Guy Benyei | 736104a | 2012-12-18 12:30:03 +0000 | [diff] [blame^] | 1 | //===--- CGCXXRTTI.cpp - Emit LLVM Code for C++ RTTI descriptors ----------===//
|
| 2 | //
|
| 3 | // The LLVM Compiler Infrastructure
|
| 4 | //
|
| 5 | // This file is distributed under the University of Illinois Open Source
|
| 6 | // License. See LICENSE.TXT for details.
|
| 7 | //
|
| 8 | //===----------------------------------------------------------------------===//
|
| 9 | //
|
| 10 | // This contains code dealing with C++ code generation of RTTI descriptors.
|
| 11 | //
|
| 12 | //===----------------------------------------------------------------------===//
|
| 13 |
|
| 14 | #include "CodeGenModule.h"
|
| 15 | #include "CGCXXABI.h"
|
| 16 | #include "CGObjCRuntime.h"
|
| 17 | #include "clang/AST/RecordLayout.h"
|
| 18 | #include "clang/AST/Type.h"
|
| 19 | #include "clang/Frontend/CodeGenOptions.h"
|
| 20 |
|
| 21 | using namespace clang;
|
| 22 | using namespace CodeGen;
|
| 23 |
|
| 24 | namespace {
|
| 25 | class RTTIBuilder {
|
| 26 | CodeGenModule &CGM; // Per-module state.
|
| 27 | llvm::LLVMContext &VMContext;
|
| 28 |
|
| 29 | /// Fields - The fields of the RTTI descriptor currently being built.
|
| 30 | SmallVector<llvm::Constant *, 16> Fields;
|
| 31 |
|
| 32 | /// GetAddrOfTypeName - Returns the mangled type name of the given type.
|
| 33 | llvm::GlobalVariable *
|
| 34 | GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage);
|
| 35 |
|
| 36 | /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI
|
| 37 | /// descriptor of the given type.
|
| 38 | llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty);
|
| 39 |
|
| 40 | /// BuildVTablePointer - Build the vtable pointer for the given type.
|
| 41 | void BuildVTablePointer(const Type *Ty);
|
| 42 |
|
| 43 | /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
|
| 44 | /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b.
|
| 45 | void BuildSIClassTypeInfo(const CXXRecordDecl *RD);
|
| 46 |
|
| 47 | /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
|
| 48 | /// classes with bases that do not satisfy the abi::__si_class_type_info
|
| 49 | /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
|
| 50 | void BuildVMIClassTypeInfo(const CXXRecordDecl *RD);
|
| 51 |
|
| 52 | /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used
|
| 53 | /// for pointer types.
|
| 54 | void BuildPointerTypeInfo(QualType PointeeTy);
|
| 55 |
|
| 56 | /// BuildObjCObjectTypeInfo - Build the appropriate kind of
|
| 57 | /// type_info for an object type.
|
| 58 | void BuildObjCObjectTypeInfo(const ObjCObjectType *Ty);
|
| 59 |
|
| 60 | /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
|
| 61 | /// struct, used for member pointer types.
|
| 62 | void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty);
|
| 63 |
|
| 64 | public:
|
| 65 | RTTIBuilder(CodeGenModule &CGM) : CGM(CGM),
|
| 66 | VMContext(CGM.getModule().getContext()) { }
|
| 67 |
|
| 68 | // Pointer type info flags.
|
| 69 | enum {
|
| 70 | /// PTI_Const - Type has const qualifier.
|
| 71 | PTI_Const = 0x1,
|
| 72 |
|
| 73 | /// PTI_Volatile - Type has volatile qualifier.
|
| 74 | PTI_Volatile = 0x2,
|
| 75 |
|
| 76 | /// PTI_Restrict - Type has restrict qualifier.
|
| 77 | PTI_Restrict = 0x4,
|
| 78 |
|
| 79 | /// PTI_Incomplete - Type is incomplete.
|
| 80 | PTI_Incomplete = 0x8,
|
| 81 |
|
| 82 | /// PTI_ContainingClassIncomplete - Containing class is incomplete.
|
| 83 | /// (in pointer to member).
|
| 84 | PTI_ContainingClassIncomplete = 0x10
|
| 85 | };
|
| 86 |
|
| 87 | // VMI type info flags.
|
| 88 | enum {
|
| 89 | /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance.
|
| 90 | VMI_NonDiamondRepeat = 0x1,
|
| 91 |
|
| 92 | /// VMI_DiamondShaped - Class is diamond shaped.
|
| 93 | VMI_DiamondShaped = 0x2
|
| 94 | };
|
| 95 |
|
| 96 | // Base class type info flags.
|
| 97 | enum {
|
| 98 | /// BCTI_Virtual - Base class is virtual.
|
| 99 | BCTI_Virtual = 0x1,
|
| 100 |
|
| 101 | /// BCTI_Public - Base class is public.
|
| 102 | BCTI_Public = 0x2
|
| 103 | };
|
| 104 |
|
| 105 | /// BuildTypeInfo - Build the RTTI type info struct for the given type.
|
| 106 | ///
|
| 107 | /// \param Force - true to force the creation of this RTTI value
|
| 108 | llvm::Constant *BuildTypeInfo(QualType Ty, bool Force = false);
|
| 109 | };
|
| 110 | }
|
| 111 |
|
| 112 | llvm::GlobalVariable *
|
| 113 | RTTIBuilder::GetAddrOfTypeName(QualType Ty,
|
| 114 | llvm::GlobalVariable::LinkageTypes Linkage) {
|
| 115 | SmallString<256> OutName;
|
| 116 | llvm::raw_svector_ostream Out(OutName);
|
| 117 | CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out);
|
| 118 | Out.flush();
|
| 119 | StringRef Name = OutName.str();
|
| 120 |
|
| 121 | // We know that the mangled name of the type starts at index 4 of the
|
| 122 | // mangled name of the typename, so we can just index into it in order to
|
| 123 | // get the mangled name of the type.
|
| 124 | llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
|
| 125 | Name.substr(4));
|
| 126 |
|
| 127 | llvm::GlobalVariable *GV =
|
| 128 | CGM.CreateOrReplaceCXXRuntimeVariable(Name, Init->getType(), Linkage);
|
| 129 |
|
| 130 | GV->setInitializer(Init);
|
| 131 |
|
| 132 | return GV;
|
| 133 | }
|
| 134 |
|
| 135 | llvm::Constant *RTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) {
|
| 136 | // Mangle the RTTI name.
