Check in LLVM r95781.
diff --git a/lib/Sema/SemaExprCXX.cpp b/lib/Sema/SemaExprCXX.cpp
new file mode 100644
index 0000000..e27308a
--- /dev/null
+++ b/lib/Sema/SemaExprCXX.cpp
@@ -0,0 +1,2196 @@
+//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements semantic analysis for C++ expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "SemaInit.h"
+#include "Lookup.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/Basic/PartialDiagnostic.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Parse/DeclSpec.h"
+#include "llvm/ADT/STLExtras.h"
+using namespace clang;
+
+/// ActOnCXXTypeidOfType - Parse typeid( type-id ).
+Action::OwningExprResult
+Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
+ bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
+ if (!StdNamespace)
+ return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
+
+ if (isType) {
+ // C++ [expr.typeid]p4:
+ // The top-level cv-qualifiers of the lvalue expression or the type-id
+ // that is the operand of typeid are always ignored.
+ // FIXME: Preserve type source info.
+ // FIXME: Preserve the type before we stripped the cv-qualifiers?
+ QualType T = GetTypeFromParser(TyOrExpr);
+ if (T.isNull())
+ return ExprError();
+
+ // C++ [expr.typeid]p4:
+ // If the type of the type-id is a class type or a reference to a class
+ // type, the class shall be completely-defined.
+ QualType CheckT = T;
+ if (const ReferenceType *RefType = CheckT->getAs<ReferenceType>())
+ CheckT = RefType->getPointeeType();
+
+ if (CheckT->getAs<RecordType>() &&
+ RequireCompleteType(OpLoc, CheckT, diag::err_incomplete_typeid))
+ return ExprError();
+
+ TyOrExpr = T.getUnqualifiedType().getAsOpaquePtr();
+ }
+
+ IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
+ LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
+ LookupQualifiedName(R, StdNamespace);
+ RecordDecl *TypeInfoRecordDecl = R.getAsSingle<RecordDecl>();
+ if (!TypeInfoRecordDecl)
+ return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
+
+ QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl);
+
+ if (!isType) {
+ bool isUnevaluatedOperand = true;
+ Expr *E = static_cast<Expr *>(TyOrExpr);
+ if (E && !E->isTypeDependent()) {
+ QualType T = E->getType();
+ if (const RecordType *RecordT = T->getAs<RecordType>()) {
+ CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
+ // C++ [expr.typeid]p3:
+ // [...] If the type of the expression is a class type, the class
+ // shall be completely-defined.
+ if (RequireCompleteType(OpLoc, T, diag::err_incomplete_typeid))
+ return ExprError();
+
+ // C++ [expr.typeid]p3:
+ // When typeid is applied to an expression other than an lvalue of a
+ // polymorphic class type [...] [the] expression is an unevaluated
+ // operand. [...]
+ if (RecordD->isPolymorphic() && E->isLvalue(Context) == Expr::LV_Valid)
+ isUnevaluatedOperand = false;
+ }
+
+ // C++ [expr.typeid]p4:
+ // [...] If the type of the type-id is a reference to a possibly
+ // cv-qualified type, the result of the typeid expression refers to a
+ // std::type_info object representing the cv-unqualified referenced
+ // type.
+ if (T.hasQualifiers()) {
+ ImpCastExprToType(E, T.getUnqualifiedType(), CastExpr::CK_NoOp,
+ E->isLvalue(Context));
+ TyOrExpr = E;
+ }
+ }
+
+ // If this is an unevaluated operand, clear out the set of
+ // declaration references we have been computing and eliminate any
+ // temporaries introduced in its computation.
+ if (isUnevaluatedOperand)
+ ExprEvalContexts.back().Context = Unevaluated;
+ }
+
+ return Owned(new (Context) CXXTypeidExpr(isType, TyOrExpr,
+ TypeInfoType.withConst(),
+ SourceRange(OpLoc, RParenLoc)));
+}
+
+/// ActOnCXXBoolLiteral - Parse {true,false} literals.
+Action::OwningExprResult
+Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
+ assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
+ "Unknown C++ Boolean value!");
+ return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
+ Context.BoolTy, OpLoc));
+}
+
+/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
+Action::OwningExprResult
+Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
+ return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
+}
+
+/// ActOnCXXThrow - Parse throw expressions.
+Action::OwningExprResult
+Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprArg E) {
+ Expr *Ex = E.takeAs<Expr>();
+ if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
+ return ExprError();
+ return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
+}
+
+/// CheckCXXThrowOperand - Validate the operand of a throw.
+bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
+ // C++ [except.throw]p3:
+ // A throw-expression initializes a temporary object, called the exception
+ // object, the type of which is determined by removing any top-level
+ // cv-qualifiers from the static type of the operand of throw and adjusting
+ // the type from "array of T" or "function returning T" to "pointer to T"
+ // or "pointer to function returning T", [...]
+ if (E->getType().hasQualifiers())
+ ImpCastExprToType(E, E->getType().getUnqualifiedType(), CastExpr::CK_NoOp,
+ E->isLvalue(Context) == Expr::LV_Valid);
+
+ DefaultFunctionArrayConversion(E);
+
+ // If the type of the exception would be an incomplete type or a pointer
+ // to an incomplete type other than (cv) void the program is ill-formed.
+ QualType Ty = E->getType();
+ int isPointer = 0;
+ if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
+ Ty = Ptr->getPointeeType();
+ isPointer = 1;
+ }
+ if (!isPointer || !Ty->isVoidType()) {
+ if (RequireCompleteType(ThrowLoc, Ty,
+ PDiag(isPointer ? diag::err_throw_incomplete_ptr
+ : diag::err_throw_incomplete)
+ << E->getSourceRange()))
+ return true;
+ }
+
+ // FIXME: Construct a temporary here.
+ return false;
+}
+
+Action::OwningExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
+ /// C++ 9.3.2: In the body of a non-static member function, the keyword this
+ /// is a non-lvalue expression whose value is the address of the object for
+ /// which the function is called.
+
+ if (!isa<FunctionDecl>(CurContext))
+ return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
+
+ if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext))
+ if (MD->isInstance())
+ return Owned(new (Context) CXXThisExpr(ThisLoc,
+ MD->getThisType(Context),
+ /*isImplicit=*/false));
+
+ return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
+}
+
+/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
+/// Can be interpreted either as function-style casting ("int(x)")
+/// or class type construction ("ClassType(x,y,z)")
+/// or creation of a value-initialized type ("int()").
+Action::OwningExprResult
+Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep,
+ SourceLocation LParenLoc,
+ MultiExprArg exprs,
+ SourceLocation *CommaLocs,
+ SourceLocation RParenLoc) {
+ if (!TypeRep)
+ return ExprError();
+
+ TypeSourceInfo *TInfo;
+ QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
+ if (!TInfo)
+ TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
+ unsigned NumExprs = exprs.size();
+ Expr **Exprs = (Expr**)exprs.get();
+ SourceLocation TyBeginLoc = TypeRange.getBegin();
+ SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
+
+ if (Ty->isDependentType() ||
+ CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
+ exprs.release();
+
+ return Owned(CXXUnresolvedConstructExpr::Create(Context,
+ TypeRange.getBegin(), Ty,
+ LParenLoc,
+ Exprs, NumExprs,
+ RParenLoc));
+ }
+
+ if (Ty->isArrayType())
+ return ExprError(Diag(TyBeginLoc,
+ diag::err_value_init_for_array_type) << FullRange);
+ if (!Ty->isVoidType() &&
+ RequireCompleteType(TyBeginLoc, Ty,
+ PDiag(diag::err_invalid_incomplete_type_use)
+ << FullRange))
+ return ExprError();
+
+ if (RequireNonAbstractType(TyBeginLoc, Ty,
+ diag::err_allocation_of_abstract_type))
+ return ExprError();
+
+
+ // C++ [expr.type.conv]p1:
+ // If the expression list is a single expression, the type conversion
+ // expression is equivalent (in definedness, and if defined in meaning) to the
+ // corresponding cast expression.
+ //
+ if (NumExprs == 1) {
+ CastExpr::CastKind Kind = CastExpr::CK_Unknown;
+ CXXMethodDecl *Method = 0;
+ if (CheckCastTypes(TypeRange, Ty, Exprs[0], Kind, Method,
+ /*FunctionalStyle=*/true))
+ return ExprError();
+
+ exprs.release();
+ if (Method) {
+ OwningExprResult CastArg
+ = BuildCXXCastArgument(TypeRange.getBegin(), Ty.getNonReferenceType(),
+ Kind, Method, Owned(Exprs[0]));
+ if (CastArg.isInvalid())
+ return ExprError();
+
+ Exprs[0] = CastArg.takeAs<Expr>();
+ }
+
+ return Owned(new (Context) CXXFunctionalCastExpr(Ty.getNonReferenceType(),
+ TInfo, TyBeginLoc, Kind,
+ Exprs[0], RParenLoc));
+ }
+
+ if (const RecordType *RT = Ty->getAs<RecordType>()) {
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
+
+ if (NumExprs > 1 || !Record->hasTrivialConstructor() ||
+ !Record->hasTrivialDestructor()) {
+ InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
+ InitializationKind Kind
+ = NumExprs ? InitializationKind::CreateDirect(TypeRange.getBegin(),
+ LParenLoc, RParenLoc)
+ : InitializationKind::CreateValue(TypeRange.getBegin(),
+ LParenLoc, RParenLoc);
+ InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
+ OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
+ move(exprs));
+
+ // FIXME: Improve AST representation?
+ return move(Result);
+ }
+
+ // Fall through to value-initialize an object of class type that
+ // doesn't have a user-declared default constructor.
+ }
+
+ // C++ [expr.type.conv]p1:
+ // If the expression list specifies more than a single value, the type shall
+ // be a class with a suitably declared constructor.
