Check in LLVM r95781.
diff --git a/lib/Sema/SemaStmt.cpp b/lib/Sema/SemaStmt.cpp
new file mode 100644
index 0000000..50479a9
--- /dev/null
+++ b/lib/Sema/SemaStmt.cpp
@@ -0,0 +1,1644 @@
+//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+//  This file implements semantic analysis for statements.
+//
+//===----------------------------------------------------------------------===//
+
+#include "Sema.h"
+#include "SemaInit.h"
+#include "clang/AST/APValue.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/ExprObjC.h"
+#include "clang/AST/StmtObjC.h"
+#include "clang/AST/StmtCXX.h"
+#include "clang/Lex/Preprocessor.h"
+#include "clang/Basic/TargetInfo.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+using namespace clang;
+
+Sema::OwningStmtResult Sema::ActOnExprStmt(FullExprArg expr) {
+  Expr *E = expr->takeAs<Expr>();
+  assert(E && "ActOnExprStmt(): missing expression");
+  if (E->getType()->isObjCInterfaceType()) {
+    if (LangOpts.ObjCNonFragileABI)
+      Diag(E->getLocEnd(), diag::err_indirection_requires_nonfragile_object)
+             << E->getType();
+    else
+      Diag(E->getLocEnd(), diag::err_direct_interface_unsupported)
+             << E->getType();
+    return StmtError();
+  }
+  // C99 6.8.3p2: The expression in an expression statement is evaluated as a
+  // void expression for its side effects.  Conversion to void allows any
+  // operand, even incomplete types.
+
+  // Same thing in for stmt first clause (when expr) and third clause.
+  return Owned(static_cast<Stmt*>(E));
+}
+
+
+Sema::OwningStmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
+  return Owned(new (Context) NullStmt(SemiLoc));
+}
+
+Sema::OwningStmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg,
+                                           SourceLocation StartLoc,
+                                           SourceLocation EndLoc) {
+  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
+
+  // If we have an invalid decl, just return an error.
+  if (DG.isNull()) return StmtError();
+
+  return Owned(new (Context) DeclStmt(DG, StartLoc, EndLoc));
+}
+
+void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
+  DeclGroupRef DG = dg.getAsVal<DeclGroupRef>();
+  
+  // If we have an invalid decl, just return.
+  if (DG.isNull() || !DG.isSingleDecl()) return;
+  // suppress any potential 'unused variable' warning.
+  DG.getSingleDecl()->setUsed();
+}
+
+void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
+  const Expr *E = dyn_cast_or_null<Expr>(S);
+  if (!E)
+    return;
+
+  // Ignore expressions that have void type.
+  if (E->getType()->isVoidType())
+    return;
+
+  SourceLocation Loc;
+  SourceRange R1, R2;
+  if (!E->isUnusedResultAWarning(Loc, R1, R2, Context))
+    return;
+
+  // Okay, we have an unused result.  Depending on what the base expression is,
+  // we might want to make a more specific diagnostic.  Check for one of these
+  // cases now.
+  unsigned DiagID = diag::warn_unused_expr;
+  E = E->IgnoreParens();
+  if (isa<ObjCImplicitSetterGetterRefExpr>(E))
+    DiagID = diag::warn_unused_property_expr;
+  
+  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
+    // If the callee has attribute pure, const, or warn_unused_result, warn with
+    // a more specific message to make it clear what is happening.
+    if (const Decl *FD = CE->getCalleeDecl()) {
+      if (FD->getAttr<WarnUnusedResultAttr>()) {
+        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "warn_unused_result";
+        return;
+      }
+      if (FD->getAttr<PureAttr>()) {
+        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
+        return;
+      }
+      if (FD->getAttr<ConstAttr>()) {
+        Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
+        return;
+      }
+    }        
+  }
+
+  Diag(Loc, DiagID) << R1 << R2;
+}
+
+Action::OwningStmtResult
+Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
+                        MultiStmtArg elts, bool isStmtExpr) {
+  unsigned NumElts = elts.size();
+  Stmt **Elts = reinterpret_cast<Stmt**>(elts.release());
+  // If we're in C89 mode, check that we don't have any decls after stmts.  If
+  // so, emit an extension diagnostic.
+  if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
+    // Note that __extension__ can be around a decl.
+    unsigned i = 0;
+    // Skip over all declarations.
+    for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
+      /*empty*/;
+
+    // We found the end of the list or a statement.  Scan for another declstmt.
+    for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
+      /*empty*/;
+
+    if (i != NumElts) {
+      Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
+      Diag(D->getLocation(), diag::ext_mixed_decls_code);
+    }
+  }
+  // Warn about unused expressions in statements.
+  for (unsigned i = 0; i != NumElts; ++i) {
+    // Ignore statements that are last in a statement expression.
+    if (isStmtExpr && i == NumElts - 1)
+      continue;
+
+    DiagnoseUnusedExprResult(Elts[i]);
+  }
+
+  return Owned(new (Context) CompoundStmt(Context, Elts, NumElts, L, R));
+}
+
+Action::OwningStmtResult
+Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprArg lhsval,
+                    SourceLocation DotDotDotLoc, ExprArg rhsval,
+                    SourceLocation ColonLoc) {
+  assert((lhsval.get() != 0) && "missing expression in case statement");
+
+  // C99 6.8.4.2p3: The expression shall be an integer constant.
+  // However, GCC allows any evaluatable integer expression.
+  Expr *LHSVal = static_cast<Expr*>(lhsval.get());
+  if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent() &&
+      VerifyIntegerConstantExpression(LHSVal))
+    return StmtError();
+
+  // GCC extension: The expression shall be an integer constant.
+
+  Expr *RHSVal = static_cast<Expr*>(rhsval.get());
+  if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent() &&
+      VerifyIntegerConstantExpression(RHSVal)) {
+    RHSVal = 0;  // Recover by just forgetting about it.
+    rhsval = 0;
+  }
+
+  if (getSwitchStack().empty()) {
+    Diag(CaseLoc, diag::err_case_not_in_switch);
+    return StmtError();
+  }
+
+  // Only now release the smart pointers.
+  lhsval.release();
+  rhsval.release();
+  CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
+                                        ColonLoc);
+  getSwitchStack().back()->addSwitchCase(CS);
+  return Owned(CS);
+}
+
+/// ActOnCaseStmtBody - This installs a statement as the body of a case.
+void Sema::ActOnCaseStmtBody(StmtTy *caseStmt, StmtArg subStmt) {
+  CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
+  Stmt *SubStmt = subStmt.takeAs<Stmt>();
+  CS->setSubStmt(SubStmt);
+}
+
+Action::OwningStmtResult
+Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
+                       StmtArg subStmt, Scope *CurScope) {
+  Stmt *SubStmt = subStmt.takeAs<Stmt>();
+
+  if (getSwitchStack().empty()) {
+    Diag(DefaultLoc, diag::err_default_not_in_switch);
+    return Owned(SubStmt);
+  }
+
+  DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
+  getSwitchStack().back()->addSwitchCase(DS);
+  return Owned(DS);
+}
+
+Action::OwningStmtResult
+Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
+                     SourceLocation ColonLoc, StmtArg subStmt) {
+  Stmt *SubStmt = subStmt.takeAs<Stmt>();
+  // Look up the record for this label identifier.
+  LabelStmt *&LabelDecl = getLabelMap()[II];
+
+  // If not forward referenced or defined already, just create a new LabelStmt.
+  if (LabelDecl == 0)
+    return Owned(LabelDecl = new (Context) LabelStmt(IdentLoc, II, SubStmt));
+
+  assert(LabelDecl->getID() == II && "Label mismatch!");
+
+  // Otherwise, this label was either forward reference or multiply defined.  If
+  // multiply defined, reject it now.
