blob: 561ed205e894d3624fcde312a6931d37b4996132 [file] [log] [blame]
Douglas Gregoreb11cd02009-01-14 22:20:51 +00001//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements name lookup for C, C++, Objective-C, and
11// Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "Sema.h"
Douglas Gregor7176fff2009-01-15 00:26:24 +000015#include "SemaInherit.h"
16#include "clang/AST/ASTContext.h"
Douglas Gregoreb11cd02009-01-14 22:20:51 +000017#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/LangOptions.h"
22#include "llvm/ADT/STLExtras.h"
Douglas Gregor4dc6b1c2009-01-16 00:38:09 +000023#include <set>
Douglas Gregoreb11cd02009-01-14 22:20:51 +000024
25using namespace clang;
26
27/// MaybeConstructOverloadSet - Name lookup has determined that the
28/// elements in [I, IEnd) have the name that we are looking for, and
29/// *I is a match for the namespace. This routine returns an
30/// appropriate Decl for name lookup, which may either be *I or an
31/// OverloadeFunctionDecl that represents the overloaded functions in
32/// [I, IEnd).
33///
34/// The existance of this routine is temporary; LookupDecl should
35/// probably be able to return multiple results, to deal with cases of
36/// ambiguity and overloaded functions without needing to create a
37/// Decl node.
38template<typename DeclIterator>
39static Decl *
40MaybeConstructOverloadSet(ASTContext &Context,
41 DeclIterator I, DeclIterator IEnd) {
42 assert(I != IEnd && "Iterator range cannot be empty");
43 assert(!isa<OverloadedFunctionDecl>(*I) &&
44 "Cannot have an overloaded function");
45
46 if (isa<FunctionDecl>(*I)) {
47 // If we found a function, there might be more functions. If
48 // so, collect them into an overload set.
49 DeclIterator Last = I;
50 OverloadedFunctionDecl *Ovl = 0;
51 for (++Last; Last != IEnd && isa<FunctionDecl>(*Last); ++Last) {
52 if (!Ovl) {
53 // FIXME: We leak this overload set. Eventually, we want to
54 // stop building the declarations for these overload sets, so
55 // there will be nothing to leak.
56 Ovl = OverloadedFunctionDecl::Create(Context,
57 cast<ScopedDecl>(*I)->getDeclContext(),
58 (*I)->getDeclName());
59 Ovl->addOverload(cast<FunctionDecl>(*I));
60 }
61 Ovl->addOverload(cast<FunctionDecl>(*Last));
62 }
63
64 // If we had more than one function, we built an overload
65 // set. Return it.
66 if (Ovl)
67 return Ovl;
68 }
69
70 return *I;
71}
72
73/// @brief Constructs name lookup criteria.
74///
75/// @param K The kind of name that we're searching for.
76///
77/// @param RedeclarationOnly If true, then name lookup will only look
78/// into the current scope for names, not in parent scopes. This
79/// option should be set when we're looking to introduce a new
80/// declaration into scope.
81///
82/// @param CPlusPlus Whether we are performing C++ name lookup or not.
83Sema::LookupCriteria::LookupCriteria(NameKind K, bool RedeclarationOnly,
84 bool CPlusPlus)
85 : Kind(K), AllowLazyBuiltinCreation(K == Ordinary),
86 RedeclarationOnly(RedeclarationOnly) {
87 switch (Kind) {
88 case Ordinary:
89 IDNS = Decl::IDNS_Ordinary;
90 if (CPlusPlus)
91 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member;
92 break;
93
94 case Tag:
95 IDNS = Decl::IDNS_Tag;
96 break;
97
98 case Member:
99 IDNS = Decl::IDNS_Member;
100 if (CPlusPlus)
101 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
102 break;
103
104 case NestedNameSpecifier:
105 case Namespace:
106 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member;
107 break;
108 }
109}
110
111/// isLookupResult - Determines whether D is a suitable lookup result
112/// according to the lookup criteria.
113bool Sema::LookupCriteria::isLookupResult(Decl *D) const {
114 switch (Kind) {
115 case Ordinary:
116 case Tag:
117 case Member:
118 return D->isInIdentifierNamespace(IDNS);
119
120 case NestedNameSpecifier:
121 return isa<TypedefDecl>(D) || D->isInIdentifierNamespace(Decl::IDNS_Tag);
122
123 case Namespace:
124 return isa<NamespaceDecl>(D);
125 }
126
127 assert(false && "isLookupResult always returns before this point");
128 return false;
129}
130
Douglas Gregor4bb64e72009-01-15 02:19:31 +0000131/// @brief Moves the name-lookup results from Other to the
132/// newly-constructed LookupResult.
