blob: 1d389b6049c2f30af4da823308c5922f2016672f [file] [log] [blame]
Chris Lattner9fba49a2007-08-24 05:35:26 +00001//===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner959e5be2007-12-29 19:59:25 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Chris Lattner9fba49a2007-08-24 05:35:26 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenFunction.h"
15#include "CodeGenModule.h"
Daniel Dunbareee5cd12008-08-11 05:00:27 +000016#include "clang/AST/ASTContext.h"
Daniel Dunbarfa456242008-08-12 05:08:18 +000017#include "clang/AST/DeclObjC.h"
Eli Friedmanccffea92009-01-24 22:38:55 +000018#include "clang/AST/RecordLayout.h"
Daniel Dunbareee5cd12008-08-11 05:00:27 +000019#include "clang/AST/StmtVisitor.h"
Chris Lattnerd54d1f22008-04-20 00:50:39 +000020#include "clang/Basic/TargetInfo.h"
Chris Lattner9fba49a2007-08-24 05:35:26 +000021#include "llvm/Constants.h"
22#include "llvm/Function.h"
Anders Carlsson36f07d82007-10-29 05:01:08 +000023#include "llvm/GlobalVariable.h"
Anders Carlsson36760332007-10-15 20:28:48 +000024#include "llvm/Intrinsics.h"
Chris Lattner9fba49a2007-08-24 05:35:26 +000025#include "llvm/Support/Compiler.h"
Chris Lattner7f80bb32008-11-12 08:38:24 +000026#include "llvm/Support/CFG.h"
Chris Lattnerc2126682008-01-03 07:05:49 +000027#include <cstdarg>
Ted Kremenek03cf4df2007-12-10 23:44:32 +000028
Chris Lattner9fba49a2007-08-24 05:35:26 +000029using namespace clang;
30using namespace CodeGen;
31using llvm::Value;
32
33//===----------------------------------------------------------------------===//
34// Scalar Expression Emitter
35//===----------------------------------------------------------------------===//
36
37struct BinOpInfo {
38 Value *LHS;
39 Value *RHS;
Chris Lattner660e31d2007-08-24 21:00:35 +000040 QualType Ty; // Computation Type.
Chris Lattner9fba49a2007-08-24 05:35:26 +000041 const BinaryOperator *E;
42};
43
44namespace {
45class VISIBILITY_HIDDEN ScalarExprEmitter
46 : public StmtVisitor<ScalarExprEmitter, Value*> {
47 CodeGenFunction &CGF;
Daniel Dunbard916e6e2008-11-01 01:53:16 +000048 CGBuilderTy &Builder;
Chris Lattnercbfb5512008-03-01 08:45:05 +000049
Chris Lattner9fba49a2007-08-24 05:35:26 +000050public:
51
Chris Lattnercbfb5512008-03-01 08:45:05 +000052 ScalarExprEmitter(CodeGenFunction &cgf) : CGF(cgf),
Daniel Dunbarf1f7f192008-08-20 00:28:19 +000053 Builder(CGF.Builder) {
Chris Lattner9fba49a2007-08-24 05:35:26 +000054 }
Chris Lattner9fba49a2007-08-24 05:35:26 +000055
56 //===--------------------------------------------------------------------===//
57 // Utilities
58 //===--------------------------------------------------------------------===//
59
60 const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
61 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
62
63 Value *EmitLoadOfLValue(LValue LV, QualType T) {
Chris Lattnere24c4cf2007-08-31 22:49:20 +000064 return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
Chris Lattner9fba49a2007-08-24 05:35:26 +000065 }
66
67 /// EmitLoadOfLValue - Given an expression with complex type that represents a
68 /// value l-value, this method emits the address of the l-value, then loads
69 /// and returns the result.
70 Value *EmitLoadOfLValue(const Expr *E) {
71 // FIXME: Volatile
72 return EmitLoadOfLValue(EmitLValue(E), E->getType());
73 }
74
Chris Lattnerd8d44222007-08-26 16:42:57 +000075 /// EmitConversionToBool - Convert the specified expression value to a
Chris Lattner05942062007-08-26 17:25:57 +000076 /// boolean (i1) truth value. This is equivalent to "Val != 0".
Chris Lattnerd8d44222007-08-26 16:42:57 +000077 Value *EmitConversionToBool(Value *Src, QualType DstTy);
78
Chris Lattner4e05d1e2007-08-26 06:48:56 +000079 /// EmitScalarConversion - Emit a conversion from the specified type to the
80 /// specified destination type, both of which are LLVM scalar types.
Chris Lattnerfb182ee2007-08-26 16:34:22 +000081 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
82
83 /// EmitComplexToScalarConversion - Emit a conversion from the specified
84 /// complex type to the specified destination type, where the destination
85 /// type is an LLVM scalar type.
86 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
87 QualType SrcTy, QualType DstTy);
Chris Lattner4e05d1e2007-08-26 06:48:56 +000088
Chris Lattner9fba49a2007-08-24 05:35:26 +000089 //===--------------------------------------------------------------------===//
90 // Visitor Methods
91 //===--------------------------------------------------------------------===//
92
93 Value *VisitStmt(Stmt *S) {
Ted Kremenekb3ee1932007-12-11 21:27:55 +000094 S->dump(CGF.getContext().getSourceManager());
Chris Lattner9fba49a2007-08-24 05:35:26 +000095 assert(0 && "Stmt can't have complex result type!");
96 return 0;
97 }
98 Value *VisitExpr(Expr *S);
99 Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
100
101 // Leaves.
