Check in LLVM r95781.
diff --git a/lib/Sema/SemaTemplateDeduction.cpp b/lib/Sema/SemaTemplateDeduction.cpp
new file mode 100644
index 0000000..df4d4a8
--- /dev/null
+++ b/lib/Sema/SemaTemplateDeduction.cpp
@@ -0,0 +1,2509 @@
+//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//===----------------------------------------------------------------------===/
+//
+//  This file implements C++ template argument deduction.
+//
+//===----------------------------------------------------------------------===/
+
+#include "Sema.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/Parse/DeclSpec.h"
+#include <algorithm>
+
+namespace clang {
+  /// \brief Various flags that control template argument deduction.
+  ///
+  /// These flags can be bitwise-OR'd together.
+  enum TemplateDeductionFlags {
+    /// \brief No template argument deduction flags, which indicates the
+    /// strictest results for template argument deduction (as used for, e.g.,
+    /// matching class template partial specializations).
+    TDF_None = 0,
+    /// \brief Within template argument deduction from a function call, we are
+    /// matching with a parameter type for which the original parameter was
+    /// a reference.
+    TDF_ParamWithReferenceType = 0x1,
+    /// \brief Within template argument deduction from a function call, we
+    /// are matching in a case where we ignore cv-qualifiers.
+    TDF_IgnoreQualifiers = 0x02,
+    /// \brief Within template argument deduction from a function call,
+    /// we are matching in a case where we can perform template argument
+    /// deduction from a template-id of a derived class of the argument type.
+    TDF_DerivedClass = 0x04,
+    /// \brief Allow non-dependent types to differ, e.g., when performing
+    /// template argument deduction from a function call where conversions
+    /// may apply.
+    TDF_SkipNonDependent = 0x08
+  };
+}
+
+using namespace clang;
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+                        TemplateParameterList *TemplateParams,
+                        const TemplateArgument &Param,
+                        const TemplateArgument &Arg,
+                        Sema::TemplateDeductionInfo &Info,
+                        llvm::SmallVectorImpl<TemplateArgument> &Deduced);
+
+/// \brief If the given expression is of a form that permits the deduction
+/// of a non-type template parameter, return the declaration of that
+/// non-type template parameter.
+static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
+  if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
+    E = IC->getSubExpr();
+
+  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+    return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
+
+  return 0;
+}
+
+/// \brief Deduce the value of the given non-type template parameter
+/// from the given constant.
+static Sema::TemplateDeductionResult
+DeduceNonTypeTemplateArgument(Sema &S,
+                              NonTypeTemplateParmDecl *NTTP,
+                              llvm::APSInt Value,
+                              Sema::TemplateDeductionInfo &Info,
+                              llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
+  assert(NTTP->getDepth() == 0 &&
+         "Cannot deduce non-type template argument with depth > 0");
+
+  if (Deduced[NTTP->getIndex()].isNull()) {
+    QualType T = NTTP->getType();
+
+    // FIXME: Make sure we didn't overflow our data type!
+    unsigned AllowedBits = S.Context.getTypeSize(T);
+    if (Value.getBitWidth() != AllowedBits)
+      Value.extOrTrunc(AllowedBits);
+    Value.setIsSigned(T->isSignedIntegerType());
+
+    Deduced[NTTP->getIndex()] = TemplateArgument(Value, T);
+    return Sema::TDK_Success;
+  }
+
+  assert(Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral);
+
+  // If the template argument was previously deduced to a negative value,
+  // then our deduction fails.
+  const llvm::APSInt *PrevValuePtr = Deduced[NTTP->getIndex()].getAsIntegral();
+  if (PrevValuePtr->isNegative()) {
+    Info.Param = NTTP;
+    Info.FirstArg = Deduced[NTTP->getIndex()];
+    Info.SecondArg = TemplateArgument(Value, NTTP->getType());
+    return Sema::TDK_Inconsistent;
+  }
+
+  llvm::APSInt PrevValue = *PrevValuePtr;
+  if (Value.getBitWidth() > PrevValue.getBitWidth())
+    PrevValue.zext(Value.getBitWidth());
+  else if (Value.getBitWidth() < PrevValue.getBitWidth())
+    Value.zext(PrevValue.getBitWidth());
+
+  if (Value != PrevValue) {
+    Info.Param = NTTP;
+    Info.FirstArg = Deduced[NTTP->getIndex()];
+    Info.SecondArg = TemplateArgument(Value, NTTP->getType());
+    return Sema::TDK_Inconsistent;
+  }
+
+  return Sema::TDK_Success;
+}
+
+/// \brief Deduce the value of the given non-type template parameter
+/// from the given type- or value-dependent expression.
+///
+/// \returns true if deduction succeeded, false otherwise.
+static Sema::TemplateDeductionResult
+DeduceNonTypeTemplateArgument(Sema &S,
+                              NonTypeTemplateParmDecl *NTTP,
+                              Expr *Value,
+                              Sema::TemplateDeductionInfo &Info,
+                           llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
+  assert(NTTP->getDepth() == 0 &&
+         "Cannot deduce non-type template argument with depth > 0");
+  assert((Value->isTypeDependent() || Value->isValueDependent()) &&
+         "Expression template argument must be type- or value-dependent.");
+
+  if (Deduced[NTTP->getIndex()].isNull()) {
+    // FIXME: Clone the Value?
+    Deduced[NTTP->getIndex()] = TemplateArgument(Value);
+    return Sema::TDK_Success;
+  }
+
+  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Integral) {
+    // Okay, we deduced a constant in one case and a dependent expression
+    // in another case. FIXME: Later, we will check that instantiating the
+    // dependent expression gives us the constant value.
+    return Sema::TDK_Success;
+  }
+
+  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) {
+    // Compare the expressions for equality
+    llvm::FoldingSetNodeID ID1, ID2;
+    Deduced[NTTP->getIndex()].getAsExpr()->Profile(ID1, S.Context, true);
+    Value->Profile(ID2, S.Context, true);
+    if (ID1 == ID2)
+      return Sema::TDK_Success;
+   
+    // FIXME: Fill in argument mismatch information
+    return Sema::TDK_NonDeducedMismatch;
+  }
+
+  return Sema::TDK_Success;
+}
+
+/// \brief Deduce the value of the given non-type template parameter
+/// from the given declaration.
+///
+/// \returns true if deduction succeeded, false otherwise.
+static Sema::TemplateDeductionResult
+DeduceNonTypeTemplateArgument(Sema &S,
+                              NonTypeTemplateParmDecl *NTTP,
+                              Decl *D,
+                              Sema::TemplateDeductionInfo &Info,
+                              llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
+  assert(NTTP->getDepth() == 0 &&
+         "Cannot deduce non-type template argument with depth > 0");
+  
+  if (Deduced[NTTP->getIndex()].isNull()) {
+    Deduced[NTTP->getIndex()] = TemplateArgument(D->getCanonicalDecl());
+    return Sema::TDK_Success;
+  }
+  
+  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Expression) {
+    // Okay, we deduced a declaration in one case and a dependent expression
+    // in another case.
+    return Sema::TDK_Success;
+  }
+  
+  if (Deduced[NTTP->getIndex()].getKind() == TemplateArgument::Declaration) {
+    // Compare the declarations for equality
+    if (Deduced[NTTP->getIndex()].getAsDecl()->getCanonicalDecl() ==
+          D->getCanonicalDecl())
+      return Sema::TDK_Success;
+    
+    // FIXME: Fill in argument mismatch information
+    return Sema::TDK_NonDeducedMismatch;
+  }
+  
+  return Sema::TDK_Success;
+}
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+                        TemplateParameterList *TemplateParams,
+                        TemplateName Param,
+                        TemplateName Arg,
+                        Sema::TemplateDeductionInfo &Info,
+                        llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
+  TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
+  if (!ParamDecl) {
+    // The parameter type is dependent and is not a template template parameter,
+    // so there is nothing that we can deduce.
+    return Sema::TDK_Success;
+  }
+  
+  if (TemplateTemplateParmDecl *TempParam
+        = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
+    // Bind the template template parameter to the given template name.
+    TemplateArgument &ExistingArg = Deduced[TempParam->getIndex()];
+    if (ExistingArg.isNull()) {
+      // This is the first deduction for this template template parameter.
+      ExistingArg = TemplateArgument(S.Context.getCanonicalTemplateName(Arg));
+      return Sema::TDK_Success;
+    }
+    
+    // Verify that the previous binding matches this deduction.
+    assert(ExistingArg.getKind() == TemplateArgument::Template);
+    if (S.Context.hasSameTemplateName(ExistingArg.getAsTemplate(), Arg))
+      return Sema::TDK_Success;
+    
+    // Inconsistent deduction.
+    Info.Param = TempParam;
+    Info.FirstArg = ExistingArg;
+    Info.SecondArg = TemplateArgument(Arg);
+    return Sema::TDK_Inconsistent;
+  }
+  
+  // Verify that the two template names are equivalent.
+  if (S.Context.hasSameTemplateName(Param, Arg))
+    return Sema::TDK_Success;
+  
+  // Mismatch of non-dependent template parameter to argument.
+  Info.FirstArg = TemplateArgument(Param);
+  Info.SecondArg = TemplateArgument(Arg);
+  return Sema::TDK_NonDeducedMismatch;
+}
+
+/// \brief Deduce the template arguments by comparing the template parameter
+/// type (which is a template-id) with the template argument type.
+///
+/// \param S the Sema
+///
+/// \param TemplateParams the template parameters that we are deducing
+///
+/// \param Param the parameter type
+///
+/// \param Arg the argument type
+///
+/// \param Info information about the template argument deduction itself
+///
+/// \param Deduced the deduced template arguments
+///
+/// \returns the result of template argument deduction so far. Note that a
+/// "success" result means that template argument deduction has not yet failed,
+/// but it may still fail, later, for other reasons.
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+                        TemplateParameterList *TemplateParams,
+                        const TemplateSpecializationType *Param,
+                        QualType Arg,
+                        Sema::TemplateDeductionInfo &Info,
+                        llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
+  assert(Arg.isCanonical() && "Argument type must be canonical");
+
+  // Check whether the template argument is a dependent template-id.
+  if (const TemplateSpecializationType *SpecArg
+        = dyn_cast<TemplateSpecializationType>(Arg)) {
+    // Perform template argument deduction for the template name.
+    if (Sema::TemplateDeductionResult Result
+          = DeduceTemplateArguments(S, TemplateParams,
+                                    Param->getTemplateName(),
+                                    SpecArg->getTemplateName(),
+                                    Info, Deduced))
+      return Result;
+
+
+    // Perform template argument deduction on each template
+    // argument.
+    unsigned NumArgs = std::min(SpecArg->getNumArgs(), Param->getNumArgs());
+    for (unsigned I = 0; I != NumArgs; ++I)
+      if (Sema::TemplateDeductionResult Result
+            = DeduceTemplateArguments(S, TemplateParams,
+                                      Param->getArg(I),
+                                      SpecArg->getArg(I),
+                                      Info, Deduced))
+        return Result;
+
+    return Sema::TDK_Success;
+  }
+
+  // If the argument type is a class template specialization, we
+  // perform template argument deduction using its template
+  // arguments.
+  const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
+  if (!RecordArg)
+    return Sema::TDK_NonDeducedMismatch;
+
+  ClassTemplateSpecializationDecl *SpecArg
+    = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
+  if (!SpecArg)
+    return Sema::TDK_NonDeducedMismatch;
+
+  // Perform template argument deduction for the template name.