133Sema::LookupResult::LookupResult(const LookupResult& Other)
134 : StoredKind(Other.StoredKind), First(Other.First), Last(Other.Last),
135 Context(Other.Context) {
136 Other.StoredKind = Dead;
137}
138
139/// @brief Moves the name-lookup results from Other to this LookupResult.
Douglas Gregor7176fff2009-01-15 00:26:24 +0000140Sema::LookupResult::LookupResult(ASTContext &Context,
141 IdentifierResolver::iterator F,
142 IdentifierResolver::iterator L)
143 : Context(&Context) {
144 if (F != L && isa<FunctionDecl>(*F)) {
145 IdentifierResolver::iterator Next = F;
146 ++Next;
147 if (Next != L && isa<FunctionDecl>(*Next)) {
148 StoredKind = OverloadedDeclFromIdResolver;
149 First = F.getAsOpaqueValue();
150 Last = L.getAsOpaqueValue();
151 return;
152 }
153 }
154
155 StoredKind = SingleDecl;
156 First = reinterpret_cast<uintptr_t>(*F);
157 Last = 0;
158}
159
160Sema::LookupResult::LookupResult(ASTContext &Context,
161 DeclContext::lookup_iterator F,
162 DeclContext::lookup_iterator L)
163 : Context(&Context) {
164 if (F != L && isa<FunctionDecl>(*F)) {
165 DeclContext::lookup_iterator Next = F;
166 ++Next;
167 if (Next != L && isa<FunctionDecl>(*Next)) {
168 StoredKind = OverloadedDeclFromDeclContext;
169 First = reinterpret_cast<uintptr_t>(F);
170 Last = reinterpret_cast<uintptr_t>(L);
171 return;
172 }
173 }
174
175 StoredKind = SingleDecl;
176 First = reinterpret_cast<uintptr_t>(*F);
177 Last = 0;
178}
179
Douglas Gregor4bb64e72009-01-15 02:19:31 +0000180Sema::LookupResult::~LookupResult() {
181 if (StoredKind == AmbiguousLookup)
182 delete getBasePaths();
183}
184
185Sema::LookupResult& Sema::LookupResult::operator=(const LookupResult& Other) {
186 if (StoredKind == AmbiguousLookup)
187 delete getBasePaths();
188
189 StoredKind = Other.StoredKind;
190 First = Other.First;
191 Last = Other.Last;
192 Context = Other.Context;
193
194 Other.StoredKind = Dead;
195 return *this;
196}
197
198
Douglas Gregoreb11cd02009-01-14 22:20:51 +0000199/// @brief Determine the result of name lookup.
200Sema::LookupResult::LookupKind Sema::LookupResult::getKind() const {
201 switch (StoredKind) {
202 case SingleDecl:
203 return (reinterpret_cast<Decl *>(First) != 0)? Found : NotFound;
204
205 case OverloadedDeclFromIdResolver:
206 case OverloadedDeclFromDeclContext:
207 return FoundOverloaded;
208
209 case AmbiguousLookup:
Douglas Gregor7176fff2009-01-15 00:26:24 +0000210 return Last? AmbiguousBaseSubobjectTypes : AmbiguousBaseSubobjects;
Douglas Gregor4bb64e72009-01-15 02:19:31 +0000211
212 case Dead:
213 assert(false && "Attempt to look at a dead LookupResult");
214 break;
Douglas Gregoreb11cd02009-01-14 22:20:51 +0000215 }
216
Douglas Gregor7176fff2009-01-15 00:26:24 +0000217 // We can't ever get here.
218 return NotFound;
Douglas Gregoreb11cd02009-01-14 22:20:51 +0000219}
220
221/// @brief Converts the result of name lookup into a single (possible
222/// NULL) pointer to a declaration.
223///
224/// The resulting declaration will either be the declaration we found
225/// (if only a single declaration was found), an
226/// OverloadedFunctionDecl (if an overloaded function was found), or
227/// NULL (if no declaration was found). This conversion must not be
228/// used anywhere where name lookup could result in an ambiguity.
229///
230/// The OverloadedFunctionDecl conversion is meant as a stop-gap
231/// solution, since it causes the OverloadedFunctionDecl to be
232/// leaked. FIXME: Eventually, there will be a better way to iterate
233/// over the set of overloaded functions returned by name lookup.