102 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
103 return llvm::ConstantInt::get(E->getValue());
104 }
105 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
Chris Lattner70c38672008-04-20 00:45:53 +0000106 return llvm::ConstantFP::get(E->getValue());
Chris Lattner9fba49a2007-08-24 05:35:26 +0000107 }
108 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
109 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
110 }
Nate Begemane9bfe6d2007-11-15 05:40:03 +0000111 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
112 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
113 }
Argiris Kirtzidis750eb972008-08-23 19:35:47 +0000114 Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
115 return llvm::Constant::getNullValue(ConvertType(E->getType()));
116 }
Anders Carlsson774f9c72008-12-21 22:39:40 +0000117 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
118 return llvm::Constant::getNullValue(ConvertType(E->getType()));
119 }
Chris Lattner9fba49a2007-08-24 05:35:26 +0000120 Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
121 return llvm::ConstantInt::get(ConvertType(E->getType()),
Steve Naroff85f0dc52007-10-15 20:41:53 +0000122 CGF.getContext().typesAreCompatible(
123 E->getArgType1(), E->getArgType2()));
Chris Lattner9fba49a2007-08-24 05:35:26 +0000124 }
Sebastian Redl0cb7c872008-11-11 17:56:53 +0000125 Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
Daniel Dunbar879788d2008-08-04 16:51:22 +0000126 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
Daniel Dunbarb5fda0c2008-08-16 01:41:47 +0000127 llvm::Value *V =
128 llvm::ConstantInt::get(llvm::Type::Int32Ty,
129 CGF.GetIDForAddrOfLabel(E->getLabel()));
130
131 return Builder.CreateIntToPtr(V, ConvertType(E->getType()));
Daniel Dunbar879788d2008-08-04 16:51:22 +0000132 }
Chris Lattner9fba49a2007-08-24 05:35:26 +0000133
134 // l-values.
135 Value *VisitDeclRefExpr(DeclRefExpr *E) {
136 if (const EnumConstantDecl *EC = dyn_cast<EnumConstantDecl>(E->getDecl()))
137 return llvm::ConstantInt::get(EC->getInitVal());
138 return EmitLoadOfLValue(E);
139 }
Daniel Dunbar91cc4022008-08-27 06:57:25 +0000140 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
141 return CGF.EmitObjCSelectorExpr(E);
142 }
143 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
144 return CGF.EmitObjCProtocolExpr(E);
145 }
146 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
147 return EmitLoadOfLValue(E);
148 }
Daniel Dunbar5e105892008-08-23 10:51:21 +0000149 Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
Daniel Dunbare6c31752008-08-29 08:11:39 +0000150 return EmitLoadOfLValue(E);
Daniel Dunbar91cc4022008-08-27 06:57:25 +0000151 }
Fariborz Jahanianb0973da2008-11-22 22:30:21 +0000152 Value *VisitObjCKVCRefExpr(ObjCKVCRefExpr *E) {
153 return EmitLoadOfLValue(E);
154 }
Daniel Dunbar91cc4022008-08-27 06:57:25 +0000155 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
156 return CGF.EmitObjCMessageExpr(E).getScalarVal();
Daniel Dunbar5e105892008-08-23 10:51:21 +0000157 }
158
Chris Lattner9fba49a2007-08-24 05:35:26 +0000159 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
Eli Friedmand0e9d092008-05-14 19:38:39 +0000160 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
Chris Lattner9fba49a2007-08-24 05:35:26 +0000161 Value *VisitMemberExpr(Expr *E) { return EmitLoadOfLValue(E); }
Nate Begemanaf6ed502008-04-18 23:10:10 +0000162 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
Chris Lattnera9177982008-10-26 23:53:12 +0000163 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
164 return EmitLoadOfLValue(E);
165 }
Chris Lattner9fba49a2007-08-24 05:35:26 +0000166 Value *VisitStringLiteral(Expr *E) { return EmitLValue(E).getAddress(); }
Chris Lattner69909292008-08-10 01:53:14 +0000167 Value *VisitPredefinedExpr(Expr *E) { return EmitLValue(E).getAddress(); }
Devang Patel01ab1302007-10-24 17:18:43 +0000168
169 Value *VisitInitListExpr(InitListExpr *E) {
Anders Carlsson4513ecb2007-12-05 07:36:10 +0000170 unsigned NumInitElements = E->getNumInits();
171
Douglas Gregor9fddded2009-01-29 19:42:23 +0000172 if (E->hadArrayRangeDesignator()) {
173 CGF.ErrorUnsupported(E, "GNU array range designator extension");
174 }
175
Anders Carlsson4513ecb2007-12-05 07:36:10 +0000176 const llvm::VectorType *VType =
Anders Carlsson35ab4f92008-01-29 01:15:48 +0000177 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
178
179 // We have a scalar in braces. Just use the first element.
180 if (!VType)
181 return Visit(E->getInit(0));
Anders Carlsson4513ecb2007-12-05 07:36:10 +0000182
Anders Carlsson4513ecb2007-12-05 07:36:10 +0000183 unsigned NumVectorElements = VType->getNumElements();
184 const llvm::Type *ElementType = VType->getElementType();
Anders Carlsson4513ecb2007-12-05 07:36:10 +0000185
186 // Emit individual vector element stores.