+ //
+ if (NumExprs > 1)
+ return ExprError(Diag(CommaLocs[0],
+ diag::err_builtin_func_cast_more_than_one_arg)
+ << FullRange);
+
+ assert(NumExprs == 0 && "Expected 0 expressions");
+ // C++ [expr.type.conv]p2:
+ // The expression T(), where T is a simple-type-specifier for a non-array
+ // complete object type or the (possibly cv-qualified) void type, creates an
+ // rvalue of the specified type, which is value-initialized.
+ //
+ exprs.release();
+ return Owned(new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc));
+}
+
+
+/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
+/// @code new (memory) int[size][4] @endcode
+/// or
+/// @code ::new Foo(23, "hello") @endcode
+/// For the interpretation of this heap of arguments, consult the base version.
+Action::OwningExprResult
+Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
+ SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
+ SourceLocation PlacementRParen, bool ParenTypeId,
+ Declarator &D, SourceLocation ConstructorLParen,
+ MultiExprArg ConstructorArgs,
+ SourceLocation ConstructorRParen) {
+ Expr *ArraySize = 0;
+ // If the specified type is an array, unwrap it and save the expression.
+ if (D.getNumTypeObjects() > 0 &&
+ D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
+ DeclaratorChunk &Chunk = D.getTypeObject(0);
+ if (Chunk.Arr.hasStatic)
+ return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
+ << D.getSourceRange());
+ if (!Chunk.Arr.NumElts)
+ return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
+ << D.getSourceRange());
+
+ if (ParenTypeId) {
+ // Can't have dynamic array size when the type-id is in parentheses.
+ Expr *NumElts = (Expr *)Chunk.Arr.NumElts;
+ if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
+ !NumElts->isIntegerConstantExpr(Context)) {
+ Diag(D.getTypeObject(0).Loc, diag::err_new_paren_array_nonconst)
+ << NumElts->getSourceRange();
+ return ExprError();
+ }
+ }
+
+ ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
+ D.DropFirstTypeObject();
+ }
+
+ // Every dimension shall be of constant size.
+ if (ArraySize) {
+ for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
+ if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
+ break;
+
+ DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
+ if (Expr *NumElts = (Expr *)Array.NumElts) {
+ if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
+ !NumElts->isIntegerConstantExpr(Context)) {
+ Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
+ << NumElts->getSourceRange();
+ return ExprError();
+ }
+ }
+ }
+ }
+
+ //FIXME: Store TypeSourceInfo in CXXNew expression.
+ TypeSourceInfo *TInfo = 0;
+ QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, &TInfo);
+ if (D.isInvalidType())
+ return ExprError();
+
+ return BuildCXXNew(StartLoc, UseGlobal,
+ PlacementLParen,
+ move(PlacementArgs),
+ PlacementRParen,
+ ParenTypeId,
+ AllocType,
+ D.getSourceRange().getBegin(),
+ D.getSourceRange(),
+ Owned(ArraySize),
+ ConstructorLParen,
+ move(ConstructorArgs),
+ ConstructorRParen);
+}
+
+Sema::OwningExprResult
+Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
+ SourceLocation PlacementLParen,
+ MultiExprArg PlacementArgs,
+ SourceLocation PlacementRParen,
+ bool ParenTypeId,
+ QualType AllocType,
+ SourceLocation TypeLoc,
+ SourceRange TypeRange,
+ ExprArg ArraySizeE,
+ SourceLocation ConstructorLParen,
+ MultiExprArg ConstructorArgs,
+ SourceLocation ConstructorRParen) {
+ if (CheckAllocatedType(AllocType, TypeLoc, TypeRange))
+ return ExprError();
+
+ QualType ResultType = Context.getPointerType(AllocType);
+
+ // That every array dimension except the first is constant was already
+ // checked by the type check above.
+
+ // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
+ // or enumeration type with a non-negative value."
+ Expr *ArraySize = (Expr *)ArraySizeE.get();
+ if (ArraySize && !ArraySize->isTypeDependent()) {
+ QualType SizeType = ArraySize->getType();
+ if (!SizeType->isIntegralType() && !SizeType->isEnumeralType())
+ return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
+ diag::err_array_size_not_integral)
+ << SizeType << ArraySize->getSourceRange());
+ // Let's see if this is a constant < 0. If so, we reject it out of hand.
+ // We don't care about special rules, so we tell the machinery it's not
+ // evaluated - it gives us a result in more cases.
+ if (!ArraySize->isValueDependent()) {
+ llvm::APSInt Value;
+ if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
+ if (Value < llvm::APSInt(
+ llvm::APInt::getNullValue(Value.getBitWidth()),
+ Value.isUnsigned()))
+ return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
+ diag::err_typecheck_negative_array_size)
+ << ArraySize->getSourceRange());
+ }
+ }
+
+ ImpCastExprToType(ArraySize, Context.getSizeType(),
+ CastExpr::CK_IntegralCast);
+ }
+
+ FunctionDecl *OperatorNew = 0;
+ FunctionDecl *OperatorDelete = 0;
+ Expr **PlaceArgs = (Expr**)PlacementArgs.get();
+ unsigned NumPlaceArgs = PlacementArgs.size();
+
+ if (!AllocType->isDependentType() &&
+ !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
+ FindAllocationFunctions(StartLoc,
+ SourceRange(PlacementLParen, PlacementRParen),
+ UseGlobal, AllocType, ArraySize, PlaceArgs,
+ NumPlaceArgs, OperatorNew, OperatorDelete))
+ return ExprError();
+ llvm::SmallVector<Expr *, 8> AllPlaceArgs;
+ if (OperatorNew) {
+ // Add default arguments, if any.
+ const FunctionProtoType *Proto =
+ OperatorNew->getType()->getAs<FunctionProtoType>();
+ VariadicCallType CallType =
+ Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
+ bool Invalid = GatherArgumentsForCall(PlacementLParen, OperatorNew,
+ Proto, 1, PlaceArgs, NumPlaceArgs,
+ AllPlaceArgs, CallType);
+ if (Invalid)
+ return ExprError();
+
+ NumPlaceArgs = AllPlaceArgs.size();
+ if (NumPlaceArgs > 0)
+ PlaceArgs = &AllPlaceArgs[0];
+ }
+
+ bool Init = ConstructorLParen.isValid();
+ // --- Choosing a constructor ---
+ CXXConstructorDecl *Constructor = 0;
+ Expr **ConsArgs = (Expr**)ConstructorArgs.get();
+ unsigned NumConsArgs = ConstructorArgs.size();
+ ASTOwningVector<&ActionBase::DeleteExpr> ConvertedConstructorArgs(*this);
+
+ if (!AllocType->isDependentType() &&
+ !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
+ // C++0x [expr.new]p15:
+ // A new-expression that creates an object of type T initializes that
+ // object as follows:
+ InitializationKind Kind
+ // - If the new-initializer is omitted, the object is default-
+ // initialized (8.5); if no initialization is performed,
+ // the object has indeterminate value
+ = !Init? InitializationKind::CreateDefault(TypeLoc)
+ // - Otherwise, the new-initializer is interpreted according to the
+ // initialization rules of 8.5 for direct-initialization.
+ : InitializationKind::CreateDirect(TypeLoc,
+ ConstructorLParen,
+ ConstructorRParen);
+
+ InitializedEntity Entity
+ = InitializedEntity::InitializeNew(StartLoc, AllocType);
+ InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
+ OwningExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
+ move(ConstructorArgs));
+ if (FullInit.isInvalid())
+ return ExprError();
+
+ // FullInit is our initializer; walk through it to determine if it's a
+ // constructor call, which CXXNewExpr handles directly.
+ if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
+ if (CXXBindTemporaryExpr *Binder
+ = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
+ FullInitExpr = Binder->getSubExpr();
+ if (CXXConstructExpr *Construct
+ = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
+ Constructor = Construct->getConstructor();
+ for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
+ AEnd = Construct->arg_end();
+ A != AEnd; ++A)
+ ConvertedConstructorArgs.push_back(A->Retain());
+ } else {
+ // Take the converted initializer.
+ ConvertedConstructorArgs.push_back(FullInit.release());
+ }
+ } else {
+ // No initialization required.
+ }
+
+ // Take the converted arguments and use them for the new expression.
+ NumConsArgs = ConvertedConstructorArgs.size();
+ ConsArgs = (Expr **)ConvertedConstructorArgs.take();
+ }
+
+ // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
+
+ PlacementArgs.release();
+ ConstructorArgs.release();
+ ArraySizeE.release();
+ return Owned(new (Context) CXXNewExpr(UseGlobal, OperatorNew, PlaceArgs,
+ NumPlaceArgs, ParenTypeId, ArraySize, Constructor, Init,
+ ConsArgs, NumConsArgs, OperatorDelete, ResultType,
+ StartLoc, Init ? ConstructorRParen : SourceLocation()));
+}
+
+/// CheckAllocatedType - Checks that a type is suitable as the allocated type
+/// in a new-expression.
+/// dimension off and stores the size expression in ArraySize.
+bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
+ SourceRange R) {
+ // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
+ // abstract class type or array thereof.
+ if (AllocType->isFunctionType())
+ return Diag(Loc, diag::err_bad_new_type)
+ << AllocType << 0 << R;
+ else if (AllocType->isReferenceType())
+ return Diag(Loc, diag::err_bad_new_type)
+ << AllocType << 1 << R;
+ else if (!AllocType->isDependentType() &&
+ RequireCompleteType(Loc, AllocType,
+ PDiag(diag::err_new_incomplete_type)
+ << R))
+ return true;
+ else if (RequireNonAbstractType(Loc, AllocType,
+ diag::err_allocation_of_abstract_type))
+ return true;
+
+ return false;
+}
+
+/// FindAllocationFunctions - Finds the overloads of operator new and delete
+/// that are appropriate for the allocation.
+bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
+ bool UseGlobal, QualType AllocType,
+ bool IsArray, Expr **PlaceArgs,
+ unsigned NumPlaceArgs,
+ FunctionDecl *&OperatorNew,
+ FunctionDecl *&OperatorDelete) {
+ // --- Choosing an allocation function ---
+ // C++ 5.3.4p8 - 14 & 18
+ // 1) If UseGlobal is true, only look in the global scope. Else, also look
+ // in the scope of the allocated class.