234Decl *Sema::LookupResult::getAsDecl() const {
235 switch (StoredKind) {
236 case SingleDecl:
237 return reinterpret_cast<Decl *>(First);
238
239 case OverloadedDeclFromIdResolver:
240 return MaybeConstructOverloadSet(*Context,
241 IdentifierResolver::iterator::getFromOpaqueValue(First),
242 IdentifierResolver::iterator::getFromOpaqueValue(Last));
243
244 case OverloadedDeclFromDeclContext:
245 return MaybeConstructOverloadSet(*Context,
246 reinterpret_cast<DeclContext::lookup_iterator>(First),
247 reinterpret_cast<DeclContext::lookup_iterator>(Last));
248
249 case AmbiguousLookup:
250 assert(false &&
251 "Name lookup returned an ambiguity that could not be handled");
252 break;
Douglas Gregor4bb64e72009-01-15 02:19:31 +0000253
254 case Dead:
255 assert(false && "Attempt to look at a dead LookupResult");
Douglas Gregoreb11cd02009-01-14 22:20:51 +0000256 }
257
258 return 0;
259}
260
Douglas Gregor7176fff2009-01-15 00:26:24 +0000261/// @brief Retrieves the BasePaths structure describing an ambiguous
262/// name lookup.
263BasePaths *Sema::LookupResult::getBasePaths() const {
264 assert((StoredKind == AmbiguousLookup) &&
265 "getBasePaths can only be used on an ambiguous lookup");
266 return reinterpret_cast<BasePaths *>(First);
267}
268
Douglas Gregoreb11cd02009-01-14 22:20:51 +0000269/// @brief Perform unqualified name lookup starting from a given
270/// scope.
271///
272/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
273/// used to find names within the current scope. For example, 'x' in
274/// @code
275/// int x;
276/// int f() {
277/// return x; // unqualified name look finds 'x' in the global scope
278/// }
279/// @endcode
280///
281/// Different lookup criteria can find different names. For example, a
282/// particular scope can have both a struct and a function of the same
283/// name, and each can be found by certain lookup criteria. For more
284/// information about lookup criteria, see the documentation for the
285/// class LookupCriteria.
286///
287/// @param S The scope from which unqualified name lookup will
288/// begin. If the lookup criteria permits, name lookup may also search
289/// in the parent scopes.
290///
291/// @param Name The name of the entity that we are searching for.
292///
293/// @param Criteria The criteria that this routine will use to
294/// determine which names are visible and which names will be
295/// found. Note that name lookup will find a name that is visible by
296/// the given criteria, but the entity itself may not be semantically
297/// correct or even the kind of entity expected based on the
298/// lookup. For example, searching for a nested-name-specifier name
299/// might result in an EnumDecl, which is visible but is not permitted
300/// as a nested-name-specifier in C++03.
301///
302/// @returns The result of name lookup, which includes zero or more
303/// declarations and possibly additional information used to diagnose
304/// ambiguities.
305Sema::LookupResult
306Sema::LookupName(Scope *S, DeclarationName Name, LookupCriteria Criteria) {
307 if (!Name) return LookupResult(Context, 0);
308
309 if (!getLangOptions().CPlusPlus) {
310 // Unqualified name lookup in C/Objective-C is purely lexical, so
311 // search in the declarations attached to the name.
312
313 // For the purposes of unqualified name lookup, structs and unions
314 // don't have scopes at all. For example:
315 //
316 // struct X {
317 // struct T { int i; } x;
318 // };
319 //
320 // void f() {
321 // struct T t; // okay: T is defined lexically within X, but
322 // // semantically at global scope
323 // };
324 //
325 // FIXME: Is there a better way to deal with this?
326 DeclContext *SearchCtx = CurContext;
327 while (isa<RecordDecl>(SearchCtx) || isa<EnumDecl>(SearchCtx))
328 SearchCtx = SearchCtx->getParent();
329 IdentifierResolver::iterator I
330 = IdResolver.begin(Name, SearchCtx, !Criteria.RedeclarationOnly);
331
332 // Scan up the scope chain looking for a decl that matches this
333 // identifier that is in the appropriate namespace. This search
334 // should not take long, as shadowing of names is uncommon, and
335 // deep shadowing is extremely uncommon.
336 for (; I != IdResolver.end(); ++I)
337 if (Criteria.isLookupResult(*I))
338 return LookupResult(Context, *I);
339 } else {
340 // Unqualified name lookup in C++ requires looking into scopes
341 // that aren't strictly lexical, and therefore we walk through the
342 // context as well as walking through the scopes.
