+  // If we receive a broken type, recover by assuming 'int' and
+  // marking this declaration as invalid.
+  if (T.isNull()) {
+    InvalidDecl = true;
+    T = Context.IntTy;
+  }
+
+  QualType EltTy = Context.getBaseElementType(T);
+  if (!EltTy->isDependentType() &&
+      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
+    InvalidDecl = true;
+
+  // C99 6.7.2.1p8: A member of a structure or union may have any type other
+  // than a variably modified type.
+  if (!InvalidDecl && T->isVariablyModifiedType()) {
+    bool SizeIsNegative;
+    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
+                                                           SizeIsNegative);
+    if (!FixedTy.isNull()) {
+      Diag(Loc, diag::warn_illegal_constant_array_size);
+      T = FixedTy;
+    } else {
+      if (SizeIsNegative)
+        Diag(Loc, diag::err_typecheck_negative_array_size);
+      else
+        Diag(Loc, diag::err_typecheck_field_variable_size);
+      InvalidDecl = true;
+    }
+  }
+
+  // Fields can not have abstract class types
+  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
+                                             diag::err_abstract_type_in_decl,
+                                             AbstractFieldType))
+    InvalidDecl = true;
+
+  bool ZeroWidth = false;
+  // If this is declared as a bit-field, check the bit-field.
+  if (!InvalidDecl && BitWidth &&
+      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
+    InvalidDecl = true;
+    DeleteExpr(BitWidth);
+    BitWidth = 0;
+    ZeroWidth = false;
+  }
+
+  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
+                                       BitWidth, Mutable);
+  if (InvalidDecl)
+    NewFD->setInvalidDecl();
+
+  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
+    Diag(Loc, diag::err_duplicate_member) << II;
+    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
+    NewFD->setInvalidDecl();
+  }
+
+  if (!InvalidDecl && getLangOptions().CPlusPlus) {
+    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
+
+    if (!T->isPODType())
+      CXXRecord->setPOD(false);
+    if (!ZeroWidth)
+      CXXRecord->setEmpty(false);
+
+    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
+      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
+
+      if (!RDecl->hasTrivialConstructor())
+        CXXRecord->setHasTrivialConstructor(false);
+      if (!RDecl->hasTrivialCopyConstructor())
+        CXXRecord->setHasTrivialCopyConstructor(false);
+      if (!RDecl->hasTrivialCopyAssignment())
+        CXXRecord->setHasTrivialCopyAssignment(false);
+      if (!RDecl->hasTrivialDestructor())
+        CXXRecord->setHasTrivialDestructor(false);
+
+      // C++ 9.5p1: An object of a class with a non-trivial
+      // constructor, a non-trivial copy constructor, a non-trivial
+      // destructor, or a non-trivial copy assignment operator
+      // cannot be a member of a union, nor can an array of such
+      // objects.
+      // TODO: C++0x alters this restriction significantly.
+      if (Record->isUnion()) {
+        // We check for copy constructors before constructors
+        // because otherwise we'll never get complaints about
+        // copy constructors.
+
+        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
+
+        CXXSpecialMember member;
+        if (!RDecl->hasTrivialCopyConstructor())
+          member = CXXCopyConstructor;
+        else if (!RDecl->hasTrivialConstructor())
+          member = CXXDefaultConstructor;
+        else if (!RDecl->hasTrivialCopyAssignment())
+          member = CXXCopyAssignment;
+        else if (!RDecl->hasTrivialDestructor())
+          member = CXXDestructor;
+        else
+          member = invalid;
+
+        if (member != invalid) {
+          Diag(Loc, diag::err_illegal_union_member) << Name << member;
+          DiagnoseNontrivial(RT, member);
+          NewFD->setInvalidDecl();
+        }
+      }
+    }
+  }
+
+  // FIXME: We need to pass in the attributes given an AST
+  // representation, not a parser representation.
+  if (D)
+    // FIXME: What to pass instead of TUScope?
+    ProcessDeclAttributes(TUScope, NewFD, *D);
+
+  if (T.isObjCGCWeak())
+    Diag(Loc, diag::warn_attribute_weak_on_field);
+
+  NewFD->setAccess(AS);
+
+  // C++ [dcl.init.aggr]p1:
+  //   An aggregate is an array or a class (clause 9) with [...] no
+  //   private or protected non-static data members (clause 11).