+ // 2) If an array size is given, look for operator new[], else look for
+ // operator new.
+ // 3) The first argument is always size_t. Append the arguments from the
+ // placement form.
+ // FIXME: Also find the appropriate delete operator.
+
+ llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
+ // We don't care about the actual value of this argument.
+ // FIXME: Should the Sema create the expression and embed it in the syntax
+ // tree? Or should the consumer just recalculate the value?
+ IntegerLiteral Size(llvm::APInt::getNullValue(
+ Context.Target.getPointerWidth(0)),
+ Context.getSizeType(),
+ SourceLocation());
+ AllocArgs[0] = &Size;
+ std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
+
+ DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
+ IsArray ? OO_Array_New : OO_New);
+ if (AllocType->isRecordType() && !UseGlobal) {
+ CXXRecordDecl *Record
+ = cast<CXXRecordDecl>(AllocType->getAs<RecordType>()->getDecl());
+ // FIXME: We fail to find inherited overloads.
+ if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
+ AllocArgs.size(), Record, /*AllowMissing=*/true,
+ OperatorNew))
+ return true;
+ }
+ if (!OperatorNew) {
+ // Didn't find a member overload. Look for a global one.
+ DeclareGlobalNewDelete();
+ DeclContext *TUDecl = Context.getTranslationUnitDecl();
+ if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
+ AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
+ OperatorNew))
+ return true;
+ }
+
+ // FindAllocationOverload can change the passed in arguments, so we need to
+ // copy them back.
+ if (NumPlaceArgs > 0)
+ std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
+
+ return false;
+}
+
+/// FindAllocationOverload - Find an fitting overload for the allocation
+/// function in the specified scope.
+bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
+ DeclarationName Name, Expr** Args,
+ unsigned NumArgs, DeclContext *Ctx,
+ bool AllowMissing, FunctionDecl *&Operator) {
+ LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
+ LookupQualifiedName(R, Ctx);
+ if (R.empty()) {
+ if (AllowMissing)
+ return false;
+ return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
+ << Name << Range;
+ }
+
+ // FIXME: handle ambiguity
+
+ OverloadCandidateSet Candidates(StartLoc);
+ for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
+ Alloc != AllocEnd; ++Alloc) {
+ // Even member operator new/delete are implicitly treated as
+ // static, so don't use AddMemberCandidate.
+
+ if (FunctionTemplateDecl *FnTemplate =
+ dyn_cast<FunctionTemplateDecl>((*Alloc)->getUnderlyingDecl())) {
+ AddTemplateOverloadCandidate(FnTemplate, Alloc.getAccess(),
+ /*ExplicitTemplateArgs=*/0, Args, NumArgs,
+ Candidates,
+ /*SuppressUserConversions=*/false);
+ continue;
+ }
+
+ FunctionDecl *Fn = cast<FunctionDecl>((*Alloc)->getUnderlyingDecl());
+ AddOverloadCandidate(Fn, Alloc.getAccess(), Args, NumArgs, Candidates,
+ /*SuppressUserConversions=*/false);
+ }
+
+ // Do the resolution.
+ OverloadCandidateSet::iterator Best;
+ switch(BestViableFunction(Candidates, StartLoc, Best)) {
+ case OR_Success: {
+ // Got one!
+ FunctionDecl *FnDecl = Best->Function;
+ // The first argument is size_t, and the first parameter must be size_t,
+ // too. This is checked on declaration and can be assumed. (It can't be
+ // asserted on, though, since invalid decls are left in there.)
+ // Whatch out for variadic allocator function.
+ unsigned NumArgsInFnDecl = FnDecl->getNumParams();
+ for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
+ if (PerformCopyInitialization(Args[i],
+ FnDecl->getParamDecl(i)->getType(),
+ AA_Passing))
+ return true;
+ }
+ Operator = FnDecl;
+ return false;
+ }
+
+ case OR_No_Viable_Function:
+ Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
+ << Name << Range;
+ PrintOverloadCandidates(Candidates, OCD_AllCandidates, Args, NumArgs);
+ return true;
+
+ case OR_Ambiguous:
+ Diag(StartLoc, diag::err_ovl_ambiguous_call)
+ << Name << Range;
+ PrintOverloadCandidates(Candidates, OCD_ViableCandidates, Args, NumArgs);
+ return true;
+
+ case OR_Deleted:
+ Diag(StartLoc, diag::err_ovl_deleted_call)
+ << Best->Function->isDeleted()
+ << Name << Range;
+ PrintOverloadCandidates(Candidates, OCD_AllCandidates, Args, NumArgs);
+ return true;
+ }
+ assert(false && "Unreachable, bad result from BestViableFunction");
+ return true;
+}
+
+
+/// DeclareGlobalNewDelete - Declare the global forms of operator new and
+/// delete. These are:
+/// @code
+/// void* operator new(std::size_t) throw(std::bad_alloc);
+/// void* operator new[](std::size_t) throw(std::bad_alloc);
+/// void operator delete(void *) throw();
+/// void operator delete[](void *) throw();
+/// @endcode
+/// Note that the placement and nothrow forms of new are *not* implicitly
+/// declared. Their use requires including \<new\>.
+void Sema::DeclareGlobalNewDelete() {
+ if (GlobalNewDeleteDeclared)
+ return;
+
+ // C++ [basic.std.dynamic]p2:
+ // [...] The following allocation and deallocation functions (18.4) are
+ // implicitly declared in global scope in each translation unit of a
+ // program
+ //
+ // void* operator new(std::size_t) throw(std::bad_alloc);
+ // void* operator new[](std::size_t) throw(std::bad_alloc);
+ // void operator delete(void*) throw();
+ // void operator delete[](void*) throw();
+ //
+ // These implicit declarations introduce only the function names operator
+ // new, operator new[], operator delete, operator delete[].
+ //
+ // Here, we need to refer to std::bad_alloc, so we will implicitly declare
+ // "std" or "bad_alloc" as necessary to form the exception specification.
+ // However, we do not make these implicit declarations visible to name
+ // lookup.
+ if (!StdNamespace) {
+ // The "std" namespace has not yet been defined, so build one implicitly.
+ StdNamespace = NamespaceDecl::Create(Context,
+ Context.getTranslationUnitDecl(),
+ SourceLocation(),
+ &PP.getIdentifierTable().get("std"));
+ StdNamespace->setImplicit(true);
+ }
+
+ if (!StdBadAlloc) {
+ // The "std::bad_alloc" class has not yet been declared, so build it
+ // implicitly.
+ StdBadAlloc = CXXRecordDecl::Create(Context, TagDecl::TK_class,
+ StdNamespace,
+ SourceLocation(),
+ &PP.getIdentifierTable().get("bad_alloc"),
+ SourceLocation(), 0);
+ StdBadAlloc->setImplicit(true);
+ }
+
+ GlobalNewDeleteDeclared = true;
+
+ QualType VoidPtr = Context.getPointerType(Context.VoidTy);
+ QualType SizeT = Context.getSizeType();
+ bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
+
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_New),
+ VoidPtr, SizeT, AssumeSaneOperatorNew);
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
+ VoidPtr, SizeT, AssumeSaneOperatorNew);
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_Delete),
+ Context.VoidTy, VoidPtr);
+ DeclareGlobalAllocationFunction(
+ Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
+ Context.VoidTy, VoidPtr);
+}
+
+/// DeclareGlobalAllocationFunction - Declares a single implicit global
+/// allocation function if it doesn't already exist.
+void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
+ QualType Return, QualType Argument,
+ bool AddMallocAttr) {
+ DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
+
+ // Check if this function is already declared.
+ {
+ DeclContext::lookup_iterator Alloc, AllocEnd;
+ for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
+ Alloc != AllocEnd; ++Alloc) {
+ // Only look at non-template functions, as it is the predefined,
+ // non-templated allocation function we are trying to declare here.
+ if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
+ QualType InitialParamType =
+ Context.getCanonicalType(
+ Func->getParamDecl(0)->getType().getUnqualifiedType());
+ // FIXME: Do we need to check for default arguments here?
+ if (Func->getNumParams() == 1 && InitialParamType == Argument)
+ return;
+ }
+ }
+ }
+
+ QualType BadAllocType;
+ bool HasBadAllocExceptionSpec
+ = (Name.getCXXOverloadedOperator() == OO_New ||
+ Name.getCXXOverloadedOperator() == OO_Array_New);
+ if (HasBadAllocExceptionSpec) {
+ assert(StdBadAlloc && "Must have std::bad_alloc declared");
+ BadAllocType = Context.getTypeDeclType(StdBadAlloc);
+ }
+
+ QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0,
+ true, false,
+ HasBadAllocExceptionSpec? 1 : 0,
+ &BadAllocType);
+ FunctionDecl *Alloc =
+ FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
+ FnType, /*TInfo=*/0, FunctionDecl::None, false, true);
+ Alloc->setImplicit();
+
+ if (AddMallocAttr)
+ Alloc->addAttr(::new (Context) MallocAttr());
+
+ ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
+ 0, Argument, /*TInfo=*/0,
+ VarDecl::None, 0);
+ Alloc->setParams(Context, &Param, 1);
+
+ // FIXME: Also add this declaration to the IdentifierResolver, but
+ // make sure it is at the end of the chain to coincide with the
+ // global scope.
+ ((DeclContext *)TUScope->getEntity())->addDecl(Alloc);
+}
+
+bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
+ DeclarationName Name,
+ FunctionDecl* &Operator) {
+ LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
+ // Try to find operator delete/operator delete[] in class scope.
+ LookupQualifiedName(Found, RD);
+
+ if (Found.isAmbiguous())
+ return true;
+
+ for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
+ F != FEnd; ++F) {
+ if (CXXMethodDecl *Delete = dyn_cast<CXXMethodDecl>(*F))
+ if (Delete->isUsualDeallocationFunction()) {
+ Operator = Delete;
+ return false;
+ }
+ }
+
+ // We did find operator delete/operator delete[] declarations, but
+ // none of them were suitable.