+  if (Sema::TemplateDeductionResult Result
+        = DeduceTemplateArguments(S,
+                                  TemplateParams,
+                                  Param->getTemplateName(),
+                               TemplateName(SpecArg->getSpecializedTemplate()),
+                                  Info, Deduced))
+    return Result;
+
+  unsigned NumArgs = Param->getNumArgs();
+  const TemplateArgumentList &ArgArgs = SpecArg->getTemplateArgs();
+  if (NumArgs != ArgArgs.size())
+    return Sema::TDK_NonDeducedMismatch;
+
+  for (unsigned I = 0; I != NumArgs; ++I)
+    if (Sema::TemplateDeductionResult Result
+          = DeduceTemplateArguments(S, TemplateParams,
+                                    Param->getArg(I),
+                                    ArgArgs.get(I),
+                                    Info, Deduced))
+      return Result;
+
+  return Sema::TDK_Success;
+}
+
+/// \brief Deduce the template arguments by comparing the parameter type and
+/// the argument type (C++ [temp.deduct.type]).
+///
+/// \param S the semantic analysis object within which we are deducing
+///
+/// \param TemplateParams the template parameters that we are deducing
+///
+/// \param ParamIn the parameter type
+///
+/// \param ArgIn the argument type
+///
+/// \param Info information about the template argument deduction itself
+///
+/// \param Deduced the deduced template arguments
+///
+/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
+/// how template argument deduction is performed.
+///
+/// \returns the result of template argument deduction so far. Note that a
+/// "success" result means that template argument deduction has not yet failed,
+/// but it may still fail, later, for other reasons.
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+                        TemplateParameterList *TemplateParams,
+                        QualType ParamIn, QualType ArgIn,
+                        Sema::TemplateDeductionInfo &Info,
+                        llvm::SmallVectorImpl<TemplateArgument> &Deduced,
+                        unsigned TDF) {
+  // We only want to look at the canonical types, since typedefs and
+  // sugar are not part of template argument deduction.
+  QualType Param = S.Context.getCanonicalType(ParamIn);
+  QualType Arg = S.Context.getCanonicalType(ArgIn);
+
+  // C++0x [temp.deduct.call]p4 bullet 1:
+  //   - If the original P is a reference type, the deduced A (i.e., the type
+  //     referred to by the reference) can be more cv-qualified than the
+  //     transformed A.
+  if (TDF & TDF_ParamWithReferenceType) {
+    Qualifiers Quals;
+    QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
+    Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
+                           Arg.getCVRQualifiersThroughArrayTypes());
+    Param = S.Context.getQualifiedType(UnqualParam, Quals);
+  }
+
+  // If the parameter type is not dependent, there is nothing to deduce.
+  if (!Param->isDependentType()) {
+    if (!(TDF & TDF_SkipNonDependent) && Param != Arg) {
+      
+      return Sema::TDK_NonDeducedMismatch;
+    }
+    
+    return Sema::TDK_Success;
+  }
+
+  // C++ [temp.deduct.type]p9:
+  //   A template type argument T, a template template argument TT or a
+  //   template non-type argument i can be deduced if P and A have one of
+  //   the following forms:
+  //
+  //     T
+  //     cv-list T
+  if (const TemplateTypeParmType *TemplateTypeParm
+        = Param->getAs<TemplateTypeParmType>()) {
+    unsigned Index = TemplateTypeParm->getIndex();
+    bool RecanonicalizeArg = false;
+
+    // If the argument type is an array type, move the qualifiers up to the
+    // top level, so they can be matched with the qualifiers on the parameter.
+    // FIXME: address spaces, ObjC GC qualifiers
+    if (isa<ArrayType>(Arg)) {
+      Qualifiers Quals;
+      Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
+      if (Quals) {
+        Arg = S.Context.getQualifiedType(Arg, Quals);
+        RecanonicalizeArg = true;
+      }
+    }
+
+    // The argument type can not be less qualified than the parameter
+    // type.
+    if (Param.isMoreQualifiedThan(Arg) && !(TDF & TDF_IgnoreQualifiers)) {
+      Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
+      Info.FirstArg = Deduced[Index];
+      Info.SecondArg = TemplateArgument(Arg);
+      return Sema::TDK_InconsistentQuals;
+    }
+
+    assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
+    assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
+    QualType DeducedType = Arg;
+    DeducedType.removeCVRQualifiers(Param.getCVRQualifiers());
+    if (RecanonicalizeArg)
+      DeducedType = S.Context.getCanonicalType(DeducedType);
+
+    if (Deduced[Index].isNull())
+      Deduced[Index] = TemplateArgument(DeducedType);
+    else {
+      // C++ [temp.deduct.type]p2:
+      //   [...] If type deduction cannot be done for any P/A pair, or if for
+      //   any pair the deduction leads to more than one possible set of
+      //   deduced values, or if different pairs yield different deduced
+      //   values, or if any template argument remains neither deduced nor
+      //   explicitly specified, template argument deduction fails.
+      if (Deduced[Index].getAsType() != DeducedType) {
+        Info.Param
+          = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
+        Info.FirstArg = Deduced[Index];
+        Info.SecondArg = TemplateArgument(Arg);
+        return Sema::TDK_Inconsistent;
+      }
+    }
+    return Sema::TDK_Success;
+  }
+
+  // Set up the template argument deduction information for a failure.
+  Info.FirstArg = TemplateArgument(ParamIn);
+  Info.SecondArg = TemplateArgument(ArgIn);
+
+  // Check the cv-qualifiers on the parameter and argument types.
+  if (!(TDF & TDF_IgnoreQualifiers)) {
+    if (TDF & TDF_ParamWithReferenceType) {
+      if (Param.isMoreQualifiedThan(Arg))
+        return Sema::TDK_NonDeducedMismatch;
+    } else {
+      if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
+        return Sema::TDK_NonDeducedMismatch;
+    }
+  }
+
+  switch (Param->getTypeClass()) {
+    // No deduction possible for these types
+    case Type::Builtin:
+      return Sema::TDK_NonDeducedMismatch;
+
+    //     T *
+    case Type::Pointer: {
+      const PointerType *PointerArg = Arg->getAs<PointerType>();
+      if (!PointerArg)
+        return Sema::TDK_NonDeducedMismatch;
+
+      unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
+      return DeduceTemplateArguments(S, TemplateParams,
+                                   cast<PointerType>(Param)->getPointeeType(),
+                                     PointerArg->getPointeeType(),
+                                     Info, Deduced, SubTDF);
+    }
+
+    //     T &
+    case Type::LValueReference: {
+      const LValueReferenceType *ReferenceArg = Arg->getAs<LValueReferenceType>();
+      if (!ReferenceArg)
+        return Sema::TDK_NonDeducedMismatch;
+
+      return DeduceTemplateArguments(S, TemplateParams,
+                           cast<LValueReferenceType>(Param)->getPointeeType(),
+                                     ReferenceArg->getPointeeType(),
+                                     Info, Deduced, 0);
+    }
+
+    //     T && [C++0x]
+    case Type::RValueReference: {
+      const RValueReferenceType *ReferenceArg = Arg->getAs<RValueReferenceType>();
+      if (!ReferenceArg)
+        return Sema::TDK_NonDeducedMismatch;
+
+      return DeduceTemplateArguments(S, TemplateParams,
+                           cast<RValueReferenceType>(Param)->getPointeeType(),
+                                     ReferenceArg->getPointeeType(),
+                                     Info, Deduced, 0);
+    }
+
+    //     T [] (implied, but not stated explicitly)
+    case Type::IncompleteArray: {
+      const IncompleteArrayType *IncompleteArrayArg =
+        S.Context.getAsIncompleteArrayType(Arg);
+      if (!IncompleteArrayArg)
+        return Sema::TDK_NonDeducedMismatch;
+
+      return DeduceTemplateArguments(S, TemplateParams,
+                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
+                                     IncompleteArrayArg->getElementType(),
+                                     Info, Deduced, 0);
+    }
+
+    //     T [integer-constant]
+    case Type::ConstantArray: {
+      const ConstantArrayType *ConstantArrayArg =
+        S.Context.getAsConstantArrayType(Arg);
+      if (!ConstantArrayArg)
+        return Sema::TDK_NonDeducedMismatch;
+
+      const ConstantArrayType *ConstantArrayParm =
+        S.Context.getAsConstantArrayType(Param);
+      if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
+        return Sema::TDK_NonDeducedMismatch;
+
+      return DeduceTemplateArguments(S, TemplateParams,
+                                     ConstantArrayParm->getElementType(),
+                                     ConstantArrayArg->getElementType(),
+                                     Info, Deduced, 0);
+    }
+
+    //     type [i]
+    case Type::DependentSizedArray: {
+      const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
+      if (!ArrayArg)
+        return Sema::TDK_NonDeducedMismatch;
+
+      // Check the element type of the arrays
+      const DependentSizedArrayType *DependentArrayParm
+        = S.Context.getAsDependentSizedArrayType(Param);
+      if (Sema::TemplateDeductionResult Result
+            = DeduceTemplateArguments(S, TemplateParams,
+                                      DependentArrayParm->getElementType(),
+                                      ArrayArg->getElementType(),
+                                      Info, Deduced, 0))
+        return Result;
+
+      // Determine the array bound is something we can deduce.
+      NonTypeTemplateParmDecl *NTTP
+        = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
+      if (!NTTP)
+        return Sema::TDK_Success;
+
+      // We can perform template argument deduction for the given non-type
+      // template parameter.
+      assert(NTTP->getDepth() == 0 &&
+             "Cannot deduce non-type template argument at depth > 0");
+      if (const ConstantArrayType *ConstantArrayArg
+            = dyn_cast<ConstantArrayType>(ArrayArg)) {
+        llvm::APSInt Size(ConstantArrayArg->getSize());
+        return DeduceNonTypeTemplateArgument(S, NTTP, Size,
+                                             Info, Deduced);
+      }
+      if (const DependentSizedArrayType *DependentArrayArg
+            = dyn_cast<DependentSizedArrayType>(ArrayArg))
+        return DeduceNonTypeTemplateArgument(S, NTTP,
+                                             DependentArrayArg->getSizeExpr(),
+                                             Info, Deduced);
+
+      // Incomplete type does not match a dependently-sized array type
+      return Sema::TDK_NonDeducedMismatch;
+    }
+
+    //     type(*)(T)
+    //     T(*)()
+    //     T(*)(T)
+    case Type::FunctionProto: {
+      const FunctionProtoType *FunctionProtoArg =
+        dyn_cast<FunctionProtoType>(Arg);
+      if (!FunctionProtoArg)
+        return Sema::TDK_NonDeducedMismatch;
+
+      const FunctionProtoType *FunctionProtoParam =
+        cast<FunctionProtoType>(Param);
+
+      if (FunctionProtoParam->getTypeQuals() !=
+          FunctionProtoArg->getTypeQuals())
+        return Sema::TDK_NonDeducedMismatch;
+
+      if (FunctionProtoParam->getNumArgs() != FunctionProtoArg->getNumArgs())
+        return Sema::TDK_NonDeducedMismatch;
+
+      if (FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
+        return Sema::TDK_NonDeducedMismatch;
+
+      // Check return types.
+      if (Sema::TemplateDeductionResult Result
+            = DeduceTemplateArguments(S, TemplateParams,
+                                      FunctionProtoParam->getResultType(),
+                                      FunctionProtoArg->getResultType(),
+                                      Info, Deduced, 0))
+        return Result;
+
+      for (unsigned I = 0, N = FunctionProtoParam->getNumArgs(); I != N; ++I) {
+        // Check argument types.