187 llvm::Value *V = llvm::UndefValue::get(VType);
188
Anders Carlsson323d5682007-12-18 02:45:33 +0000189 // Emit initializers
190 unsigned i;
191 for (i = 0; i < NumInitElements; ++i) {
Devang Patel32c39832007-10-24 18:05:48 +0000192 Value *NewV = Visit(E->getInit(i));
193 Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
194 V = Builder.CreateInsertElement(V, NewV, Idx);
Devang Patel01ab1302007-10-24 17:18:43 +0000195 }
Anders Carlsson4513ecb2007-12-05 07:36:10 +0000196
197 // Emit remaining default initializers
198 for (/* Do not initialize i*/; i < NumVectorElements; ++i) {
199 Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
200 llvm::Value *NewV = llvm::Constant::getNullValue(ElementType);
201 V = Builder.CreateInsertElement(V, NewV, Idx);
202 }
203
Devang Patel32c39832007-10-24 18:05:48 +0000204 return V;
Devang Patel01ab1302007-10-24 17:18:43 +0000205 }
Chris Lattner3e254fb2008-04-08 04:40:51 +0000206
Douglas Gregorc9e012a2009-01-29 17:44:32 +0000207 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
208 return llvm::Constant::getNullValue(ConvertType(E->getType()));
209 }
Chris Lattner9fba49a2007-08-24 05:35:26 +0000210 Value *VisitImplicitCastExpr(const ImplicitCastExpr *E);
211 Value *VisitCastExpr(const CastExpr *E) {
212 return EmitCastExpr(E->getSubExpr(), E->getType());
213 }
214 Value *EmitCastExpr(const Expr *E, QualType T);
215
216 Value *VisitCallExpr(const CallExpr *E) {
Chris Lattnere24c4cf2007-08-31 22:49:20 +0000217 return CGF.EmitCallExpr(E).getScalarVal();
Chris Lattner9fba49a2007-08-24 05:35:26 +0000218 }
Daniel Dunbara04840b2008-08-23 03:46:30 +0000219
Chris Lattnerea6cdd72007-08-31 22:09:40 +0000220 Value *VisitStmtExpr(const StmtExpr *E);
221
Chris Lattner9fba49a2007-08-24 05:35:26 +0000222 // Unary Operators.
223 Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre);
224 Value *VisitUnaryPostDec(const UnaryOperator *E) {
225 return VisitPrePostIncDec(E, false, false);
226 }
227 Value *VisitUnaryPostInc(const UnaryOperator *E) {
228 return VisitPrePostIncDec(E, true, false);
229 }
230 Value *VisitUnaryPreDec(const UnaryOperator *E) {
231 return VisitPrePostIncDec(E, false, true);
232 }
233 Value *VisitUnaryPreInc(const UnaryOperator *E) {
234 return VisitPrePostIncDec(E, true, true);
235 }
236 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
237 return EmitLValue(E->getSubExpr()).getAddress();
238 }
239 Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
240 Value *VisitUnaryPlus(const UnaryOperator *E) {
241 return Visit(E->getSubExpr());
242 }
243 Value *VisitUnaryMinus (const UnaryOperator *E);
244 Value *VisitUnaryNot (const UnaryOperator *E);
245 Value *VisitUnaryLNot (const UnaryOperator *E);
Chris Lattner01211af2007-08-24 21:20:17 +0000246 Value *VisitUnaryReal (const UnaryOperator *E);
247 Value *VisitUnaryImag (const UnaryOperator *E);
Chris Lattner9fba49a2007-08-24 05:35:26 +0000248 Value *VisitUnaryExtension(const UnaryOperator *E) {
249 return Visit(E->getSubExpr());
250 }
Anders Carlsson52774ad2008-01-29 15:56:48 +0000251 Value *VisitUnaryOffsetOf(const UnaryOperator *E);
Chris Lattner3e254fb2008-04-08 04:40:51 +0000252 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
253 return Visit(DAE->getExpr());
254 }
Anders Carlsson52774ad2008-01-29 15:56:48 +0000255
Chris Lattner9fba49a2007-08-24 05:35:26 +0000256 // Binary Operators.
Chris Lattner9fba49a2007-08-24 05:35:26 +0000257 Value *EmitMul(const BinOpInfo &Ops) {
258 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
259 }
260 Value *EmitDiv(const BinOpInfo &Ops);
261 Value *EmitRem(const BinOpInfo &Ops);
262 Value *EmitAdd(const BinOpInfo &Ops);
263 Value *EmitSub(const BinOpInfo &Ops);
264 Value *EmitShl(const BinOpInfo &Ops);
265 Value *EmitShr(const BinOpInfo &Ops);
266 Value *EmitAnd(const BinOpInfo &Ops) {
267 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
268 }
269 Value *EmitXor(const BinOpInfo &Ops) {
270 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
271 }
272 Value *EmitOr (const BinOpInfo &Ops) {
273 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
274 }
275
Chris Lattner660e31d2007-08-24 21:00:35 +0000276 BinOpInfo EmitBinOps(const BinaryOperator *E);
Chris Lattner0d965302007-08-26 21:41:21 +0000277 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
Chris Lattner660e31d2007-08-24 21:00:35 +0000278 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
279
280 // Binary operators and binary compound assignment operators.
281#define HANDLEBINOP(OP) \
Chris Lattner0d965302007-08-26 21:41:21 +0000282 Value *VisitBin ## OP(const BinaryOperator *E) { \
283 return Emit ## OP(EmitBinOps(E)); \
284 } \
285 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
286 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
Chris Lattner660e31d2007-08-24 21:00:35 +0000287 }
288 HANDLEBINOP(Mul);
289 HANDLEBINOP(Div);
290 HANDLEBINOP(Rem);
291 HANDLEBINOP(Add);
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000292 HANDLEBINOP(Sub);
Chris Lattner660e31d2007-08-24 21:00:35 +0000293 HANDLEBINOP(Shl);
294 HANDLEBINOP(Shr);
295 HANDLEBINOP(And);
296 HANDLEBINOP(Xor);
297 HANDLEBINOP(Or);
298#undef HANDLEBINOP
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000299
Chris Lattner9fba49a2007-08-24 05:35:26 +0000300 // Comparisons.