+ if (!Found.empty()) {
+ Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
+ << Name << RD;
+
+ for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
+ F != FEnd; ++F) {
+ Diag((*F)->getLocation(),
+ diag::note_delete_member_function_declared_here)
+ << Name;
+ }
+
+ return true;
+ }
+
+ // Look for a global declaration.
+ DeclareGlobalNewDelete();
+ DeclContext *TUDecl = Context.getTranslationUnitDecl();
+
+ CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
+ Expr* DeallocArgs[1];
+ DeallocArgs[0] = &Null;
+ if (FindAllocationOverload(StartLoc, SourceRange(), Name,
+ DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
+ Operator))
+ return true;
+
+ assert(Operator && "Did not find a deallocation function!");
+ return false;
+}
+
+/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
+/// @code ::delete ptr; @endcode
+/// or
+/// @code delete [] ptr; @endcode
+Action::OwningExprResult
+Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
+ bool ArrayForm, ExprArg Operand) {
+ // C++ [expr.delete]p1:
+ // The operand shall have a pointer type, or a class type having a single
+ // conversion function to a pointer type. The result has type void.
+ //
+ // DR599 amends "pointer type" to "pointer to object type" in both cases.
+
+ FunctionDecl *OperatorDelete = 0;
+
+ Expr *Ex = (Expr *)Operand.get();
+ if (!Ex->isTypeDependent()) {
+ QualType Type = Ex->getType();
+
+ if (const RecordType *Record = Type->getAs<RecordType>()) {
+ llvm::SmallVector<CXXConversionDecl *, 4> ObjectPtrConversions;
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
+ const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
+
+ for (UnresolvedSetImpl::iterator I = Conversions->begin(),
+ E = Conversions->end(); I != E; ++I) {
+ // Skip over templated conversion functions; they aren't considered.
+ if (isa<FunctionTemplateDecl>(*I))
+ continue;
+
+ CXXConversionDecl *Conv = cast<CXXConversionDecl>(*I);
+
+ QualType ConvType = Conv->getConversionType().getNonReferenceType();
+ if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
+ if (ConvPtrType->getPointeeType()->isObjectType())
+ ObjectPtrConversions.push_back(Conv);
+ }
+ if (ObjectPtrConversions.size() == 1) {
+ // We have a single conversion to a pointer-to-object type. Perform
+ // that conversion.
+ Operand.release();
+ if (!PerformImplicitConversion(Ex,
+ ObjectPtrConversions.front()->getConversionType(),
+ AA_Converting)) {
+ Operand = Owned(Ex);
+ Type = Ex->getType();
+ }
+ }
+ else if (ObjectPtrConversions.size() > 1) {
+ Diag(StartLoc, diag::err_ambiguous_delete_operand)
+ << Type << Ex->getSourceRange();
+ for (unsigned i= 0; i < ObjectPtrConversions.size(); i++) {
+ CXXConversionDecl *Conv = ObjectPtrConversions[i];
+ NoteOverloadCandidate(Conv);
+ }
+ return ExprError();
+ }
+ }
+
+ if (!Type->isPointerType())
+ return ExprError(Diag(StartLoc, diag::err_delete_operand)
+ << Type << Ex->getSourceRange());
+
+ QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
+ if (Pointee->isFunctionType() || Pointee->isVoidType())
+ return ExprError(Diag(StartLoc, diag::err_delete_operand)
+ << Type << Ex->getSourceRange());
+ else if (!Pointee->isDependentType() &&
+ RequireCompleteType(StartLoc, Pointee,
+ PDiag(diag::warn_delete_incomplete)
+ << Ex->getSourceRange()))
+ return ExprError();
+
+ // C++ [expr.delete]p2:
+ // [Note: a pointer to a const type can be the operand of a
+ // delete-expression; it is not necessary to cast away the constness
+ // (5.2.11) of the pointer expression before it is used as the operand
+ // of the delete-expression. ]
+ ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy),
+ CastExpr::CK_NoOp);
+
+ // Update the operand.
+ Operand.take();
+ Operand = ExprArg(*this, Ex);
+
+ DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
+ ArrayForm ? OO_Array_Delete : OO_Delete);
+
+ if (const RecordType *RT = Pointee->getAs<RecordType>()) {
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+
+ if (!UseGlobal &&
+ FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
+ return ExprError();
+
+ if (!RD->hasTrivialDestructor())
+ if (const CXXDestructorDecl *Dtor = RD->getDestructor(Context))
+ MarkDeclarationReferenced(StartLoc,
+ const_cast<CXXDestructorDecl*>(Dtor));
+ }
+
+ if (!OperatorDelete) {
+ // Look for a global declaration.
+ DeclareGlobalNewDelete();
+ DeclContext *TUDecl = Context.getTranslationUnitDecl();
+ if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
+ &Ex, 1, TUDecl, /*AllowMissing=*/false,
+ OperatorDelete))
+ return ExprError();
+ }
+
+ // FIXME: Check access and ambiguity of operator delete and destructor.
+ }
+
+ Operand.release();
+ return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
+ OperatorDelete, Ex, StartLoc));
+}
+
+/// \brief Check the use of the given variable as a C++ condition in an if,
+/// while, do-while, or switch statement.
+Action::OwningExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar) {
+ QualType T = ConditionVar->getType();
+
+ // C++ [stmt.select]p2:
+ // The declarator shall not specify a function or an array.
+ if (T->isFunctionType())
+ return ExprError(Diag(ConditionVar->getLocation(),
+ diag::err_invalid_use_of_function_type)
+ << ConditionVar->getSourceRange());
+ else if (T->isArrayType())
+ return ExprError(Diag(ConditionVar->getLocation(),
+ diag::err_invalid_use_of_array_type)
+ << ConditionVar->getSourceRange());
+
+ return Owned(DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar,
+ ConditionVar->getLocation(),
+ ConditionVar->getType().getNonReferenceType()));
+}
+
+/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
+bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
+ // C++ 6.4p4:
+ // The value of a condition that is an initialized declaration in a statement
+ // other than a switch statement is the value of the declared variable
+ // implicitly converted to type bool. If that conversion is ill-formed, the
+ // program is ill-formed.
+ // The value of a condition that is an expression is the value of the
+ // expression, implicitly converted to bool.
+ //
+ return PerformContextuallyConvertToBool(CondExpr);
+}
+
+/// Helper function to determine whether this is the (deprecated) C++
+/// conversion from a string literal to a pointer to non-const char or
+/// non-const wchar_t (for narrow and wide string literals,
+/// respectively).
+bool
+Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
+ // Look inside the implicit cast, if it exists.
+ if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
+ From = Cast->getSubExpr();
+
+ // A string literal (2.13.4) that is not a wide string literal can
+ // be converted to an rvalue of type "pointer to char"; a wide
+ // string literal can be converted to an rvalue of type "pointer
+ // to wchar_t" (C++ 4.2p2).
+ if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From))
+ if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
+ if (const BuiltinType *ToPointeeType
+ = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
+ // This conversion is considered only when there is an
+ // explicit appropriate pointer target type (C++ 4.2p2).
+ if (!ToPtrType->getPointeeType().hasQualifiers() &&
+ ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
+ (!StrLit->isWide() &&
+ (ToPointeeType->getKind() == BuiltinType::Char_U ||
+ ToPointeeType->getKind() == BuiltinType::Char_S))))
+ return true;
+ }
+
+ return false;
+}
+
+/// PerformImplicitConversion - Perform an implicit conversion of the
+/// expression From to the type ToType. Returns true if there was an
+/// error, false otherwise. The expression From is replaced with the
+/// converted expression. Flavor is the kind of conversion we're
+/// performing, used in the error message. If @p AllowExplicit,
+/// explicit user-defined conversions are permitted. @p Elidable should be true
+/// when called for copies which may be elided (C++ 12.8p15). C++0x overload
+/// resolution works differently in that case.
+bool
+Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
+ AssignmentAction Action, bool AllowExplicit,
+ bool Elidable) {
+ ImplicitConversionSequence ICS;
+ return PerformImplicitConversion(From, ToType, Action, AllowExplicit,
+ Elidable, ICS);
+}
+
+bool
+Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
+ AssignmentAction Action, bool AllowExplicit,
+ bool Elidable,
+ ImplicitConversionSequence& ICS) {
+ ICS.setBad();
+ ICS.Bad.init(BadConversionSequence::no_conversion, From, ToType);
+ if (Elidable && getLangOptions().CPlusPlus0x) {
+ ICS = TryImplicitConversion(From, ToType,
+ /*SuppressUserConversions=*/false,
+ AllowExplicit,
+ /*ForceRValue=*/true,
+ /*InOverloadResolution=*/false);
+ }
+ if (ICS.isBad()) {
+ ICS = TryImplicitConversion(From, ToType,
+ /*SuppressUserConversions=*/false,
+ AllowExplicit,
+ /*ForceRValue=*/false,
+ /*InOverloadResolution=*/false);
+ }
+ return PerformImplicitConversion(From, ToType, ICS, Action);
+}
+
+/// PerformImplicitConversion - Perform an implicit conversion of the
+/// expression From to the type ToType using the pre-computed implicit
+/// conversion sequence ICS. Returns true if there was an error, false
+/// otherwise. The expression From is replaced with the converted
+/// expression. Action is the kind of conversion we're performing,
+/// used in the error message.
+bool
+Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
+ const ImplicitConversionSequence &ICS,
+ AssignmentAction Action, bool IgnoreBaseAccess) {
+ switch (ICS.getKind()) {
+ case ImplicitConversionSequence::StandardConversion:
+ if (PerformImplicitConversion(From, ToType, ICS.Standard, Action,
+ IgnoreBaseAccess))
+ return true;
+ break;
+
+ case ImplicitConversionSequence::UserDefinedConversion: {
+
+ FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
+ CastExpr::CastKind CastKind = CastExpr::CK_Unknown;
+ QualType BeforeToType;
+ if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
+ CastKind = CastExpr::CK_UserDefinedConversion;
+
+ // If the user-defined conversion is specified by a conversion function,
+ // the initial standard conversion sequence converts the source type to
+ // the implicit object parameter of the conversion function.