|
| 137 | SmallString<256> OutName;
|
| 138 | llvm::raw_svector_ostream Out(OutName);
|
| 139 | CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
|
| 140 | Out.flush();
|
| 141 | StringRef Name = OutName.str();
|
| 142 |
|
| 143 | // Look for an existing global.
|
| 144 | llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name);
|
| 145 |
|
| 146 | if (!GV) {
|
| 147 | // Create a new global variable.
|
| 148 | GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
|
| 149 | /*Constant=*/true,
|
| 150 | llvm::GlobalValue::ExternalLinkage, 0, Name);
|
| 151 | }
|
| 152 |
|
| 153 | return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
|
| 154 | }
|
| 155 |
|
| 156 | /// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type
|
| 157 | /// info for that type is defined in the standard library.
|
| 158 | static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) {
|
| 159 | // Itanium C++ ABI 2.9.2:
|
| 160 | // Basic type information (e.g. for "int", "bool", etc.) will be kept in
|
| 161 | // the run-time support library. Specifically, the run-time support
|
| 162 | // library should contain type_info objects for the types X, X* and
|
| 163 | // X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char,
|
| 164 | // unsigned char, signed char, short, unsigned short, int, unsigned int,
|
| 165 | // long, unsigned long, long long, unsigned long long, float, double,
|
| 166 | // long double, char16_t, char32_t, and the IEEE 754r decimal and
|
| 167 | // half-precision floating point types.
|
| 168 | switch (Ty->getKind()) {
|
| 169 | case BuiltinType::Void:
|
| 170 | case BuiltinType::NullPtr:
|
| 171 | case BuiltinType::Bool:
|
| 172 | case BuiltinType::WChar_S:
|
| 173 | case BuiltinType::WChar_U:
|
| 174 | case BuiltinType::Char_U:
|
| 175 | case BuiltinType::Char_S:
|
| 176 | case BuiltinType::UChar:
|
| 177 | case BuiltinType::SChar:
|
| 178 | case BuiltinType::Short:
|
| 179 | case BuiltinType::UShort:
|
| 180 | case BuiltinType::Int:
|
| 181 | case BuiltinType::UInt:
|
| 182 | case BuiltinType::Long:
|
| 183 | case BuiltinType::ULong:
|
| 184 | case BuiltinType::LongLong:
|
| 185 | case BuiltinType::ULongLong:
|
| 186 | case BuiltinType::Half:
|
| 187 | case BuiltinType::Float:
|
| 188 | case BuiltinType::Double:
|
| 189 | case BuiltinType::LongDouble:
|
| 190 | case BuiltinType::Char16:
|
| 191 | case BuiltinType::Char32:
|
| 192 | case BuiltinType::Int128:
|
| 193 | case BuiltinType::UInt128:
|
| 194 | case BuiltinType::OCLImage1d:
|
| 195 | case BuiltinType::OCLImage1dArray:
|
| 196 | case BuiltinType::OCLImage1dBuffer:
|
| 197 | case BuiltinType::OCLImage2d:
|
| 198 | case BuiltinType::OCLImage2dArray:
|
| 199 | case BuiltinType::OCLImage3d:
|
| 200 | return true;
|
| 201 |
|
| 202 | case BuiltinType::Dependent:
|
| 203 | #define BUILTIN_TYPE(Id, SingletonId)
|
| 204 | #define PLACEHOLDER_TYPE(Id, SingletonId) \
|
| 205 | case BuiltinType::Id:
|
| 206 | #include "clang/AST/BuiltinTypes.def"
|
| 207 | llvm_unreachable("asking for RRTI for a placeholder type!");
|
| 208 |
|
| 209 | case BuiltinType::ObjCId:
|
| 210 | case BuiltinType::ObjCClass:
|
| 211 | case BuiltinType::ObjCSel:
|
| 212 | llvm_unreachable("FIXME: Objective-C types are unsupported!");
|
| 213 | }
|
| 214 |
|
| 215 | llvm_unreachable("Invalid BuiltinType Kind!");
|
| 216 | }
|
| 217 |
|
| 218 | static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) {
|
| 219 | QualType PointeeTy = PointerTy->getPointeeType();
|
| 220 | const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(PointeeTy);
|
| 221 | if (!BuiltinTy)
|
| 222 | return false;
|
| 223 |
|
| 224 | // Check the qualifiers.
|
| 225 | Qualifiers Quals = PointeeTy.getQualifiers();
|
| 226 | Quals.removeConst();
|
| 227 |
|
| 228 | if (!Quals.empty())
|
| 229 | return false;
|
| 230 |
|
| 231 | return TypeInfoIsInStandardLibrary(BuiltinTy);
|
| 232 | }
|
| 233 |
|
| 234 | /// IsStandardLibraryRTTIDescriptor - Returns whether the type
|
| 235 | /// information for the given type exists in the standard library.
|
| 236 | static bool IsStandardLibraryRTTIDescriptor(QualType Ty) {
|
| 237 | // Type info for builtin types is defined in the standard library.
|
| 238 | if (const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(Ty))
|
| 239 | return TypeInfoIsInStandardLibrary(BuiltinTy);
|
| 240 |
|
| 241 | // Type info for some pointer types to builtin types is defined in the
|
| 242 | // standard library.
|
| 243 | if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
|
| 244 | return TypeInfoIsInStandardLibrary(PointerTy);
|
| 245 |
|
| 246 | return false;
|
| 247 | }
|
| 248 |
|
| 249 | /// ShouldUseExternalRTTIDescriptor - Returns whether the type information for
|
| 250 | /// the given type exists somewhere else, and that we should not emit the type
|
| 251 | /// information in this translation unit. Assumes that it is not a
|
| 252 | /// standard-library type.
|
| 253 | static bool ShouldUseExternalRTTIDescriptor(CodeGenModule &CGM, QualType Ty) {
|
| 254 | ASTContext &Context = CGM.getContext();
|
| 255 |
|
| 256 | // If RTTI is disabled, don't consider key functions.
|
| 257 | if (!Context.getLangOpts().RTTI) return false;
|
| 258 |
|
| 259 | if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
|
| 260 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
|
| 261 | if (!RD->hasDefinition())
|
| 262 | return false;
|
| 263 |
|
| 264 | if (!RD->isDynamicClass())
|
| 265 | return false;
|
| 266 |
|
| 267 | return !CGM.getVTables().ShouldEmitVTableInThisTU(RD);
|
| 268 | }
|
| 269 |
|
| 270 | return false;
|
| 271 | }
|
| 272 |
|
| 273 | /// IsIncompleteClassType - Returns whether the given record type is incomplete.