301 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
302 unsigned SICmpOpc, unsigned FCmpOpc);
303#define VISITCOMP(CODE, UI, SI, FP) \
304 Value *VisitBin##CODE(const BinaryOperator *E) { \
305 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
306 llvm::FCmpInst::FP); }
307 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT);
308 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT);
309 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE);
310 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE);
311 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ);
312 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE);
313#undef VISITCOMP
314
315 Value *VisitBinAssign (const BinaryOperator *E);
316
317 Value *VisitBinLAnd (const BinaryOperator *E);
318 Value *VisitBinLOr (const BinaryOperator *E);
Chris Lattner9fba49a2007-08-24 05:35:26 +0000319 Value *VisitBinComma (const BinaryOperator *E);
320
321 // Other Operators.
Daniel Dunbarbf5eb6c2009-01-09 17:04:29 +0000322 Value *VisitBlockExpr(const BlockExpr *BE) {
323 CGF.ErrorUnsupported(BE, "block expression");
324 return llvm::UndefValue::get(CGF.ConvertType(BE->getType()));
325 }
326
Chris Lattner9fba49a2007-08-24 05:35:26 +0000327 Value *VisitConditionalOperator(const ConditionalOperator *CO);
328 Value *VisitChooseExpr(ChooseExpr *CE);
Nate Begeman9f3bfb72008-01-17 17:46:27 +0000329 Value *VisitOverloadExpr(OverloadExpr *OE);
Anders Carlsson36760332007-10-15 20:28:48 +0000330 Value *VisitVAArgExpr(VAArgExpr *VE);
Chris Lattner9fba49a2007-08-24 05:35:26 +0000331 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
332 return CGF.EmitObjCStringLiteral(E);
333 }
Anders Carlsson36f07d82007-10-29 05:01:08 +0000334 Value *VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
Chris Lattner9fba49a2007-08-24 05:35:26 +0000335};
336} // end anonymous namespace.
337
338//===----------------------------------------------------------------------===//
339// Utilities
340//===----------------------------------------------------------------------===//
341
Chris Lattnerd8d44222007-08-26 16:42:57 +0000342/// EmitConversionToBool - Convert the specified expression value to a
Chris Lattner05942062007-08-26 17:25:57 +0000343/// boolean (i1) truth value. This is equivalent to "Val != 0".
Chris Lattnerd8d44222007-08-26 16:42:57 +0000344Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
345 assert(SrcType->isCanonical() && "EmitScalarConversion strips typedefs");
346
347 if (SrcType->isRealFloatingType()) {
348 // Compare against 0.0 for fp scalars.
349 llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
Chris Lattnerd8d44222007-08-26 16:42:57 +0000350 return Builder.CreateFCmpUNE(Src, Zero, "tobool");
351 }
352
Daniel Dunbar5d54eed2008-08-25 10:38:11 +0000353 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
Chris Lattnerd8d44222007-08-26 16:42:57 +0000354 "Unknown scalar type to convert");
355
356 // Because of the type rules of C, we often end up computing a logical value,
357 // then zero extending it to int, then wanting it as a logical value again.
358 // Optimize this common case.
359 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
360 if (ZI->getOperand(0)->getType() == llvm::Type::Int1Ty) {
361 Value *Result = ZI->getOperand(0);
Eli Friedman24f33972008-01-29 18:13:51 +0000362 // If there aren't any more uses, zap the instruction to save space.
363 // Note that there can be more uses, for example if this
364 // is the result of an assignment.
365 if (ZI->use_empty())
366 ZI->eraseFromParent();
Chris Lattnerd8d44222007-08-26 16:42:57 +0000367 return Result;
368 }
369 }
370
371 // Compare against an integer or pointer null.
372 llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
373 return Builder.CreateICmpNE(Src, Zero, "tobool");
374}
375
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000376/// EmitScalarConversion - Emit a conversion from the specified type to the
377/// specified destination type, both of which are LLVM scalar types.
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000378Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
379 QualType DstType) {
Chris Lattnerc154ac12008-07-26 22:37:01 +0000380 SrcType = CGF.getContext().getCanonicalType(SrcType);
381 DstType = CGF.getContext().getCanonicalType(DstType);
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000382 if (SrcType == DstType) return Src;
Chris Lattnere133d7f2007-08-26 07:21:11 +0000383
384 if (DstType->isVoidType()) return 0;
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000385
386 // Handle conversions to bool first, they are special: comparisons against 0.
Chris Lattnerc39c3652007-08-26 16:52:28 +0000387 if (DstType->isBooleanType())
388 return EmitConversionToBool(Src, SrcType);
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000389
390 const llvm::Type *DstTy = ConvertType(DstType);
391
392 // Ignore conversions like int -> uint.
393 if (Src->getType() == DstTy)
394 return Src;
395
Daniel Dunbar238335f2008-08-25 09:51:32 +0000396 // Handle pointer conversions next: pointers can only be converted
397 // to/from other pointers and integers. Check for pointer types in
398 // terms of LLVM, as some native types (like Obj-C id) may map to a
399 // pointer type.
400 if (isa<llvm::PointerType>(DstTy)) {
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000401 // The source value may be an integer, or a pointer.