+        if (Sema::TemplateDeductionResult Result
+              = DeduceTemplateArguments(S, TemplateParams,
+                                        FunctionProtoParam->getArgType(I),
+                                        FunctionProtoArg->getArgType(I),
+                                        Info, Deduced, 0))
+          return Result;
+      }
+
+      return Sema::TDK_Success;
+    }
+
+    //     template-name<T> (where template-name refers to a class template)
+    //     template-name<i>
+    //     TT<T>
+    //     TT<i>
+    //     TT<>
+    case Type::TemplateSpecialization: {
+      const TemplateSpecializationType *SpecParam
+        = cast<TemplateSpecializationType>(Param);
+
+      // Try to deduce template arguments from the template-id.
+      Sema::TemplateDeductionResult Result
+        = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
+                                  Info, Deduced);
+
+      if (Result && (TDF & TDF_DerivedClass)) {
+        // C++ [temp.deduct.call]p3b3:
+        //   If P is a class, and P has the form template-id, then A can be a
+        //   derived class of the deduced A. Likewise, if P is a pointer to a
+        //   class of the form template-id, A can be a pointer to a derived
+        //   class pointed to by the deduced A.
+        //
+        // More importantly:
+        //   These alternatives are considered only if type deduction would
+        //   otherwise fail.
+        if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
+          // We cannot inspect base classes as part of deduction when the type
+          // is incomplete, so either instantiate any templates necessary to
+          // complete the type, or skip over it if it cannot be completed.
+          if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
+            return Result;
+
+          // Use data recursion to crawl through the list of base classes.
+          // Visited contains the set of nodes we have already visited, while
+          // ToVisit is our stack of records that we still need to visit.
+          llvm::SmallPtrSet<const RecordType *, 8> Visited;
+          llvm::SmallVector<const RecordType *, 8> ToVisit;
+          ToVisit.push_back(RecordT);
+          bool Successful = false;
+          while (!ToVisit.empty()) {
+            // Retrieve the next class in the inheritance hierarchy.
+            const RecordType *NextT = ToVisit.back();
+            ToVisit.pop_back();
+
+            // If we have already seen this type, skip it.
+            if (!Visited.insert(NextT))
+              continue;
+
+            // If this is a base class, try to perform template argument
+            // deduction from it.
+            if (NextT != RecordT) {
+              Sema::TemplateDeductionResult BaseResult
+                = DeduceTemplateArguments(S, TemplateParams, SpecParam,
+                                          QualType(NextT, 0), Info, Deduced);
+
+              // If template argument deduction for this base was successful,
+              // note that we had some success.
+              if (BaseResult == Sema::TDK_Success)
+                Successful = true;
+            }
+
+            // Visit base classes
+            CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
+            for (CXXRecordDecl::base_class_iterator Base = Next->bases_begin(),
+                                                 BaseEnd = Next->bases_end();
+                 Base != BaseEnd; ++Base) {
+              assert(Base->getType()->isRecordType() &&
+                     "Base class that isn't a record?");
+              ToVisit.push_back(Base->getType()->getAs<RecordType>());
+            }
+          }
+
+          if (Successful)
+            return Sema::TDK_Success;
+        }
+
+      }
+
+      return Result;
+    }
+
+    //     T type::*
+    //     T T::*
+    //     T (type::*)()
+    //     type (T::*)()
+    //     type (type::*)(T)
+    //     type (T::*)(T)
+    //     T (type::*)(T)
+    //     T (T::*)()
+    //     T (T::*)(T)
+    case Type::MemberPointer: {
+      const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
+      const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
+      if (!MemPtrArg)
+        return Sema::TDK_NonDeducedMismatch;
+
+      if (Sema::TemplateDeductionResult Result
+            = DeduceTemplateArguments(S, TemplateParams,
+                                      MemPtrParam->getPointeeType(),
+                                      MemPtrArg->getPointeeType(),
+                                      Info, Deduced,
+                                      TDF & TDF_IgnoreQualifiers))
+        return Result;
+
+      return DeduceTemplateArguments(S, TemplateParams,
+                                     QualType(MemPtrParam->getClass(), 0),
+                                     QualType(MemPtrArg->getClass(), 0),
+                                     Info, Deduced, 0);
+    }
+
+    //     (clang extension)
+    //
+    //     type(^)(T)
+    //     T(^)()
+    //     T(^)(T)
+    case Type::BlockPointer: {
+      const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
+      const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
+
+      if (!BlockPtrArg)
+        return Sema::TDK_NonDeducedMismatch;
+
+      return DeduceTemplateArguments(S, TemplateParams,
+                                     BlockPtrParam->getPointeeType(),
+                                     BlockPtrArg->getPointeeType(), Info,
+                                     Deduced, 0);
+    }
+
+    case Type::TypeOfExpr:
+    case Type::TypeOf:
+    case Type::Typename:
+      // No template argument deduction for these types
+      return Sema::TDK_Success;
+
+    default:
+      break;
+  }
+
+  // FIXME: Many more cases to go (to go).
+  return Sema::TDK_Success;
+}
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+                        TemplateParameterList *TemplateParams,
+                        const TemplateArgument &Param,
+                        const TemplateArgument &Arg,
+                        Sema::TemplateDeductionInfo &Info,
+                        llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
+  switch (Param.getKind()) {
+  case TemplateArgument::Null:
+    assert(false && "Null template argument in parameter list");
+    break;
+
+  case TemplateArgument::Type:
+    if (Arg.getKind() == TemplateArgument::Type)
+      return DeduceTemplateArguments(S, TemplateParams, Param.getAsType(),
+                                     Arg.getAsType(), Info, Deduced, 0);
+    Info.FirstArg = Param;
+    Info.SecondArg = Arg;
+    return Sema::TDK_NonDeducedMismatch;
+      
+  case TemplateArgument::Template:
+    if (Arg.getKind() == TemplateArgument::Template)
+      return DeduceTemplateArguments(S, TemplateParams, 
+                                     Param.getAsTemplate(),
+                                     Arg.getAsTemplate(), Info, Deduced);
+    Info.FirstArg = Param;
+    Info.SecondArg = Arg;
+    return Sema::TDK_NonDeducedMismatch;
+      
+  case TemplateArgument::Declaration:
+    if (Arg.getKind() == TemplateArgument::Declaration &&
+        Param.getAsDecl()->getCanonicalDecl() ==
+          Arg.getAsDecl()->getCanonicalDecl())
+      return Sema::TDK_Success;
+      
+    Info.FirstArg = Param;
+    Info.SecondArg = Arg;
+    return Sema::TDK_NonDeducedMismatch;
+
+  case TemplateArgument::Integral:
+    if (Arg.getKind() == TemplateArgument::Integral) {
+      // FIXME: Zero extension + sign checking here?
+      if (*Param.getAsIntegral() == *Arg.getAsIntegral())
+        return Sema::TDK_Success;
+
+      Info.FirstArg = Param;
+      Info.SecondArg = Arg;
+      return Sema::TDK_NonDeducedMismatch;
+    }
+
+    if (Arg.getKind() == TemplateArgument::Expression) {
+      Info.FirstArg = Param;
+      Info.SecondArg = Arg;
+      return Sema::TDK_NonDeducedMismatch;
+    }
+
+    assert(false && "Type/value mismatch");
+    Info.FirstArg = Param;
+    Info.SecondArg = Arg;
+    return Sema::TDK_NonDeducedMismatch;
+
+  case TemplateArgument::Expression: {
+    if (NonTypeTemplateParmDecl *NTTP
+          = getDeducedParameterFromExpr(Param.getAsExpr())) {
+      if (Arg.getKind() == TemplateArgument::Integral)
+        // FIXME: Sign problems here
+        return DeduceNonTypeTemplateArgument(S, NTTP,
+                                             *Arg.getAsIntegral(),
+                                             Info, Deduced);
+      if (Arg.getKind() == TemplateArgument::Expression)
+        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
+                                             Info, Deduced);
+      if (Arg.getKind() == TemplateArgument::Declaration)
+        return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
+                                             Info, Deduced);
+      
+      assert(false && "Type/value mismatch");
+      Info.FirstArg = Param;
+      Info.SecondArg = Arg;
+      return Sema::TDK_NonDeducedMismatch;
+    }
+
+    // Can't deduce anything, but that's okay.
+    return Sema::TDK_Success;
+  }
+  case TemplateArgument::Pack:
+    assert(0 && "FIXME: Implement!");
+    break;
+  }
+
+  return Sema::TDK_Success;
+}
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+                        TemplateParameterList *TemplateParams,
+                        const TemplateArgumentList &ParamList,
+                        const TemplateArgumentList &ArgList,
+                        Sema::TemplateDeductionInfo &Info,
+                        llvm::SmallVectorImpl<TemplateArgument> &Deduced) {
+  assert(ParamList.size() == ArgList.size());
+  for (unsigned I = 0, N = ParamList.size(); I != N; ++I) {
+    if (Sema::TemplateDeductionResult Result
+          = DeduceTemplateArguments(S, TemplateParams,
+                                    ParamList[I], ArgList[I],
+                                    Info, Deduced))
+      return Result;
+  }
+  return Sema::TDK_Success;
+}
+
+/// \brief Determine whether two template arguments are the same.
+static bool isSameTemplateArg(ASTContext &Context,
+                              const TemplateArgument &X,
+                              const TemplateArgument &Y) {
+  if (X.getKind() != Y.getKind())
+    return false;
+
+  switch (X.getKind()) {
+    case TemplateArgument::Null:
+      assert(false && "Comparing NULL template argument");
+      break;
+
+    case TemplateArgument::Type:
+      return Context.getCanonicalType(X.getAsType()) ==
+             Context.getCanonicalType(Y.getAsType());
+
+    case TemplateArgument::Declaration:
+      return X.getAsDecl()->getCanonicalDecl() ==
+             Y.getAsDecl()->getCanonicalDecl();
+
+    case TemplateArgument::Template:
+      return Context.getCanonicalTemplateName(X.getAsTemplate())
+               .getAsVoidPointer() ==
+             Context.getCanonicalTemplateName(Y.getAsTemplate())
+               .getAsVoidPointer();
+      
+    case TemplateArgument::Integral:
+      return *X.getAsIntegral() == *Y.getAsIntegral();
+
+    case TemplateArgument::Expression: {
+      llvm::FoldingSetNodeID XID, YID;
+      X.getAsExpr()->Profile(XID, Context, true);
+      Y.getAsExpr()->Profile(YID, Context, true);      
+      return XID == YID;
+    }
+
+    case TemplateArgument::Pack:
+      if (X.pack_size() != Y.pack_size())
+        return false;
+
+      for (TemplateArgument::pack_iterator XP = X.pack_begin(),
+                                        XPEnd = X.pack_end(),
+                                           YP = Y.pack_begin();
+           XP != XPEnd; ++XP, ++YP)
+        if (!isSameTemplateArg(Context, *XP, *YP))
+          return false;
+
+      return true;
+  }
+
+  return false;
+}
+
+/// \brief Helper function to build a TemplateParameter when we don't
+/// know its type statically.
+static TemplateParameter makeTemplateParameter(Decl *D) {
+  if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
+    return TemplateParameter(TTP);
+  else if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
+    return TemplateParameter(NTTP);
+
+  return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
+}
+
+/// \brief Perform template argument deduction to determine whether
+/// the given template arguments match the given class template
+/// partial specialization per C++ [temp.class.spec.match].
+Sema::TemplateDeductionResult
+Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
+                              const TemplateArgumentList &TemplateArgs,
+                              TemplateDeductionInfo &Info) {
+  // C++ [temp.class.spec.match]p2:
+  //   A partial specialization matches a given actual template
+  //   argument list if the template arguments of the partial
+  //   specialization can be deduced from the actual template argument
+  //   list (14.8.2).