|
| 274 | static bool IsIncompleteClassType(const RecordType *RecordTy) {
|
| 275 | return !RecordTy->getDecl()->isCompleteDefinition();
|
| 276 | }
|
| 277 |
|
| 278 | /// ContainsIncompleteClassType - Returns whether the given type contains an
|
| 279 | /// incomplete class type. This is true if
|
| 280 | ///
|
| 281 | /// * The given type is an incomplete class type.
|
| 282 | /// * The given type is a pointer type whose pointee type contains an
|
| 283 | /// incomplete class type.
|
| 284 | /// * The given type is a member pointer type whose class is an incomplete
|
| 285 | /// class type.
|
| 286 | /// * The given type is a member pointer type whoise pointee type contains an
|
| 287 | /// incomplete class type.
|
| 288 | /// is an indirect or direct pointer to an incomplete class type.
|
| 289 | static bool ContainsIncompleteClassType(QualType Ty) {
|
| 290 | if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
|
| 291 | if (IsIncompleteClassType(RecordTy))
|
| 292 | return true;
|
| 293 | }
|
| 294 |
|
| 295 | if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
|
| 296 | return ContainsIncompleteClassType(PointerTy->getPointeeType());
|
| 297 |
|
| 298 | if (const MemberPointerType *MemberPointerTy =
|
| 299 | dyn_cast<MemberPointerType>(Ty)) {
|
| 300 | // Check if the class type is incomplete.
|
| 301 | const RecordType *ClassType = cast<RecordType>(MemberPointerTy->getClass());
|
| 302 | if (IsIncompleteClassType(ClassType))
|
| 303 | return true;
|
| 304 |
|
| 305 | return ContainsIncompleteClassType(MemberPointerTy->getPointeeType());
|
| 306 | }
|
| 307 |
|
| 308 | return false;
|
| 309 | }
|
| 310 |
|
| 311 | /// getTypeInfoLinkage - Return the linkage that the type info and type info
|
| 312 | /// name constants should have for the given type.
|
| 313 | static llvm::GlobalVariable::LinkageTypes
|
| 314 | getTypeInfoLinkage(CodeGenModule &CGM, QualType Ty) {
|
| 315 | // Itanium C++ ABI 2.9.5p7:
|
| 316 | // In addition, it and all of the intermediate abi::__pointer_type_info
|
| 317 | // structs in the chain down to the abi::__class_type_info for the
|
| 318 | // incomplete class type must be prevented from resolving to the
|
| 319 | // corresponding type_info structs for the complete class type, possibly
|
| 320 | // by making them local static objects. Finally, a dummy class RTTI is
|
| 321 | // generated for the incomplete type that will not resolve to the final
|
| 322 | // complete class RTTI (because the latter need not exist), possibly by
|
| 323 | // making it a local static object.
|
| 324 | if (ContainsIncompleteClassType(Ty))
|
| 325 | return llvm::GlobalValue::InternalLinkage;
|
| 326 |
|
| 327 | switch (Ty->getLinkage()) {
|
| 328 | case NoLinkage:
|
| 329 | case InternalLinkage:
|
| 330 | case UniqueExternalLinkage:
|
| 331 | return llvm::GlobalValue::InternalLinkage;
|
| 332 |
|
| 333 | case ExternalLinkage:
|
| 334 | if (!CGM.getLangOpts().RTTI) {
|
| 335 | // RTTI is not enabled, which means that this type info struct is going
|
| 336 | // to be used for exception handling. Give it linkonce_odr linkage.
|
| 337 | return llvm::GlobalValue::LinkOnceODRLinkage;
|
| 338 | }
|
| 339 |
|
| 340 | if (const RecordType *Record = dyn_cast<RecordType>(Ty)) {
|
| 341 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
|
| 342 | if (RD->hasAttr<WeakAttr>())
|
| 343 | return llvm::GlobalValue::WeakODRLinkage;
|
| 344 | if (RD->isDynamicClass())
|
| 345 | return CGM.getVTableLinkage(RD);
|
| 346 | }
|
| 347 |
|
| 348 | return llvm::GlobalValue::LinkOnceODRLinkage;
|
| 349 | }
|
| 350 |
|
| 351 | llvm_unreachable("Invalid linkage!");
|
| 352 | }
|
| 353 |
|
| 354 | // CanUseSingleInheritance - Return whether the given record decl has a "single,
|
| 355 | // public, non-virtual base at offset zero (i.e. the derived class is dynamic
|
| 356 | // iff the base is)", according to Itanium C++ ABI, 2.95p6b.
|
| 357 | static bool CanUseSingleInheritance(const CXXRecordDecl *RD) {
|
| 358 | // Check the number of bases.
|
| 359 | if (RD->getNumBases() != 1)
|
| 360 | return false;
|
| 361 |
|
| 362 | // Get the base.
|
| 363 | CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin();
|
| 364 |
|
| 365 | // Check that the base is not virtual.
|
| 366 | if (Base->isVirtual())
|
| 367 | return false;
|
| 368 |
|
| 369 | // Check that the base is public.
|
| 370 | if (Base->getAccessSpecifier() != AS_public)
|
| 371 | return false;
|
| 372 |
|
| 373 | // Check that the class is dynamic iff the base is.
|
| 374 | const CXXRecordDecl *BaseDecl =
|
| 375 | cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
|
| 376 | if (!BaseDecl->isEmpty() &&
|
| 377 | BaseDecl->isDynamicClass() != RD->isDynamicClass())
|
| 378 | return false;
|
| 379 |
|
| 380 | return true;
|
| 381 | }
|
| 382 |
|
| 383 | void RTTIBuilder::BuildVTablePointer(const Type *Ty) {
|
| 384 | // abi::__class_type_info.
|
| 385 | static const char * const ClassTypeInfo =
|
| 386 | "_ZTVN10__cxxabiv117__class_type_infoE";
|
| 387 | // abi::__si_class_type_info.
|
| 388 | static const char * const SIClassTypeInfo =
|
| 389 | "_ZTVN10__cxxabiv120__si_class_type_infoE";
|
| 390 | // abi::__vmi_class_type_info.