402 if (isa<llvm::PointerType>(Src->getType()))
403 return Builder.CreateBitCast(Src, DstTy, "conv");
404 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
405 return Builder.CreateIntToPtr(Src, DstTy, "conv");
406 }
407
Daniel Dunbar238335f2008-08-25 09:51:32 +0000408 if (isa<llvm::PointerType>(Src->getType())) {
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000409 // Must be an ptr to int cast.
410 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
Anders Carlsson44db38f2007-10-31 23:18:02 +0000411 return Builder.CreatePtrToInt(Src, DstTy, "conv");
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000412 }
413
Nate Begemanaf6ed502008-04-18 23:10:10 +0000414 // A scalar can be splatted to an extended vector of the same element type
Nate Begeman7903d052009-01-18 06:42:49 +0000415 if (DstType->isExtVectorType() && !isa<VectorType>(SrcType)) {
416 // Cast the scalar to element type
417 QualType EltTy = DstType->getAsExtVectorType()->getElementType();
418 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
419
420 // Insert the element in element zero of an undef vector
421 llvm::Value *UnV = llvm::UndefValue::get(DstTy);
422 llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
423 UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
424
425 // Splat the element across to all elements
426 llvm::SmallVector<llvm::Constant*, 16> Args;
427 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
428 for (unsigned i = 0; i < NumElements; i++)
429 Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, 0));
430
431 llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
432 llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
433 return Yay;
434 }
Nate Begemanec2d1062007-12-30 02:59:45 +0000435
Chris Lattner4f025a42008-02-02 04:51:41 +0000436 // Allow bitcast from vector to integer/fp of the same size.
Anders Carlsson4513ecb2007-12-05 07:36:10 +0000437 if (isa<llvm::VectorType>(Src->getType()) ||
Chris Lattner4f025a42008-02-02 04:51:41 +0000438 isa<llvm::VectorType>(DstTy))
Anders Carlsson4513ecb2007-12-05 07:36:10 +0000439 return Builder.CreateBitCast(Src, DstTy, "conv");
Anders Carlsson4513ecb2007-12-05 07:36:10 +0000440
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000441 // Finally, we have the arithmetic types: real int/float.
442 if (isa<llvm::IntegerType>(Src->getType())) {
443 bool InputSigned = SrcType->isSignedIntegerType();
Anders Carlsson4dac3f42007-12-26 18:20:19 +0000444 if (isa<llvm::IntegerType>(DstTy))
445 return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
446 else if (InputSigned)
447 return Builder.CreateSIToFP(Src, DstTy, "conv");
448 else
449 return Builder.CreateUIToFP(Src, DstTy, "conv");
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000450 }
451
452 assert(Src->getType()->isFloatingPoint() && "Unknown real conversion");
453 if (isa<llvm::IntegerType>(DstTy)) {
Anders Carlsson4dac3f42007-12-26 18:20:19 +0000454 if (DstType->isSignedIntegerType())
455 return Builder.CreateFPToSI(Src, DstTy, "conv");
456 else
457 return Builder.CreateFPToUI(Src, DstTy, "conv");
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000458 }
459
460 assert(DstTy->isFloatingPoint() && "Unknown real conversion");
Anders Carlsson4dac3f42007-12-26 18:20:19 +0000461 if (DstTy->getTypeID() < Src->getType()->getTypeID())
462 return Builder.CreateFPTrunc(Src, DstTy, "conv");
463 else
464 return Builder.CreateFPExt(Src, DstTy, "conv");
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000465}
466
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000467/// EmitComplexToScalarConversion - Emit a conversion from the specified
468/// complex type to the specified destination type, where the destination
469/// type is an LLVM scalar type.
470Value *ScalarExprEmitter::
471EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
472 QualType SrcTy, QualType DstTy) {
Chris Lattnerc39c3652007-08-26 16:52:28 +0000473 // Get the source element type.
Chris Lattnerc154ac12008-07-26 22:37:01 +0000474 SrcTy = SrcTy->getAsComplexType()->getElementType();
Chris Lattnerc39c3652007-08-26 16:52:28 +0000475
476 // Handle conversions to bool first, they are special: comparisons against 0.
477 if (DstTy->isBooleanType()) {
478 // Complex != 0 -> (Real != 0) | (Imag != 0)
479 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
480 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
481 return Builder.CreateOr(Src.first, Src.second, "tobool");
482 }
483
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000484 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
485 // the imaginary part of the complex value is discarded and the value of the
486 // real part is converted according to the conversion rules for the
487 // corresponding real type.
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000488 return EmitScalarConversion(Src.first, SrcTy, DstTy);
489}
490
491
Chris Lattner9fba49a2007-08-24 05:35:26 +0000492//===----------------------------------------------------------------------===//
493// Visitor Methods
494//===----------------------------------------------------------------------===//
495
496Value *ScalarExprEmitter::VisitExpr(Expr *E) {
Daniel Dunbar9503b782008-08-16 00:56:44 +0000497 CGF.ErrorUnsupported(E, "scalar expression");
Chris Lattner9fba49a2007-08-24 05:35:26 +0000498 if (E->getType()->isVoidType())
499 return 0;
500 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
501}
502
Eli Friedmand0e9d092008-05-14 19:38:39 +0000503Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
504 llvm::SmallVector<llvm::Constant*, 32> indices;
505 for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
506 indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
507 }
508 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
509 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
510 Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
511 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
512}
513
Chris Lattner9fba49a2007-08-24 05:35:26 +0000514Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
515 // Emit subscript expressions in rvalue context's. For most cases, this just
516 // loads the lvalue formed by the subscript expr. However, we have to be
517 // careful, because the base of a vector subscript is occasionally an rvalue,
518 // so we can't get it as an lvalue.