+  if (LabelDecl->getSubStmt()) {
+    Diag(IdentLoc, diag::err_redefinition_of_label) << LabelDecl->getID();
+    Diag(LabelDecl->getIdentLoc(), diag::note_previous_definition);
+    return Owned(SubStmt);
+  }
+
+  // Otherwise, this label was forward declared, and we just found its real
+  // definition.  Fill in the forward definition and return it.
+  LabelDecl->setIdentLoc(IdentLoc);
+  LabelDecl->setSubStmt(SubStmt);
+  return Owned(LabelDecl);
+}
+
+Action::OwningStmtResult
+Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, DeclPtrTy CondVar,
+                  StmtArg ThenVal, SourceLocation ElseLoc,
+                  StmtArg ElseVal) {
+  OwningExprResult CondResult(CondVal.release());
+
+  VarDecl *ConditionVar = 0;
+  if (CondVar.get()) {
+    ConditionVar = CondVar.getAs<VarDecl>();
+    CondResult = CheckConditionVariable(ConditionVar);
+    if (CondResult.isInvalid())
+      return StmtError();
+  }
+  Expr *ConditionExpr = CondResult.takeAs<Expr>();
+  if (!ConditionExpr)
+    return StmtError();
+  
+  if (CheckBooleanCondition(ConditionExpr, IfLoc)) {
+    CondResult = ConditionExpr;
+    return StmtError();
+  }
+
+  Stmt *thenStmt = ThenVal.takeAs<Stmt>();
+  DiagnoseUnusedExprResult(thenStmt);
+
+  // Warn if the if block has a null body without an else value.
+  // this helps prevent bugs due to typos, such as
+  // if (condition);
+  //   do_stuff();
+  if (!ElseVal.get()) {
+    if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
+      Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
+  }
+
+  Stmt *elseStmt = ElseVal.takeAs<Stmt>();
+  DiagnoseUnusedExprResult(elseStmt);
+
+  CondResult.release();
+  return Owned(new (Context) IfStmt(IfLoc, ConditionVar, ConditionExpr, 
+                                    thenStmt, ElseLoc, elseStmt));
+}
+
+Action::OwningStmtResult
+Sema::ActOnStartOfSwitchStmt(FullExprArg cond, DeclPtrTy CondVar) {
+  OwningExprResult CondResult(cond.release());
+  
+  VarDecl *ConditionVar = 0;
+  if (CondVar.get()) {
+    ConditionVar = CondVar.getAs<VarDecl>();
+    CondResult = CheckConditionVariable(ConditionVar);
+    if (CondResult.isInvalid())
+      return StmtError();
+  }
+  SwitchStmt *SS = new (Context) SwitchStmt(ConditionVar, 
+                                            CondResult.takeAs<Expr>());
+  getSwitchStack().push_back(SS);
+  return Owned(SS);
+}
+
+/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
+/// the specified width and sign.  If an overflow occurs, detect it and emit
+/// the specified diagnostic.
+void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
+                                              unsigned NewWidth, bool NewSign,
+                                              SourceLocation Loc,
+                                              unsigned DiagID) {
+  // Perform a conversion to the promoted condition type if needed.
+  if (NewWidth > Val.getBitWidth()) {
+    // If this is an extension, just do it.
+    llvm::APSInt OldVal(Val);
+    Val.extend(NewWidth);
+
+    // If the input was signed and negative and the output is unsigned,
+    // warn.
+    if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
+      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
+
+    Val.setIsSigned(NewSign);
+  } else if (NewWidth < Val.getBitWidth()) {
+    // If this is a truncation, check for overflow.
+    llvm::APSInt ConvVal(Val);
+    ConvVal.trunc(NewWidth);
+    ConvVal.setIsSigned(NewSign);
+    ConvVal.extend(Val.getBitWidth());
+    ConvVal.setIsSigned(Val.isSigned());
+    if (ConvVal != Val)
+      Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
+
+    // Regardless of whether a diagnostic was emitted, really do the
+    // truncation.
+    Val.trunc(NewWidth);
+    Val.setIsSigned(NewSign);
+  } else if (NewSign != Val.isSigned()) {
+    // Convert the sign to match the sign of the condition.  This can cause
+    // overflow as well: unsigned(INTMIN)
+    llvm::APSInt OldVal(Val);
+    Val.setIsSigned(NewSign);
+
+    if (Val.isNegative())  // Sign bit changes meaning.
+      Diag(Loc, DiagID) << OldVal.toString(10) << Val.toString(10);
+  }
+}
+
+namespace {
+  struct CaseCompareFunctor {
+    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
+                    const llvm::APSInt &RHS) {
+      return LHS.first < RHS;
+    }
+    bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
+                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
+      return LHS.first < RHS.first;
+    }
+    bool operator()(const llvm::APSInt &LHS,
+                    const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
+      return LHS < RHS.first;
+    }
+  };
+}
+
+/// CmpCaseVals - Comparison predicate for sorting case values.
+///
+static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
+                        const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
+  if (lhs.first < rhs.first)
+    return true;
+
+  if (lhs.first == rhs.first &&
+      lhs.second->getCaseLoc().getRawEncoding()
+       < rhs.second->getCaseLoc().getRawEncoding())
+    return true;
+  return false;
+}
+
+/// CmpEnumVals - Comparison predicate for sorting enumeration values.
+///
+static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
+                        const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
+{
+  return lhs.first < rhs.first;
+}
+
+/// EqEnumVals - Comparison preficate for uniqing enumeration values.
+///
+static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
+                       const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
+{
+  return lhs.first == rhs.first;
+}
+
+/// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
+/// potentially integral-promoted expression @p expr.
+static QualType GetTypeBeforeIntegralPromotion(const Expr* expr) {
+  const ImplicitCastExpr *ImplicitCast =
+      dyn_cast_or_null<ImplicitCastExpr>(expr);
+  if (ImplicitCast != NULL) {
+    const Expr *ExprBeforePromotion = ImplicitCast->getSubExpr();
+    QualType TypeBeforePromotion = ExprBeforePromotion->getType();
+    if (TypeBeforePromotion->isIntegralType()) {
+      return TypeBeforePromotion;
+    }
+  }
+  return expr->getType();
+}
+
+/// \brief Check (and possibly convert) the condition in a switch
+/// statement in C++.
+static bool CheckCXXSwitchCondition(Sema &S, SourceLocation SwitchLoc,
+                                    Expr *&CondExpr) {
+  if (CondExpr->isTypeDependent())
+    return false;
+
+  QualType CondType = CondExpr->getType();
+
+  // C++ 6.4.2.p2:
+  // The condition shall be of integral type, enumeration type, or of a class
+  // type for which a single conversion function to integral or enumeration
+  // type exists (12.3). If the condition is of class type, the condition is
+  // converted by calling that conversion function, and the result of the
+  // conversion is used in place of the original condition for the remainder
+  // of this section. Integral promotions are performed.
+
+  // Make sure that the condition expression has a complete type,
+  // otherwise we'll never find any conversions.