+  SFINAETrap Trap(*this);
+  llvm::SmallVector<TemplateArgument, 4> Deduced;
+  Deduced.resize(Partial->getTemplateParameters()->size());
+  if (TemplateDeductionResult Result
+        = ::DeduceTemplateArguments(*this,
+                                    Partial->getTemplateParameters(),
+                                    Partial->getTemplateArgs(),
+                                    TemplateArgs, Info, Deduced))
+    return Result;
+
+  InstantiatingTemplate Inst(*this, Partial->getLocation(), Partial,
+                             Deduced.data(), Deduced.size());
+  if (Inst)
+    return TDK_InstantiationDepth;
+
+  // C++ [temp.deduct.type]p2:
+  //   [...] or if any template argument remains neither deduced nor
+  //   explicitly specified, template argument deduction fails.
+  TemplateArgumentListBuilder Builder(Partial->getTemplateParameters(),
+                                      Deduced.size());
+  for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
+    if (Deduced[I].isNull()) {
+      Decl *Param
+        = const_cast<NamedDecl *>(
+                                Partial->getTemplateParameters()->getParam(I));
+      if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
+        Info.Param = TTP;
+      else if (NonTypeTemplateParmDecl *NTTP
+                 = dyn_cast<NonTypeTemplateParmDecl>(Param))
+        Info.Param = NTTP;
+      else
+        Info.Param = cast<TemplateTemplateParmDecl>(Param);
+      return TDK_Incomplete;
+    }
+
+    Builder.Append(Deduced[I]);
+  }
+
+  // Form the template argument list from the deduced template arguments.
+  TemplateArgumentList *DeducedArgumentList
+    = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
+  Info.reset(DeducedArgumentList);
+
+  // Substitute the deduced template arguments into the template
+  // arguments of the class template partial specialization, and
+  // verify that the instantiated template arguments are both valid
+  // and are equivalent to the template arguments originally provided
+  // to the class template.
+  ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
+  const TemplateArgumentLoc *PartialTemplateArgs
+    = Partial->getTemplateArgsAsWritten();
+  unsigned N = Partial->getNumTemplateArgsAsWritten();
+
+  // Note that we don't provide the langle and rangle locations.
+  TemplateArgumentListInfo InstArgs;
+
+  for (unsigned I = 0; I != N; ++I) {
+    Decl *Param = const_cast<NamedDecl *>(
+                    ClassTemplate->getTemplateParameters()->getParam(I));
+    TemplateArgumentLoc InstArg;
+    if (Subst(PartialTemplateArgs[I], InstArg,
+              MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
+      Info.Param = makeTemplateParameter(Param);
+      Info.FirstArg = PartialTemplateArgs[I].getArgument();
+      return TDK_SubstitutionFailure;
+    }
+    InstArgs.addArgument(InstArg);
+  }
+
+  TemplateArgumentListBuilder ConvertedInstArgs(
+                                  ClassTemplate->getTemplateParameters(), N);
+
+  if (CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
+                                InstArgs, false, ConvertedInstArgs)) {
+    // FIXME: fail with more useful information?
+    return TDK_SubstitutionFailure;
+  }
+  
+  for (unsigned I = 0, E = ConvertedInstArgs.flatSize(); I != E; ++I) {
+    TemplateArgument InstArg = ConvertedInstArgs.getFlatArguments()[I];
+
+    Decl *Param = const_cast<NamedDecl *>(
+                    ClassTemplate->getTemplateParameters()->getParam(I));
+
+    if (InstArg.getKind() == TemplateArgument::Expression) {
+      // When the argument is an expression, check the expression result
+      // against the actual template parameter to get down to the canonical
+      // template argument.
+      Expr *InstExpr = InstArg.getAsExpr();
+      if (NonTypeTemplateParmDecl *NTTP
+            = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+        if (CheckTemplateArgument(NTTP, NTTP->getType(), InstExpr, InstArg)) {
+          Info.Param = makeTemplateParameter(Param);
+          Info.FirstArg = Partial->getTemplateArgs()[I];
+          return TDK_SubstitutionFailure;
+        }
+      }
+    }
+
+    if (!isSameTemplateArg(Context, TemplateArgs[I], InstArg)) {
+      Info.Param = makeTemplateParameter(Param);
+      Info.FirstArg = TemplateArgs[I];
+      Info.SecondArg = InstArg;
+      return TDK_NonDeducedMismatch;
+    }
+  }
+
+  if (Trap.hasErrorOccurred())
+    return TDK_SubstitutionFailure;
+
+  return TDK_Success;
+}
+
+/// \brief Determine whether the given type T is a simple-template-id type.
+static bool isSimpleTemplateIdType(QualType T) {
+  if (const TemplateSpecializationType *Spec
+        = T->getAs<TemplateSpecializationType>())
+    return Spec->getTemplateName().getAsTemplateDecl() != 0;
+
+  return false;
+}
+
+/// \brief Substitute the explicitly-provided template arguments into the
+/// given function template according to C++ [temp.arg.explicit].
+///
+/// \param FunctionTemplate the function template into which the explicit
+/// template arguments will be substituted.
+///
+/// \param ExplicitTemplateArguments the explicitly-specified template
+/// arguments.
+///
+/// \param Deduced the deduced template arguments, which will be populated
+/// with the converted and checked explicit template arguments.
+///
+/// \param ParamTypes will be populated with the instantiated function
+/// parameters.
+///
+/// \param FunctionType if non-NULL, the result type of the function template
+/// will also be instantiated and the pointed-to value will be updated with
+/// the instantiated function type.
+///
+/// \param Info if substitution fails for any reason, this object will be
+/// populated with more information about the failure.
+///
+/// \returns TDK_Success if substitution was successful, or some failure
+/// condition.
+Sema::TemplateDeductionResult
+Sema::SubstituteExplicitTemplateArguments(
+                                      FunctionTemplateDecl *FunctionTemplate,
+                        const TemplateArgumentListInfo &ExplicitTemplateArgs,
+                            llvm::SmallVectorImpl<TemplateArgument> &Deduced,
+                                 llvm::SmallVectorImpl<QualType> &ParamTypes,
+                                          QualType *FunctionType,
+                                          TemplateDeductionInfo &Info) {
+  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
+  TemplateParameterList *TemplateParams
+    = FunctionTemplate->getTemplateParameters();
+
+  if (ExplicitTemplateArgs.size() == 0) {
+    // No arguments to substitute; just copy over the parameter types and
+    // fill in the function type.
+    for (FunctionDecl::param_iterator P = Function->param_begin(),
+                                   PEnd = Function->param_end();
+         P != PEnd;
+         ++P)
+      ParamTypes.push_back((*P)->getType());
+
+    if (FunctionType)
+      *FunctionType = Function->getType();
+    return TDK_Success;
+  }
+
+  // Substitution of the explicit template arguments into a function template
+  /// is a SFINAE context. Trap any errors that might occur.
+  SFINAETrap Trap(*this);
+
+  // C++ [temp.arg.explicit]p3:
+  //   Template arguments that are present shall be specified in the
+  //   declaration order of their corresponding template-parameters. The
+  //   template argument list shall not specify more template-arguments than
+  //   there are corresponding template-parameters.
+  TemplateArgumentListBuilder Builder(TemplateParams,
+                                      ExplicitTemplateArgs.size());
+
+  // Enter a new template instantiation context where we check the
+  // explicitly-specified template arguments against this function template,
+  // and then substitute them into the function parameter types.
+  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
+                             FunctionTemplate, Deduced.data(), Deduced.size(),
+           ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution);
+  if (Inst)
+    return TDK_InstantiationDepth;
+
+  if (CheckTemplateArgumentList(FunctionTemplate,
+                                SourceLocation(),
+                                ExplicitTemplateArgs,
+                                true,
+                                Builder) || Trap.hasErrorOccurred())
+    return TDK_InvalidExplicitArguments;
+
+  // Form the template argument list from the explicitly-specified
+  // template arguments.
+  TemplateArgumentList *ExplicitArgumentList
+    = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
+  Info.reset(ExplicitArgumentList);
+
+  // Instantiate the types of each of the function parameters given the
+  // explicitly-specified template arguments.
+  for (FunctionDecl::param_iterator P = Function->param_begin(),
+                                PEnd = Function->param_end();
+       P != PEnd;
+       ++P) {
+    QualType ParamType
+      = SubstType((*P)->getType(),
+                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
+                  (*P)->getLocation(), (*P)->getDeclName());
+    if (ParamType.isNull() || Trap.hasErrorOccurred())
+      return TDK_SubstitutionFailure;
+
+    ParamTypes.push_back(ParamType);
+  }
+
+  // If the caller wants a full function type back, instantiate the return
+  // type and form that function type.
+  if (FunctionType) {
+    // FIXME: exception-specifications?
+    const FunctionProtoType *Proto
+      = Function->getType()->getAs<FunctionProtoType>();
+    assert(Proto && "Function template does not have a prototype?");
+
+    QualType ResultType
+      = SubstType(Proto->getResultType(),
+                  MultiLevelTemplateArgumentList(*ExplicitArgumentList),
+                  Function->getTypeSpecStartLoc(),
+                  Function->getDeclName());
+    if (ResultType.isNull() || Trap.hasErrorOccurred())
+      return TDK_SubstitutionFailure;
+
+    *FunctionType = BuildFunctionType(ResultType,
+                                      ParamTypes.data(), ParamTypes.size(),
+                                      Proto->isVariadic(),
+                                      Proto->getTypeQuals(),
+                                      Function->getLocation(),
+                                      Function->getDeclName());
+    if (FunctionType->isNull() || Trap.hasErrorOccurred())
+      return TDK_SubstitutionFailure;
+  }
+
+  // C++ [temp.arg.explicit]p2:
+  //   Trailing template arguments that can be deduced (14.8.2) may be
+  //   omitted from the list of explicit template-arguments. If all of the
+  //   template arguments can be deduced, they may all be omitted; in this
+  //   case, the empty template argument list <> itself may also be omitted.
+  //
+  // Take all of the explicitly-specified arguments and put them into the
+  // set of deduced template arguments.
+  Deduced.reserve(TemplateParams->size());
+  for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I)
+    Deduced.push_back(ExplicitArgumentList->get(I));
+
+  return TDK_Success;
+}
+
+/// \brief Finish template argument deduction for a function template,
+/// checking the deduced template arguments for completeness and forming
+/// the function template specialization.
+Sema::TemplateDeductionResult
+Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
+                            llvm::SmallVectorImpl<TemplateArgument> &Deduced,
+                                      FunctionDecl *&Specialization,
+                                      TemplateDeductionInfo &Info) {
+  TemplateParameterList *TemplateParams
+    = FunctionTemplate->getTemplateParameters();
+
+  // Template argument deduction for function templates in a SFINAE context.
+  // Trap any errors that might occur.
+  SFINAETrap Trap(*this);
+
+  // Enter a new template instantiation context while we instantiate the
+  // actual function declaration.
+  InstantiatingTemplate Inst(*this, FunctionTemplate->getLocation(),
+                             FunctionTemplate, Deduced.data(), Deduced.size(),
+              ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution);
+  if (Inst)
+    return TDK_InstantiationDepth;
+
+  // C++ [temp.deduct.type]p2:
+  //   [...] or if any template argument remains neither deduced nor
+  //   explicitly specified, template argument deduction fails.
+  TemplateArgumentListBuilder Builder(TemplateParams, Deduced.size());
+  for (unsigned I = 0, N = Deduced.size(); I != N; ++I) {
+    if (!Deduced[I].isNull()) {
+      Builder.Append(Deduced[I]);
+      continue;
+    }
+
+    // Substitute into the default template argument, if available. 