519 if (!E->getBase()->getType()->isVectorType())
520 return EmitLoadOfLValue(E);
521
522 // Handle the vector case. The base must be a vector, the index must be an
523 // integer value.
524 Value *Base = Visit(E->getBase());
525 Value *Idx = Visit(E->getIdx());
526
527 // FIXME: Convert Idx to i32 type.
528 return Builder.CreateExtractElement(Base, Idx, "vecext");
529}
530
531/// VisitImplicitCastExpr - Implicit casts are the same as normal casts, but
532/// also handle things like function to pointer-to-function decay, and array to
533/// pointer decay.
534Value *ScalarExprEmitter::VisitImplicitCastExpr(const ImplicitCastExpr *E) {
535 const Expr *Op = E->getSubExpr();
536
537 // If this is due to array->pointer conversion, emit the array expression as
538 // an l-value.
539 if (Op->getType()->isArrayType()) {
540 // FIXME: For now we assume that all source arrays map to LLVM arrays. This
541 // will not true when we add support for VLAs.
Chris Lattnerfb182ee2007-08-26 16:34:22 +0000542 Value *V = EmitLValue(Op).getAddress(); // Bitfields can't be arrays.
Eli Friedman8fef47e2008-12-20 23:11:59 +0000543
544 if (!Op->getType()->isVariableArrayType()) {
545 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
546 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
547 ->getElementType()) &&
548 "Expected pointer to array");
549 V = Builder.CreateStructGEP(V, 0, "arraydecay");
Daniel Dunbar952f4732008-08-29 17:28:43 +0000550 }
Chris Lattnere54443b2007-12-12 04:13:20 +0000551
552 // The resultant pointer type can be implicitly casted to other pointer
Chris Lattner3b8f5c62008-07-23 06:31:27 +0000553 // types as well (e.g. void*) and can be implicitly converted to integer.
554 const llvm::Type *DestTy = ConvertType(E->getType());
555 if (V->getType() != DestTy) {
556 if (isa<llvm::PointerType>(DestTy))
557 V = Builder.CreateBitCast(V, DestTy, "ptrconv");
558 else {
559 assert(isa<llvm::IntegerType>(DestTy) && "Unknown array decay");
560 V = Builder.CreatePtrToInt(V, DestTy, "ptrconv");
561 }
562 }
Chris Lattnere54443b2007-12-12 04:13:20 +0000563 return V;
564
Anders Carlssoncebb8d62007-10-12 23:56:29 +0000565 } else if (E->getType()->isReferenceType()) {
Anders Carlssoncebb8d62007-10-12 23:56:29 +0000566 return EmitLValue(Op).getAddress();
Chris Lattner9fba49a2007-08-24 05:35:26 +0000567 }
568
569 return EmitCastExpr(Op, E->getType());
570}
571
572
573// VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
574// have to handle a more broad range of conversions than explicit casts, as they
575// handle things like function to ptr-to-function decay etc.
576Value *ScalarExprEmitter::EmitCastExpr(const Expr *E, QualType DestTy) {
Chris Lattner82e10392007-08-26 07:26:12 +0000577 // Handle cases where the source is an non-complex type.
Chris Lattner77288792008-02-16 23:55:16 +0000578
579 if (!CGF.hasAggregateLLVMType(E->getType())) {
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000580 Value *Src = Visit(const_cast<Expr*>(E));
581
Chris Lattner4e05d1e2007-08-26 06:48:56 +0000582 // Use EmitScalarConversion to perform the conversion.
583 return EmitScalarConversion(Src, E->getType(), DestTy);
584 }
Chris Lattner77288792008-02-16 23:55:16 +0000585
Chris Lattnerde0908b2008-04-04 16:54:41 +0000586 if (E->getType()->isAnyComplexType()) {
Chris Lattner77288792008-02-16 23:55:16 +0000587 // Handle cases where the source is a complex type.
588 return EmitComplexToScalarConversion(CGF.EmitComplexExpr(E), E->getType(),
589 DestTy);
590 }
Chris Lattnerd579f7f2007-08-26 07:16:41 +0000591
Chris Lattner77288792008-02-16 23:55:16 +0000592 // Okay, this is a cast from an aggregate. It must be a cast to void. Just
593 // evaluate the result and return.
594 CGF.EmitAggExpr(E, 0, false);
595 return 0;
Chris Lattner9fba49a2007-08-24 05:35:26 +0000596}
597
Chris Lattnerea6cdd72007-08-31 22:09:40 +0000598Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
Chris Lattner09cee852008-07-26 20:23:23 +0000599 return CGF.EmitCompoundStmt(*E->getSubStmt(),
600 !E->getType()->isVoidType()).getScalarVal();
Chris Lattnerea6cdd72007-08-31 22:09:40 +0000601}
602
603
Chris Lattner9fba49a2007-08-24 05:35:26 +0000604//===----------------------------------------------------------------------===//
605// Unary Operators
606//===----------------------------------------------------------------------===//
607
608Value *ScalarExprEmitter::VisitPrePostIncDec(const UnaryOperator *E,
Chris Lattner855e3d72007-08-24 16:24:49 +0000609 bool isInc, bool isPre) {
Chris Lattner9fba49a2007-08-24 05:35:26 +0000610 LValue LV = EmitLValue(E->getSubExpr());
611 // FIXME: Handle volatile!