+  if (S.RequireCompleteType(SwitchLoc, CondType,
+                            PDiag(diag::err_switch_incomplete_class_type)
+                              << CondExpr->getSourceRange()))
+    return true;
+
+  llvm::SmallVector<CXXConversionDecl *, 4> ViableConversions;
+  llvm::SmallVector<CXXConversionDecl *, 4> ExplicitConversions;
+  if (const RecordType *RecordTy = CondType->getAs<RecordType>()) {
+    const UnresolvedSetImpl *Conversions
+      = cast<CXXRecordDecl>(RecordTy->getDecl())
+                                             ->getVisibleConversionFunctions();
+    for (UnresolvedSetImpl::iterator I = Conversions->begin(),
+           E = Conversions->end(); I != E; ++I) {
+      if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(*I))
+        if (Conversion->getConversionType().getNonReferenceType()
+              ->isIntegralType()) {
+          if (Conversion->isExplicit())
+            ExplicitConversions.push_back(Conversion);
+          else
+          ViableConversions.push_back(Conversion);
+        }
+    }
+
+    switch (ViableConversions.size()) {
+    case 0:
+      if (ExplicitConversions.size() == 1) {
+        // The user probably meant to invoke the given explicit
+        // conversion; use it.
+        QualType ConvTy
+          = ExplicitConversions[0]->getConversionType()
+                        .getNonReferenceType();
+        std::string TypeStr;
+        ConvTy.getAsStringInternal(TypeStr, S.Context.PrintingPolicy);
+
+        S.Diag(SwitchLoc, diag::err_switch_explicit_conversion)
+          << CondType << ConvTy << CondExpr->getSourceRange()
+          << CodeModificationHint::CreateInsertion(CondExpr->getLocStart(),
+                                         "static_cast<" + TypeStr + ">(")
+          << CodeModificationHint::CreateInsertion(
+                            S.PP.getLocForEndOfToken(CondExpr->getLocEnd()),
+                               ")");
+        S.Diag(ExplicitConversions[0]->getLocation(),
+             diag::note_switch_conversion)
+          << ConvTy->isEnumeralType() << ConvTy;
+
+        // If we aren't in a SFINAE context, build a call to the 
+        // explicit conversion function.
+        if (S.isSFINAEContext())
+          return true;
+
+        CondExpr = S.BuildCXXMemberCallExpr(CondExpr, ExplicitConversions[0]);
+      }
+
+      // We'll complain below about a non-integral condition type.
+      break;
+
+    case 1:
+      // Apply this conversion.
+      CondExpr = S.BuildCXXMemberCallExpr(CondExpr, ViableConversions[0]);
+      break;
+
+    default:
+      S.Diag(SwitchLoc, diag::err_switch_multiple_conversions)
+        << CondType << CondExpr->getSourceRange();
+      for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
+        QualType ConvTy
+          = ViableConversions[I]->getConversionType().getNonReferenceType();
+        S.Diag(ViableConversions[I]->getLocation(),
+             diag::note_switch_conversion)
+          << ConvTy->isEnumeralType() << ConvTy;
+      }
+      return true;
+    }
+  } 
+
+  return false;
+}
+
+/// ActOnSwitchBodyError - This is called if there is an error parsing the
+/// body of the switch stmt instead of ActOnFinishSwitchStmt.
+void Sema::ActOnSwitchBodyError(SourceLocation SwitchLoc, StmtArg Switch,
+                                StmtArg Body) {
+  // Keep the switch stack balanced.
+  assert(getSwitchStack().back() == (SwitchStmt*)Switch.get() &&
+         "switch stack missing push/pop!");
+  getSwitchStack().pop_back();
+}
+
+Action::OwningStmtResult
+Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtArg Switch,
+                            StmtArg Body) {
+  Stmt *BodyStmt = Body.takeAs<Stmt>();
+
+  SwitchStmt *SS = getSwitchStack().back();
+  assert(SS == (SwitchStmt*)Switch.get() && "switch stack missing push/pop!");
+
+  SS->setBody(BodyStmt, SwitchLoc);
+  getSwitchStack().pop_back();
+
+  if (SS->getCond() == 0) {
+    SS->Destroy(Context);
+    return StmtError();
+  }
+    
+  Expr *CondExpr = SS->getCond();
+  QualType CondTypeBeforePromotion =
+      GetTypeBeforeIntegralPromotion(CondExpr);
+
+  if (getLangOptions().CPlusPlus &&
+      CheckCXXSwitchCondition(*this, SwitchLoc, CondExpr))
+    return StmtError();
+
+  // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
+  UsualUnaryConversions(CondExpr);
+  QualType CondType = CondExpr->getType();
+  SS->setCond(CondExpr);
+
+  // C++ 6.4.2.p2:
+  // Integral promotions are performed (on the switch condition).
+  //
+  // A case value unrepresentable by the original switch condition
+  // type (before the promotion) doesn't make sense, even when it can
+  // be represented by the promoted type.  Therefore we need to find
+  // the pre-promotion type of the switch condition.
+  if (!CondExpr->isTypeDependent()) {
+    if (!CondType->isIntegerType()) { // C99 6.8.4.2p1
+      Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer)
+          << CondType << CondExpr->getSourceRange();
+      return StmtError();
+    }
+
+    if (CondTypeBeforePromotion->isBooleanType()) {
+      // switch(bool_expr) {...} is often a programmer error, e.g.
+      //   switch(n && mask) { ... }  // Doh - should be "n & mask".
+      // One can always use an if statement instead of switch(bool_expr).
+      Diag(SwitchLoc, diag::warn_bool_switch_condition)
+          << CondExpr->getSourceRange();
+    }
+  }
+
+  // Get the bitwidth of the switched-on value before promotions.  We must
+  // convert the integer case values to this width before comparison.
+  bool HasDependentValue
+    = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
+  unsigned CondWidth
+    = HasDependentValue? 0
+      : static_cast<unsigned>(Context.getTypeSize(CondTypeBeforePromotion));
+  bool CondIsSigned = CondTypeBeforePromotion->isSignedIntegerType();
+
+  // Accumulate all of the case values in a vector so that we can sort them
+  // and detect duplicates.  This vector contains the APInt for the case after
+  // it has been converted to the condition type.
+  typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
+  CaseValsTy CaseVals;
+
+  // Keep track of any GNU case ranges we see.  The APSInt is the low value.
+  typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
+  CaseRangesTy CaseRanges;
+
+  DefaultStmt *TheDefaultStmt = 0;
+
+  bool CaseListIsErroneous = false;
+
+  for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
+       SC = SC->getNextSwitchCase()) {
+
+    if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
+      if (TheDefaultStmt) {
+        Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
+        Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
+
+        // FIXME: Remove the default statement from the switch block so that
+        // we'll return a valid AST.  This requires recursing down the AST and
+        // finding it, not something we are set up to do right now.  For now,
+        // just lop the entire switch stmt out of the AST.
+        CaseListIsErroneous = true;
+      }
+      TheDefaultStmt = DS;
+
+    } else {
+      CaseStmt *CS = cast<CaseStmt>(SC);
+
+      // We already verified that the expression has a i-c-e value (C99
+      // 6.8.4.2p3) - get that value now.
+      Expr *Lo = CS->getLHS();
+
+      if (Lo->isTypeDependent() || Lo->isValueDependent()) {
+        HasDependentValue = true;
+        break;
+      }
+
+      llvm::APSInt LoVal = Lo->EvaluateAsInt(Context);
+
+      // Convert the value to the same width/sign as the condition.
+      ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
+                                         CS->getLHS()->getLocStart(),
+                                         diag::warn_case_value_overflow);
+
+      // If the LHS is not the same type as the condition, insert an implicit
+      // cast.
+      ImpCastExprToType(Lo, CondType, CastExpr::CK_IntegralCast);
+      CS->setLHS(Lo);
+
+      // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
+      if (CS->getRHS()) {
+        if (CS->getRHS()->isTypeDependent() ||
+            CS->getRHS()->isValueDependent()) {
+          HasDependentValue = true;
+          break;
+        }
+        CaseRanges.push_back(std::make_pair(LoVal, CS));
+      } else
+        CaseVals.push_back(std::make_pair(LoVal, CS));
+    }
+  }
+
+  if (!HasDependentValue) {
+    // Sort all the scalar case values so we can easily detect duplicates.