+    NamedDecl *Param = FunctionTemplate->getTemplateParameters()->getParam(I);
+    TemplateArgumentLoc DefArg
+      = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
+                                              FunctionTemplate->getLocation(),
+                                  FunctionTemplate->getSourceRange().getEnd(),
+                                                Param,
+                                                Builder);
+
+    // If there was no default argument, deduction is incomplete.
+    if (DefArg.getArgument().isNull()) {
+      Info.Param = makeTemplateParameter(
+                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
+      return TDK_Incomplete;
+    }
+    
+    // Check whether we can actually use the default argument.
+    if (CheckTemplateArgument(Param, DefArg,
+                              FunctionTemplate,
+                              FunctionTemplate->getLocation(),
+                              FunctionTemplate->getSourceRange().getEnd(),
+                              Builder)) {
+      Info.Param = makeTemplateParameter(
+                         const_cast<NamedDecl *>(TemplateParams->getParam(I)));
+      return TDK_SubstitutionFailure;
+    }
+
+    // If we get here, we successfully used the default template argument.
+  }
+
+  // Form the template argument list from the deduced template arguments.
+  TemplateArgumentList *DeducedArgumentList
+    = new (Context) TemplateArgumentList(Context, Builder, /*TakeArgs=*/true);
+  Info.reset(DeducedArgumentList);
+
+  // Substitute the deduced template arguments into the function template
+  // declaration to produce the function template specialization.
+  Specialization = cast_or_null<FunctionDecl>(
+                      SubstDecl(FunctionTemplate->getTemplatedDecl(),
+                                FunctionTemplate->getDeclContext(),
+                         MultiLevelTemplateArgumentList(*DeducedArgumentList)));
+  if (!Specialization)
+    return TDK_SubstitutionFailure;
+
+  assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() == 
+         FunctionTemplate->getCanonicalDecl());
+  
+  // If the template argument list is owned by the function template
+  // specialization, release it.
+  if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList)
+    Info.take();
+
+  // There may have been an error that did not prevent us from constructing a
+  // declaration. Mark the declaration invalid and return with a substitution
+  // failure.
+  if (Trap.hasErrorOccurred()) {
+    Specialization->setInvalidDecl(true);
+    return TDK_SubstitutionFailure;
+  }
+
+  return TDK_Success;
+}
+
+static QualType GetTypeOfFunction(ASTContext &Context,
+                                  bool isAddressOfOperand,
+                                  FunctionDecl *Fn) {
+  if (!isAddressOfOperand) return Fn->getType();
+  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
+    if (Method->isInstance())
+      return Context.getMemberPointerType(Fn->getType(),
+               Context.getTypeDeclType(Method->getParent()).getTypePtr());
+  return Context.getPointerType(Fn->getType());
+}
+
+/// Apply the deduction rules for overload sets.
+///
+/// \return the null type if this argument should be treated as an
+/// undeduced context
+static QualType
+ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
+                            Expr *Arg, QualType ParamType) {
+  llvm::PointerIntPair<OverloadExpr*,1> R = OverloadExpr::find(Arg);
+
+  bool isAddressOfOperand = bool(R.getInt());
+  OverloadExpr *Ovl = R.getPointer();
+
+  // If there were explicit template arguments, we can only find
+  // something via C++ [temp.arg.explicit]p3, i.e. if the arguments
+  // unambiguously name a full specialization.
+  if (Ovl->hasExplicitTemplateArgs()) {
+    // But we can still look for an explicit specialization.
+    if (FunctionDecl *ExplicitSpec
+          = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
+      return GetTypeOfFunction(S.Context, isAddressOfOperand, ExplicitSpec);
+    return QualType();
+  }
+
+  // C++0x [temp.deduct.call]p6:
+  //   When P is a function type, pointer to function type, or pointer
+  //   to member function type:
+
+  if (!ParamType->isFunctionType() &&
+      !ParamType->isFunctionPointerType() &&
+      !ParamType->isMemberFunctionPointerType())
+    return QualType();
+
+  QualType Match;
+  for (UnresolvedSetIterator I = Ovl->decls_begin(),
+         E = Ovl->decls_end(); I != E; ++I) {
+    NamedDecl *D = (*I)->getUnderlyingDecl();
+
+    //   - If the argument is an overload set containing one or more
+    //     function templates, the parameter is treated as a
+    //     non-deduced context.
+    if (isa<FunctionTemplateDecl>(D))
+      return QualType();
+
+    FunctionDecl *Fn = cast<FunctionDecl>(D);
+    QualType ArgType = GetTypeOfFunction(S.Context, isAddressOfOperand, Fn);
+
+    //   - If the argument is an overload set (not containing function
+    //     templates), trial argument deduction is attempted using each
+    //     of the members of the set. If deduction succeeds for only one
+    //     of the overload set members, that member is used as the
+    //     argument value for the deduction. If deduction succeeds for
+    //     more than one member of the overload set the parameter is
+    //     treated as a non-deduced context.
+
+    // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
+    //   Type deduction is done independently for each P/A pair, and
+    //   the deduced template argument values are then combined.
+    // So we do not reject deductions which were made elsewhere.
+    llvm::SmallVector<TemplateArgument, 8> Deduced(TemplateParams->size());
+    Sema::TemplateDeductionInfo Info(S.Context, Ovl->getNameLoc());
+    unsigned TDF = 0;
+
+    Sema::TemplateDeductionResult Result
+      = DeduceTemplateArguments(S, TemplateParams,
+                                ParamType, ArgType,
+                                Info, Deduced, TDF);
+    if (Result) continue;
+    if (!Match.isNull()) return QualType();
+    Match = ArgType;
+  }
+
+  return Match;
+}
+
+/// \brief Perform template argument deduction from a function call
+/// (C++ [temp.deduct.call]).
+///
+/// \param FunctionTemplate the function template for which we are performing
+/// template argument deduction.
+///
+/// \param ExplicitTemplateArguments the explicit template arguments provided
+/// for this call.
+///
+/// \param Args the function call arguments
+///
+/// \param NumArgs the number of arguments in Args
+///
+/// \param Name the name of the function being called. This is only significant
+/// when the function template is a conversion function template, in which
+/// case this routine will also perform template argument deduction based on
+/// the function to which 
+///
+/// \param Specialization if template argument deduction was successful,
+/// this will be set to the function template specialization produced by
+/// template argument deduction.
+///
+/// \param Info the argument will be updated to provide additional information
+/// about template argument deduction.
+///
+/// \returns the result of template argument deduction.
+Sema::TemplateDeductionResult
+Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
+                          const TemplateArgumentListInfo *ExplicitTemplateArgs,
+                              Expr **Args, unsigned NumArgs,
+                              FunctionDecl *&Specialization,
+                              TemplateDeductionInfo &Info) {
+  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
+
+  // C++ [temp.deduct.call]p1:
+  //   Template argument deduction is done by comparing each function template
+  //   parameter type (call it P) with the type of the corresponding argument
+  //   of the call (call it A) as described below.
+  unsigned CheckArgs = NumArgs;
+  if (NumArgs < Function->getMinRequiredArguments())
+    return TDK_TooFewArguments;
+  else if (NumArgs > Function->getNumParams()) {
+    const FunctionProtoType *Proto
+      = Function->getType()->getAs<FunctionProtoType>();
+    if (!Proto->isVariadic())
+      return TDK_TooManyArguments;
+
+    CheckArgs = Function->getNumParams();
+  }
+
+  // The types of the parameters from which we will perform template argument
+  // deduction.
+  TemplateParameterList *TemplateParams
+    = FunctionTemplate->getTemplateParameters();
+  llvm::SmallVector<TemplateArgument, 4> Deduced;
+  llvm::SmallVector<QualType, 4> ParamTypes;
+  if (ExplicitTemplateArgs) {
+    TemplateDeductionResult Result =
+      SubstituteExplicitTemplateArguments(FunctionTemplate,
+                                          *ExplicitTemplateArgs,
+                                          Deduced,
+                                          ParamTypes,
+                                          0,
+                                          Info);
+    if (Result)
+      return Result;
+  } else {
+    // Just fill in the parameter types from the function declaration.
+    for (unsigned I = 0; I != CheckArgs; ++I)
+      ParamTypes.push_back(Function->getParamDecl(I)->getType());
+  }
+
+  // Deduce template arguments from the function parameters.
+  Deduced.resize(TemplateParams->size());
+  for (unsigned I = 0; I != CheckArgs; ++I) {
+    QualType ParamType = ParamTypes[I];
+    QualType ArgType = Args[I]->getType();
+
+    // Overload sets usually make this parameter an undeduced
+    // context, but there are sometimes special circumstances.
+    if (ArgType == Context.OverloadTy) {
+      ArgType = ResolveOverloadForDeduction(*this, TemplateParams,
+                                            Args[I], ParamType);
+      if (ArgType.isNull())
+        continue;
+    }
+
+    // C++ [temp.deduct.call]p2:
+    //   If P is not a reference type:
+    QualType CanonParamType = Context.getCanonicalType(ParamType);
+    bool ParamWasReference = isa<ReferenceType>(CanonParamType);
+    if (!ParamWasReference) {
+      //   - If A is an array type, the pointer type produced by the
+      //     array-to-pointer standard conversion (4.2) is used in place of
+      //     A for type deduction; otherwise,
+      if (ArgType->isArrayType())
+        ArgType = Context.getArrayDecayedType(ArgType);
+      //   - If A is a function type, the pointer type produced by the
+      //     function-to-pointer standard conversion (4.3) is used in place
+      //     of A for type deduction; otherwise,
+      else if (ArgType->isFunctionType())
+        ArgType = Context.getPointerType(ArgType);
+      else {
+        // - If A is a cv-qualified type, the top level cv-qualifiers of A’s
+        //   type are ignored for type deduction.
+        QualType CanonArgType = Context.getCanonicalType(ArgType);
+        if (CanonArgType.getLocalCVRQualifiers())
+          ArgType = CanonArgType.getLocalUnqualifiedType();
+      }
+    }
+
+    // C++0x [temp.deduct.call]p3:
+    //   If P is a cv-qualified type, the top level cv-qualifiers of P’s type
+    //   are ignored for type deduction.
+    if (CanonParamType.getLocalCVRQualifiers())
+      ParamType = CanonParamType.getLocalUnqualifiedType();
+    if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
+      //   [...] If P is a reference type, the type referred to by P is used
+      //   for type deduction.
+      ParamType = ParamRefType->getPointeeType();
+
+      //   [...] If P is of the form T&&, where T is a template parameter, and
+      //   the argument is an lvalue, the type A& is used in place of A for
+      //   type deduction.
+      if (isa<RValueReferenceType>(ParamRefType) &&
+          ParamRefType->getAs<TemplateTypeParmType>() &&
+          Args[I]->isLvalue(Context) == Expr::LV_Valid)
+        ArgType = Context.getLValueReferenceType(ArgType);
+    }
+
+    // C++0x [temp.deduct.call]p4:
+    //   In general, the deduction process attempts to find template argument
+    //   values that will make the deduced A identical to A (after the type A
+    //   is transformed as described above). [...]
+    unsigned TDF = TDF_SkipNonDependent;
+
+    //     - If the original P is a reference type, the deduced A (i.e., the
+    //       type referred to by the reference) can be more cv-qualified than
+    //       the transformed A.
+    if (ParamWasReference)
+      TDF |= TDF_ParamWithReferenceType;
+    //     - The transformed A can be another pointer or pointer to member
+    //       type that can be converted to the deduced A via a qualification
+    //       conversion (4.4).
+    if (ArgType->isPointerType() || ArgType->isMemberPointerType())
+      TDF |= TDF_IgnoreQualifiers;
+    //     - If P is a class and P has the form simple-template-id, then the
+    //       transformed A can be a derived class of the deduced A. Likewise,
+    //       if P is a pointer to a class of the form simple-template-id, the
+    //       transformed A can be a pointer to a derived class pointed to by
+    //       the deduced A.