+  // A POD must be an aggregate.
+  if (getLangOptions().CPlusPlus &&
+      (AS == AS_private || AS == AS_protected)) {
+    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
+    CXXRecord->setAggregate(false);
+    CXXRecord->setPOD(false);
+  }
+
+  return NewFD;
+}
+
+/// DiagnoseNontrivial - Given that a class has a non-trivial
+/// special member, figure out why.
+void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
+  QualType QT(T, 0U);
+  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
+
+  // Check whether the member was user-declared.
+  switch (member) {
+  case CXXDefaultConstructor:
+    if (RD->hasUserDeclaredConstructor()) {
+      typedef CXXRecordDecl::ctor_iterator ctor_iter;
+      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
+        const FunctionDecl *body = 0;
+        ci->getBody(body);
+        if (!body ||
+            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
+          SourceLocation CtorLoc = ci->getLocation();
+          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
+          return;
+        }
+      }
+
+      assert(0 && "found no user-declared constructors");
+      return;
+    }
+    break;
+
+  case CXXCopyConstructor:
+    if (RD->hasUserDeclaredCopyConstructor()) {
+      SourceLocation CtorLoc =
+        RD->getCopyConstructor(Context, 0)->getLocation();
+      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
+      return;
+    }
+    break;
+
+  case CXXCopyAssignment:
+    if (RD->hasUserDeclaredCopyAssignment()) {
+      // FIXME: this should use the location of the copy
+      // assignment, not the type.
+      SourceLocation TyLoc = RD->getSourceRange().getBegin();
+      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
+      return;
+    }
+    break;
+
+  case CXXDestructor:
+    if (RD->hasUserDeclaredDestructor()) {
+      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
+      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
+      return;
+    }
+    break;
+  }
+
+  typedef CXXRecordDecl::base_class_iterator base_iter;
+
+  // Virtual bases and members inhibit trivial copying/construction,
+  // but not trivial destruction.
+  if (member != CXXDestructor) {
+    // Check for virtual bases.  vbases includes indirect virtual bases,
+    // so we just iterate through the direct bases.
+    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
+      if (bi->isVirtual()) {
+        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
+        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
+        return;
+      }
+
+    // Check for virtual methods.
+    typedef CXXRecordDecl::method_iterator meth_iter;
+    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
+         ++mi) {
+      if (mi->isVirtual()) {
+        SourceLocation MLoc = mi->getSourceRange().getBegin();
+        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
+        return;
+      }
+    }
+  }
+
+  bool (CXXRecordDecl::*hasTrivial)() const;
+  switch (member) {
+  case CXXDefaultConstructor:
+    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
+  case CXXCopyConstructor:
+    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
+  case CXXCopyAssignment:
+    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
+  case CXXDestructor:
+    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
+  default:
+    assert(0 && "unexpected special member"); return;
+  }
+
+  // Check for nontrivial bases (and recurse).
+  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
+    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
+    assert(BaseRT && "Don't know how to handle dependent bases");
+    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
+    if (!(BaseRecTy->*hasTrivial)()) {
+      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
+      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
+      DiagnoseNontrivial(BaseRT, member);
+      return;
+    }
+  }
+
+  // Check for nontrivial members (and recurse).
+  typedef RecordDecl::field_iterator field_iter;
+  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
+       ++fi) {
+    QualType EltTy = Context.getBaseElementType((*fi)->getType());
+    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
+      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
+
+      if (!(EltRD->*hasTrivial)()) {
+        SourceLocation FLoc = (*fi)->getLocation();
+        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
+        DiagnoseNontrivial(EltRT, member);
+        return;
+      }
+    }
+  }
+
+  assert(0 && "found no explanation for non-trivial member");
+}
+
+/// TranslateIvarVisibility - Translate visibility from a token ID to an
+///  AST enum value.
+static ObjCIvarDecl::AccessControl
+TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
+  switch (ivarVisibility) {
+  default: assert(0 && "Unknown visitibility kind");
+  case tok::objc_private: return ObjCIvarDecl::Private;
+  case tok::objc_public: return ObjCIvarDecl::Public;
+  case tok::objc_protected: return ObjCIvarDecl::Protected;
+  case tok::objc_package: return ObjCIvarDecl::Package;
+  }
+}
+
+/// ActOnIvar - Each ivar field of an objective-c class is passed into this
+/// in order to create an IvarDecl object for it.
+Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
+                                SourceLocation DeclStart,
+                                DeclPtrTy IntfDecl,
+                                Declarator &D, ExprTy *BitfieldWidth,
+                                tok::ObjCKeywordKind Visibility) {
+
+  IdentifierInfo *II = D.getIdentifier();
+  Expr *BitWidth = (Expr*)BitfieldWidth;
+  SourceLocation Loc = DeclStart;
+  if (II) Loc = D.getIdentifierLoc();
+
+  // FIXME: Unnamed fields can be handled in various different ways, for
+  // example, unnamed unions inject all members into the struct namespace!
+
+  TypeSourceInfo *TInfo = 0;
+  QualType T = GetTypeForDeclarator(D, S, &TInfo);
+
+  if (BitWidth) {
+    // 6.7.2.1p3, 6.7.2.1p4
+    if (VerifyBitField(Loc, II, T, BitWidth)) {
+      D.setInvalidType();
+      DeleteExpr(BitWidth);
+      BitWidth = 0;
+    }
+  } else {
+    // Not a bitfield.
+
+    // validate II.
+
+  }
+
+  // C99 6.7.2.1p8: A member of a structure or union may have any type other
+  // than a variably modified type.
+  if (T->isVariablyModifiedType()) {
+    Diag(Loc, diag::err_typecheck_ivar_variable_size);
+    D.setInvalidType();
+  }
+
+  // Get the visibility (access control) for this ivar.
+  ObjCIvarDecl::AccessControl ac =
+    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
+                                        : ObjCIvarDecl::None;
+  // Must set ivar's DeclContext to its enclosing interface.
+  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
+  DeclContext *EnclosingContext;
+  if (ObjCImplementationDecl *IMPDecl =
+      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
+    // Case of ivar declared in an implementation. Context is that of its class.
+    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
+    assert(IDecl && "No class- ActOnIvar");
+    EnclosingContext = cast_or_null<DeclContext>(IDecl);
+  } else
+    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
+  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
+
+  // Construct the decl.
+  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
+                                             EnclosingContext, Loc, II, T,
+                                             TInfo, ac, (Expr *)BitfieldWidth);
+
+  if (II) {
+    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
+                                           ForRedeclaration);
+    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
+        && !isa<TagDecl>(PrevDecl)) {
+      Diag(Loc, diag::err_duplicate_member) << II;
+      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
+      NewID->setInvalidDecl();
+    }
+  }
+
+  // Process attributes attached to the ivar.
+  ProcessDeclAttributes(S, NewID, D);
+
+  if (D.isInvalidType())
+    NewID->setInvalidDecl();
+
+  if (II) {
+    // FIXME: When interfaces are DeclContexts, we'll need to add
+    // these to the interface.
+    S->AddDecl(DeclPtrTy::make(NewID));
+    IdResolver.AddDecl(NewID);
+  }
+
+  return DeclPtrTy::make(NewID);
+}
+
+void Sema::ActOnFields(Scope* S,
+                       SourceLocation RecLoc, DeclPtrTy RecDecl,
+                       DeclPtrTy *Fields, unsigned NumFields,
+                       SourceLocation LBrac, SourceLocation RBrac,
+                       AttributeList *Attr) {
+  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
+  assert(EnclosingDecl && "missing record or interface decl");
+
+  // If the decl this is being inserted into is invalid, then it may be a
+  // redeclaration or some other bogus case.  Don't try to add fields to it.
+  if (EnclosingDecl->isInvalidDecl()) {
+    // FIXME: Deallocate fields?
+    return;
+  }
+
+
+  // Verify that all the fields are okay.
+  unsigned NumNamedMembers = 0;
+  llvm::SmallVector<FieldDecl*, 32> RecFields;
+
+  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
+  for (unsigned i = 0; i != NumFields; ++i) {
+    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
+
+    // Get the type for the field.
+    Type *FDTy = FD->getType().getTypePtr();
+
+    if (!FD->isAnonymousStructOrUnion()) {
+      // Remember all fields written by the user.