+    std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
+
+    if (!CaseVals.empty()) {
+      for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
+        if (CaseVals[i].first == CaseVals[i+1].first) {
+          // If we have a duplicate, report it.
+          Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
+               diag::err_duplicate_case) << CaseVals[i].first.toString(10);
+          Diag(CaseVals[i].second->getLHS()->getLocStart(),
+               diag::note_duplicate_case_prev);
+          // FIXME: We really want to remove the bogus case stmt from the
+          // substmt, but we have no way to do this right now.
+          CaseListIsErroneous = true;
+        }
+      }
+    }
+
+    // Detect duplicate case ranges, which usually don't exist at all in
+    // the first place.
+    if (!CaseRanges.empty()) {
+      // Sort all the case ranges by their low value so we can easily detect
+      // overlaps between ranges.
+      std::stable_sort(CaseRanges.begin(), CaseRanges.end());
+
+      // Scan the ranges, computing the high values and removing empty ranges.
+      std::vector<llvm::APSInt> HiVals;
+      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
+        CaseStmt *CR = CaseRanges[i].second;
+        Expr *Hi = CR->getRHS();
+        llvm::APSInt HiVal = Hi->EvaluateAsInt(Context);
+
+        // Convert the value to the same width/sign as the condition.
+        ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
+                                           CR->getRHS()->getLocStart(),
+                                           diag::warn_case_value_overflow);
+
+        // If the LHS is not the same type as the condition, insert an implicit
+        // cast.
+        ImpCastExprToType(Hi, CondType, CastExpr::CK_IntegralCast);
+        CR->setRHS(Hi);
+
+        // If the low value is bigger than the high value, the case is empty.
+        if (CaseRanges[i].first > HiVal) {
+          Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
+            << SourceRange(CR->getLHS()->getLocStart(),
+                           CR->getRHS()->getLocEnd());
+          CaseRanges.erase(CaseRanges.begin()+i);
+          --i, --e;
+          continue;
+        }
+        HiVals.push_back(HiVal);
+      }
+
+      // Rescan the ranges, looking for overlap with singleton values and other
+      // ranges.  Since the range list is sorted, we only need to compare case
+      // ranges with their neighbors.
+      for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
+        llvm::APSInt &CRLo = CaseRanges[i].first;
+        llvm::APSInt &CRHi = HiVals[i];
+        CaseStmt *CR = CaseRanges[i].second;
+
+        // Check to see whether the case range overlaps with any
+        // singleton cases.
+        CaseStmt *OverlapStmt = 0;
+        llvm::APSInt OverlapVal(32);
+
+        // Find the smallest value >= the lower bound.  If I is in the
+        // case range, then we have overlap.
+        CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
+                                                  CaseVals.end(), CRLo,
+                                                  CaseCompareFunctor());
+        if (I != CaseVals.end() && I->first < CRHi) {
+          OverlapVal  = I->first;   // Found overlap with scalar.
+          OverlapStmt = I->second;
+        }
+
+        // Find the smallest value bigger than the upper bound.
+        I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
+        if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
+          OverlapVal  = (I-1)->first;      // Found overlap with scalar.
+          OverlapStmt = (I-1)->second;
+        }
+
+        // Check to see if this case stmt overlaps with the subsequent
+        // case range.
+        if (i && CRLo <= HiVals[i-1]) {
+          OverlapVal  = HiVals[i-1];       // Found overlap with range.
+          OverlapStmt = CaseRanges[i-1].second;
+        }
+
+        if (OverlapStmt) {
+          // If we have a duplicate, report it.
+          Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
+            << OverlapVal.toString(10);
+          Diag(OverlapStmt->getLHS()->getLocStart(),
+               diag::note_duplicate_case_prev);
+          // FIXME: We really want to remove the bogus case stmt from the
+          // substmt, but we have no way to do this right now.
+          CaseListIsErroneous = true;
+        }
+      }
+    }
+
+    // Check to see if switch is over an Enum and handles all of its 
+    // values  
+    const EnumType* ET = dyn_cast<EnumType>(CondTypeBeforePromotion);
+    // If switch has default case, then ignore it.
+    if (!CaseListIsErroneous && !TheDefaultStmt && ET) {
+      const EnumDecl *ED = ET->getDecl();
+      typedef llvm::SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64> EnumValsTy;
+      EnumValsTy EnumVals;
+
+      // Gather all enum values, set their type and sort them, allowing easier comparison 
+      // with CaseVals.
+      for (EnumDecl::enumerator_iterator EDI = ED->enumerator_begin(); EDI != ED->enumerator_end(); EDI++) {
+        llvm::APSInt Val = (*EDI)->getInitVal();
+        if(Val.getBitWidth() < CondWidth)
+          Val.extend(CondWidth);
+        Val.setIsSigned(CondIsSigned);
+        EnumVals.push_back(std::make_pair(Val, (*EDI)));
+      }
+      std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
+      EnumValsTy::iterator EIend = std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
+      // See which case values aren't in enum 
+      EnumValsTy::const_iterator EI = EnumVals.begin();
+      for (CaseValsTy::const_iterator CI = CaseVals.begin(); CI != CaseVals.end(); CI++) {
+        while (EI != EIend && EI->first < CI->first)
+          EI++;
+        if (EI == EIend || EI->first > CI->first)
+            Diag(CI->second->getLHS()->getExprLoc(), diag::not_in_enum) << ED->getDeclName();
+      }
+      // See which of case ranges aren't in enum
+      EI = EnumVals.begin();
+      for (CaseRangesTy::const_iterator RI = CaseRanges.begin(); RI != CaseRanges.end() && EI != EIend; RI++) {
+        while (EI != EIend && EI->first < RI->first)
+          EI++;
+        
+        if (EI == EIend || EI->first != RI->first) {
+          Diag(RI->second->getLHS()->getExprLoc(), diag::not_in_enum) << ED->getDeclName();
+        }
+
+        llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
+        while (EI != EIend && EI->first < Hi)
+          EI++;
+        if (EI == EIend || EI->first != Hi)
+          Diag(RI->second->getRHS()->getExprLoc(), diag::not_in_enum) << ED->getDeclName();
+      }
+      //Check which enum vals aren't in switch
+      CaseValsTy::const_iterator CI = CaseVals.begin();
+      CaseRangesTy::const_iterator RI = CaseRanges.begin();
+      EI = EnumVals.begin();
+      for (; EI != EIend; EI++) {
+        //Drop unneeded case values
+        llvm::APSInt CIVal;
+        while (CI != CaseVals.end() && CI->first < EI->first)
+          CI++;
+        
+        if (CI != CaseVals.end() && CI->first == EI->first)
+          continue;
+
+        //Drop unneeded case ranges
+        for (; RI != CaseRanges.end(); RI++) {
+          llvm::APSInt Hi = RI->second->getRHS()->EvaluateAsInt(Context);
+          if (EI->first <= Hi)
+            break;
+        }
+
+        if (RI == CaseRanges.end() || EI->first < RI->first)
+          Diag(CondExpr->getExprLoc(), diag::warn_missing_cases) << EI->second->getDeclName();
+      }
+    }
+  }
+
+  // FIXME: If the case list was broken is some way, we don't have a good system
+  // to patch it up.  Instead, just return the whole substmt as broken.
