blob: ba4ea0e6c8b53597e49266d8944f256f6e47b417 [file] [log] [blame]
Daniel Dunbar2eecaab2008-08-23 03:10:25 +00001//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// These classes implement wrappers around llvm::Value in order to
11// fully represent the range of values for C L- and R- values.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef CLANG_CODEGEN_CGVALUE_H
16#define CLANG_CODEGEN_CGVALUE_H
17
18#include "clang/AST/Type.h"
19
20namespace clang {
21namespace CodeGen {
22
23/// RValue - This trivial value class is used to represent the result of an
24/// expression that is evaluated. It can be one of three things: either a
25/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
26/// address of an aggregate value in memory.
27class RValue {
28 llvm::Value *V1, *V2;
29 // TODO: Encode this into the low bit of pointer for more efficient
30 // return-by-value.
31 enum { Scalar, Complex, Aggregate } Flavor;
32
33 // FIXME: Aggregate rvalues need to retain information about whether they are
34 // volatile or not.
35public:
36
37 bool isScalar() const { return Flavor == Scalar; }
38 bool isComplex() const { return Flavor == Complex; }
39 bool isAggregate() const { return Flavor == Aggregate; }
40
41 /// getScalar() - Return the Value* of this scalar value.
42 llvm::Value *getScalarVal() const {
43 assert(isScalar() && "Not a scalar!");
44 return V1;
45 }
46
47 /// getComplexVal - Return the real/imag components of this complex value.
48 ///
49 std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
50 return std::pair<llvm::Value *, llvm::Value *>(V1, V2);
51 }
52
53 /// getAggregateAddr() - Return the Value* of the address of the aggregate.
54 llvm::Value *getAggregateAddr() const {
55 assert(isAggregate() && "Not an aggregate!");
56 return V1;
57 }
58
59 static RValue get(llvm::Value *V) {
60 RValue ER;
61 ER.V1 = V;
62 ER.Flavor = Scalar;
63 return ER;
64 }
65 static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
66 RValue ER;
67 ER.V1 = V1;
68 ER.V2 = V2;
69 ER.Flavor = Complex;
70 return ER;
71 }
72 static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
73 RValue ER;
74 ER.V1 = C.first;
75 ER.V2 = C.second;
76 ER.Flavor = Complex;
77 return ER;
78 }
79 static RValue getAggregate(llvm::Value *V) {
80 RValue ER;
81 ER.V1 = V;
82 ER.Flavor = Aggregate;
83 return ER;
84 }
85};
86
87
88/// LValue - This represents an lvalue references. Because C/C++ allow
89/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
90/// bitrange.
91class LValue {
92 // FIXME: alignment?
93
94 enum {
95 Simple, // This is a normal l-value, use getAddress().
96 VectorElt, // This is a vector element l-value (V[i]), use getVector*
97 BitField, // This is a bitfield l-value, use getBitfield*.
98 ExtVectorElt // This is an extended vector subset, use getExtVectorComp
99 } LVType;
100
101 llvm::Value *V;
102
103 union {
104 // Index into a vector subscript: V[i]
105 llvm::Value *VectorIdx;
106
107 // ExtVector element subset: V.xyx
108 llvm::Constant *VectorElts;
109
110 // BitField start bit and size
111 struct {
112 unsigned short StartBit;
113 unsigned short Size;
114 bool IsSigned;
115 } BitfieldData;
116 };
117
118 bool Volatile:1;
119 // FIXME: set but never used, what effect should it have?
120 bool Restrict:1;
121
122private:
123 static void SetQualifiers(unsigned Qualifiers, LValue& R) {
124 R.Volatile = (Qualifiers&QualType::Volatile)!=0;
125 R.Restrict = (Qualifiers&QualType::Restrict)!=0;
126 }
127
128public:
129 bool isSimple() const { return LVType == Simple; }
130 bool isVectorElt() const { return LVType == VectorElt; }
131 bool isBitfield() const { return LVType == BitField; }
132 bool isExtVectorElt() const { return LVType == ExtVectorElt; }
133
134 bool isVolatileQualified() const { return Volatile; }
135 bool isRestrictQualified() const { return Restrict; }
136
137 // simple lvalue
138 llvm::Value *getAddress() const { assert(isSimple()); return V; }
139 // vector elt lvalue
140 llvm::Value *getVectorAddr() const { assert(isVectorElt()); return V; }
141 llvm::Value *getVectorIdx() const { assert(isVectorElt()); return VectorIdx; }
142 // extended vector elements.
143 llvm::Value *getExtVectorAddr() const { assert(isExtVectorElt()); return V; }
144 llvm::Constant *getExtVectorElts() const {
145 assert(isExtVectorElt());
146 return VectorElts;
147 }
148 // bitfield lvalue
149 llvm::Value *getBitfieldAddr() const { assert(isBitfield()); return V; }
150 unsigned short getBitfieldStartBit() const {
151 assert(isBitfield());
152 return BitfieldData.StartBit;
153 }
154 unsigned short getBitfieldSize() const {
155 assert(isBitfield());
156 return BitfieldData.Size;
157 }
158 bool isBitfieldSigned() const {
159 assert(isBitfield());
160 return BitfieldData.IsSigned;
161 }
162
163 static LValue MakeAddr(llvm::Value *V, unsigned Qualifiers) {
164 LValue R;
165 R.LVType = Simple;
166 R.V = V;
167 SetQualifiers(Qualifiers,R);
168 return R;
169 }
170
171 static LValue MakeVectorElt(llvm::Value *Vec, llvm::Value *Idx,
172 unsigned Qualifiers) {
173 LValue R;
174 R.LVType = VectorElt;
175 R.V = Vec;
176 R.VectorIdx = Idx;
177 SetQualifiers(Qualifiers,R);
178 return R;
179 }
180
181 static LValue MakeExtVectorElt(llvm::Value *Vec, llvm::Constant *Elts,
182 unsigned Qualifiers) {
183 LValue R;
184 R.LVType = ExtVectorElt;
185 R.V = Vec;
186 R.VectorElts = Elts;
187 SetQualifiers(Qualifiers,R);
188 return R;
189 }
190
191 static LValue MakeBitfield(llvm::Value *V, unsigned short StartBit,
192 unsigned short Size, bool IsSigned,
193 unsigned Qualifiers) {
194 LValue R;
195 R.LVType = BitField;
196 R.V = V;
197 R.BitfieldData.StartBit = StartBit;
198 R.BitfieldData.Size = Size;
199 R.BitfieldData.IsSigned = IsSigned;
200 SetQualifiers(Qualifiers,R);
201 return R;
202 }
203};
204
205} // end namespace CodeGen
206} // end namespace clang
207
208#endif