343
344 // FIXME: does "true" for LookInParentCtx actually make sense?
345 IdentifierResolver::iterator
346 I = IdResolver.begin(Name, CurContext, true/*LookInParentCtx*/),
347 IEnd = IdResolver.end();
348 for (; S; S = S->getParent()) {
349 // Check whether the IdResolver has anything in this scope.
350 for (; I != IEnd && S->isDeclScope(*I); ++I) {
351 if (Criteria.isLookupResult(*I)) {
352 // We found something. Look for anything else in our scope
353 // with this same name and in an acceptable identifier
354 // namespace, so that we can construct an overload set if we
355 // need to.
356 IdentifierResolver::iterator LastI = I;
357 for (++LastI; LastI != IEnd; ++LastI) {
358 if (!S->isDeclScope(*LastI))
359 break;
360 }
361 return LookupResult(Context, I, LastI);
362 }
363 }
364
365 // If there is an entity associated with this scope, it's a
366 // DeclContext. We might need to perform qualified lookup into
367 // it.
368 // FIXME: We're performing redundant lookups here, where the
369 // scope stack mirrors the semantic nested of classes and
370 // namespaces. We can save some work by checking the lexical
371 // scope against the semantic scope and avoiding any lookups
372 // when they are the same.
373 // FIXME: In some cases, we know that every name that could be
374 // found by this qualified name lookup will also be on the
375 // identifier chain. For example, inside a class without any
376 // base classes, we never need to perform qualified lookup
377 // because all of the members are on top of the identifier
378 // chain. However, we cannot perform this optimization when the
379 // lexical and semantic scopes don't line up, e.g., in an
380 // out-of-line member definition.
381 DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
382 while (Ctx && Ctx->isFunctionOrMethod())
383 Ctx = Ctx->getParent();
384 while (Ctx && (Ctx->isNamespace() || Ctx->isRecord())) {
385 // Look for declarations of this name in this scope.
386 if (LookupResult Result = LookupQualifiedName(Ctx, Name, Criteria))
387 return Result;
388
389 if (Criteria.RedeclarationOnly && !Ctx->isTransparentContext())
390 return LookupResult(Context, 0);
391
392 Ctx = Ctx->getParent();
393 }
394 }
395 }
396
397 // If we didn't find a use of this identifier, and if the identifier
398 // corresponds to a compiler builtin, create the decl object for the builtin
399 // now, injecting it into translation unit scope, and return it.
400 if (Criteria.Kind == LookupCriteria::Ordinary) {
401 IdentifierInfo *II = Name.getAsIdentifierInfo();
402 if (Criteria.AllowLazyBuiltinCreation && II) {
403 // If this is a builtin on this (or all) targets, create the decl.
404 if (unsigned BuiltinID = II->getBuiltinID())
405 return LookupResult(Context,
406 LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
407 S));
408 }
409 if (getLangOptions().ObjC1 && II) {
410 // @interface and @compatibility_alias introduce typedef-like names.
411 // Unlike typedef's, they can only be introduced at file-scope (and are
412 // therefore not scoped decls). They can, however, be shadowed by
413 // other names in IDNS_Ordinary.
414 ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
415 if (IDI != ObjCInterfaceDecls.end())
416 return LookupResult(Context, IDI->second);
417 ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
418 if (I != ObjCAliasDecls.end())
419 return LookupResult(Context, I->second->getClassInterface());
420 }
421 }
422 return LookupResult(Context, 0);
423}
424
425/// @brief Perform qualified name lookup into a given context.
426///
427/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
428/// names when the context of those names is explicit specified, e.g.,
429/// "std::vector" or "x->member".
430///
431/// Different lookup criteria can find different names. For example, a
432/// particular scope can have both a struct and a function of the same
433/// name, and each can be found by certain lookup criteria. For more
434/// information about lookup criteria, see the documentation for the
435/// class LookupCriteria.
436///
437/// @param LookupCtx The context in which qualified name lookup will
438/// search. If the lookup criteria permits, name lookup may also search
439/// in the parent contexts or (for C++ classes) base classes.
440///
441/// @param Name The name of the entity that we are searching for.
442///
443/// @param Criteria The criteria that this routine will use to
444/// determine which names are visible and which names will be
445/// found. Note that name lookup will find a name that is visible by
446/// the given criteria, but the entity itself may not be semantically
447/// correct or even the kind of entity expected based on the
448/// lookup. For example, searching for a nested-name-specifier name
449/// might result in an EnumDecl, which is visible but is not permitted
450/// as a nested-name-specifier in C++03.