+      RecFields.push_back(FD);
+    }
+
+    // If the field is already invalid for some reason, don't emit more
+    // diagnostics about it.
+    if (FD->isInvalidDecl()) {
+      EnclosingDecl->setInvalidDecl();
+      continue;
+    }
+
+    // C99 6.7.2.1p2:
+    //   A structure or union shall not contain a member with
+    //   incomplete or function type (hence, a structure shall not
+    //   contain an instance of itself, but may contain a pointer to
+    //   an instance of itself), except that the last member of a
+    //   structure with more than one named member may have incomplete
+    //   array type; such a structure (and any union containing,
+    //   possibly recursively, a member that is such a structure)
+    //   shall not be a member of a structure or an element of an
+    //   array.
+    if (FDTy->isFunctionType()) {
+      // Field declared as a function.
+      Diag(FD->getLocation(), diag::err_field_declared_as_function)
+        << FD->getDeclName();
+      FD->setInvalidDecl();
+      EnclosingDecl->setInvalidDecl();
+      continue;
+    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
+               Record && Record->isStruct()) {
+      // Flexible array member.
+      if (NumNamedMembers < 1) {
+        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
+          << FD->getDeclName();
+        FD->setInvalidDecl();
+        EnclosingDecl->setInvalidDecl();
+        continue;
+      }
+      // Okay, we have a legal flexible array member at the end of the struct.
+      if (Record)
+        Record->setHasFlexibleArrayMember(true);
+    } else if (!FDTy->isDependentType() &&
+               RequireCompleteType(FD->getLocation(), FD->getType(),
+                                   diag::err_field_incomplete)) {
+      // Incomplete type
+      FD->setInvalidDecl();
+      EnclosingDecl->setInvalidDecl();
+      continue;
+    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
+      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
+        // If this is a member of a union, then entire union becomes "flexible".
+        if (Record && Record->isUnion()) {
+          Record->setHasFlexibleArrayMember(true);
+        } else {
+          // If this is a struct/class and this is not the last element, reject
+          // it.  Note that GCC supports variable sized arrays in the middle of
+          // structures.
+          if (i != NumFields-1)
+            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
+              << FD->getDeclName() << FD->getType();
+          else {
+            // We support flexible arrays at the end of structs in
+            // other structs as an extension.
+            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
+              << FD->getDeclName();
+            if (Record)
+              Record->setHasFlexibleArrayMember(true);
+          }
+        }
+      }
+      if (Record && FDTTy->getDecl()->hasObjectMember())
+        Record->setHasObjectMember(true);
+    } else if (FDTy->isObjCInterfaceType()) {
+      /// A field cannot be an Objective-c object
+      Diag(FD->getLocation(), diag::err_statically_allocated_object);
+      FD->setInvalidDecl();
+      EnclosingDecl->setInvalidDecl();
+      continue;
+    } else if (getLangOptions().ObjC1 &&
+               getLangOptions().getGCMode() != LangOptions::NonGC &&
+               Record &&
+               (FD->getType()->isObjCObjectPointerType() ||
+                FD->getType().isObjCGCStrong()))
+      Record->setHasObjectMember(true);
+    // Keep track of the number of named members.
+    if (FD->getIdentifier())
+      ++NumNamedMembers;
+  }
+
+  // Okay, we successfully defined 'Record'.
+  if (Record) {
+    Record->completeDefinition(Context);
+  } else {
+    ObjCIvarDecl **ClsFields =
+      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
+    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
+      ID->setIVarList(ClsFields, RecFields.size(), Context);
+      ID->setLocEnd(RBrac);
+      // Add ivar's to class's DeclContext.
+      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
+        ClsFields[i]->setLexicalDeclContext(ID);
+        ID->addDecl(ClsFields[i]);
+      }
+      // Must enforce the rule that ivars in the base classes may not be
+      // duplicates.
+      if (ID->getSuperClass()) {
+        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
+             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
+          ObjCIvarDecl* Ivar = (*IVI);
+
+          if (IdentifierInfo *II = Ivar->getIdentifier()) {
+            ObjCIvarDecl* prevIvar =
+              ID->getSuperClass()->lookupInstanceVariable(II);
+            if (prevIvar) {
+              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
+              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
+            }
+          }
+        }
+      }
+    } else if (ObjCImplementationDecl *IMPDecl =
+                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
+      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
+      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
+        // Ivar declared in @implementation never belongs to the implementation.