+    if (isSimpleTemplateIdType(ParamType) ||
+        (isa<PointerType>(ParamType) &&
+         isSimpleTemplateIdType(
+                              ParamType->getAs<PointerType>()->getPointeeType())))
+      TDF |= TDF_DerivedClass;
+
+    if (TemplateDeductionResult Result
+        = ::DeduceTemplateArguments(*this, TemplateParams,
+                                    ParamType, ArgType, Info, Deduced,
+                                    TDF))
+      return Result;
+
+    // FIXME: we need to check that the deduced A is the same as A,
+    // modulo the various allowed differences.
+  }
+
+  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
+                                         Specialization, Info);
+}
+
+/// \brief Deduce template arguments when taking the address of a function
+/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
+/// a template.
+///
+/// \param FunctionTemplate the function template for which we are performing
+/// template argument deduction.
+///
+/// \param ExplicitTemplateArguments the explicitly-specified template 
+/// arguments.
+///
+/// \param ArgFunctionType the function type that will be used as the
+/// "argument" type (A) when performing template argument deduction from the
+/// function template's function type. This type may be NULL, if there is no
+/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
+///
+/// \param Specialization if template argument deduction was successful,
+/// this will be set to the function template specialization produced by
+/// template argument deduction.
+///
+/// \param Info the argument will be updated to provide additional information
+/// about template argument deduction.
+///
+/// \returns the result of template argument deduction.
+Sema::TemplateDeductionResult
+Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
+                        const TemplateArgumentListInfo *ExplicitTemplateArgs,
+                              QualType ArgFunctionType,
+                              FunctionDecl *&Specialization,
+                              TemplateDeductionInfo &Info) {
+  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
+  TemplateParameterList *TemplateParams
+    = FunctionTemplate->getTemplateParameters();
+  QualType FunctionType = Function->getType();
+
+  // Substitute any explicit template arguments.
+  llvm::SmallVector<TemplateArgument, 4> Deduced;
+  llvm::SmallVector<QualType, 4> ParamTypes;
+  if (ExplicitTemplateArgs) {
+    if (TemplateDeductionResult Result
+          = SubstituteExplicitTemplateArguments(FunctionTemplate,
+                                                *ExplicitTemplateArgs,
+                                                Deduced, ParamTypes,
+                                                &FunctionType, Info))
+      return Result;
+  }
+
+  // Template argument deduction for function templates in a SFINAE context.
+  // Trap any errors that might occur.
+  SFINAETrap Trap(*this);
+
+  Deduced.resize(TemplateParams->size());
+
+  if (!ArgFunctionType.isNull()) {
+    // Deduce template arguments from the function type.
+    if (TemplateDeductionResult Result
+          = ::DeduceTemplateArguments(*this, TemplateParams,
+                                      FunctionType, ArgFunctionType, Info,
+                                      Deduced, 0))
+      return Result;
+  }
+  
+  return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
+                                         Specialization, Info);
+}
+
+/// \brief Deduce template arguments for a templated conversion
+/// function (C++ [temp.deduct.conv]) and, if successful, produce a
+/// conversion function template specialization.
+Sema::TemplateDeductionResult
+Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
+                              QualType ToType,
+                              CXXConversionDecl *&Specialization,
+                              TemplateDeductionInfo &Info) {
+  CXXConversionDecl *Conv
+    = cast<CXXConversionDecl>(FunctionTemplate->getTemplatedDecl());
+  QualType FromType = Conv->getConversionType();
+
+  // Canonicalize the types for deduction.
+  QualType P = Context.getCanonicalType(FromType);
+  QualType A = Context.getCanonicalType(ToType);
+
+  // C++0x [temp.deduct.conv]p3:
+  //   If P is a reference type, the type referred to by P is used for
+  //   type deduction.
+  if (const ReferenceType *PRef = P->getAs<ReferenceType>())
+    P = PRef->getPointeeType();
+
+  // C++0x [temp.deduct.conv]p3:
+  //   If A is a reference type, the type referred to by A is used
+  //   for type deduction.
+  if (const ReferenceType *ARef = A->getAs<ReferenceType>())
+    A = ARef->getPointeeType();
+  // C++ [temp.deduct.conv]p2:
+  //
+  //   If A is not a reference type:
+  else {
+    assert(!A->isReferenceType() && "Reference types were handled above");
+
+    //   - If P is an array type, the pointer type produced by the
+    //     array-to-pointer standard conversion (4.2) is used in place
+    //     of P for type deduction; otherwise,
+    if (P->isArrayType())
+      P = Context.getArrayDecayedType(P);
+    //   - If P is a function type, the pointer type produced by the
+    //     function-to-pointer standard conversion (4.3) is used in
+    //     place of P for type deduction; otherwise,
+    else if (P->isFunctionType())
+      P = Context.getPointerType(P);
+    //   - If P is a cv-qualified type, the top level cv-qualifiers of
+    //     P’s type are ignored for type deduction.
+    else
+      P = P.getUnqualifiedType();
+
+    // C++0x [temp.deduct.conv]p3:
+    //   If A is a cv-qualified type, the top level cv-qualifiers of A’s
+    //   type are ignored for type deduction.
+    A = A.getUnqualifiedType();
+  }
+
+  // Template argument deduction for function templates in a SFINAE context.
+  // Trap any errors that might occur.
+  SFINAETrap Trap(*this);
+
+  // C++ [temp.deduct.conv]p1:
+  //   Template argument deduction is done by comparing the return
+  //   type of the template conversion function (call it P) with the
+  //   type that is required as the result of the conversion (call it
+  //   A) as described in 14.8.2.4.
+  TemplateParameterList *TemplateParams
+    = FunctionTemplate->getTemplateParameters();
+  llvm::SmallVector<TemplateArgument, 4> Deduced;
+  Deduced.resize(TemplateParams->size());
+
+  // C++0x [temp.deduct.conv]p4:
+  //   In general, the deduction process attempts to find template
+  //   argument values that will make the deduced A identical to
+  //   A. However, there are two cases that allow a difference:
+  unsigned TDF = 0;
+  //     - If the original A is a reference type, A can be more
+  //       cv-qualified than the deduced A (i.e., the type referred to
+  //       by the reference)
+  if (ToType->isReferenceType())
+    TDF |= TDF_ParamWithReferenceType;
+  //     - The deduced A can be another pointer or pointer to member
+  //       type that can be converted to A via a qualification
+  //       conversion.
+  //
+  // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
+  // both P and A are pointers or member pointers. In this case, we
+  // just ignore cv-qualifiers completely).
+  if ((P->isPointerType() && A->isPointerType()) ||
+      (P->isMemberPointerType() && P->isMemberPointerType()))
+    TDF |= TDF_IgnoreQualifiers;
+  if (TemplateDeductionResult Result
+        = ::DeduceTemplateArguments(*this, TemplateParams,
+                                    P, A, Info, Deduced, TDF))
+    return Result;
+
+  // FIXME: we need to check that the deduced A is the same as A,
+  // modulo the various allowed differences.
+
+  // Finish template argument deduction.
+  FunctionDecl *Spec = 0;
+  TemplateDeductionResult Result
+    = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, Spec, Info);
+  Specialization = cast_or_null<CXXConversionDecl>(Spec);
+  return Result;
+}
+
+/// \brief Deduce template arguments for a function template when there is
+/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
+///
+/// \param FunctionTemplate the function template for which we are performing
+/// template argument deduction.
+///
+/// \param ExplicitTemplateArguments the explicitly-specified template 
+/// arguments.
+///
+/// \param Specialization if template argument deduction was successful,
+/// this will be set to the function template specialization produced by
+/// template argument deduction.
+///
+/// \param Info the argument will be updated to provide additional information
+/// about template argument deduction.
+///
+/// \returns the result of template argument deduction.
+Sema::TemplateDeductionResult
+Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
+                           const TemplateArgumentListInfo *ExplicitTemplateArgs,
+                              FunctionDecl *&Specialization,
+                              TemplateDeductionInfo &Info) {
+  return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
+                                 QualType(), Specialization, Info);
+}
+
+/// \brief Stores the result of comparing the qualifiers of two types.
+enum DeductionQualifierComparison { 
+  NeitherMoreQualified = 0, 
+  ParamMoreQualified, 
+  ArgMoreQualified 
+};
+
+/// \brief Deduce the template arguments during partial ordering by comparing 
+/// the parameter type and the argument type (C++0x [temp.deduct.partial]).
+///
+/// \param S the semantic analysis object within which we are deducing
+///
+/// \param TemplateParams the template parameters that we are deducing
+///
+/// \param ParamIn the parameter type
+///
+/// \param ArgIn the argument type
+///
+/// \param Info information about the template argument deduction itself
+///
+/// \param Deduced the deduced template arguments
+///
+/// \returns the result of template argument deduction so far. Note that a
+/// "success" result means that template argument deduction has not yet failed,
+/// but it may still fail, later, for other reasons.
+static Sema::TemplateDeductionResult
+DeduceTemplateArgumentsDuringPartialOrdering(Sema &S,
+                                          TemplateParameterList *TemplateParams,
+                                             QualType ParamIn, QualType ArgIn,
+                                             Sema::TemplateDeductionInfo &Info,
+                             llvm::SmallVectorImpl<TemplateArgument> &Deduced,
+    llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
+  CanQualType Param = S.Context.getCanonicalType(ParamIn);
+  CanQualType Arg = S.Context.getCanonicalType(ArgIn);
+
+  // C++0x [temp.deduct.partial]p5:
+  //   Before the partial ordering is done, certain transformations are 
+  //   performed on the types used for partial ordering: 
+  //     - If P is a reference type, P is replaced by the type referred to. 
+  CanQual<ReferenceType> ParamRef = Param->getAs<ReferenceType>();
+  if (!ParamRef.isNull())
+    Param = ParamRef->getPointeeType();
+  
+  //     - If A is a reference type, A is replaced by the type referred to.
+  CanQual<ReferenceType> ArgRef = Arg->getAs<ReferenceType>();
+  if (!ArgRef.isNull())
+    Arg = ArgRef->getPointeeType();
+  
+  if (QualifierComparisons && !ParamRef.isNull() && !ArgRef.isNull()) {
+    // C++0x [temp.deduct.partial]p6:
+    //   If both P and A were reference types (before being replaced with the 
+    //   type referred to above), determine which of the two types (if any) is 
+    //   more cv-qualified than the other; otherwise the types are considered to 
+    //   be equally cv-qualified for partial ordering purposes. The result of this
+    //   determination will be used below.
+    //
+    // We save this information for later, using it only when deduction 
+    // succeeds in both directions.
+    DeductionQualifierComparison QualifierResult = NeitherMoreQualified;
+    if (Param.isMoreQualifiedThan(Arg))
+      QualifierResult = ParamMoreQualified;
+    else if (Arg.isMoreQualifiedThan(Param))
+      QualifierResult = ArgMoreQualified;
+    QualifierComparisons->push_back(QualifierResult);
+  }
+  
+  // C++0x [temp.deduct.partial]p7:
+  //   Remove any top-level cv-qualifiers:
+  //     - If P is a cv-qualified type, P is replaced by the cv-unqualified 
+  //       version of P.
+  Param = Param.getUnqualifiedType();
+  //     - If A is a cv-qualified type, A is replaced by the cv-unqualified 
+  //       version of A.
+  Arg = Arg.getUnqualifiedType();
+  
+  // C++0x [temp.deduct.partial]p8:
+  //   Using the resulting types P and A the deduction is then done as 
+  //   described in 14.9.2.5. If deduction succeeds for a given type, the type
+  //   from the argument template is considered to be at least as specialized
+  //   as the type from the parameter template.