|
| 391 | static const char * const VMIClassTypeInfo =
|
| 392 | "_ZTVN10__cxxabiv121__vmi_class_type_infoE";
|
| 393 |
|
| 394 | const char *VTableName = 0;
|
| 395 |
|
| 396 | switch (Ty->getTypeClass()) {
|
| 397 | #define TYPE(Class, Base)
|
| 398 | #define ABSTRACT_TYPE(Class, Base)
|
| 399 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
|
| 400 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
|
| 401 | #define DEPENDENT_TYPE(Class, Base) case Type::Class:
|
| 402 | #include "clang/AST/TypeNodes.def"
|
| 403 | llvm_unreachable("Non-canonical and dependent types shouldn't get here");
|
| 404 |
|
| 405 | case Type::LValueReference:
|
| 406 | case Type::RValueReference:
|
| 407 | llvm_unreachable("References shouldn't get here");
|
| 408 |
|
| 409 | case Type::Builtin:
|
| 410 | // GCC treats vector and complex types as fundamental types.
|
| 411 | case Type::Vector:
|
| 412 | case Type::ExtVector:
|
| 413 | case Type::Complex:
|
| 414 | case Type::Atomic:
|
| 415 | // FIXME: GCC treats block pointers as fundamental types?!
|
| 416 | case Type::BlockPointer:
|
| 417 | // abi::__fundamental_type_info.
|
| 418 | VTableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE";
|
| 419 | break;
|
| 420 |
|
| 421 | case Type::ConstantArray:
|
| 422 | case Type::IncompleteArray:
|
| 423 | case Type::VariableArray:
|
| 424 | // abi::__array_type_info.
|
| 425 | VTableName = "_ZTVN10__cxxabiv117__array_type_infoE";
|
| 426 | break;
|
| 427 |
|
| 428 | case Type::FunctionNoProto:
|
| 429 | case Type::FunctionProto:
|
| 430 | // abi::__function_type_info.
|
| 431 | VTableName = "_ZTVN10__cxxabiv120__function_type_infoE";
|
| 432 | break;
|
| 433 |
|
| 434 | case Type::Enum:
|
| 435 | // abi::__enum_type_info.
|
| 436 | VTableName = "_ZTVN10__cxxabiv116__enum_type_infoE";
|
| 437 | break;
|
| 438 |
|
| 439 | case Type::Record: {
|
| 440 | const CXXRecordDecl *RD =
|
| 441 | cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
|
| 442 |
|
| 443 | if (!RD->hasDefinition() || !RD->getNumBases()) {
|
| 444 | VTableName = ClassTypeInfo;
|
| 445 | } else if (CanUseSingleInheritance(RD)) {
|
| 446 | VTableName = SIClassTypeInfo;
|
| 447 | } else {
|
| 448 | VTableName = VMIClassTypeInfo;
|
| 449 | }
|
| 450 |
|
| 451 | break;
|
| 452 | }
|
| 453 |
|
| 454 | case Type::ObjCObject:
|
| 455 | // Ignore protocol qualifiers.
|
| 456 | Ty = cast<ObjCObjectType>(Ty)->getBaseType().getTypePtr();
|
| 457 |
|
| 458 | // Handle id and Class.
|
| 459 | if (isa<BuiltinType>(Ty)) {
|
| 460 | VTableName = ClassTypeInfo;
|
| 461 | break;
|
| 462 | }
|
| 463 |
|
| 464 | assert(isa<ObjCInterfaceType>(Ty));
|
| 465 | // Fall through.
|
| 466 |
|
| 467 | case Type::ObjCInterface:
|
| 468 | if (cast<ObjCInterfaceType>(Ty)->getDecl()->getSuperClass()) {
|
| 469 | VTableName = SIClassTypeInfo;
|
| 470 | } else {
|
| 471 | VTableName = ClassTypeInfo;
|
| 472 | }
|
| 473 | break;
|
| 474 |
|
| 475 | case Type::ObjCObjectPointer:
|
| 476 | case Type::Pointer:
|
| 477 | // abi::__pointer_type_info.
|
| 478 | VTableName = "_ZTVN10__cxxabiv119__pointer_type_infoE";
|
| 479 | break;
|
| 480 |
|
| 481 | case Type::MemberPointer:
|
| 482 | // abi::__pointer_to_member_type_info.
|
| 483 | VTableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE";
|
| 484 | break;
|
| 485 | }
|
| 486 |
|
| 487 | llvm::Constant *VTable =
|
| 488 | CGM.getModule().getOrInsertGlobal(VTableName, CGM.Int8PtrTy);
|
| 489 |
|
| 490 | llvm::Type *PtrDiffTy =
|
| 491 | CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
|
| 492 |
|
| 493 | // The vtable address point is 2.
|
| 494 | llvm::Constant *Two = llvm::ConstantInt::get(PtrDiffTy, 2);
|
| 495 | VTable = llvm::ConstantExpr::getInBoundsGetElementPtr(VTable, Two);
|
| 496 | VTable = llvm::ConstantExpr::getBitCast(VTable, CGM.Int8PtrTy);
|
| 497 |
|
| 498 | Fields.push_back(VTable);
|
| 499 | }
|
| 500 |
|
| 501 | // maybeUpdateRTTILinkage - Will update the linkage of the RTTI data structures
|
| 502 | // from available_externally to the correct linkage if necessary. An example of
|
| 503 | // this is:
|
| 504 | //
|
| 505 | // struct A {
|
| 506 | // virtual void f();
|
| 507 | // };
|
| 508 | //
|
| 509 | // const std::type_info &g() {
|
| 510 | // return typeid(A);
|
| 511 | // }
|
| 512 | //
|
| 513 | // void A::f() { }
|
| 514 | //
|
| 515 | // When we're generating the typeid(A) expression, we do not yet know that
|
| 516 | // A's key function is defined in this translation unit, so we will give the
|
| 517 | // typeinfo and typename structures available_externally linkage. When A::f
|
| 518 | // forces the vtable to be generated, we need to change the linkage of the
|
| 519 | // typeinfo and typename structs, otherwise we'll end up with undefined
|
| 520 | // externals when linking.
|
| 521 | static void
|
| 522 | maybeUpdateRTTILinkage(CodeGenModule &CGM, llvm::GlobalVariable *GV,
|
| 523 | QualType Ty) {
|
| 524 | // We're only interested in globals with available_externally linkage.