+ BeforeToType = Context.getTagDeclType(Conv->getParent());
+ } else if (const CXXConstructorDecl *Ctor =
+ dyn_cast<CXXConstructorDecl>(FD)) {
+ CastKind = CastExpr::CK_ConstructorConversion;
+ // Do no conversion if dealing with ... for the first conversion.
+ if (!ICS.UserDefined.EllipsisConversion) {
+ // If the user-defined conversion is specified by a constructor, the
+ // initial standard conversion sequence converts the source type to the
+ // type required by the argument of the constructor
+ BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
+ }
+ }
+ else
+ assert(0 && "Unknown conversion function kind!");
+ // Whatch out for elipsis conversion.
+ if (!ICS.UserDefined.EllipsisConversion) {
+ if (PerformImplicitConversion(From, BeforeToType,
+ ICS.UserDefined.Before, AA_Converting,
+ IgnoreBaseAccess))
+ return true;
+ }
+
+ OwningExprResult CastArg
+ = BuildCXXCastArgument(From->getLocStart(),
+ ToType.getNonReferenceType(),
+ CastKind, cast<CXXMethodDecl>(FD),
+ Owned(From));
+
+ if (CastArg.isInvalid())
+ return true;
+
+ From = CastArg.takeAs<Expr>();
+
+ return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
+ AA_Converting, IgnoreBaseAccess);
+ }
+
+ case ImplicitConversionSequence::AmbiguousConversion:
+ DiagnoseAmbiguousConversion(ICS, From->getExprLoc(),
+ PDiag(diag::err_typecheck_ambiguous_condition)
+ << From->getSourceRange());
+ return true;
+
+ case ImplicitConversionSequence::EllipsisConversion:
+ assert(false && "Cannot perform an ellipsis conversion");
+ return false;
+
+ case ImplicitConversionSequence::BadConversion:
+ return true;
+ }
+
+ // Everything went well.
+ return false;
+}
+
+/// PerformImplicitConversion - Perform an implicit conversion of the
+/// expression From to the type ToType by following the standard
+/// conversion sequence SCS. Returns true if there was an error, false
+/// otherwise. The expression From is replaced with the converted
+/// expression. Flavor is the context in which we're performing this
+/// conversion, for use in error messages.
+bool
+Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
+ const StandardConversionSequence& SCS,
+ AssignmentAction Action, bool IgnoreBaseAccess) {
+ // Overall FIXME: we are recomputing too many types here and doing far too
+ // much extra work. What this means is that we need to keep track of more
+ // information that is computed when we try the implicit conversion initially,
+ // so that we don't need to recompute anything here.
+ QualType FromType = From->getType();
+
+ if (SCS.CopyConstructor) {
+ // FIXME: When can ToType be a reference type?
+ assert(!ToType->isReferenceType());
+ if (SCS.Second == ICK_Derived_To_Base) {
+ ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
+ if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
+ MultiExprArg(*this, (void **)&From, 1),
+ /*FIXME:ConstructLoc*/SourceLocation(),
+ ConstructorArgs))
+ return true;
+ OwningExprResult FromResult =
+ BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
+ ToType, SCS.CopyConstructor,
+ move_arg(ConstructorArgs));
+ if (FromResult.isInvalid())
+ return true;
+ From = FromResult.takeAs<Expr>();
+ return false;
+ }
+ OwningExprResult FromResult =
+ BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
+ ToType, SCS.CopyConstructor,
+ MultiExprArg(*this, (void**)&From, 1));
+
+ if (FromResult.isInvalid())
+ return true;
+
+ From = FromResult.takeAs<Expr>();
+ return false;
+ }
+
+ // Perform the first implicit conversion.
+ switch (SCS.First) {
+ case ICK_Identity:
+ case ICK_Lvalue_To_Rvalue:
+ // Nothing to do.
+ break;
+
+ case ICK_Array_To_Pointer:
+ FromType = Context.getArrayDecayedType(FromType);
+ ImpCastExprToType(From, FromType, CastExpr::CK_ArrayToPointerDecay);
+ break;
+
+ case ICK_Function_To_Pointer:
+ if (Context.getCanonicalType(FromType) == Context.OverloadTy) {
+ FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true);
+ if (!Fn)
+ return true;
+
+ if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
+ return true;
+
+ From = FixOverloadedFunctionReference(From, Fn);
+ FromType = From->getType();
+
+ // If there's already an address-of operator in the expression, we have
+ // the right type already, and the code below would just introduce an
+ // invalid additional pointer level.
+ if (FromType->isPointerType() || FromType->isMemberFunctionPointerType())
+ break;
+ }
+ FromType = Context.getPointerType(FromType);
+ ImpCastExprToType(From, FromType, CastExpr::CK_FunctionToPointerDecay);
+ break;
+
+ default:
+ assert(false && "Improper first standard conversion");
+ break;
+ }
+
+ // Perform the second implicit conversion
+ switch (SCS.Second) {
+ case ICK_Identity:
+ // If both sides are functions (or pointers/references to them), there could
+ // be incompatible exception declarations.
+ if (CheckExceptionSpecCompatibility(From, ToType))
+ return true;
+ // Nothing else to do.
+ break;
+
+ case ICK_NoReturn_Adjustment:
+ // If both sides are functions (or pointers/references to them), there could
+ // be incompatible exception declarations.
+ if (CheckExceptionSpecCompatibility(From, ToType))
+ return true;
+
+ ImpCastExprToType(From, Context.getNoReturnType(From->getType(), false),
+ CastExpr::CK_NoOp);
+ break;
+
+ case ICK_Integral_Promotion:
+ case ICK_Integral_Conversion:
+ ImpCastExprToType(From, ToType, CastExpr::CK_IntegralCast);
+ break;
+
+ case ICK_Floating_Promotion:
+ case ICK_Floating_Conversion:
+ ImpCastExprToType(From, ToType, CastExpr::CK_FloatingCast);
+ break;
+
+ case ICK_Complex_Promotion:
+ case ICK_Complex_Conversion:
+ ImpCastExprToType(From, ToType, CastExpr::CK_Unknown);
+ break;
+
+ case ICK_Floating_Integral:
+ if (ToType->isFloatingType())
+ ImpCastExprToType(From, ToType, CastExpr::CK_IntegralToFloating);
+ else
+ ImpCastExprToType(From, ToType, CastExpr::CK_FloatingToIntegral);
+ break;
+
+ case ICK_Complex_Real:
+ ImpCastExprToType(From, ToType, CastExpr::CK_Unknown);
+ break;
+
+ case ICK_Compatible_Conversion:
+ ImpCastExprToType(From, ToType, CastExpr::CK_NoOp);
+ break;
+
+ case ICK_Pointer_Conversion: {
+ if (SCS.IncompatibleObjC) {
+ // Diagnose incompatible Objective-C conversions
+ Diag(From->getSourceRange().getBegin(),
+ diag::ext_typecheck_convert_incompatible_pointer)
+ << From->getType() << ToType << Action
+ << From->getSourceRange();
+ }
+
+
+ CastExpr::CastKind Kind = CastExpr::CK_Unknown;
+ if (CheckPointerConversion(From, ToType, Kind, IgnoreBaseAccess))
+ return true;
+ ImpCastExprToType(From, ToType, Kind);
+ break;
+ }
+
+ case ICK_Pointer_Member: {
+ CastExpr::CastKind Kind = CastExpr::CK_Unknown;
+ if (CheckMemberPointerConversion(From, ToType, Kind, IgnoreBaseAccess))
+ return true;
+ if (CheckExceptionSpecCompatibility(From, ToType))
+ return true;
+ ImpCastExprToType(From, ToType, Kind);
+ break;
+ }
+ case ICK_Boolean_Conversion: {
+ CastExpr::CastKind Kind = CastExpr::CK_Unknown;
+ if (FromType->isMemberPointerType())
+ Kind = CastExpr::CK_MemberPointerToBoolean;
+
+ ImpCastExprToType(From, Context.BoolTy, Kind);
+ break;
+ }
+
+ case ICK_Derived_To_Base:
+ if (CheckDerivedToBaseConversion(From->getType(),
+ ToType.getNonReferenceType(),
+ From->getLocStart(),
+ From->getSourceRange(),
+ IgnoreBaseAccess))
+ return true;
+ ImpCastExprToType(From, ToType.getNonReferenceType(),
+ CastExpr::CK_DerivedToBase);
+ break;
+
+ default:
+ assert(false && "Improper second standard conversion");
+ break;
+ }
+
+ switch (SCS.Third) {
+ case ICK_Identity:
+ // Nothing to do.
+ break;
+
+ case ICK_Qualification:
+ // FIXME: Not sure about lvalue vs rvalue here in the presence of rvalue
+ // references.
+ ImpCastExprToType(From, ToType.getNonReferenceType(),
+ CastExpr::CK_NoOp,
+ ToType->isLValueReferenceType());
+ break;
+
+ default:
+ assert(false && "Improper second standard conversion");
+ break;
+ }
+
+ return false;
+}
+
+Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT,
+ SourceLocation KWLoc,
+ SourceLocation LParen,
+ TypeTy *Ty,
+ SourceLocation RParen) {
+ QualType T = GetTypeFromParser(Ty);
+
+ // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
+ // all traits except __is_class, __is_enum and __is_union require a the type
+ // to be complete.
+ if (OTT != UTT_IsClass && OTT != UTT_IsEnum && OTT != UTT_IsUnion) {
+ if (RequireCompleteType(KWLoc, T,
+ diag::err_incomplete_type_used_in_type_trait_expr))
+ return ExprError();
+ }
+
+ // There is no point in eagerly computing the value. The traits are designed
+ // to be used from type trait templates, so Ty will be a template parameter
+ // 99% of the time.
+ return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT, T,
+ RParen, Context.BoolTy));
+}
+
+QualType Sema::CheckPointerToMemberOperands(
+ Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect) {
+ const char *OpSpelling = isIndirect ? "->*" : ".*";
+ // C++ 5.5p2
+ // The binary operator .* [p3: ->*] binds its second operand, which shall
+ // be of type "pointer to member of T" (where T is a completely-defined
+ // class type) [...]