+  if (CaseListIsErroneous)
+    return StmtError();
+
+  Switch.release();
+  return Owned(SS);
+}
+
+Action::OwningStmtResult
+Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond, 
+                     DeclPtrTy CondVar, StmtArg Body) {
+  OwningExprResult CondResult(Cond.release());
+  
+  VarDecl *ConditionVar = 0;
+  if (CondVar.get()) {
+    ConditionVar = CondVar.getAs<VarDecl>();
+    CondResult = CheckConditionVariable(ConditionVar);
+    if (CondResult.isInvalid())
+      return StmtError();
+  }
+  Expr *ConditionExpr = CondResult.takeAs<Expr>();
+  if (!ConditionExpr)
+    return StmtError();
+  
+  if (CheckBooleanCondition(ConditionExpr, WhileLoc)) {
+    CondResult = ConditionExpr;
+    return StmtError();
+  }
+
+  Stmt *bodyStmt = Body.takeAs<Stmt>();
+  DiagnoseUnusedExprResult(bodyStmt);
+
+  CondResult.release();
+  return Owned(new (Context) WhileStmt(ConditionVar, ConditionExpr, bodyStmt, 
+                                       WhileLoc));
+}
+
+Action::OwningStmtResult
+Sema::ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
+                  SourceLocation WhileLoc, SourceLocation CondLParen,
+                  ExprArg Cond, SourceLocation CondRParen) {
+  Expr *condExpr = Cond.takeAs<Expr>();
+  assert(condExpr && "ActOnDoStmt(): missing expression");
+
+  if (CheckBooleanCondition(condExpr, DoLoc)) {
+    Cond = condExpr;
+    return StmtError();
+  }
+
+  Stmt *bodyStmt = Body.takeAs<Stmt>();
+  DiagnoseUnusedExprResult(bodyStmt);
+
+  Cond.release();
+  return Owned(new (Context) DoStmt(bodyStmt, condExpr, DoLoc,
+                                    WhileLoc, CondRParen));
+}
+
+Action::OwningStmtResult
+Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
+                   StmtArg first, FullExprArg second, DeclPtrTy secondVar,
+                   FullExprArg third,
+                   SourceLocation RParenLoc, StmtArg body) {
+  Stmt *First  = static_cast<Stmt*>(first.get());
+
+  if (!getLangOptions().CPlusPlus) {
+    if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
+      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
+      // declare identifiers for objects having storage class 'auto' or
+      // 'register'.
+      for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
+           DI!=DE; ++DI) {
+        VarDecl *VD = dyn_cast<VarDecl>(*DI);
+        if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
+          VD = 0;
+        if (VD == 0)
+          Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
+        // FIXME: mark decl erroneous!
+      }
+    }
+  }
+
+  OwningExprResult SecondResult(second.release());
+  VarDecl *ConditionVar = 0;
+  if (secondVar.get()) {
+    ConditionVar = secondVar.getAs<VarDecl>();
+    SecondResult = CheckConditionVariable(ConditionVar);
+    if (SecondResult.isInvalid())
+      return StmtError();
+  }
+  
+  Expr *Second = SecondResult.takeAs<Expr>();
+  if (Second && CheckBooleanCondition(Second, ForLoc)) {
+    SecondResult = Second;
+    return StmtError();
+  }
+
+  Expr *Third  = third.release().takeAs<Expr>();
+  Stmt *Body  = static_cast<Stmt*>(body.get());
+  
+  DiagnoseUnusedExprResult(First);
+  DiagnoseUnusedExprResult(Third);
+  DiagnoseUnusedExprResult(Body);
+
+  first.release();
+  body.release();
+  return Owned(new (Context) ForStmt(First, Second, ConditionVar, Third, Body, 
+                                     ForLoc, LParenLoc, RParenLoc));
+}
+
+Action::OwningStmtResult
+Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
+                                 SourceLocation LParenLoc,
+                                 StmtArg first, ExprArg second,
+                                 SourceLocation RParenLoc, StmtArg body) {
+  Stmt *First  = static_cast<Stmt*>(first.get());
+  Expr *Second = static_cast<Expr*>(second.get());
+  Stmt *Body  = static_cast<Stmt*>(body.get());
+  if (First) {
+    QualType FirstType;
+    if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
+      if (!DS->isSingleDecl())
+        return StmtError(Diag((*DS->decl_begin())->getLocation(),
+                         diag::err_toomany_element_decls));
+
+      Decl *D = DS->getSingleDecl();
+      FirstType = cast<ValueDecl>(D)->getType();
+      // C99 6.8.5p3: The declaration part of a 'for' statement shall only
+      // declare identifiers for objects having storage class 'auto' or
+      // 'register'.
+      VarDecl *VD = cast<VarDecl>(D);
+      if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
+        return StmtError(Diag(VD->getLocation(),
+                              diag::err_non_variable_decl_in_for));
+    } else {
+      if (cast<Expr>(First)->isLvalue(Context) != Expr::LV_Valid)
+        return StmtError(Diag(First->getLocStart(),
+                   diag::err_selector_element_not_lvalue)
+          << First->getSourceRange());
+
+      FirstType = static_cast<Expr*>(First)->getType();
+    }
+    if (!FirstType->isObjCObjectPointerType() &&
+        !FirstType->isBlockPointerType())
+        Diag(ForLoc, diag::err_selector_element_type)
+          << FirstType << First->getSourceRange();
+  }
+  if (Second) {
+    DefaultFunctionArrayLvalueConversion(Second);
+    QualType SecondType = Second->getType();
+    if (!SecondType->isObjCObjectPointerType())
+      Diag(ForLoc, diag::err_collection_expr_type)
+        << SecondType << Second->getSourceRange();
+  }
+  first.release();
+  second.release();
+  body.release();
+  return Owned(new (Context) ObjCForCollectionStmt(First, Second, Body,
+                                                   ForLoc, RParenLoc));
+}
+
+Action::OwningStmtResult
+Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
+                    IdentifierInfo *LabelII) {
+  // Look up the record for this label identifier.
+  LabelStmt *&LabelDecl = getLabelMap()[LabelII];
+
+  // If we haven't seen this label yet, create a forward reference.
+  if (LabelDecl == 0)
+    LabelDecl = new (Context) LabelStmt(LabelLoc, LabelII, 0);
+
+  return Owned(new (Context) GotoStmt(LabelDecl, GotoLoc, LabelLoc));
+}
+
+Action::OwningStmtResult
+Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
+                            ExprArg DestExp) {
+  // Convert operand to void*
+  Expr* E = DestExp.takeAs<Expr>();
+  if (!E->isTypeDependent()) {
+    QualType ETy = E->getType();
+    QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
+    AssignConvertType ConvTy =
+      CheckSingleAssignmentConstraints(DestTy, E);
+    if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
+      return StmtError();
+  }
+  return Owned(new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E));
+}
+
+Action::OwningStmtResult
+Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
+  Scope *S = CurScope->getContinueParent();
+  if (!S) {
+    // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
+    return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
+  }
+
+  return Owned(new (Context) ContinueStmt(ContinueLoc));
+}
+
+Action::OwningStmtResult
+Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
+  Scope *S = CurScope->getBreakParent();
+  if (!S) {
+    // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
+    return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
+  }
+
+  return Owned(new (Context) BreakStmt(BreakLoc));
+}
+
+/// ActOnBlockReturnStmt - Utility routine to figure out block's return type.
+///
+Action::OwningStmtResult
+Sema::ActOnBlockReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
+  // If this is the first return we've seen in the block, infer the type of
+  // the block from it.
+  if (CurBlock->ReturnType.isNull()) {
+    if (RetValExp) {
+      // Don't call UsualUnaryConversions(), since we don't want to do
+      // integer promotions here.
+      DefaultFunctionArrayLvalueConversion(RetValExp);
+      CurBlock->ReturnType = RetValExp->getType();
+      if (BlockDeclRefExpr *CDRE = dyn_cast<BlockDeclRefExpr>(RetValExp)) {
+        // We have to remove a 'const' added to copied-in variable which was
+        // part of the implementation spec. and not the actual qualifier for
+        // the variable.