|
| 525 | if (!GV->hasAvailableExternallyLinkage())
|
| 526 | return;
|
| 527 |
|
| 528 | // Get the real linkage for the type.
|
| 529 | llvm::GlobalVariable::LinkageTypes Linkage = getTypeInfoLinkage(CGM, Ty);
|
| 530 |
|
| 531 | // If variable is supposed to have available_externally linkage, we don't
|
| 532 | // need to do anything.
|
| 533 | if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
|
| 534 | return;
|
| 535 |
|
| 536 | // Update the typeinfo linkage.
|
| 537 | GV->setLinkage(Linkage);
|
| 538 |
|
| 539 | // Get the typename global.
|
| 540 | SmallString<256> OutName;
|
| 541 | llvm::raw_svector_ostream Out(OutName);
|
| 542 | CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out);
|
| 543 | Out.flush();
|
| 544 | StringRef Name = OutName.str();
|
| 545 |
|
| 546 | llvm::GlobalVariable *TypeNameGV = CGM.getModule().getNamedGlobal(Name);
|
| 547 |
|
| 548 | assert(TypeNameGV->hasAvailableExternallyLinkage() &&
|
| 549 | "Type name has different linkage from type info!");
|
| 550 |
|
| 551 | // And update its linkage.
|
| 552 | TypeNameGV->setLinkage(Linkage);
|
| 553 | }
|
| 554 |
|
| 555 | llvm::Constant *RTTIBuilder::BuildTypeInfo(QualType Ty, bool Force) {
|
| 556 | // We want to operate on the canonical type.
|
| 557 | Ty = CGM.getContext().getCanonicalType(Ty);
|
| 558 |
|
| 559 | // Check if we've already emitted an RTTI descriptor for this type.
|
| 560 | SmallString<256> OutName;
|
| 561 | llvm::raw_svector_ostream Out(OutName);
|
| 562 | CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
|
| 563 | Out.flush();
|
| 564 | StringRef Name = OutName.str();
|
| 565 |
|
| 566 | llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name);
|
| 567 | if (OldGV && !OldGV->isDeclaration()) {
|
| 568 | maybeUpdateRTTILinkage(CGM, OldGV, Ty);
|
| 569 |
|
| 570 | return llvm::ConstantExpr::getBitCast(OldGV, CGM.Int8PtrTy);
|
| 571 | }
|
| 572 |
|
| 573 | // Check if there is already an external RTTI descriptor for this type.
|
| 574 | bool IsStdLib = IsStandardLibraryRTTIDescriptor(Ty);
|
| 575 | if (!Force && (IsStdLib || ShouldUseExternalRTTIDescriptor(CGM, Ty)))
|
| 576 | return GetAddrOfExternalRTTIDescriptor(Ty);
|
| 577 |
|
| 578 | // Emit the standard library with external linkage.
|
| 579 | llvm::GlobalVariable::LinkageTypes Linkage;
|
| 580 | if (IsStdLib)
|
| 581 | Linkage = llvm::GlobalValue::ExternalLinkage;
|
| 582 | else
|
| 583 | Linkage = getTypeInfoLinkage(CGM, Ty);
|
| 584 |
|
| 585 | // Add the vtable pointer.
|
| 586 | BuildVTablePointer(cast<Type>(Ty));
|
| 587 |
|
| 588 | // And the name.
|
| 589 | llvm::GlobalVariable *TypeName = GetAddrOfTypeName(Ty, Linkage);
|
| 590 |
|
| 591 | Fields.push_back(llvm::ConstantExpr::getBitCast(TypeName, CGM.Int8PtrTy));
|
| 592 |
|
| 593 | switch (Ty->getTypeClass()) {
|
| 594 | #define TYPE(Class, Base)
|
| 595 | #define ABSTRACT_TYPE(Class, Base)
|
| 596 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
|
| 597 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
|
| 598 | #define DEPENDENT_TYPE(Class, Base) case Type::Class:
|
| 599 | #include "clang/AST/TypeNodes.def"
|
| 600 | llvm_unreachable("Non-canonical and dependent types shouldn't get here");
|
| 601 |
|
| 602 | // GCC treats vector types as fundamental types.
|
| 603 | case Type::Builtin:
|
| 604 | case Type::Vector:
|
| 605 | case Type::ExtVector:
|
| 606 | case Type::Complex:
|
| 607 | case Type::BlockPointer:
|
| 608 | // Itanium C++ ABI 2.9.5p4:
|
| 609 | // abi::__fundamental_type_info adds no data members to std::type_info.
|
| 610 | break;
|
| 611 |
|
| 612 | case Type::LValueReference:
|
| 613 | case Type::RValueReference:
|
| 614 | llvm_unreachable("References shouldn't get here");
|
| 615 |
|
| 616 | case Type::ConstantArray:
|
| 617 | case Type::IncompleteArray:
|
| 618 | case Type::VariableArray:
|
| 619 | // Itanium C++ ABI 2.9.5p5:
|
| 620 | // abi::__array_type_info adds no data members to std::type_info.
|
| 621 | break;
|
| 622 |
|
| 623 | case Type::FunctionNoProto:
|
| 624 | case Type::FunctionProto:
|
| 625 | // Itanium C++ ABI 2.9.5p5:
|
| 626 | // abi::__function_type_info adds no data members to std::type_info.
|
| 627 | break;
|
| 628 |
|
| 629 | case Type::Enum:
|
| 630 | // Itanium C++ ABI 2.9.5p5:
|
| 631 | // abi::__enum_type_info adds no data members to std::type_info.
|
| 632 | break;
|
| 633 |
|
| 634 | case Type::Record: {
|
| 635 | const CXXRecordDecl *RD =
|
| 636 | cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
|
| 637 | if (!RD->hasDefinition() || !RD->getNumBases()) {
|
| 638 | // We don't need to emit any fields.
|
| 639 | break;
|
| 640 | }
|
| 641 |
|
| 642 | if (CanUseSingleInheritance(RD))
|
| 643 | BuildSIClassTypeInfo(RD);
|
| 644 | else
|
| 645 | BuildVMIClassTypeInfo(RD);
|
| 646 |
|
| 647 | break;
|
| 648 | }
|
| 649 |
|
| 650 | case Type::ObjCObject:
|
| 651 | case Type::ObjCInterface:
|
| 652 | BuildObjCObjectTypeInfo(cast<ObjCObjectType>(Ty));
|
| 653 | break;
|
| 654 |
|
| 655 | case Type::ObjCObjectPointer:
|
| 656 | BuildPointerTypeInfo(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
|
| 657 | break;
|
| 658 |
|
| 659 | case Type::Pointer:
|
| 660 | BuildPointerTypeInfo(cast<PointerType>(Ty)->getPointeeType());
|
| 661 | break;
|
| 662 |
|
| 663 | case Type::MemberPointer:
|
| 664 | BuildPointerToMemberTypeInfo(cast<MemberPointerType>(Ty));
|
| 665 | break;
|
| 666 |
|
| 667 | case Type::Atomic:
|
| 668 | // No fields, at least for the moment.