+        // Only it is in implementation's lexical context.
+        ClsFields[I]->setLexicalDeclContext(IMPDecl);
+      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
+    }
+  }
+
+  if (Attr)
+    ProcessDeclAttributeList(S, Record, Attr);
+}
+
+/// \brief Determine whether the given integral value is representable within
+/// the given type T.
+static bool isRepresentableIntegerValue(ASTContext &Context,
+                                        llvm::APSInt &Value,
+                                        QualType T) {
+  assert(T->isIntegralType() && "Integral type required!");
+  unsigned BitWidth = Context.getTypeSize(T);
+  
+  if (Value.isUnsigned() || Value.isNonNegative())
+    return Value.getActiveBits() < BitWidth;
+  
+  return Value.getMinSignedBits() <= BitWidth;
+}
+
+// \brief Given an integral type, return the next larger integral type
+// (or a NULL type of no such type exists).
+static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
+  // FIXME: Int128/UInt128 support, which also needs to be introduced into 
+  // enum checking below.
+  assert(T->isIntegralType() && "Integral type required!");
+  const unsigned NumTypes = 4;
+  QualType SignedIntegralTypes[NumTypes] = { 
+    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
+  };
+  QualType UnsignedIntegralTypes[NumTypes] = { 
+    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, 
+    Context.UnsignedLongLongTy
+  };
+  
+  unsigned BitWidth = Context.getTypeSize(T);
+  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
+                                            : UnsignedIntegralTypes;
+  for (unsigned I = 0; I != NumTypes; ++I)
+    if (Context.getTypeSize(Types[I]) > BitWidth)
+      return Types[I];
+  
+  return QualType();
+}
+
+EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
+                                          EnumConstantDecl *LastEnumConst,
+                                          SourceLocation IdLoc,
+                                          IdentifierInfo *Id,
+                                          ExprArg val) {
+  Expr *Val = (Expr *)val.get();
+
+  unsigned IntWidth = Context.Target.getIntWidth();
+  llvm::APSInt EnumVal(IntWidth);
+  QualType EltTy;
+  if (Val) {
+    if (Enum->isDependentType())
+      EltTy = Context.DependentTy;
+    else {
+      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
+      SourceLocation ExpLoc;
+      if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
+        Val = 0;
+      } else {        
+        if (!getLangOptions().CPlusPlus) {
+          // C99 6.7.2.2p2:
+          //   The expression that defines the value of an enumeration constant
+          //   shall be an integer constant expression that has a value 
+          //   representable as an int.
+          
+          // Complain if the value is not representable in an int.
+          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
+            Diag(IdLoc, diag::ext_enum_value_not_int)
+              << EnumVal.toString(10) << Val->getSourceRange()
+              << EnumVal.isNonNegative();
+          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
+            // Force the type of the expression to 'int'.
+            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
+            
+            if (Val != val.get()) {
+              val.release();
+              val = Val;
+            }
+          }
+        }
+        
+        // C++0x [dcl.enum]p5:
+        //   If the underlying type is not fixed, the type of each enumerator
+        //   is the type of its initializing value:
+        //     - If an initializer is specified for an enumerator, the 
+        //       initializing value has the same type as the expression.
+        EltTy = Val->getType();
+      }
+    }
+  }
+
+  if (!Val) {
+    if (Enum->isDependentType())
+      EltTy = Context.DependentTy;
+    else if (!LastEnumConst) {
+      // C++0x [dcl.enum]p5:
+      //   If the underlying type is not fixed, the type of each enumerator
+      //   is the type of its initializing value:
+      //     - If no initializer is specified for the first enumerator, the 
+      //       initializing value has an unspecified integral type.
+      //
+      // GCC uses 'int' for its unspecified integral type, as does 
+      // C99 6.7.2.2p3.
+      EltTy = Context.IntTy;
+    } else {
+      // Assign the last value + 1.