+        if (CDRE->isConstQualAdded())
+           CurBlock->ReturnType.removeConst();
+      }
+    } else
+      CurBlock->ReturnType = Context.VoidTy;
+  }
+  QualType FnRetType = CurBlock->ReturnType;
+
+  if (CurBlock->TheDecl->hasAttr<NoReturnAttr>()) {
+    Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr)
+      << getCurFunctionOrMethodDecl()->getDeclName();
+    return StmtError();
+  }
+
+  // Otherwise, verify that this result type matches the previous one.  We are
+  // pickier with blocks than for normal functions because we don't have GCC
+  // compatibility to worry about here.
+  if (CurBlock->ReturnType->isVoidType()) {
+    if (RetValExp) {
+      Diag(ReturnLoc, diag::err_return_block_has_expr);
+      RetValExp->Destroy(Context);
+      RetValExp = 0;
+    }
+    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
+  }
+
+  if (!RetValExp)
+    return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
+
+  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
+    // we have a non-void block with an expression, continue checking
+
+    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
+    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
+    // function return.
+
+    // In C++ the return statement is handled via a copy initialization.
+    // the C version of which boils down to CheckSingleAssignmentConstraints.
+    OwningExprResult Res = PerformCopyInitialization(
+                             InitializedEntity::InitializeResult(ReturnLoc, 
+                                                                 FnRetType),
+                             SourceLocation(),
+                             Owned(RetValExp));
+    if (Res.isInvalid()) {
+      // FIXME: Cleanup temporaries here, anyway?
+      return StmtError();
+    }
+    
+    RetValExp = Res.takeAs<Expr>();
+    if (RetValExp) 
+      CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
+  }
+
+  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
+}
+
+/// IsReturnCopyElidable - Whether returning @p RetExpr from a function that
+/// returns a @p RetType fulfills the criteria for copy elision (C++0x 12.8p15).
+static bool IsReturnCopyElidable(ASTContext &Ctx, QualType RetType,
+                                 Expr *RetExpr) {
+  QualType ExprType = RetExpr->getType();
+  // - in a return statement in a function with ...
+  // ... a class return type ...
+  if (!RetType->isRecordType())
+    return false;
+  // ... the same cv-unqualified type as the function return type ...
+  if (!Ctx.hasSameUnqualifiedType(RetType, ExprType))
+    return false;
+  // ... the expression is the name of a non-volatile automatic object ...
+  // We ignore parentheses here.
+  // FIXME: Is this compliant?
+  const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(RetExpr->IgnoreParens());
+  if (!DR)
+    return false;
+  const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
+  if (!VD)
+    return false;
+  return VD->hasLocalStorage() && !VD->getType()->isReferenceType()
+    && !VD->getType().isVolatileQualified();
+}
+
+Action::OwningStmtResult
+Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprArg rex) {
+  Expr *RetValExp = rex.takeAs<Expr>();
+  if (CurBlock)
+    return ActOnBlockReturnStmt(ReturnLoc, RetValExp);
+
+  QualType FnRetType;
+  if (const FunctionDecl *FD = getCurFunctionDecl()) {
+    FnRetType = FD->getResultType();
+    if (FD->hasAttr<NoReturnAttr>() ||
+        FD->getType()->getAs<FunctionType>()->getNoReturnAttr())
+      Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
+        << getCurFunctionOrMethodDecl()->getDeclName();
+  } else if (ObjCMethodDecl *MD = getCurMethodDecl())
+    FnRetType = MD->getResultType();
+  else // If we don't have a function/method context, bail.
+    return StmtError();
+
+  if (FnRetType->isVoidType()) {
+    if (RetValExp && !RetValExp->isTypeDependent()) {
+      // C99 6.8.6.4p1 (ext_ since GCC warns)
+      unsigned D = diag::ext_return_has_expr;
+      if (RetValExp->getType()->isVoidType())
+        D = diag::ext_return_has_void_expr;
+
+      // return (some void expression); is legal in C++.
+      if (D != diag::ext_return_has_void_expr ||
+          !getLangOptions().CPlusPlus) {
+        NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
+        Diag(ReturnLoc, D)
+          << CurDecl->getDeclName() << isa<ObjCMethodDecl>(CurDecl)
+          << RetValExp->getSourceRange();
+      }
+
+      RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
+    }
+    return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
+  }
+
+  if (!RetValExp && !FnRetType->isDependentType()) {
+    unsigned DiagID = diag::warn_return_missing_expr;  // C90 6.6.6.4p4
+    // C99 6.8.6.4p1 (ext_ since GCC warns)
+    if (getLangOptions().C99) DiagID = diag::ext_return_missing_expr;
+
+    if (FunctionDecl *FD = getCurFunctionDecl())
+      Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
+    else
+      Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
+    return Owned(new (Context) ReturnStmt(ReturnLoc, (Expr*)0));
+  }
+
+  if (!FnRetType->isDependentType() && !RetValExp->isTypeDependent()) {
+    // we have a non-void function with an expression, continue checking
+
+    // C99 6.8.6.4p3(136): The return statement is not an assignment. The
+    // overlap restriction of subclause 6.5.16.1 does not apply to the case of
+    // function return.
+
+    // C++0x 12.8p15: When certain criteria are met, an implementation is
+    //   allowed to omit the copy construction of a class object, [...]
+    //   - in a return statement in a function with a class return type, when
+    //     the expression is the name of a non-volatile automatic object with
+    //     the same cv-unqualified type as the function return type, the copy
+    //     operation can be omitted [...]
+    // C++0x 12.8p16: When the criteria for elision of a copy operation are met
+    //   and the object to be copied is designated by an lvalue, overload
+    //   resolution to select the constructor for the copy is first performed
+    //   as if the object were designated by an rvalue.
+    // Note that we only compute Elidable if we're in C++0x, since we don't
+    // care otherwise.
+    bool Elidable = getLangOptions().CPlusPlus0x ?
+                      IsReturnCopyElidable(Context, FnRetType, RetValExp) :
+                      false;
+    // FIXME: Elidable
+    (void)Elidable;
+
+    // In C++ the return statement is handled via a copy initialization.
+    // the C version of which boils down to CheckSingleAssignmentConstraints.
+    OwningExprResult Res = PerformCopyInitialization(
+                             InitializedEntity::InitializeResult(ReturnLoc, 
+                                                                 FnRetType),
+                             SourceLocation(),
+                             Owned(RetValExp));
+    if (Res.isInvalid()) {
+      // FIXME: Cleanup temporaries here, anyway?
+      return StmtError();
+    }
+
+    RetValExp = Res.takeAs<Expr>();
+    if (RetValExp) 
+      CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
+  }
+
+  if (RetValExp)
+    RetValExp = MaybeCreateCXXExprWithTemporaries(RetValExp);
+  return Owned(new (Context) ReturnStmt(ReturnLoc, RetValExp));
+}
+
+/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
+/// ignore "noop" casts in places where an lvalue is required by an inline asm.
+/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
+/// provide a strong guidance to not use it.
+///
+/// This method checks to see if the argument is an acceptable l-value and
+/// returns false if it is a case we can handle.
+static bool CheckAsmLValue(const Expr *E, Sema &S) {
+  // Type dependent expressions will be checked during instantiation.
+  if (E->isTypeDependent())
+    return false;
+  
+  if (E->isLvalue(S.Context) == Expr::LV_Valid)
+    return false;  // Cool, this is an lvalue.
+
+  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
+  // are supposed to allow.