+ QualType RType = rex->getType();
+ const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
+ if (!MemPtr) {
+ Diag(Loc, diag::err_bad_memptr_rhs)
+ << OpSpelling << RType << rex->getSourceRange();
+ return QualType();
+ }
+
+ QualType Class(MemPtr->getClass(), 0);
+
+ // C++ 5.5p2
+ // [...] to its first operand, which shall be of class T or of a class of
+ // which T is an unambiguous and accessible base class. [p3: a pointer to
+ // such a class]
+ QualType LType = lex->getType();
+ if (isIndirect) {
+ if (const PointerType *Ptr = LType->getAs<PointerType>())
+ LType = Ptr->getPointeeType().getNonReferenceType();
+ else {
+ Diag(Loc, diag::err_bad_memptr_lhs)
+ << OpSpelling << 1 << LType
+ << CodeModificationHint::CreateReplacement(SourceRange(Loc), ".*");
+ return QualType();
+ }
+ }
+
+ if (!Context.hasSameUnqualifiedType(Class, LType)) {
+ CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
+ /*DetectVirtual=*/false);
+ // FIXME: Would it be useful to print full ambiguity paths, or is that
+ // overkill?
+ if (!IsDerivedFrom(LType, Class, Paths) ||
+ Paths.isAmbiguous(Context.getCanonicalType(Class))) {
+ Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
+ << (int)isIndirect << lex->getType();
+ return QualType();
+ }
+ // Cast LHS to type of use.
+ QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
+ bool isLValue = !isIndirect && lex->isLvalue(Context) == Expr::LV_Valid;
+ ImpCastExprToType(lex, UseType, CastExpr::CK_DerivedToBase, isLValue);
+ }
+
+ if (isa<CXXZeroInitValueExpr>(rex->IgnoreParens())) {
+ // Diagnose use of pointer-to-member type which when used as
+ // the functional cast in a pointer-to-member expression.
+ Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
+ return QualType();
+ }
+ // C++ 5.5p2
+ // The result is an object or a function of the type specified by the
+ // second operand.
+ // The cv qualifiers are the union of those in the pointer and the left side,
+ // in accordance with 5.5p5 and 5.2.5.
+ // FIXME: This returns a dereferenced member function pointer as a normal
+ // function type. However, the only operation valid on such functions is
+ // calling them. There's also a GCC extension to get a function pointer to the
+ // thing, which is another complication, because this type - unlike the type
+ // that is the result of this expression - takes the class as the first
+ // argument.
+ // We probably need a "MemberFunctionClosureType" or something like that.
+ QualType Result = MemPtr->getPointeeType();
+ Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
+ return Result;
+}
+
+/// \brief Get the target type of a standard or user-defined conversion.
+static QualType TargetType(const ImplicitConversionSequence &ICS) {
+ switch (ICS.getKind()) {
+ case ImplicitConversionSequence::StandardConversion:
+ return ICS.Standard.getToType(2);
+ case ImplicitConversionSequence::UserDefinedConversion:
+ return ICS.UserDefined.After.getToType(2);
+ case ImplicitConversionSequence::AmbiguousConversion:
+ return ICS.Ambiguous.getToType();
+ case ImplicitConversionSequence::EllipsisConversion:
+ case ImplicitConversionSequence::BadConversion:
+ llvm_unreachable("function not valid for ellipsis or bad conversions");
+ }
+ return QualType(); // silence warnings
+}
+
+/// \brief Try to convert a type to another according to C++0x 5.16p3.
+///
+/// This is part of the parameter validation for the ? operator. If either
+/// value operand is a class type, the two operands are attempted to be
+/// converted to each other. This function does the conversion in one direction.
+/// It emits a diagnostic and returns true only if it finds an ambiguous
+/// conversion.
+static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
+ SourceLocation QuestionLoc,
+ ImplicitConversionSequence &ICS) {
+ // C++0x 5.16p3
+ // The process for determining whether an operand expression E1 of type T1
+ // can be converted to match an operand expression E2 of type T2 is defined
+ // as follows:
+ // -- If E2 is an lvalue:
+ if (To->isLvalue(Self.Context) == Expr::LV_Valid) {
+ // E1 can be converted to match E2 if E1 can be implicitly converted to
+ // type "lvalue reference to T2", subject to the constraint that in the
+ // conversion the reference must bind directly to E1.
+ if (!Self.CheckReferenceInit(From,
+ Self.Context.getLValueReferenceType(To->getType()),
+ To->getLocStart(),
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/false,
+ /*ForceRValue=*/false,
+ &ICS))
+ {
+ assert((ICS.isStandard() || ICS.isUserDefined()) &&
+ "expected a definite conversion");
+ bool DirectBinding =
+ ICS.isStandard() ? ICS.Standard.DirectBinding
+ : ICS.UserDefined.After.DirectBinding;
+ if (DirectBinding)
+ return false;
+ }
+ }
+ ICS.setBad();
+ // -- If E2 is an rvalue, or if the conversion above cannot be done:
+ // -- if E1 and E2 have class type, and the underlying class types are
+ // the same or one is a base class of the other:
+ QualType FTy = From->getType();
+ QualType TTy = To->getType();
+ const RecordType *FRec = FTy->getAs<RecordType>();
+ const RecordType *TRec = TTy->getAs<RecordType>();
+ bool FDerivedFromT = FRec && TRec && Self.IsDerivedFrom(FTy, TTy);
+ if (FRec && TRec && (FRec == TRec ||
+ FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
+ // E1 can be converted to match E2 if the class of T2 is the
+ // same type as, or a base class of, the class of T1, and
+ // [cv2 > cv1].
+ if ((FRec == TRec || FDerivedFromT) && TTy.isAtLeastAsQualifiedAs(FTy)) {
+ // Could still fail if there's no copy constructor.
+ // FIXME: Is this a hard error then, or just a conversion failure? The
+ // standard doesn't say.
+ ICS = Self.TryCopyInitialization(From, TTy,
+ /*SuppressUserConversions=*/false,
+ /*ForceRValue=*/false,
+ /*InOverloadResolution=*/false);
+ }
+ } else {
+ // -- Otherwise: E1 can be converted to match E2 if E1 can be
+ // implicitly converted to the type that expression E2 would have
+ // if E2 were converted to an rvalue.
+ // First find the decayed type.
+ if (TTy->isFunctionType())
+ TTy = Self.Context.getPointerType(TTy);
+ else if (TTy->isArrayType())
+ TTy = Self.Context.getArrayDecayedType(TTy);
+
+ // Now try the implicit conversion.
+ // FIXME: This doesn't detect ambiguities.
+ ICS = Self.TryImplicitConversion(From, TTy,
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/false,
+ /*ForceRValue=*/false,
+ /*InOverloadResolution=*/false);
+ }
+ return false;
+}
+
+/// \brief Try to find a common type for two according to C++0x 5.16p5.
+///
+/// This is part of the parameter validation for the ? operator. If either
+/// value operand is a class type, overload resolution is used to find a
+/// conversion to a common type.
+static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
+ SourceLocation Loc) {
+ Expr *Args[2] = { LHS, RHS };
+ OverloadCandidateSet CandidateSet(Loc);
+ Self.AddBuiltinOperatorCandidates(OO_Conditional, Loc, Args, 2, CandidateSet);
+
+ OverloadCandidateSet::iterator Best;
+ switch (Self.BestViableFunction(CandidateSet, Loc, Best)) {
+ case OR_Success:
+ // We found a match. Perform the conversions on the arguments and move on.
+ if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
+ Best->Conversions[0], Sema::AA_Converting) ||
+ Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
+ Best->Conversions[1], Sema::AA_Converting))
+ break;
+ return false;
+
+ case OR_No_Viable_Function:
+ Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
+ << LHS->getType() << RHS->getType()
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ return true;
+
+ case OR_Ambiguous:
+ Self.Diag(Loc, diag::err_conditional_ambiguous_ovl)
+ << LHS->getType() << RHS->getType()
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ // FIXME: Print the possible common types by printing the return types of
+ // the viable candidates.
+ break;
+
+ case OR_Deleted:
+ assert(false && "Conditional operator has only built-in overloads");
+ break;
+ }
+ return true;
+}
+
+/// \brief Perform an "extended" implicit conversion as returned by
+/// TryClassUnification.
+///
+/// TryClassUnification generates ICSs that include reference bindings.
+/// PerformImplicitConversion is not suitable for this; it chokes if the
+/// second part of a standard conversion is ICK_DerivedToBase. This function
+/// handles the reference binding specially.
+static bool ConvertForConditional(Sema &Self, Expr *&E,
+ const ImplicitConversionSequence &ICS) {
+ if (ICS.isStandard() && ICS.Standard.ReferenceBinding) {
+ assert(ICS.Standard.DirectBinding &&
+ "TryClassUnification should never generate indirect ref bindings");
+ // FIXME: CheckReferenceInit should be able to reuse the ICS instead of
+ // redoing all the work.
+ return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType(
+ TargetType(ICS)),
+ /*FIXME:*/E->getLocStart(),
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/false,
+ /*ForceRValue=*/false);
+ }
+ if (ICS.isUserDefined() && ICS.UserDefined.After.ReferenceBinding) {
+ assert(ICS.UserDefined.After.DirectBinding &&
+ "TryClassUnification should never generate indirect ref bindings");
+ return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType(
+ TargetType(ICS)),
+ /*FIXME:*/E->getLocStart(),
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/false,
+ /*ForceRValue=*/false);
+ }
+ if (Self.PerformImplicitConversion(E, TargetType(ICS), ICS, Sema::AA_Converting))
+ return true;
+ return false;
+}
+
+/// \brief Check the operands of ?: under C++ semantics.
+///
+/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
+/// extension. In this case, LHS == Cond. (But they're not aliases.)
+QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
+ SourceLocation QuestionLoc) {
+ // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
+ // interface pointers.
+
+ // C++0x 5.16p1
+ // The first expression is contextually converted to bool.