Chris Lattner0dc11f62007-08-26 05:10:16 +0000612 Value *InVal = CGF.EmitLoadOfLValue(LV, // false
Chris Lattnere24c4cf2007-08-31 22:49:20 +0000613 E->getSubExpr()->getType()).getScalarVal();
Chris Lattner9fba49a2007-08-24 05:35:26 +0000614
615 int AmountVal = isInc ? 1 : -1;
616
617 Value *NextVal;
Chris Lattner0dc11f62007-08-26 05:10:16 +0000618 if (isa<llvm::PointerType>(InVal->getType())) {
619 // FIXME: This isn't right for VLAs.
620 NextVal = llvm::ConstantInt::get(llvm::Type::Int32Ty, AmountVal);
Chris Lattner07307562008-03-19 05:19:41 +0000621 NextVal = Builder.CreateGEP(InVal, NextVal, "ptrincdec");
Chris Lattner0dc11f62007-08-26 05:10:16 +0000622 } else {
623 // Add the inc/dec to the real part.
624 if (isa<llvm::IntegerType>(InVal->getType()))
625 NextVal = llvm::ConstantInt::get(InVal->getType(), AmountVal);
Chris Lattnerb2a7dab2007-09-13 06:19:18 +0000626 else if (InVal->getType() == llvm::Type::FloatTy)
Devang Patel0f2a8fb2007-10-30 20:59:40 +0000627 NextVal =
Chris Lattner70c38672008-04-20 00:45:53 +0000628 llvm::ConstantFP::get(llvm::APFloat(static_cast<float>(AmountVal)));
Chris Lattnerd54d1f22008-04-20 00:50:39 +0000629 else if (InVal->getType() == llvm::Type::DoubleTy)
Devang Patel0f2a8fb2007-10-30 20:59:40 +0000630 NextVal =
Chris Lattner70c38672008-04-20 00:45:53 +0000631 llvm::ConstantFP::get(llvm::APFloat(static_cast<double>(AmountVal)));
Chris Lattnerd54d1f22008-04-20 00:50:39 +0000632 else {
633 llvm::APFloat F(static_cast<float>(AmountVal));
Dale Johannesen2461f612008-10-09 23:02:32 +0000634 bool ignored;
635 F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
636 &ignored);
Chris Lattnerd54d1f22008-04-20 00:50:39 +0000637 NextVal = llvm::ConstantFP::get(F);
Chris Lattnerb2a7dab2007-09-13 06:19:18 +0000638 }
Chris Lattner0dc11f62007-08-26 05:10:16 +0000639 NextVal = Builder.CreateAdd(InVal, NextVal, isInc ? "inc" : "dec");
640 }
Chris Lattner9fba49a2007-08-24 05:35:26 +0000641
642 // Store the updated result through the lvalue.
643 CGF.EmitStoreThroughLValue(RValue::get(NextVal), LV,
644 E->getSubExpr()->getType());
645
646 // If this is a postinc, return the value read from memory, otherwise use the
647 // updated value.
648 return isPre ? NextVal : InVal;
649}
650
651
652Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
653 Value *Op = Visit(E->getSubExpr());
654 return Builder.CreateNeg(Op, "neg");
655}
656
657Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
658 Value *Op = Visit(E->getSubExpr());
659 return Builder.CreateNot(Op, "neg");
660}
661
662Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
663 // Compare operand to zero.
664 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
665
666 // Invert value.
667 // TODO: Could dynamically modify easy computations here. For example, if
668 // the operand is an icmp ne, turn into icmp eq.
669 BoolVal = Builder.CreateNot(BoolVal, "lnot");
670
671 // ZExt result to int.
672 return Builder.CreateZExt(BoolVal, CGF.LLVMIntTy, "lnot.ext");
673}
674
Sebastian Redl0cb7c872008-11-11 17:56:53 +0000675/// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
676/// argument of the sizeof expression as an integer.
677Value *
678ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
Sebastian Redl0cb7c872008-11-11 17:56:53 +0000679 QualType TypeToSize = E->getTypeOfArgument();
Eli Friedman5a2c38f2009-01-24 22:19:05 +0000680 if (E->isSizeOf()) {
681 if (const VariableArrayType *VAT =
682 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
683 if (E->isArgumentType()) {
684 // sizeof(type) - make sure to emit the VLA size.
685 CGF.EmitVLASize(TypeToSize);
686 }
687 return CGF.GetVLASize(VAT);
Anders Carlsson6cb99b72008-12-21 03:33:21 +0000688 }
Anders Carlsson9be6aaf2008-12-12 07:38:43 +0000689 }
Eli Friedman5a2c38f2009-01-24 22:19:05 +0000690
691 // If this isn't sizeof(vla), the result must be constant; use the
692 // constant folding logic so we don't have to duplicate it here.
693 Expr::EvalResult Result;
694 E->Evaluate(Result, CGF.getContext());
695 return llvm::ConstantInt::get(Result.Val.getInt());
Chris Lattner9fba49a2007-08-24 05:35:26 +0000696}
697
Chris Lattner01211af2007-08-24 21:20:17 +0000698Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
699 Expr *Op = E->getSubExpr();
Chris Lattnerde0908b2008-04-04 16:54:41 +0000700 if (Op->getType()->isAnyComplexType())
Chris Lattner01211af2007-08-24 21:20:17 +0000701 return CGF.EmitComplexExpr(Op).first;
702 return Visit(Op);
703}
704Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
705 Expr *Op = E->getSubExpr();
Chris Lattnerde0908b2008-04-04 16:54:41 +0000706 if (Op->getType()->isAnyComplexType())
Chris Lattner01211af2007-08-24 21:20:17 +0000707 return CGF.EmitComplexExpr(Op).second;
Chris Lattnerdb8a6c92007-08-26 05:29:21 +0000708
709 // __imag on a scalar returns zero. Emit it the subexpr to ensure side
710 // effects are evaluated.