+  return DeduceTemplateArguments(S, TemplateParams, Param, Arg, Info,
+                                 Deduced, TDF_None);
+}
+
+static void
+MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
+                           bool OnlyDeduced,
+                           unsigned Level,
+                           llvm::SmallVectorImpl<bool> &Deduced);
+  
+/// \brief Determine whether the function template \p FT1 is at least as
+/// specialized as \p FT2.
+static bool isAtLeastAsSpecializedAs(Sema &S,
+                                     SourceLocation Loc,
+                                     FunctionTemplateDecl *FT1,
+                                     FunctionTemplateDecl *FT2,
+                                     TemplatePartialOrderingContext TPOC,
+    llvm::SmallVectorImpl<DeductionQualifierComparison> *QualifierComparisons) {
+  FunctionDecl *FD1 = FT1->getTemplatedDecl();
+  FunctionDecl *FD2 = FT2->getTemplatedDecl();  
+  const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
+  const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
+  
+  assert(Proto1 && Proto2 && "Function templates must have prototypes");
+  TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
+  llvm::SmallVector<TemplateArgument, 4> Deduced;
+  Deduced.resize(TemplateParams->size());
+
+  // C++0x [temp.deduct.partial]p3:
+  //   The types used to determine the ordering depend on the context in which
+  //   the partial ordering is done:
+  Sema::TemplateDeductionInfo Info(S.Context, Loc);
+  switch (TPOC) {
+  case TPOC_Call: {
+    //   - In the context of a function call, the function parameter types are
+    //     used.
+    unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
+    for (unsigned I = 0; I != NumParams; ++I)
+      if (DeduceTemplateArgumentsDuringPartialOrdering(S,
+                                                       TemplateParams,
+                                                       Proto2->getArgType(I),
+                                                       Proto1->getArgType(I),
+                                                       Info,
+                                                       Deduced,
+                                                       QualifierComparisons))
+        return false;
+    
+    break;
+  }
+    
+  case TPOC_Conversion:
+    //   - In the context of a call to a conversion operator, the return types
+    //     of the conversion function templates are used.
+    if (DeduceTemplateArgumentsDuringPartialOrdering(S,
+                                                     TemplateParams,
+                                                     Proto2->getResultType(),
+                                                     Proto1->getResultType(),
+                                                     Info,
+                                                     Deduced,
+                                                     QualifierComparisons))
+      return false;
+    break;
+    
+  case TPOC_Other:
+    //   - In other contexts (14.6.6.2) the function template’s function type 
+    //     is used.
+    if (DeduceTemplateArgumentsDuringPartialOrdering(S,
+                                                     TemplateParams,
+                                                     FD2->getType(),
+                                                     FD1->getType(),
+                                                     Info,
+                                                     Deduced,
+                                                     QualifierComparisons))
+      return false;
+    break;
+  }
+  
+  // C++0x [temp.deduct.partial]p11:
+  //   In most cases, all template parameters must have values in order for 
+  //   deduction to succeed, but for partial ordering purposes a template 
+  //   parameter may remain without a value provided it is not used in the 
+  //   types being used for partial ordering. [ Note: a template parameter used
+  //   in a non-deduced context is considered used. -end note]
+  unsigned ArgIdx = 0, NumArgs = Deduced.size();
+  for (; ArgIdx != NumArgs; ++ArgIdx)
+    if (Deduced[ArgIdx].isNull())
+      break;
+
+  if (ArgIdx == NumArgs) {
+    // All template arguments were deduced. FT1 is at least as specialized 
+    // as FT2.
+    return true;
+  }
+
+  // Figure out which template parameters were used.
+  llvm::SmallVector<bool, 4> UsedParameters;
+  UsedParameters.resize(TemplateParams->size());
+  switch (TPOC) {
+  case TPOC_Call: {
+    unsigned NumParams = std::min(Proto1->getNumArgs(), Proto2->getNumArgs());
+    for (unsigned I = 0; I != NumParams; ++I)
+      ::MarkUsedTemplateParameters(S, Proto2->getArgType(I), false, 
+                                   TemplateParams->getDepth(),
+                                   UsedParameters);
+    break;
+  }
+    
+  case TPOC_Conversion:
+    ::MarkUsedTemplateParameters(S, Proto2->getResultType(), false, 
+                                 TemplateParams->getDepth(),
+                                 UsedParameters);
+    break;
+    
+  case TPOC_Other:
+    ::MarkUsedTemplateParameters(S, FD2->getType(), false, 
+                                 TemplateParams->getDepth(),
+                                 UsedParameters);
+    break;
+  }
+  
+  for (; ArgIdx != NumArgs; ++ArgIdx)
+    // If this argument had no value deduced but was used in one of the types
+    // used for partial ordering, then deduction fails.
+    if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
+      return false;
+  
+  return true;
+}
+                                    
+                                     
+/// \brief Returns the more specialized function template according
+/// to the rules of function template partial ordering (C++ [temp.func.order]).
+///
+/// \param FT1 the first function template
+///
+/// \param FT2 the second function template
+///
+/// \param TPOC the context in which we are performing partial ordering of
+/// function templates.
+///
+/// \returns the more specialized function template. If neither
+/// template is more specialized, returns NULL.
+FunctionTemplateDecl *
+Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
+                                 FunctionTemplateDecl *FT2,
+                                 SourceLocation Loc,
+                                 TemplatePartialOrderingContext TPOC) {
+  llvm::SmallVector<DeductionQualifierComparison, 4> QualifierComparisons;
+  bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 0);
+  bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, 
+                                          &QualifierComparisons);
+  
+  if (Better1 != Better2) // We have a clear winner
+    return Better1? FT1 : FT2;
+  
+  if (!Better1 && !Better2) // Neither is better than the other
+    return 0;
+
+
+  // C++0x [temp.deduct.partial]p10:
+  //   If for each type being considered a given template is at least as 
+  //   specialized for all types and more specialized for some set of types and
+  //   the other template is not more specialized for any types or is not at 
+  //   least as specialized for any types, then the given template is more
+  //   specialized than the other template. Otherwise, neither template is more
+  //   specialized than the other.
+  Better1 = false;
+  Better2 = false;
+  for (unsigned I = 0, N = QualifierComparisons.size(); I != N; ++I) {
+    // C++0x [temp.deduct.partial]p9:
+    //   If, for a given type, deduction succeeds in both directions (i.e., the
+    //   types are identical after the transformations above) and if the type
+    //   from the argument template is more cv-qualified than the type from the
+    //   parameter template (as described above) that type is considered to be
+    //   more specialized than the other. If neither type is more cv-qualified 
+    //   than the other then neither type is more specialized than the other.
+    switch (QualifierComparisons[I]) {
+      case NeitherMoreQualified:
+        break;
+        
+      case ParamMoreQualified:
+        Better1 = true;
+        if (Better2)
+          return 0;
+        break;
+        
+      case ArgMoreQualified:
+        Better2 = true;
+        if (Better1)
+          return 0;
+        break;
+    }
+  }
+   
+  assert(!(Better1 && Better2) && "Should have broken out in the loop above");
+  if (Better1)
+    return FT1;
+  else if (Better2)
+    return FT2;
+  else
+    return 0;
+}
+
+/// \brief Determine if the two templates are equivalent.
+static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
+  if (T1 == T2)
+    return true;
+  
+  if (!T1 || !T2)
+    return false;
+  
+  return T1->getCanonicalDecl() == T2->getCanonicalDecl();
+}
+
+/// \brief Retrieve the most specialized of the given function template
+/// specializations.
+///
+/// \param SpecBegin the start iterator of the function template
+/// specializations that we will be comparing.
+///
+/// \param SpecEnd the end iterator of the function template
+/// specializations, paired with \p SpecBegin.
+///
+/// \param TPOC the partial ordering context to use to compare the function
+/// template specializations.
+///
+/// \param Loc the location where the ambiguity or no-specializations 
+/// diagnostic should occur.
+///
+/// \param NoneDiag partial diagnostic used to diagnose cases where there are
+/// no matching candidates.
+///
+/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
+/// occurs.
+///
+/// \param CandidateDiag partial diagnostic used for each function template
+/// specialization that is a candidate in the ambiguous ordering. One parameter
+/// in this diagnostic should be unbound, which will correspond to the string
+/// describing the template arguments for the function template specialization.
+///
+/// \param Index if non-NULL and the result of this function is non-nULL, 
+/// receives the index corresponding to the resulting function template
+/// specialization.
+///
+/// \returns the most specialized function template specialization, if 
+/// found. Otherwise, returns SpecEnd.
+///
+/// \todo FIXME: Consider passing in the "also-ran" candidates that failed 
+/// template argument deduction.
+UnresolvedSetIterator
+Sema::getMostSpecialized(UnresolvedSetIterator SpecBegin,
+                         UnresolvedSetIterator SpecEnd,
+                         TemplatePartialOrderingContext TPOC,
+                         SourceLocation Loc,
+                         const PartialDiagnostic &NoneDiag,
+                         const PartialDiagnostic &AmbigDiag,
+                         const PartialDiagnostic &CandidateDiag) {
+  if (SpecBegin == SpecEnd) {
+    Diag(Loc, NoneDiag);
+    return SpecEnd;
+  }
+  
+  if (SpecBegin + 1 == SpecEnd)    
+    return SpecBegin;
+  
+  // Find the function template that is better than all of the templates it
+  // has been compared to.
+  UnresolvedSetIterator Best = SpecBegin;
+  FunctionTemplateDecl *BestTemplate 
+    = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
+  assert(BestTemplate && "Not a function template specialization?");
+  for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
+    FunctionTemplateDecl *Challenger
+      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
+    assert(Challenger && "Not a function template specialization?");
+    if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
+                                                  Loc, TPOC),
+                       Challenger)) {
+      Best = I;
+      BestTemplate = Challenger;
+    }
+  }
+  
+  // Make sure that the "best" function template is more specialized than all
+  // of the others.
+  bool Ambiguous = false;
+  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
+    FunctionTemplateDecl *Challenger
+      = cast<FunctionDecl>(*I)->getPrimaryTemplate();
+    if (I != Best &&
+        !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 
+                                                   Loc, TPOC),
+                        BestTemplate)) {
+      Ambiguous = true;
+      break;
+    }
+  }
+  
+  if (!Ambiguous) {
+    // We found an answer. Return it.
+    return Best;
+  }
+  
+  // Diagnose the ambiguity.
+  Diag(Loc, AmbigDiag);
+  
+  // FIXME: Can we order the candidates in some sane way?
+  for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I)
+    Diag((*I)->getLocation(), CandidateDiag)
+      << getTemplateArgumentBindingsText(
+        cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
+                    *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
+  
+  return SpecEnd;
+}
+
+/// \brief Returns the more specialized class template partial specialization
+/// according to the rules of partial ordering of class template partial
+/// specializations (C++ [temp.class.order]).
+///
+/// \param PS1 the first class template partial specialization
+///
+/// \param PS2 the second class template partial specialization
+///
+/// \returns the more specialized class template partial specialization. If
+/// neither partial specialization is more specialized, returns NULL.
+ClassTemplatePartialSpecializationDecl *
+Sema::getMoreSpecializedPartialSpecialization(
+                                  ClassTemplatePartialSpecializationDecl *PS1,
+                                  ClassTemplatePartialSpecializationDecl *PS2,
+                                              SourceLocation Loc) {
+  // C++ [temp.class.order]p1:
+  //   For two class template partial specializations, the first is at least as
+  //   specialized as the second if, given the following rewrite to two 
+  //   function templates, the first function template is at least as 
+  //   specialized as the second according to the ordering rules for function 
+  //   templates (14.6.6.2):
+  //     - the first function template has the same template parameters as the
+  //       first partial specialization and has a single function parameter 
+  //       whose type is a class template specialization with the template 
+  //       arguments of the first partial specialization, and
+  //     - the second function template has the same template parameters as the
+  //       second partial specialization and has a single function parameter 
+  //       whose type is a class template specialization with the template 
+  //       arguments of the second partial specialization.