451///
452/// @returns The result of name lookup, which includes zero or more
453/// declarations and possibly additional information used to diagnose
454/// ambiguities.
455Sema::LookupResult
456Sema::LookupQualifiedName(DeclContext *LookupCtx, DeclarationName Name,
457 LookupCriteria Criteria) {
458 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
459
460 if (!Name) return LookupResult(Context, 0);
461
462 // If we're performing qualified name lookup (e.g., lookup into a
463 // struct), find fields as part of ordinary name lookup.
464 if (Criteria.Kind == LookupCriteria::Ordinary)
465 Criteria.IDNS |= Decl::IDNS_Member;
466
467 // Perform qualified name lookup into the LookupCtx.
Douglas Gregoreb11cd02009-01-14 22:20:51 +0000468 DeclContext::lookup_iterator I, E;
469 for (llvm::tie(I, E) = LookupCtx->lookup(Name); I != E; ++I)
470 if (Criteria.isLookupResult(*I))
471 return LookupResult(Context, I, E);
472
Douglas Gregor7176fff2009-01-15 00:26:24 +0000473 // If this isn't a C++ class or we aren't allowed to look into base
474 // classes, we're done.
475 if (Criteria.RedeclarationOnly || !isa<CXXRecordDecl>(LookupCtx))
476 return LookupResult(Context, 0);
477
478 // Perform lookup into our base classes.
479 BasePaths Paths;
Douglas Gregor4dc6b1c2009-01-16 00:38:09 +0000480 Paths.setOrigin(Context.getTypeDeclType(cast<RecordDecl>(LookupCtx)));
Douglas Gregor7176fff2009-01-15 00:26:24 +0000481
482 // Look for this member in our base classes
483 if (!LookupInBases(cast<CXXRecordDecl>(LookupCtx),
484 MemberLookupCriteria(Name, Criteria), Paths))
485 return LookupResult(Context, 0);
486
487 // C++ [class.member.lookup]p2:
488 // [...] If the resulting set of declarations are not all from
489 // sub-objects of the same type, or the set has a nonstatic member
490 // and includes members from distinct sub-objects, there is an
491 // ambiguity and the program is ill-formed. Otherwise that set is
492 // the result of the lookup.
493 // FIXME: support using declarations!
494 QualType SubobjectType;
Daniel Dunbarf1853192009-01-15 18:32:35 +0000495 int SubobjectNumber = 0;
Douglas Gregor7176fff2009-01-15 00:26:24 +0000496 for (BasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
497 Path != PathEnd; ++Path) {
498 const BasePathElement &PathElement = Path->back();
499
500 // Determine whether we're looking at a distinct sub-object or not.
501 if (SubobjectType.isNull()) {
502 // This is the first subobject we've looked at. Record it's type.
503 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
504 SubobjectNumber = PathElement.SubobjectNumber;
505 } else if (SubobjectType
506 != Context.getCanonicalType(PathElement.Base->getType())) {
507 // We found members of the given name in two subobjects of
508 // different types. This lookup is ambiguous.
509 BasePaths *PathsOnHeap = new BasePaths;
510 PathsOnHeap->swap(Paths);
511 return LookupResult(Context, PathsOnHeap, true);
512 } else if (SubobjectNumber != PathElement.SubobjectNumber) {
513 // We have a different subobject of the same type.
514
515 // C++ [class.member.lookup]p5:
516 // A static member, a nested type or an enumerator defined in
517 // a base class T can unambiguously be found even if an object
518 // has more than one base class subobject of type T.
519 ScopedDecl *FirstDecl = *Path->Decls.first;
520 if (isa<VarDecl>(FirstDecl) ||
521 isa<TypeDecl>(FirstDecl) ||
522 isa<EnumConstantDecl>(FirstDecl))
523 continue;
524
525 if (isa<CXXMethodDecl>(FirstDecl)) {
526 // Determine whether all of the methods are static.
527 bool AllMethodsAreStatic = true;
528 for (DeclContext::lookup_iterator Func = Path->Decls.first;
529 Func != Path->Decls.second; ++Func) {
530 if (!isa<CXXMethodDecl>(*Func)) {
531 assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
532 break;
533 }
534
535 if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
536 AllMethodsAreStatic = false;
537 break;
538 }
539 }
540
541 if (AllMethodsAreStatic)
542 continue;
543 }
544
545 // We have found a nonstatic member name in multiple, distinct
546 // subobjects. Name lookup is ambiguous.