+ if (!Cond->isTypeDependent()) {
+ if (CheckCXXBooleanCondition(Cond))
+ return QualType();
+ }
+
+ // Either of the arguments dependent?
+ if (LHS->isTypeDependent() || RHS->isTypeDependent())
+ return Context.DependentTy;
+
+ CheckSignCompare(LHS, RHS, QuestionLoc, diag::warn_mixed_sign_conditional);
+
+ // C++0x 5.16p2
+ // If either the second or the third operand has type (cv) void, ...
+ QualType LTy = LHS->getType();
+ QualType RTy = RHS->getType();
+ bool LVoid = LTy->isVoidType();
+ bool RVoid = RTy->isVoidType();
+ if (LVoid || RVoid) {
+ // ... then the [l2r] conversions are performed on the second and third
+ // operands ...
+ DefaultFunctionArrayLvalueConversion(LHS);
+ DefaultFunctionArrayLvalueConversion(RHS);
+ LTy = LHS->getType();
+ RTy = RHS->getType();
+
+ // ... and one of the following shall hold:
+ // -- The second or the third operand (but not both) is a throw-
+ // expression; the result is of the type of the other and is an rvalue.
+ bool LThrow = isa<CXXThrowExpr>(LHS);
+ bool RThrow = isa<CXXThrowExpr>(RHS);
+ if (LThrow && !RThrow)
+ return RTy;
+ if (RThrow && !LThrow)
+ return LTy;
+
+ // -- Both the second and third operands have type void; the result is of
+ // type void and is an rvalue.
+ if (LVoid && RVoid)
+ return Context.VoidTy;
+
+ // Neither holds, error.
+ Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
+ << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ return QualType();
+ }
+
+ // Neither is void.
+
+ // C++0x 5.16p3
+ // Otherwise, if the second and third operand have different types, and
+ // either has (cv) class type, and attempt is made to convert each of those
+ // operands to the other.
+ if (Context.getCanonicalType(LTy) != Context.getCanonicalType(RTy) &&
+ (LTy->isRecordType() || RTy->isRecordType())) {
+ ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
+ // These return true if a single direction is already ambiguous.
+ if (TryClassUnification(*this, LHS, RHS, QuestionLoc, ICSLeftToRight))
+ return QualType();
+ if (TryClassUnification(*this, RHS, LHS, QuestionLoc, ICSRightToLeft))
+ return QualType();
+
+ bool HaveL2R = !ICSLeftToRight.isBad();
+ bool HaveR2L = !ICSRightToLeft.isBad();
+ // If both can be converted, [...] the program is ill-formed.
+ if (HaveL2R && HaveR2L) {
+ Diag(QuestionLoc, diag::err_conditional_ambiguous)
+ << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
+ return QualType();
+ }
+
+ // If exactly one conversion is possible, that conversion is applied to
+ // the chosen operand and the converted operands are used in place of the
+ // original operands for the remainder of this section.
+ if (HaveL2R) {
+ if (ConvertForConditional(*this, LHS, ICSLeftToRight))
+ return QualType();
+ LTy = LHS->getType();
+ } else if (HaveR2L) {
+ if (ConvertForConditional(*this, RHS, ICSRightToLeft))
+ return QualType();
+ RTy = RHS->getType();
+ }
+ }
+
+ // C++0x 5.16p4
+ // If the second and third operands are lvalues and have the same type,
+ // the result is of that type [...]
+ bool Same = Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy);
+ if (Same && LHS->isLvalue(Context) == Expr::LV_Valid &&
+ RHS->isLvalue(Context) == Expr::LV_Valid)
+ return LTy;
+
+ // C++0x 5.16p5
+ // Otherwise, the result is an rvalue. If the second and third operands
+ // do not have the same type, and either has (cv) class type, ...
+ if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
+ // ... overload resolution is used to determine the conversions (if any)
+ // to be applied to the operands. If the overload resolution fails, the
+ // program is ill-formed.
+ if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
+ return QualType();
+ }
+
+ // C++0x 5.16p6
+ // LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
+ // conversions are performed on the second and third operands.
+ DefaultFunctionArrayLvalueConversion(LHS);
+ DefaultFunctionArrayLvalueConversion(RHS);
+ LTy = LHS->getType();
+ RTy = RHS->getType();
+
+ // After those conversions, one of the following shall hold:
+ // -- The second and third operands have the same type; the result
+ // is of that type.
+ if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy))
+ return LTy;
+
+ // -- The second and third operands have arithmetic or enumeration type;
+ // the usual arithmetic conversions are performed to bring them to a
+ // common type, and the result is of that type.
+ if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
+ UsualArithmeticConversions(LHS, RHS);
+ return LHS->getType();
+ }
+
+ // -- The second and third operands have pointer type, or one has pointer
+ // type and the other is a null pointer constant; pointer conversions
+ // and qualification conversions are performed to bring them to their
+ // composite pointer type. The result is of the composite pointer type.
+ // -- The second and third operands have pointer to member type, or one has
+ // pointer to member type and the other is a null pointer constant;
+ // pointer to member conversions and qualification conversions are
+ // performed to bring them to a common type, whose cv-qualification
+ // shall match the cv-qualification of either the second or the third
+ // operand. The result is of the common type.
+ QualType Composite = FindCompositePointerType(LHS, RHS);
+ if (!Composite.isNull())
+ return Composite;
+
+ // Similarly, attempt to find composite type of twp objective-c pointers.
+ Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
+ if (!Composite.isNull())
+ return Composite;
+
+ Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
+ << LHS->getType() << RHS->getType()
+ << LHS->getSourceRange() << RHS->getSourceRange();
+ return QualType();
+}
+
+/// \brief Find a merged pointer type and convert the two expressions to it.
+///
+/// This finds the composite pointer type (or member pointer type) for @p E1
+/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
+/// type and returns it.
+/// It does not emit diagnostics.
+QualType Sema::FindCompositePointerType(Expr *&E1, Expr *&E2) {
+ assert(getLangOptions().CPlusPlus && "This function assumes C++");
+ QualType T1 = E1->getType(), T2 = E2->getType();
+
+ if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
+ !T2->isAnyPointerType() && !T2->isMemberPointerType())
+ return QualType();
+
+ // C++0x 5.9p2
+ // Pointer conversions and qualification conversions are performed on
+ // pointer operands to bring them to their composite pointer type. If
+ // one operand is a null pointer constant, the composite pointer type is
+ // the type of the other operand.
+ if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
+ if (T2->isMemberPointerType())
+ ImpCastExprToType(E1, T2, CastExpr::CK_NullToMemberPointer);
+ else
+ ImpCastExprToType(E1, T2, CastExpr::CK_IntegralToPointer);
+ return T2;
+ }
+ if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
+ if (T1->isMemberPointerType())
+ ImpCastExprToType(E2, T1, CastExpr::CK_NullToMemberPointer);
+ else
+ ImpCastExprToType(E2, T1, CastExpr::CK_IntegralToPointer);
+ return T1;
+ }
+
+ // Now both have to be pointers or member pointers.
+ if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
+ (!T2->isPointerType() && !T2->isMemberPointerType()))
+ return QualType();
+
+ // Otherwise, of one of the operands has type "pointer to cv1 void," then
+ // the other has type "pointer to cv2 T" and the composite pointer type is
+ // "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
+ // Otherwise, the composite pointer type is a pointer type similar to the
+ // type of one of the operands, with a cv-qualification signature that is
+ // the union of the cv-qualification signatures of the operand types.
+ // In practice, the first part here is redundant; it's subsumed by the second.
+ // What we do here is, we build the two possible composite types, and try the
+ // conversions in both directions. If only one works, or if the two composite
+ // types are the same, we have succeeded.
+ // FIXME: extended qualifiers?
+ typedef llvm::SmallVector<unsigned, 4> QualifierVector;
+ QualifierVector QualifierUnion;
+ typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
+ ContainingClassVector;
+ ContainingClassVector MemberOfClass;
+ QualType Composite1 = Context.getCanonicalType(T1),
+ Composite2 = Context.getCanonicalType(T2);
+ do {
+ const PointerType *Ptr1, *Ptr2;
+ if ((Ptr1 = Composite1->getAs<PointerType>()) &&
+ (Ptr2 = Composite2->getAs<PointerType>())) {
+ Composite1 = Ptr1->getPointeeType();
+ Composite2 = Ptr2->getPointeeType();
+ QualifierUnion.push_back(
+ Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
+ MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
+ continue;
+ }
+
+ const MemberPointerType *MemPtr1, *MemPtr2;
+ if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
+ (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
+ Composite1 = MemPtr1->getPointeeType();
+ Composite2 = MemPtr2->getPointeeType();
+ QualifierUnion.push_back(
+ Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
+ MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
+ MemPtr2->getClass()));
+ continue;
+ }
+
+ // FIXME: block pointer types?
+
+ // Cannot unwrap any more types.
+ break;
+ } while (true);
+
+ // Rewrap the composites as pointers or member pointers with the union CVRs.