+  //
+  // Rather than synthesize function templates, we merely perform the 
+  // equivalent partial ordering by performing deduction directly on the
+  // template arguments of the class template partial specializations. This
+  // computation is slightly simpler than the general problem of function
+  // template partial ordering, because class template partial specializations
+  // are more constrained. We know that every template parameter is deduc
+  llvm::SmallVector<TemplateArgument, 4> Deduced;
+  Sema::TemplateDeductionInfo Info(Context, Loc);
+  
+  // Determine whether PS1 is at least as specialized as PS2
+  Deduced.resize(PS2->getTemplateParameters()->size());
+  bool Better1 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
+                                                  PS2->getTemplateParameters(),
+                                                  Context.getTypeDeclType(PS2),
+                                                  Context.getTypeDeclType(PS1),
+                                                               Info,
+                                                               Deduced,
+                                                               0);
+
+  // Determine whether PS2 is at least as specialized as PS1
+  Deduced.clear();
+  Deduced.resize(PS1->getTemplateParameters()->size());
+  bool Better2 = !DeduceTemplateArgumentsDuringPartialOrdering(*this,
+                                                  PS1->getTemplateParameters(),
+                                                  Context.getTypeDeclType(PS1),
+                                                  Context.getTypeDeclType(PS2),
+                                                               Info,
+                                                               Deduced,
+                                                               0);
+  
+  if (Better1 == Better2)
+    return 0;
+  
+  return Better1? PS1 : PS2;
+}
+
+static void
+MarkUsedTemplateParameters(Sema &SemaRef,
+                           const TemplateArgument &TemplateArg,
+                           bool OnlyDeduced,
+                           unsigned Depth,
+                           llvm::SmallVectorImpl<bool> &Used);
+
+/// \brief Mark the template parameters that are used by the given
+/// expression.
+static void
+MarkUsedTemplateParameters(Sema &SemaRef,
+                           const Expr *E,
+                           bool OnlyDeduced,
+                           unsigned Depth,
+                           llvm::SmallVectorImpl<bool> &Used) {
+  // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to 
+  // find other occurrences of template parameters.
+  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
+  if (!DRE)
+    return;
+
+  const NonTypeTemplateParmDecl *NTTP
+    = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
+  if (!NTTP)
+    return;
+
+  if (NTTP->getDepth() == Depth)
+    Used[NTTP->getIndex()] = true;
+}
+
+/// \brief Mark the template parameters that are used by the given
+/// nested name specifier.
+static void
+MarkUsedTemplateParameters(Sema &SemaRef,
+                           NestedNameSpecifier *NNS,
+                           bool OnlyDeduced,
+                           unsigned Depth,
+                           llvm::SmallVectorImpl<bool> &Used) {
+  if (!NNS)
+    return;
+  
+  MarkUsedTemplateParameters(SemaRef, NNS->getPrefix(), OnlyDeduced, Depth,
+                             Used);
+  MarkUsedTemplateParameters(SemaRef, QualType(NNS->getAsType(), 0), 
+                             OnlyDeduced, Depth, Used);
+}
+  
+/// \brief Mark the template parameters that are used by the given
+/// template name.
+static void
+MarkUsedTemplateParameters(Sema &SemaRef,
+                           TemplateName Name,
+                           bool OnlyDeduced,
+                           unsigned Depth,
+                           llvm::SmallVectorImpl<bool> &Used) {
+  if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
+    if (TemplateTemplateParmDecl *TTP
+          = dyn_cast<TemplateTemplateParmDecl>(Template)) {
+      if (TTP->getDepth() == Depth)
+        Used[TTP->getIndex()] = true;
+    }
+    return;
+  }
+  
+  if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
+    MarkUsedTemplateParameters(SemaRef, QTN->getQualifier(), OnlyDeduced, 
+                               Depth, Used);
+  if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
+    MarkUsedTemplateParameters(SemaRef, DTN->getQualifier(), OnlyDeduced, 
+                               Depth, Used);
+}
+
+/// \brief Mark the template parameters that are used by the given
+/// type.
+static void
+MarkUsedTemplateParameters(Sema &SemaRef, QualType T,
+                           bool OnlyDeduced,
+                           unsigned Depth,
+                           llvm::SmallVectorImpl<bool> &Used) {
+  if (T.isNull())
+    return;
+  
+  // Non-dependent types have nothing deducible
+  if (!T->isDependentType())
+    return;
+
+  T = SemaRef.Context.getCanonicalType(T);
+  switch (T->getTypeClass()) {
+  case Type::Pointer:
+    MarkUsedTemplateParameters(SemaRef,
+                               cast<PointerType>(T)->getPointeeType(),
+                               OnlyDeduced,
+                               Depth,
+                               Used);
+    break;
+
+  case Type::BlockPointer:
+    MarkUsedTemplateParameters(SemaRef,
+                               cast<BlockPointerType>(T)->getPointeeType(),
+                               OnlyDeduced,
+                               Depth,
+                               Used);
+    break;
+
+  case Type::LValueReference:
+  case Type::RValueReference:
+    MarkUsedTemplateParameters(SemaRef,
+                               cast<ReferenceType>(T)->getPointeeType(),
+                               OnlyDeduced,
+                               Depth,
+                               Used);
+    break;
+
+  case Type::MemberPointer: {
+    const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
+    MarkUsedTemplateParameters(SemaRef, MemPtr->getPointeeType(), OnlyDeduced,
+                               Depth, Used);
+    MarkUsedTemplateParameters(SemaRef, QualType(MemPtr->getClass(), 0),
+                               OnlyDeduced, Depth, Used);
+    break;
+  }
+
+  case Type::DependentSizedArray:
+    MarkUsedTemplateParameters(SemaRef,
+                               cast<DependentSizedArrayType>(T)->getSizeExpr(),
+                               OnlyDeduced, Depth, Used);
+    // Fall through to check the element type
+
+  case Type::ConstantArray:
+  case Type::IncompleteArray:
+    MarkUsedTemplateParameters(SemaRef,
+                               cast<ArrayType>(T)->getElementType(),
+                               OnlyDeduced, Depth, Used);
+    break;
+
+  case Type::Vector:
+  case Type::ExtVector:
+    MarkUsedTemplateParameters(SemaRef,
+                               cast<VectorType>(T)->getElementType(),
+                               OnlyDeduced, Depth, Used);
+    break;
+
+  case Type::DependentSizedExtVector: {
+    const DependentSizedExtVectorType *VecType
+      = cast<DependentSizedExtVectorType>(T);
+    MarkUsedTemplateParameters(SemaRef, VecType->getElementType(), OnlyDeduced,
+                               Depth, Used);
+    MarkUsedTemplateParameters(SemaRef, VecType->getSizeExpr(), OnlyDeduced, 
+                               Depth, Used);
+    break;
+  }
+
+  case Type::FunctionProto: {
+    const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
+    MarkUsedTemplateParameters(SemaRef, Proto->getResultType(), OnlyDeduced,
+                               Depth, Used);
+    for (unsigned I = 0, N = Proto->getNumArgs(); I != N; ++I)
+      MarkUsedTemplateParameters(SemaRef, Proto->getArgType(I), OnlyDeduced,
+                                 Depth, Used);
+    break;
+  }
+
+  case Type::TemplateTypeParm: {
+    const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
+    if (TTP->getDepth() == Depth)
+      Used[TTP->getIndex()] = true;
+    break;
+  }
+
+  case Type::TemplateSpecialization: {
+    const TemplateSpecializationType *Spec
+      = cast<TemplateSpecializationType>(T);
+    MarkUsedTemplateParameters(SemaRef, Spec->getTemplateName(), OnlyDeduced,
+                               Depth, Used);
+    for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
+      MarkUsedTemplateParameters(SemaRef, Spec->getArg(I), OnlyDeduced, Depth,
+                                 Used);
+    break;
+  }
+
+  case Type::Complex:
+    if (!OnlyDeduced)
+      MarkUsedTemplateParameters(SemaRef, 
+                                 cast<ComplexType>(T)->getElementType(),
+                                 OnlyDeduced, Depth, Used);
+    break;
+
+  case Type::Typename:
+    if (!OnlyDeduced)
+      MarkUsedTemplateParameters(SemaRef,
+                                 cast<TypenameType>(T)->getQualifier(),
+                                 OnlyDeduced, Depth, Used);
+    break;
+
+  // None of these types have any template parameters in them.
+  case Type::Builtin:
+  case Type::VariableArray:
+  case Type::FunctionNoProto:
+  case Type::Record:
+  case Type::Enum:
+  case Type::ObjCInterface:
+  case Type::ObjCObjectPointer:
+  case Type::UnresolvedUsing:
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define DEPENDENT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+    break;
+  }
+}
+
+/// \brief Mark the template parameters that are used by this
+/// template argument.
+static void
+MarkUsedTemplateParameters(Sema &SemaRef,
+                           const TemplateArgument &TemplateArg,
+                           bool OnlyDeduced,
+                           unsigned Depth,
+                           llvm::SmallVectorImpl<bool> &Used) {
+  switch (TemplateArg.getKind()) {
+  case TemplateArgument::Null:
+  case TemplateArgument::Integral:
+    case TemplateArgument::Declaration:
+    break;
+
+  case TemplateArgument::Type:
+    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsType(), OnlyDeduced,
+                               Depth, Used);
+    break;
+
+  case TemplateArgument::Template:
+    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsTemplate(), 
+                               OnlyDeduced, Depth, Used);
+    break;
+
+  case TemplateArgument::Expression:
+    MarkUsedTemplateParameters(SemaRef, TemplateArg.getAsExpr(), OnlyDeduced, 
+                               Depth, Used);
+    break;
+      
+  case TemplateArgument::Pack:
+    for (TemplateArgument::pack_iterator P = TemplateArg.pack_begin(),
+                                      PEnd = TemplateArg.pack_end();
+         P != PEnd; ++P)
+      MarkUsedTemplateParameters(SemaRef, *P, OnlyDeduced, Depth, Used);
+    break;
+  }
+}
+
+/// \brief Mark the template parameters can be deduced by the given
+/// template argument list.
+///
+/// \param TemplateArgs the template argument list from which template
+/// parameters will be deduced.
+///
+/// \param Deduced a bit vector whose elements will be set to \c true
+/// to indicate when the corresponding template parameter will be
+/// deduced.
+void
+Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
+                                 bool OnlyDeduced, unsigned Depth,
+                                 llvm::SmallVectorImpl<bool> &Used) {
+  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+    ::MarkUsedTemplateParameters(*this, TemplateArgs[I], OnlyDeduced, 
+                                 Depth, Used);
+}
+
+/// \brief Marks all of the template parameters that will be deduced by a
+/// call to the given function template.
+void Sema::MarkDeducedTemplateParameters(FunctionTemplateDecl *FunctionTemplate,
+                                         llvm::SmallVectorImpl<bool> &Deduced) {
+  TemplateParameterList *TemplateParams 
+    = FunctionTemplate->getTemplateParameters();
+  Deduced.clear();
+  Deduced.resize(TemplateParams->size());
+  
+  FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
+  for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
+    ::MarkUsedTemplateParameters(*this, Function->getParamDecl(I)->getType(),
+                                 true, TemplateParams->getDepth(), Deduced);
+}