547 BasePaths *PathsOnHeap = new BasePaths;
548 PathsOnHeap->swap(Paths);
549 return LookupResult(Context, PathsOnHeap, false);
550 }
551 }
552
553 // Lookup in a base class succeeded; return these results.
554
555 // If we found a function declaration, return an overload set.
556 if (isa<FunctionDecl>(*Paths.front().Decls.first))
557 return LookupResult(Context,
558 Paths.front().Decls.first, Paths.front().Decls.second);
559
560 // We found a non-function declaration; return a single declaration.
561 return LookupResult(Context, *Paths.front().Decls.first);
Douglas Gregoreb11cd02009-01-14 22:20:51 +0000562}
563
564/// @brief Performs name lookup for a name that was parsed in the
565/// source code, and may contain a C++ scope specifier.
566///
567/// This routine is a convenience routine meant to be called from
568/// contexts that receive a name and an optional C++ scope specifier
569/// (e.g., "N::M::x"). It will then perform either qualified or
570/// unqualified name lookup (with LookupQualifiedName or LookupName,
571/// respectively) on the given name and return those results.
572///
573/// @param S The scope from which unqualified name lookup will
574/// begin.
575///
576/// @param SS An optional C++ scope-specified, e.g., "::N::M".
577///
578/// @param Name The name of the entity that name lookup will
579/// search for.
580///
581/// @param Criteria The criteria that will determine which entities
582/// are visible to name lookup.
583///
584/// @returns The result of qualified or unqualified name lookup.
585Sema::LookupResult
586Sema::LookupParsedName(Scope *S, const CXXScopeSpec &SS,
587 DeclarationName Name, LookupCriteria Criteria) {
588 if (SS.isSet())
589 return LookupQualifiedName(static_cast<DeclContext *>(SS.getScopeRep()),
590 Name, Criteria);
591
592 return LookupName(S, Name, Criteria);
593}
594
Douglas Gregor7176fff2009-01-15 00:26:24 +0000595/// @brief Produce a diagnostic describing the ambiguity that resulted
596/// from name lookup.
597///
598/// @param Result The ambiguous name lookup result.
599///
600/// @param Name The name of the entity that name lookup was
601/// searching for.
602///
603/// @param NameLoc The location of the name within the source code.
604///
605/// @param LookupRange A source range that provides more
606/// source-location information concerning the lookup itself. For
607/// example, this range might highlight a nested-name-specifier that
608/// precedes the name.
609///
610/// @returns true
611bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result, DeclarationName Name,
612 SourceLocation NameLoc,
613 SourceRange LookupRange) {
614 assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
615
Douglas Gregor4dc6b1c2009-01-16 00:38:09 +0000616 BasePaths *Paths = Result.getBasePaths();
Douglas Gregor7176fff2009-01-15 00:26:24 +0000617 if (Result.getKind() == LookupResult::AmbiguousBaseSubobjects) {
Douglas Gregor7176fff2009-01-15 00:26:24 +0000618 QualType SubobjectType = Paths->front().back().Base->getType();
Douglas Gregor4dc6b1c2009-01-16 00:38:09 +0000619 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
620 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
621 << LookupRange;
622
623 DeclContext::lookup_iterator Found = Paths->front().Decls.first;
624 while (isa<CXXMethodDecl>(*Found) && cast<CXXMethodDecl>(*Found)->isStatic())
625 ++Found;
626
627 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
Douglas Gregor0b7a1582009-01-17 00:42:38 +0000628
Douglas Gregor4dc6b1c2009-01-16 00:38:09 +0000629 return true;
Douglas Gregor7176fff2009-01-15 00:26:24 +0000630 }
631
632 assert(Result.getKind() == LookupResult::AmbiguousBaseSubobjectTypes &&
633 "Unhandled form of name lookup ambiguity");
634
635 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
636 << Name << LookupRange;
637
Douglas Gregor4dc6b1c2009-01-16 00:38:09 +0000638 std::set<ScopedDecl *> DeclsPrinted;
639 for (BasePaths::paths_iterator Path = Paths->begin(), PathEnd = Paths->end();
640 Path != PathEnd; ++Path) {
641 ScopedDecl *D = *Path->Decls.first;
642 if (DeclsPrinted.insert(D).second)
643 Diag(D->getLocation(), diag::note_ambiguous_member_found);
644 }
645
Douglas Gregor7176fff2009-01-15 00:26:24 +0000646 return true;
647}