|
| 669 | break;
|
| 670 | }
|
| 671 |
|
| 672 | llvm::Constant *Init = llvm::ConstantStruct::getAnon(Fields);
|
| 673 |
|
| 674 | llvm::GlobalVariable *GV =
|
| 675 | new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
|
| 676 | /*Constant=*/true, Linkage, Init, Name);
|
| 677 |
|
| 678 | // If there's already an old global variable, replace it with the new one.
|
| 679 | if (OldGV) {
|
| 680 | GV->takeName(OldGV);
|
| 681 | llvm::Constant *NewPtr =
|
| 682 | llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
|
| 683 | OldGV->replaceAllUsesWith(NewPtr);
|
| 684 | OldGV->eraseFromParent();
|
| 685 | }
|
| 686 |
|
| 687 | // GCC only relies on the uniqueness of the type names, not the
|
| 688 | // type_infos themselves, so we can emit these as hidden symbols.
|
| 689 | // But don't do this if we're worried about strict visibility
|
| 690 | // compatibility.
|
| 691 | if (const RecordType *RT = dyn_cast<RecordType>(Ty)) {
|
| 692 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
|
| 693 |
|
| 694 | CGM.setTypeVisibility(GV, RD, CodeGenModule::TVK_ForRTTI);
|
| 695 | CGM.setTypeVisibility(TypeName, RD, CodeGenModule::TVK_ForRTTIName);
|
| 696 | } else {
|
| 697 | Visibility TypeInfoVisibility = DefaultVisibility;
|
| 698 | if (CGM.getCodeGenOpts().HiddenWeakVTables &&
|
| 699 | Linkage == llvm::GlobalValue::LinkOnceODRLinkage)
|
| 700 | TypeInfoVisibility = HiddenVisibility;
|
| 701 |
|
| 702 | // The type name should have the same visibility as the type itself.
|
| 703 | Visibility ExplicitVisibility = Ty->getVisibility();
|
| 704 | TypeName->setVisibility(CodeGenModule::
|
| 705 | GetLLVMVisibility(ExplicitVisibility));
|
| 706 |
|
| 707 | TypeInfoVisibility = minVisibility(TypeInfoVisibility, Ty->getVisibility());
|
| 708 | GV->setVisibility(CodeGenModule::GetLLVMVisibility(TypeInfoVisibility));
|
| 709 | }
|
| 710 |
|
| 711 | GV->setUnnamedAddr(true);
|
| 712 |
|
| 713 | return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
|
| 714 | }
|
| 715 |
|
| 716 | /// ComputeQualifierFlags - Compute the pointer type info flags from the
|
| 717 | /// given qualifier.
|
| 718 | static unsigned ComputeQualifierFlags(Qualifiers Quals) {
|
| 719 | unsigned Flags = 0;
|
| 720 |
|
| 721 | if (Quals.hasConst())
|
| 722 | Flags |= RTTIBuilder::PTI_Const;
|
| 723 | if (Quals.hasVolatile())
|
| 724 | Flags |= RTTIBuilder::PTI_Volatile;
|
| 725 | if (Quals.hasRestrict())
|
| 726 | Flags |= RTTIBuilder::PTI_Restrict;
|
| 727 |
|
| 728 | return Flags;
|
| 729 | }
|
| 730 |
|
| 731 | /// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info
|
| 732 | /// for the given Objective-C object type.
|
| 733 | void RTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType *OT) {
|
| 734 | // Drop qualifiers.
|
| 735 | const Type *T = OT->getBaseType().getTypePtr();
|
| 736 | assert(isa<BuiltinType>(T) || isa<ObjCInterfaceType>(T));
|
| 737 |
|
| 738 | // The builtin types are abi::__class_type_infos and don't require
|
| 739 | // extra fields.
|
| 740 | if (isa<BuiltinType>(T)) return;
|
| 741 |
|
| 742 | ObjCInterfaceDecl *Class = cast<ObjCInterfaceType>(T)->getDecl();
|
| 743 | ObjCInterfaceDecl *Super = Class->getSuperClass();
|
| 744 |
|
| 745 | // Root classes are also __class_type_info.
|
| 746 | if (!Super) return;
|
| 747 |
|
| 748 | QualType SuperTy = CGM.getContext().getObjCInterfaceType(Super);
|
| 749 |
|
| 750 | // Everything else is single inheritance.
|
| 751 | llvm::Constant *BaseTypeInfo = RTTIBuilder(CGM).BuildTypeInfo(SuperTy);
|
| 752 | Fields.push_back(BaseTypeInfo);
|
| 753 | }
|
| 754 |
|
| 755 | /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
|
| 756 | /// inheritance, according to the Itanium C++ ABI, 2.95p6b.
|
| 757 | void RTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) {
|
| 758 | // Itanium C++ ABI 2.9.5p6b:
|
| 759 | // It adds to abi::__class_type_info a single member pointing to the
|
| 760 | // type_info structure for the base type,
|
| 761 | llvm::Constant *BaseTypeInfo =
|
| 762 | RTTIBuilder(CGM).BuildTypeInfo(RD->bases_begin()->getType());
|
| 763 | Fields.push_back(BaseTypeInfo);
|
| 764 | }
|
| 765 |
|
| 766 | namespace {
|
| 767 | /// SeenBases - Contains virtual and non-virtual bases seen when traversing
|
| 768 | /// a class hierarchy.
|
| 769 | struct SeenBases {
|
| 770 | llvm::SmallPtrSet<const CXXRecordDecl *, 16> NonVirtualBases;
|
| 771 | llvm::SmallPtrSet<const CXXRecordDecl *, 16> VirtualBases;
|
| 772 | };
|
| 773 | }
|
| 774 |
|
| 775 | /// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in
|
| 776 | /// abi::__vmi_class_type_info.