+      EnumVal = LastEnumConst->getInitVal();
+      ++EnumVal;
+      EltTy = LastEnumConst->getType();
+
+      // Check for overflow on increment.
+      if (EnumVal < LastEnumConst->getInitVal()) {
+        // C++0x [dcl.enum]p5:
+        //   If the underlying type is not fixed, the type of each enumerator
+        //   is the type of its initializing value:
+        //
+        //     - Otherwise the type of the initializing value is the same as
+        //       the type of the initializing value of the preceding enumerator
+        //       unless the incremented value is not representable in that type,
+        //       in which case the type is an unspecified integral type 
+        //       sufficient to contain the incremented value. If no such type
+        //       exists, the program is ill-formed.
+        QualType T = getNextLargerIntegralType(Context, EltTy);
+        if (T.isNull()) {
+          // There is no integral type larger enough to represent this 
+          // value. Complain, then allow the value to wrap around.
+          EnumVal = LastEnumConst->getInitVal();
+          EnumVal.zext(EnumVal.getBitWidth() * 2);
+          Diag(IdLoc, diag::warn_enumerator_too_large)
+            << EnumVal.toString(10);
+        } else {
+          EltTy = T;
+        }
+        
+        // Retrieve the last enumerator's value, extent that type to the
+        // type that is supposed to be large enough to represent the incremented
+        // value, then increment.
+        EnumVal = LastEnumConst->getInitVal();
+        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
+        EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
+        ++EnumVal;        
+        
+        // If we're not in C++, diagnose the overflow of enumerator values,
+        // which in C99 means that the enumerator value is not representable in
+        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
+        // permits enumerator values that are representable in some larger
+        // integral type.
+        if (!getLangOptions().CPlusPlus && !T.isNull())
+          Diag(IdLoc, diag::warn_enum_value_overflow);
+      } else if (!getLangOptions().CPlusPlus &&
+                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
+        // Enforce C99 6.7.2.2p2 even when we compute the next value.
+        Diag(IdLoc, diag::ext_enum_value_not_int)
+          << EnumVal.toString(10) << 1;
+      }
+    }
+  }
+
+  if (!Enum->isDependentType()) {
+    // Make the enumerator value match the signedness and size of the 
+    // enumerator's type.
+    EnumVal.zextOrTrunc(Context.getTypeSize(EltTy));
+    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
+  }
+  
+  val.release();
+  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
+                                  Val, EnumVal);
+}
+
+
+Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
+                                        DeclPtrTy lastEnumConst,
+                                        SourceLocation IdLoc,
+                                        IdentifierInfo *Id,
+                                        SourceLocation EqualLoc, ExprTy *val) {
+  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
+  EnumConstantDecl *LastEnumConst =
+    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
+  Expr *Val = static_cast<Expr*>(val);
+
+  // The scope passed in may not be a decl scope.  Zip up the scope tree until
+  // we find one that is.
+  S = getNonFieldDeclScope(S);
+
+  // Verify that there isn't already something declared with this name in this
+  // scope.
+  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName,
+                                         ForRedeclaration);
+  if (PrevDecl && PrevDecl->isTemplateParameter()) {
+    // Maybe we will complain about the shadowed template parameter.
+    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
+    // Just pretend that we didn't see the previous declaration.
+    PrevDecl = 0;
+  }
+
+  if (PrevDecl) {
+    // When in C++, we may get a TagDecl with the same name; in this case the
+    // enum constant will 'hide' the tag.
+    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
+           "Received TagDecl when not in C++!");
+    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
+      if (isa<EnumConstantDecl>(PrevDecl))
+        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
+      else
+        Diag(IdLoc, diag::err_redefinition) << Id;
+      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
+      if (Val) Val->Destroy(Context);
+      return DeclPtrTy();
+    }
+  }
+
+  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
+                                            IdLoc, Id, Owned(Val));
+
+  // Register this decl in the current scope stack.