+  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
+  if (E != E2 && E2->isLvalue(S.Context) == Expr::LV_Valid) {
+    if (!S.getLangOptions().HeinousExtensions)
+      S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
+        << E->getSourceRange();
+    else
+      S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
+        << E->getSourceRange();
+    // Accept, even if we emitted an error diagnostic.
+    return false;
+  }
+
+  // None of the above, just randomly invalid non-lvalue.
+  return true;
+}
+
+
+Sema::OwningStmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
+                                          bool IsSimple,
+                                          bool IsVolatile,
+                                          unsigned NumOutputs,
+                                          unsigned NumInputs,
+                                          IdentifierInfo **Names,
+                                          MultiExprArg constraints,
+                                          MultiExprArg exprs,
+                                          ExprArg asmString,
+                                          MultiExprArg clobbers,
+                                          SourceLocation RParenLoc,
+                                          bool MSAsm) {
+  unsigned NumClobbers = clobbers.size();
+  StringLiteral **Constraints =
+    reinterpret_cast<StringLiteral**>(constraints.get());
+  Expr **Exprs = reinterpret_cast<Expr **>(exprs.get());
+  StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString.get());
+  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.get());
+
+  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
+
+  // The parser verifies that there is a string literal here.
+  if (AsmString->isWide())
+    return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
+      << AsmString->getSourceRange());
+
+  for (unsigned i = 0; i != NumOutputs; i++) {
+    StringLiteral *Literal = Constraints[i];
+    if (Literal->isWide())
+      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
+        << Literal->getSourceRange());
+
+    llvm::StringRef OutputName;
+    if (Names[i])
+      OutputName = Names[i]->getName();
+
+    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
+    if (!Context.Target.validateOutputConstraint(Info))
+      return StmtError(Diag(Literal->getLocStart(),
+                            diag::err_asm_invalid_output_constraint)
+                       << Info.getConstraintStr());
+
+    // Check that the output exprs are valid lvalues.
+    Expr *OutputExpr = Exprs[i];
+    if (CheckAsmLValue(OutputExpr, *this)) {
+      return StmtError(Diag(OutputExpr->getLocStart(),
+                  diag::err_asm_invalid_lvalue_in_output)
+        << OutputExpr->getSourceRange());
+    }
+
+    OutputConstraintInfos.push_back(Info);
+  }
+
+  llvm::SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
+
+  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
+    StringLiteral *Literal = Constraints[i];
+    if (Literal->isWide())
+      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
+        << Literal->getSourceRange());
+
+    llvm::StringRef InputName;
+    if (Names[i])
+      InputName = Names[i]->getName();
+
+    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
+    if (!Context.Target.validateInputConstraint(OutputConstraintInfos.data(),
+                                                NumOutputs, Info)) {
+      return StmtError(Diag(Literal->getLocStart(),
+                            diag::err_asm_invalid_input_constraint)
+                       << Info.getConstraintStr());
+    }
+
+    Expr *InputExpr = Exprs[i];
+
+    // Only allow void types for memory constraints.
+    if (Info.allowsMemory() && !Info.allowsRegister()) {
+      if (CheckAsmLValue(InputExpr, *this))
+        return StmtError(Diag(InputExpr->getLocStart(),
+                              diag::err_asm_invalid_lvalue_in_input)
+                         << Info.getConstraintStr()
+                         << InputExpr->getSourceRange());
+    }
+
+    if (Info.allowsRegister()) {
+      if (InputExpr->getType()->isVoidType()) {
+        return StmtError(Diag(InputExpr->getLocStart(),
+                              diag::err_asm_invalid_type_in_input)
+          << InputExpr->getType() << Info.getConstraintStr()
+          << InputExpr->getSourceRange());
+      }
+    }
+
+    DefaultFunctionArrayLvalueConversion(Exprs[i]);
+
+    InputConstraintInfos.push_back(Info);
+  }
+
+  // Check that the clobbers are valid.
+  for (unsigned i = 0; i != NumClobbers; i++) {
+    StringLiteral *Literal = Clobbers[i];
+    if (Literal->isWide())
+      return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
+        << Literal->getSourceRange());
+
+    llvm::StringRef Clobber = Literal->getString();
+
+    if (!Context.Target.isValidGCCRegisterName(Clobber))
+      return StmtError(Diag(Literal->getLocStart(),
+                  diag::err_asm_unknown_register_name) << Clobber);
+  }
+
+  constraints.release();
+  exprs.release();
+  asmString.release();
+  clobbers.release();
+  AsmStmt *NS =
+    new (Context) AsmStmt(Context, AsmLoc, IsSimple, IsVolatile, MSAsm, 
+                          NumOutputs, NumInputs, Names, Constraints, Exprs, 
+                          AsmString, NumClobbers, Clobbers, RParenLoc);
+  // Validate the asm string, ensuring it makes sense given the operands we
+  // have.
+  llvm::SmallVector<AsmStmt::AsmStringPiece, 8> Pieces;
+  unsigned DiagOffs;
+  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
+    Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
+           << AsmString->getSourceRange();
+    DeleteStmt(NS);
+    return StmtError();
+  }
+
+  // Validate tied input operands for type mismatches.
+  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
+    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
+
+    // If this is a tied constraint, verify that the output and input have
+    // either exactly the same type, or that they are int/ptr operands with the
+    // same size (int/long, int*/long, are ok etc).
+    if (!Info.hasTiedOperand()) continue;
+
+    unsigned TiedTo = Info.getTiedOperand();
+    Expr *OutputExpr = Exprs[TiedTo];
+    Expr *InputExpr = Exprs[i+NumOutputs];
+    QualType InTy = InputExpr->getType();
+    QualType OutTy = OutputExpr->getType();
+    if (Context.hasSameType(InTy, OutTy))
+      continue;  // All types can be tied to themselves.
+
+    // Int/ptr operands have some special cases that we allow.
+    if ((OutTy->isIntegerType() || OutTy->isPointerType()) &&
+        (InTy->isIntegerType() || InTy->isPointerType())) {
+
+      // They are ok if they are the same size.  Tying void* to int is ok if
+      // they are the same size, for example.  This also allows tying void* to
+      // int*.
+      uint64_t OutSize = Context.getTypeSize(OutTy);
+      uint64_t InSize = Context.getTypeSize(InTy);
+      if (OutSize == InSize)
+        continue;
+
+      // If the smaller input/output operand is not mentioned in the asm string,
+      // then we can promote it and the asm string won't notice.  Check this
+      // case now.
+      bool SmallerValueMentioned = false;
+      for (unsigned p = 0, e = Pieces.size(); p != e; ++p) {
+        AsmStmt::AsmStringPiece &Piece = Pieces[p];
+        if (!Piece.isOperand()) continue;
+
+        // If this is a reference to the input and if the input was the smaller
+        // one, then we have to reject this asm.
+        if (Piece.getOperandNo() == i+NumOutputs) {
+          if (InSize < OutSize) {
+            SmallerValueMentioned = true;
+            break;
+          }
+        }
+
+        // If this is a reference to the input and if the input was the smaller
+        // one, then we have to reject this asm.
+        if (Piece.getOperandNo() == TiedTo) {
+          if (InSize > OutSize) {
+            SmallerValueMentioned = true;
+            break;
+          }
+        }
+      }
+
+      // If the smaller value wasn't mentioned in the asm string, and if the
+      // output was a register, just extend the shorter one to the size of the
+      // larger one.