|
| 777 | ///
|
| 778 | static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base,
|
| 779 | SeenBases &Bases) {
|
| 780 |
|
| 781 | unsigned Flags = 0;
|
| 782 |
|
| 783 | const CXXRecordDecl *BaseDecl =
|
| 784 | cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
|
| 785 |
|
| 786 | if (Base->isVirtual()) {
|
| 787 | // Mark the virtual base as seen.
|
| 788 | if (!Bases.VirtualBases.insert(BaseDecl)) {
|
| 789 | // If this virtual base has been seen before, then the class is diamond
|
| 790 | // shaped.
|
| 791 | Flags |= RTTIBuilder::VMI_DiamondShaped;
|
| 792 | } else {
|
| 793 | if (Bases.NonVirtualBases.count(BaseDecl))
|
| 794 | Flags |= RTTIBuilder::VMI_NonDiamondRepeat;
|
| 795 | }
|
| 796 | } else {
|
| 797 | // Mark the non-virtual base as seen.
|
| 798 | if (!Bases.NonVirtualBases.insert(BaseDecl)) {
|
| 799 | // If this non-virtual base has been seen before, then the class has non-
|
| 800 | // diamond shaped repeated inheritance.
|
| 801 | Flags |= RTTIBuilder::VMI_NonDiamondRepeat;
|
| 802 | } else {
|
| 803 | if (Bases.VirtualBases.count(BaseDecl))
|
| 804 | Flags |= RTTIBuilder::VMI_NonDiamondRepeat;
|
| 805 | }
|
| 806 | }
|
| 807 |
|
| 808 | // Walk all bases.
|
| 809 | for (CXXRecordDecl::base_class_const_iterator I = BaseDecl->bases_begin(),
|
| 810 | E = BaseDecl->bases_end(); I != E; ++I)
|
| 811 | Flags |= ComputeVMIClassTypeInfoFlags(I, Bases);
|
| 812 |
|
| 813 | return Flags;
|
| 814 | }
|
| 815 |
|
| 816 | static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) {
|
| 817 | unsigned Flags = 0;
|
| 818 | SeenBases Bases;
|
| 819 |
|
| 820 | // Walk all bases.
|
| 821 | for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
| 822 | E = RD->bases_end(); I != E; ++I)
|
| 823 | Flags |= ComputeVMIClassTypeInfoFlags(I, Bases);
|
| 824 |
|
| 825 | return Flags;
|
| 826 | }
|
| 827 |
|
| 828 | /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
|
| 829 | /// classes with bases that do not satisfy the abi::__si_class_type_info
|
| 830 | /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
|
| 831 | void RTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) {
|
| 832 | llvm::Type *UnsignedIntLTy =
|
| 833 | CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
|
| 834 |
|
| 835 | // Itanium C++ ABI 2.9.5p6c:
|
| 836 | // __flags is a word with flags describing details about the class
|
| 837 | // structure, which may be referenced by using the __flags_masks
|
| 838 | // enumeration. These flags refer to both direct and indirect bases.
|
| 839 | unsigned Flags = ComputeVMIClassTypeInfoFlags(RD);
|
| 840 | Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
|
| 841 |
|
| 842 | // Itanium C++ ABI 2.9.5p6c:
|
| 843 | // __base_count is a word with the number of direct proper base class
|
| 844 | // descriptions that follow.
|
| 845 | Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, RD->getNumBases()));
|
| 846 |
|
| 847 | if (!RD->getNumBases())
|
| 848 | return;
|
| 849 |
|
| 850 | llvm::Type *LongLTy =
|
| 851 | CGM.getTypes().ConvertType(CGM.getContext().LongTy);
|
| 852 |
|
| 853 | // Now add the base class descriptions.
|
| 854 |
|
| 855 | // Itanium C++ ABI 2.9.5p6c:
|
| 856 | // __base_info[] is an array of base class descriptions -- one for every
|
| 857 | // direct proper base. Each description is of the type:
|
| 858 | //
|
| 859 | // struct abi::__base_class_type_info {
|
| 860 | // public:
|
| 861 | // const __class_type_info *__base_type;
|
| 862 | // long __offset_flags;
|
| 863 | //
|
| 864 | // enum __offset_flags_masks {
|
| 865 | // __virtual_mask = 0x1,
|
| 866 | // __public_mask = 0x2,
|
| 867 | // __offset_shift = 8
|
| 868 | // };
|
| 869 | // };
|
| 870 | for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
|
| 871 | E = RD->bases_end(); I != E; ++I) {
|
| 872 | const CXXBaseSpecifier *Base = I;
|
| 873 |
|
| 874 | // The __base_type member points to the RTTI for the base type.
|
| 875 | Fields.push_back(RTTIBuilder(CGM).BuildTypeInfo(Base->getType()));
|
| 876 |
|
| 877 | const CXXRecordDecl *BaseDecl =
|
| 878 | cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
|
| 879 |
|
| 880 | int64_t OffsetFlags = 0;
|
| 881 |
|
| 882 | // All but the lower 8 bits of __offset_flags are a signed offset.
|
| 883 | // For a non-virtual base, this is the offset in the object of the base
|
| 884 | // subobject. For a virtual base, this is the offset in the virtual table of
|
| 885 | // the virtual base offset for the virtual base referenced (negative).
|
| 886 | CharUnits Offset;
|
| 887 | if (Base->isVirtual())
|
| 888 | Offset =
|
| 889 | CGM.getVTableContext().getVirtualBaseOffsetOffset(RD, BaseDecl);
|
| 890 | else {
|
| 891 | const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
|
| 892 | Offset = Layout.getBaseClassOffset(BaseDecl);
|
| 893 | };
|
| 894 |
|
| 895 | OffsetFlags = uint64_t(Offset.getQuantity()) << 8;
|
| 896 |
|
| 897 | // The low-order byte of __offset_flags contains flags, as given by the
|
| 898 | // masks from the enumeration __offset_flags_masks.
|
| 899 | if (Base->isVirtual())
|
| 900 | OffsetFlags |= BCTI_Virtual;
|
| 901 | if (Base->getAccessSpecifier() == AS_public)
|
| 902 | OffsetFlags |= BCTI_Public;
|
| 903 |
|
| 904 | Fields.push_back(llvm::ConstantInt::get(LongLTy, OffsetFlags));
|
| 905 | }
|
| 906 | }
|
| 907 |
|
| 908 | /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct,
|
| 909 | /// used for pointer types.