+  if (New) {
+    New->setAccess(TheEnumDecl->getAccess());
+    PushOnScopeChains(New, S);
+  }
+
+  return DeclPtrTy::make(New);
+}
+
+void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
+                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
+                         DeclPtrTy *Elements, unsigned NumElements,
+                         Scope *S, AttributeList *Attr) {
+  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
+  QualType EnumType = Context.getTypeDeclType(Enum);
+
+  if (Attr)
+    ProcessDeclAttributeList(S, Enum, Attr);
+
+  if (Enum->isDependentType()) {
+    for (unsigned i = 0; i != NumElements; ++i) {
+      EnumConstantDecl *ECD =
+        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
+      if (!ECD) continue;
+
+      ECD->setType(EnumType);
+    }
+
+    Enum->completeDefinition(Context, Context.DependentTy, Context.DependentTy);
+    return;
+  }
+
+  // TODO: If the result value doesn't fit in an int, it must be a long or long
+  // long value.  ISO C does not support this, but GCC does as an extension,
+  // emit a warning.
+  unsigned IntWidth = Context.Target.getIntWidth();
+  unsigned CharWidth = Context.Target.getCharWidth();
+  unsigned ShortWidth = Context.Target.getShortWidth();
+
+  // Verify that all the values are okay, compute the size of the values, and
+  // reverse the list.
+  unsigned NumNegativeBits = 0;
+  unsigned NumPositiveBits = 0;
+
+  // Keep track of whether all elements have type int.
+  bool AllElementsInt = true;
+
+  for (unsigned i = 0; i != NumElements; ++i) {
+    EnumConstantDecl *ECD =
+      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
+    if (!ECD) continue;  // Already issued a diagnostic.
+
+    const llvm::APSInt &InitVal = ECD->getInitVal();
+
+    // Keep track of the size of positive and negative values.
+    if (InitVal.isUnsigned() || InitVal.isNonNegative())
+      NumPositiveBits = std::max(NumPositiveBits,
+                                 (unsigned)InitVal.getActiveBits());
+    else
+      NumNegativeBits = std::max(NumNegativeBits,
+                                 (unsigned)InitVal.getMinSignedBits());
+
+    // Keep track of whether every enum element has type int (very commmon).
+    if (AllElementsInt)
+      AllElementsInt = ECD->getType() == Context.IntTy;
+  }
+
+  // Figure out the type that should be used for this enum.
+  // FIXME: Support -fshort-enums.
+  QualType BestType;
+  unsigned BestWidth;
+
+  // C++0x N3000 [conv.prom]p3:
+  //   An rvalue of an unscoped enumeration type whose underlying
+  //   type is not fixed can be converted to an rvalue of the first
+  //   of the following types that can represent all the values of
+  //   the enumeration: int, unsigned int, long int, unsigned long
+  //   int, long long int, or unsigned long long int.
+  // C99 6.4.4.3p2:
+  //   An identifier declared as an enumeration constant has type int.
+  // The C99 rule is modified by a gcc extension 
+  QualType BestPromotionType;
+
+  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
+
+  if (NumNegativeBits) {
+    // If there is a negative value, figure out the smallest integer type (of
+    // int/long/longlong) that fits.
+    // If it's packed, check also if it fits a char or a short.
+    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
+      BestType = Context.SignedCharTy;
+      BestWidth = CharWidth;
+    } else if (Packed && NumNegativeBits <= ShortWidth &&
+               NumPositiveBits < ShortWidth) {
+      BestType = Context.ShortTy;
+      BestWidth = ShortWidth;
+    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
+      BestType = Context.IntTy;
+      BestWidth = IntWidth;
+    } else {
+      BestWidth = Context.Target.getLongWidth();
+
+      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
+        BestType = Context.LongTy;
+      } else {
+        BestWidth = Context.Target.getLongLongWidth();
+
+        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
+          Diag(Enum->getLocation(), diag::warn_enum_too_large);
+        BestType = Context.LongLongTy;
+      }
+    }
+    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
+  } else {
+    // If there is no negative value, figure out the smallest type that fits
+    // all of the enumerator values.
+    // If it's packed, check also if it fits a char or a short.