+      if (!SmallerValueMentioned &&
+          OutputConstraintInfos[TiedTo].allowsRegister())
+        continue;
+    }
+
+    Diag(InputExpr->getLocStart(),
+         diag::err_asm_tying_incompatible_types)
+      << InTy << OutTy << OutputExpr->getSourceRange()
+      << InputExpr->getSourceRange();
+    DeleteStmt(NS);
+    return StmtError();
+  }
+
+  return Owned(NS);
+}
+
+Action::OwningStmtResult
+Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
+                           SourceLocation RParen, DeclPtrTy Parm,
+                           StmtArg Body, StmtArg catchList) {
+  Stmt *CatchList = catchList.takeAs<Stmt>();
+  ParmVarDecl *PVD = cast_or_null<ParmVarDecl>(Parm.getAs<Decl>());
+
+  // PVD == 0 implies @catch(...).
+  if (PVD) {
+    // If we already know the decl is invalid, reject it.
+    if (PVD->isInvalidDecl())
+      return StmtError();
+
+    if (!PVD->getType()->isObjCObjectPointerType())
+      return StmtError(Diag(PVD->getLocation(),
+                       diag::err_catch_param_not_objc_type));
+    if (PVD->getType()->isObjCQualifiedIdType())
+      return StmtError(Diag(PVD->getLocation(),
+                       diag::err_illegal_qualifiers_on_catch_parm));
+  }
+
+  ObjCAtCatchStmt *CS = new (Context) ObjCAtCatchStmt(AtLoc, RParen,
+    PVD, Body.takeAs<Stmt>(), CatchList);
+  return Owned(CatchList ? CatchList : CS);
+}
+
+Action::OwningStmtResult
+Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtArg Body) {
+  return Owned(new (Context) ObjCAtFinallyStmt(AtLoc,
+                                           static_cast<Stmt*>(Body.release())));
+}
+
+Action::OwningStmtResult
+Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
+                         StmtArg Try, StmtArg Catch, StmtArg Finally) {
+  CurFunctionNeedsScopeChecking = true;
+  return Owned(new (Context) ObjCAtTryStmt(AtLoc, Try.takeAs<Stmt>(),
+                                           Catch.takeAs<Stmt>(),
+                                           Finally.takeAs<Stmt>()));
+}
+
+Action::OwningStmtResult
+Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, ExprArg expr,Scope *CurScope) {
+  Expr *ThrowExpr = expr.takeAs<Expr>();
+  if (!ThrowExpr) {
+    // @throw without an expression designates a rethrow (which much occur
+    // in the context of an @catch clause).
+    Scope *AtCatchParent = CurScope;
+    while (AtCatchParent && !AtCatchParent->isAtCatchScope())
+      AtCatchParent = AtCatchParent->getParent();
+    if (!AtCatchParent)
+      return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
+  } else {
+    QualType ThrowType = ThrowExpr->getType();
+    // Make sure the expression type is an ObjC pointer or "void *".
+    if (!ThrowType->isObjCObjectPointerType()) {
+      const PointerType *PT = ThrowType->getAs<PointerType>();
+      if (!PT || !PT->getPointeeType()->isVoidType())
+        return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
+                        << ThrowExpr->getType() << ThrowExpr->getSourceRange());
+    }
+  }
+  return Owned(new (Context) ObjCAtThrowStmt(AtLoc, ThrowExpr));
+}
+
+Action::OwningStmtResult
+Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprArg SynchExpr,
+                                  StmtArg SynchBody) {
+  CurFunctionNeedsScopeChecking = true;
+
+  // Make sure the expression type is an ObjC pointer or "void *".
+  Expr *SyncExpr = static_cast<Expr*>(SynchExpr.get());
+  if (!SyncExpr->getType()->isObjCObjectPointerType()) {
+    const PointerType *PT = SyncExpr->getType()->getAs<PointerType>();
+    if (!PT || !PT->getPointeeType()->isVoidType())
+      return StmtError(Diag(AtLoc, diag::error_objc_synchronized_expects_object)
+                       << SyncExpr->getType() << SyncExpr->getSourceRange());
+  }
+
+  return Owned(new (Context) ObjCAtSynchronizedStmt(AtLoc,
+                                                    SynchExpr.takeAs<Stmt>(),
+                                                    SynchBody.takeAs<Stmt>()));
+}
+
+/// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
+/// and creates a proper catch handler from them.
+Action::OwningStmtResult
+Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, DeclPtrTy ExDecl,
+                         StmtArg HandlerBlock) {
+  // There's nothing to test that ActOnExceptionDecl didn't already test.
+  return Owned(new (Context) CXXCatchStmt(CatchLoc,
+                                  cast_or_null<VarDecl>(ExDecl.getAs<Decl>()),
+                                          HandlerBlock.takeAs<Stmt>()));
+}
+
+class TypeWithHandler {
+  QualType t;
+  CXXCatchStmt *stmt;
+public:
+  TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
+  : t(type), stmt(statement) {}
+
+  // An arbitrary order is fine as long as it places identical
+  // types next to each other.
+  bool operator<(const TypeWithHandler &y) const {
+    if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
+      return true;
+    if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
+      return false;
+    else
+      return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
+  }
+
+  bool operator==(const TypeWithHandler& other) const {
+    return t == other.t;
+  }
+
+  QualType getQualType() const { return t; }
+  CXXCatchStmt *getCatchStmt() const { return stmt; }
+  SourceLocation getTypeSpecStartLoc() const {
+    return stmt->getExceptionDecl()->getTypeSpecStartLoc();
+  }
+};
+
+/// ActOnCXXTryBlock - Takes a try compound-statement and a number of
+/// handlers and creates a try statement from them.
+Action::OwningStmtResult
+Sema::ActOnCXXTryBlock(SourceLocation TryLoc, StmtArg TryBlock,
+                       MultiStmtArg RawHandlers) {
+  unsigned NumHandlers = RawHandlers.size();
+  assert(NumHandlers > 0 &&
+         "The parser shouldn't call this if there are no handlers.");
+  Stmt **Handlers = reinterpret_cast<Stmt**>(RawHandlers.get());
+
+  llvm::SmallVector<TypeWithHandler, 8> TypesWithHandlers;
+
+  for (unsigned i = 0; i < NumHandlers; ++i) {
+    CXXCatchStmt *Handler = llvm::cast<CXXCatchStmt>(Handlers[i]);
+    if (!Handler->getExceptionDecl()) {
+      if (i < NumHandlers - 1)
+        return StmtError(Diag(Handler->getLocStart(),
+                              diag::err_early_catch_all));
+
+      continue;
+    }
+
+    const QualType CaughtType = Handler->getCaughtType();
+    const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
+    TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
+  }
+
+  // Detect handlers for the same type as an earlier one.
+  if (NumHandlers > 1) {
+    llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
+
+    TypeWithHandler prev = TypesWithHandlers[0];
+    for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
+      TypeWithHandler curr = TypesWithHandlers[i];
+
+      if (curr == prev) {
+        Diag(curr.getTypeSpecStartLoc(),
+             diag::warn_exception_caught_by_earlier_handler)
+          << curr.getCatchStmt()->getCaughtType().getAsString();
+        Diag(prev.getTypeSpecStartLoc(),
+             diag::note_previous_exception_handler)
+          << prev.getCatchStmt()->getCaughtType().getAsString();
+      }
+
+      prev = curr;
+    }
+  }
+
+  // FIXME: We should detect handlers that cannot catch anything because an
+  // earlier handler catches a superclass. Need to find a method that is not
+  // quadratic for this.
+  // Neither of these are explicitly forbidden, but every compiler detects them
+  // and warns.
+
+  CurFunctionNeedsScopeChecking = true;
+  RawHandlers.release();
+  return Owned(CXXTryStmt::Create(Context, TryLoc,
+                                  static_cast<Stmt*>(TryBlock.release()),
+                                  Handlers, NumHandlers));
+}