+ ContainingClassVector::reverse_iterator MOC
+ = MemberOfClass.rbegin();
+ for (QualifierVector::reverse_iterator
+ I = QualifierUnion.rbegin(),
+ E = QualifierUnion.rend();
+ I != E; (void)++I, ++MOC) {
+ Qualifiers Quals = Qualifiers::fromCVRMask(*I);
+ if (MOC->first && MOC->second) {
+ // Rebuild member pointer type
+ Composite1 = Context.getMemberPointerType(
+ Context.getQualifiedType(Composite1, Quals),
+ MOC->first);
+ Composite2 = Context.getMemberPointerType(
+ Context.getQualifiedType(Composite2, Quals),
+ MOC->second);
+ } else {
+ // Rebuild pointer type
+ Composite1
+ = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
+ Composite2
+ = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
+ }
+ }
+
+ ImplicitConversionSequence E1ToC1 =
+ TryImplicitConversion(E1, Composite1,
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/false,
+ /*ForceRValue=*/false,
+ /*InOverloadResolution=*/false);
+ ImplicitConversionSequence E2ToC1 =
+ TryImplicitConversion(E2, Composite1,
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/false,
+ /*ForceRValue=*/false,
+ /*InOverloadResolution=*/false);
+
+ ImplicitConversionSequence E1ToC2, E2ToC2;
+ E1ToC2.setBad();
+ E2ToC2.setBad();
+ if (Context.getCanonicalType(Composite1) !=
+ Context.getCanonicalType(Composite2)) {
+ E1ToC2 = TryImplicitConversion(E1, Composite2,
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/false,
+ /*ForceRValue=*/false,
+ /*InOverloadResolution=*/false);
+ E2ToC2 = TryImplicitConversion(E2, Composite2,
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/false,
+ /*ForceRValue=*/false,
+ /*InOverloadResolution=*/false);
+ }
+
+ bool ToC1Viable = !E1ToC1.isBad() && !E2ToC1.isBad();
+ bool ToC2Viable = !E1ToC2.isBad() && !E2ToC2.isBad();
+ if (ToC1Viable && !ToC2Viable) {
+ if (!PerformImplicitConversion(E1, Composite1, E1ToC1, Sema::AA_Converting) &&
+ !PerformImplicitConversion(E2, Composite1, E2ToC1, Sema::AA_Converting))
+ return Composite1;
+ }
+ if (ToC2Viable && !ToC1Viable) {
+ if (!PerformImplicitConversion(E1, Composite2, E1ToC2, Sema::AA_Converting) &&
+ !PerformImplicitConversion(E2, Composite2, E2ToC2, Sema::AA_Converting))
+ return Composite2;
+ }
+ return QualType();
+}
+
+Sema::OwningExprResult Sema::MaybeBindToTemporary(Expr *E) {
+ if (!Context.getLangOptions().CPlusPlus)
+ return Owned(E);
+
+ assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
+
+ const RecordType *RT = E->getType()->getAs<RecordType>();
+ if (!RT)
+ return Owned(E);
+
+ // If this is the result of a call expression, our source might
+ // actually be a reference, in which case we shouldn't bind.
+ if (CallExpr *CE = dyn_cast<CallExpr>(E)) {
+ QualType Ty = CE->getCallee()->getType();
+ if (const PointerType *PT = Ty->getAs<PointerType>())
+ Ty = PT->getPointeeType();
+
+ const FunctionType *FTy = Ty->getAs<FunctionType>();
+ if (FTy->getResultType()->isReferenceType())
+ return Owned(E);
+ }
+
+ // That should be enough to guarantee that this type is complete.
+ // If it has a trivial destructor, we can avoid the extra copy.
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ if (RD->hasTrivialDestructor())
+ return Owned(E);
+
+ CXXTemporary *Temp = CXXTemporary::Create(Context,
+ RD->getDestructor(Context));
+ ExprTemporaries.push_back(Temp);
+ if (CXXDestructorDecl *Destructor =
+ const_cast<CXXDestructorDecl*>(RD->getDestructor(Context)))
+ MarkDeclarationReferenced(E->getExprLoc(), Destructor);
+ // FIXME: Add the temporary to the temporaries vector.
+ return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
+}
+
+Expr *Sema::MaybeCreateCXXExprWithTemporaries(Expr *SubExpr) {
+ assert(SubExpr && "sub expression can't be null!");
+
+ unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
+ assert(ExprTemporaries.size() >= FirstTemporary);
+ if (ExprTemporaries.size() == FirstTemporary)
+ return SubExpr;
+
+ Expr *E = CXXExprWithTemporaries::Create(Context, SubExpr,
+ &ExprTemporaries[FirstTemporary],
+ ExprTemporaries.size() - FirstTemporary);
+ ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
+ ExprTemporaries.end());
+
+ return E;
+}
+
+Sema::OwningExprResult
+Sema::MaybeCreateCXXExprWithTemporaries(OwningExprResult SubExpr) {
+ if (SubExpr.isInvalid())
+ return ExprError();
+
+ return Owned(MaybeCreateCXXExprWithTemporaries(SubExpr.takeAs<Expr>()));
+}
+
+FullExpr Sema::CreateFullExpr(Expr *SubExpr) {
+ unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
+ assert(ExprTemporaries.size() >= FirstTemporary);
+
+ unsigned NumTemporaries = ExprTemporaries.size() - FirstTemporary;
+ CXXTemporary **Temporaries =
+ NumTemporaries == 0 ? 0 : &ExprTemporaries[FirstTemporary];
+
+ FullExpr E = FullExpr::Create(Context, SubExpr, Temporaries, NumTemporaries);
+
+ ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
+ ExprTemporaries.end());
+
+ return E;
+}
+
+Sema::OwningExprResult
+Sema::ActOnStartCXXMemberReference(Scope *S, ExprArg Base, SourceLocation OpLoc,
+ tok::TokenKind OpKind, TypeTy *&ObjectType) {
+ // Since this might be a postfix expression, get rid of ParenListExprs.
+ Base = MaybeConvertParenListExprToParenExpr(S, move(Base));
+
+ Expr *BaseExpr = (Expr*)Base.get();
+ assert(BaseExpr && "no record expansion");
+
+ QualType BaseType = BaseExpr->getType();
+ if (BaseType->isDependentType()) {
+ // If we have a pointer to a dependent type and are using the -> operator,
+ // the object type is the type that the pointer points to. We might still
+ // have enough information about that type to do something useful.
+ if (OpKind == tok::arrow)
+ if (const PointerType *Ptr = BaseType->getAs<PointerType>())
+ BaseType = Ptr->getPointeeType();
+
+ ObjectType = BaseType.getAsOpaquePtr();
+ return move(Base);
+ }
+
+ // C++ [over.match.oper]p8:
+ // [...] When operator->returns, the operator-> is applied to the value
+ // returned, with the original second operand.
+ if (OpKind == tok::arrow) {
+ // The set of types we've considered so far.
+ llvm::SmallPtrSet<CanQualType,8> CTypes;
+ llvm::SmallVector<SourceLocation, 8> Locations;
+ CTypes.insert(Context.getCanonicalType(BaseType));
+
+ while (BaseType->isRecordType()) {
+ Base = BuildOverloadedArrowExpr(S, move(Base), OpLoc);
+ BaseExpr = (Expr*)Base.get();
+ if (BaseExpr == NULL)
+ return ExprError();
+ if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(BaseExpr))
+ Locations.push_back(OpCall->getDirectCallee()->getLocation());
+ BaseType = BaseExpr->getType();
+ CanQualType CBaseType = Context.getCanonicalType(BaseType);
+ if (!CTypes.insert(CBaseType)) {
+ Diag(OpLoc, diag::err_operator_arrow_circular);
+ for (unsigned i = 0; i < Locations.size(); i++)
+ Diag(Locations[i], diag::note_declared_at);
+ return ExprError();
+ }
+ }
+
+ if (BaseType->isPointerType())
+ BaseType = BaseType->getPointeeType();
+ }
+
+ // We could end up with various non-record types here, such as extended
+ // vector types or Objective-C interfaces. Just return early and let
+ // ActOnMemberReferenceExpr do the work.
+ if (!BaseType->isRecordType()) {
+ // C++ [basic.lookup.classref]p2:
+ // [...] If the type of the object expression is of pointer to scalar
+ // type, the unqualified-id is looked up in the context of the complete
+ // postfix-expression.
+ ObjectType = 0;
+ return move(Base);
+ }
+
+ // The object type must be complete (or dependent).
+ if (!BaseType->isDependentType() &&
+ RequireCompleteType(OpLoc, BaseType,
+ PDiag(diag::err_incomplete_member_access)))
+ return ExprError();
+
+ // C++ [basic.lookup.classref]p2:
+ // If the id-expression in a class member access (5.2.5) is an
+ // unqualified-id, and the type of the object expression is of a class
+ // type C (or of pointer to a class type C), the unqualified-id is looked
+ // up in the scope of class C. [...]
+ ObjectType = BaseType.getAsOpaquePtr();
+
+ return move(Base);
+}
+
+CXXMemberCallExpr *Sema::BuildCXXMemberCallExpr(Expr *Exp,
+ CXXMethodDecl *Method) {
+ if (PerformObjectArgumentInitialization(Exp, Method))
+ assert(0 && "Calling BuildCXXMemberCallExpr with invalid call?");
+
+ MemberExpr *ME =
+ new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method,
+ SourceLocation(), Method->getType());
+ QualType ResultType = Method->getResultType().getNonReferenceType();
+ MarkDeclarationReferenced(Exp->getLocStart(), Method);
+ CXXMemberCallExpr *CE =
+ new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType,
+ Exp->getLocEnd());
+ return CE;
+}
+
+Sema::OwningExprResult Sema::BuildCXXCastArgument(SourceLocation CastLoc,
+ QualType Ty,
+ CastExpr::CastKind Kind,
+ CXXMethodDecl *Method,
+ ExprArg Arg) {
+ Expr *From = Arg.takeAs<Expr>();
+
+ switch (Kind) {
+ default: assert(0 && "Unhandled cast kind!");
+ case CastExpr::CK_ConstructorConversion: {
+ ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
+
+ if (CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
+ MultiExprArg(*this, (void **)&From, 1),
+ CastLoc, ConstructorArgs))
+ return ExprError();
+
+ OwningExprResult Result =
+ BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
+ move_arg(ConstructorArgs));
+ if (Result.isInvalid())
+ return ExprError();
+
+ return MaybeBindToTemporary(Result.takeAs<Expr>());
+ }
+
+ case CastExpr::CK_UserDefinedConversion: {
+ assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
+
+ // Create an implicit call expr that calls it.
+ CXXMemberCallExpr *CE = BuildCXXMemberCallExpr(From, Method);
+ return MaybeBindToTemporary(CE);
+ }
+ }
+}
+
+Sema::OwningExprResult Sema::ActOnFinishFullExpr(ExprArg Arg) {
+ Expr *FullExpr = Arg.takeAs<Expr>();
+ if (FullExpr)
+ FullExpr = MaybeCreateCXXExprWithTemporaries(FullExpr);
+
+ return Owned(FullExpr);
+}