+    if (Packed && NumPositiveBits <= CharWidth) {
+      BestType = Context.UnsignedCharTy;
+      BestPromotionType = Context.IntTy;
+      BestWidth = CharWidth;
+    } else if (Packed && NumPositiveBits <= ShortWidth) {
+      BestType = Context.UnsignedShortTy;
+      BestPromotionType = Context.IntTy;
+      BestWidth = ShortWidth;
+    } else if (NumPositiveBits <= IntWidth) {
+      BestType = Context.UnsignedIntTy;
+      BestWidth = IntWidth;
+      BestPromotionType
+        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
+                           ? Context.UnsignedIntTy : Context.IntTy;
+    } else if (NumPositiveBits <=
+               (BestWidth = Context.Target.getLongWidth())) {
+      BestType = Context.UnsignedLongTy;
+      BestPromotionType
+        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
+                           ? Context.UnsignedLongTy : Context.LongTy;
+    } else {
+      BestWidth = Context.Target.getLongLongWidth();
+      assert(NumPositiveBits <= BestWidth &&
+             "How could an initializer get larger than ULL?");
+      BestType = Context.UnsignedLongLongTy;
+      BestPromotionType
+        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
+                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
+    }
+  }
+
+  // Loop over all of the enumerator constants, changing their types to match
+  // the type of the enum if needed.
+  for (unsigned i = 0; i != NumElements; ++i) {
+    EnumConstantDecl *ECD =
+      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
+    if (!ECD) continue;  // Already issued a diagnostic.
+
+    // Standard C says the enumerators have int type, but we allow, as an
+    // extension, the enumerators to be larger than int size.  If each
+    // enumerator value fits in an int, type it as an int, otherwise type it the
+    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
+    // that X has type 'int', not 'unsigned'.
+
+    // Determine whether the value fits into an int.
+    llvm::APSInt InitVal = ECD->getInitVal();
+
+    // If it fits into an integer type, force it.  Otherwise force it to match
+    // the enum decl type.
+    QualType NewTy;
+    unsigned NewWidth;
+    bool NewSign;
+    if (!getLangOptions().CPlusPlus &&
+        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
+      NewTy = Context.IntTy;
+      NewWidth = IntWidth;
+      NewSign = true;
+    } else if (ECD->getType() == BestType) {
+      // Already the right type!
+      if (getLangOptions().CPlusPlus)
+        // C++ [dcl.enum]p4: Following the closing brace of an
+        // enum-specifier, each enumerator has the type of its
+        // enumeration.
+        ECD->setType(EnumType);
+      continue;
+    } else {
+      NewTy = BestType;
+      NewWidth = BestWidth;
+      NewSign = BestType->isSignedIntegerType();
+    }
+
+    // Adjust the APSInt value.
+    InitVal.extOrTrunc(NewWidth);
+    InitVal.setIsSigned(NewSign);
+    ECD->setInitVal(InitVal);
+
+    // Adjust the Expr initializer and type.
+    if (ECD->getInitExpr())
+      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
+                                                      CastExpr::CK_IntegralCast,
+                                                      ECD->getInitExpr(),
+                                                      /*isLvalue=*/false));
+    if (getLangOptions().CPlusPlus)
+      // C++ [dcl.enum]p4: Following the closing brace of an
+      // enum-specifier, each enumerator has the type of its
+      // enumeration.
+      ECD->setType(EnumType);
+    else
+      ECD->setType(NewTy);
+  }
+
+  Enum->completeDefinition(Context, BestType, BestPromotionType);
+}
+
+Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
+                                            ExprArg expr) {
+  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
+
+  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
+                                                   Loc, AsmString);
+  CurContext->addDecl(New);
+  return DeclPtrTy::make(New);
+}
+
+void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
+                             SourceLocation PragmaLoc,
+                             SourceLocation NameLoc) {
+  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
+
+  if (PrevDecl) {
+    PrevDecl->addAttr(::new (Context) WeakAttr());
+  } else {
+    (void)WeakUndeclaredIdentifiers.insert(
+      std::pair<IdentifierInfo*,WeakInfo>
+        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
+  }
+}
+
+void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
+                                IdentifierInfo* AliasName,
+                                SourceLocation PragmaLoc,
+                                SourceLocation NameLoc,
+                                SourceLocation AliasNameLoc) {
+  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
+  WeakInfo W = WeakInfo(Name, NameLoc);
+
+  if (PrevDecl) {
+    if (!PrevDecl->hasAttr<AliasAttr>())
+      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
+        DeclApplyPragmaWeak(TUScope, ND, W);
+  } else {
+    (void)WeakUndeclaredIdentifiers.insert(
+      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
+  }
+}