|
| 910 | void RTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy) {
|
| 911 | Qualifiers Quals;
|
| 912 | QualType UnqualifiedPointeeTy =
|
| 913 | CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals);
|
| 914 |
|
| 915 | // Itanium C++ ABI 2.9.5p7:
|
| 916 | // __flags is a flag word describing the cv-qualification and other
|
| 917 | // attributes of the type pointed to
|
| 918 | unsigned Flags = ComputeQualifierFlags(Quals);
|
| 919 |
|
| 920 | // Itanium C++ ABI 2.9.5p7:
|
| 921 | // When the abi::__pbase_type_info is for a direct or indirect pointer to an
|
| 922 | // incomplete class type, the incomplete target type flag is set.
|
| 923 | if (ContainsIncompleteClassType(UnqualifiedPointeeTy))
|
| 924 | Flags |= PTI_Incomplete;
|
| 925 |
|
| 926 | llvm::Type *UnsignedIntLTy =
|
| 927 | CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
|
| 928 | Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
|
| 929 |
|
| 930 | // Itanium C++ ABI 2.9.5p7:
|
| 931 | // __pointee is a pointer to the std::type_info derivation for the
|
| 932 | // unqualified type being pointed to.
|
| 933 | llvm::Constant *PointeeTypeInfo =
|
| 934 | RTTIBuilder(CGM).BuildTypeInfo(UnqualifiedPointeeTy);
|
| 935 | Fields.push_back(PointeeTypeInfo);
|
| 936 | }
|
| 937 |
|
| 938 | /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
|
| 939 | /// struct, used for member pointer types.
|
| 940 | void RTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) {
|
| 941 | QualType PointeeTy = Ty->getPointeeType();
|
| 942 |
|
| 943 | Qualifiers Quals;
|
| 944 | QualType UnqualifiedPointeeTy =
|
| 945 | CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals);
|
| 946 |
|
| 947 | // Itanium C++ ABI 2.9.5p7:
|
| 948 | // __flags is a flag word describing the cv-qualification and other
|
| 949 | // attributes of the type pointed to.
|
| 950 | unsigned Flags = ComputeQualifierFlags(Quals);
|
| 951 |
|
| 952 | const RecordType *ClassType = cast<RecordType>(Ty->getClass());
|
| 953 |
|
| 954 | // Itanium C++ ABI 2.9.5p7:
|
| 955 | // When the abi::__pbase_type_info is for a direct or indirect pointer to an
|
| 956 | // incomplete class type, the incomplete target type flag is set.
|
| 957 | if (ContainsIncompleteClassType(UnqualifiedPointeeTy))
|
| 958 | Flags |= PTI_Incomplete;
|
| 959 |
|
| 960 | if (IsIncompleteClassType(ClassType))
|
| 961 | Flags |= PTI_ContainingClassIncomplete;
|
| 962 |
|
| 963 | llvm::Type *UnsignedIntLTy =
|
| 964 | CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
|
| 965 | Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
|
| 966 |
|
| 967 | // Itanium C++ ABI 2.9.5p7:
|
| 968 | // __pointee is a pointer to the std::type_info derivation for the
|
| 969 | // unqualified type being pointed to.
|
| 970 | llvm::Constant *PointeeTypeInfo =
|
| 971 | RTTIBuilder(CGM).BuildTypeInfo(UnqualifiedPointeeTy);
|
| 972 | Fields.push_back(PointeeTypeInfo);
|
| 973 |
|
| 974 | // Itanium C++ ABI 2.9.5p9:
|
| 975 | // __context is a pointer to an abi::__class_type_info corresponding to the
|
| 976 | // class type containing the member pointed to
|
| 977 | // (e.g., the "A" in "int A::*").
|
| 978 | Fields.push_back(RTTIBuilder(CGM).BuildTypeInfo(QualType(ClassType, 0)));
|
| 979 | }
|
| 980 |
|
| 981 | llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
|
| 982 | bool ForEH) {
|
| 983 | // Return a bogus pointer if RTTI is disabled, unless it's for EH.
|
| 984 | // FIXME: should we even be calling this method if RTTI is disabled
|
| 985 | // and it's not for EH?
|
| 986 | if (!ForEH && !getLangOpts().RTTI)
|
| 987 | return llvm::Constant::getNullValue(Int8PtrTy);
|
| 988 |
|
| 989 | if (ForEH && Ty->isObjCObjectPointerType() &&
|
| 990 | LangOpts.ObjCRuntime.isGNUFamily())
|
| 991 | return ObjCRuntime->GetEHType(Ty);
|
| 992 |
|
| 993 | return RTTIBuilder(*this).BuildTypeInfo(Ty);
|
| 994 | }
|
| 995 |
|
| 996 | void CodeGenModule::EmitFundamentalRTTIDescriptor(QualType Type) {
|
| 997 | QualType PointerType = Context.getPointerType(Type);
|
| 998 | QualType PointerTypeConst = Context.getPointerType(Type.withConst());
|
| 999 | RTTIBuilder(*this).BuildTypeInfo(Type, true);
|
| 1000 | RTTIBuilder(*this).BuildTypeInfo(PointerType, true);
|
| 1001 | RTTIBuilder(*this).BuildTypeInfo(PointerTypeConst, true);
|
| 1002 | }
|
| 1003 |
|
| 1004 | void CodeGenModule::EmitFundamentalRTTIDescriptors() {
|
| 1005 | QualType FundamentalTypes[] = { Context.VoidTy, Context.NullPtrTy,
|
| 1006 | Context.BoolTy, Context.WCharTy,
|
| 1007 | Context.CharTy, Context.UnsignedCharTy,
|
| 1008 | Context.SignedCharTy, Context.ShortTy,
|
| 1009 | Context.UnsignedShortTy, Context.IntTy,
|
| 1010 | Context.UnsignedIntTy, Context.LongTy,
|
| 1011 | Context.UnsignedLongTy, Context.LongLongTy,
|
| 1012 | Context.UnsignedLongLongTy, Context.FloatTy,
|
| 1013 | Context.DoubleTy, Context.LongDoubleTy,
|
| 1014 | Context.Char16Ty, Context.Char32Ty };
|
| 1015 | for (unsigned i = 0; i < sizeof(FundamentalTypes)/sizeof(QualType); ++i)
|
| 1016 | EmitFundamentalRTTIDescriptor(FundamentalTypes[i]);
|
| 1017 | }
|