711 CGF.EmitScalarExpr(Op);
712 return llvm::Constant::getNullValue(ConvertType(E->getType()));
Chris Lattner01211af2007-08-24 21:20:17 +0000713}
714
Anders Carlsson52774ad2008-01-29 15:56:48 +0000715Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E)
716{
Eli Friedmanccffea92009-01-24 22:38:55 +0000717 const Expr* SubExpr = E->getSubExpr();
718 const llvm::Type* ResultType = ConvertType(E->getType());
719 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
720 while (!isa<CompoundLiteralExpr>(SubExpr)) {
721 if (const MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr)) {
722 SubExpr = ME->getBase();
723 QualType Ty = SubExpr->getType();
724
725 RecordDecl *RD = Ty->getAsRecordType()->getDecl();
726 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
727 FieldDecl *FD = cast<FieldDecl>(ME->getMemberDecl());
728
729 // FIXME: This is linear time. And the fact that we're indexing
730 // into the layout by position in the record means that we're
731 // either stuck numbering the fields in the AST or we have to keep
732 // the linear search (yuck and yuck).
733 unsigned i = 0;
734 for (RecordDecl::field_iterator Field = RD->field_begin(),
735 FieldEnd = RD->field_end();
736 Field != FieldEnd; (void)++Field, ++i) {
737 if (*Field == FD)
738 break;
739 }
740
741 llvm::Value* Offset =
742 llvm::ConstantInt::get(ResultType, RL.getFieldOffset(i) / 8);
743 Result = Builder.CreateAdd(Result, Offset);
744 } else if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(SubExpr)) {
745 SubExpr = ASE->getBase();
746 int64_t size = CGF.getContext().getTypeSize(ASE->getType()) / 8;
747 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, size);
748 llvm::Value* ElemIndex = CGF.EmitScalarExpr(ASE->getIdx());
749 bool IndexSigned = ASE->getIdx()->getType()->isSignedIntegerType();
750 ElemIndex = Builder.CreateIntCast(ElemIndex, ResultType, IndexSigned);
751 llvm::Value* Offset = Builder.CreateMul(ElemSize, ElemIndex);
752 Result = Builder.CreateAdd(Result, Offset);
753 } else {
754 assert(0 && "This should be impossible!");
755 }
756 }
757 return Result;
Anders Carlsson52774ad2008-01-29 15:56:48 +0000758}
Chris Lattner01211af2007-08-24 21:20:17 +0000759
Chris Lattner9fba49a2007-08-24 05:35:26 +0000760//===----------------------------------------------------------------------===//
761// Binary Operators
762//===----------------------------------------------------------------------===//
763
764BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
765 BinOpInfo Result;
766 Result.LHS = Visit(E->getLHS());
767 Result.RHS = Visit(E->getRHS());
Chris Lattner660e31d2007-08-24 21:00:35 +0000768 Result.Ty = E->getType();
Chris Lattner9fba49a2007-08-24 05:35:26 +0000769 Result.E = E;
770 return Result;
771}
772
Chris Lattner0d965302007-08-26 21:41:21 +0000773Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
Chris Lattner660e31d2007-08-24 21:00:35 +0000774 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
775 QualType LHSTy = E->getLHS()->getType(), RHSTy = E->getRHS()->getType();
776
777 BinOpInfo OpInfo;
778
779 // Load the LHS and RHS operands.
780 LValue LHSLV = EmitLValue(E->getLHS());
781 OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
Chris Lattner9c9f4bb2007-08-26 22:37:40 +0000782
783 // Determine the computation type. If the RHS is complex, then this is one of
784 // the add/sub/mul/div operators. All of these operators can be computed in
785 // with just their real component even though the computation domain really is
786 // complex.
Chris Lattner0d965302007-08-26 21:41:21 +0000787 QualType ComputeType = E->getComputationType();
Chris Lattner660e31d2007-08-24 21:00:35 +0000788
Chris Lattner9c9f4bb2007-08-26 22:37:40 +0000789 // If the computation type is complex, then the RHS is complex. Emit the RHS.
790 if (const ComplexType *CT = ComputeType->getAsComplexType()) {
791 ComputeType = CT->getElementType();
792
793 // Emit the RHS, only keeping the real component.
794 OpInfo.RHS = CGF.EmitComplexExpr(E->getRHS()).first;
795 RHSTy = RHSTy->getAsComplexType()->getElementType();
796 } else {
797 // Otherwise the RHS is a simple scalar value.
798 OpInfo.RHS = Visit(E->getRHS());
799 }
800
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000801 QualType LComputeTy, RComputeTy, ResultTy;
802
803 // Compound assignment does not contain enough information about all
804 // the types involved for pointer arithmetic cases. Figure it out
805 // here for now.
806 if (E->getLHS()->getType()->isPointerType()) {
807 // Pointer arithmetic cases: ptr +=,-= int and ptr -= ptr,
808 assert((E->getOpcode() == BinaryOperator::AddAssign ||
809 E->getOpcode() == BinaryOperator::SubAssign) &&
810 "Invalid compound assignment operator on pointer type.");
811 LComputeTy = E->getLHS()->getType();
812
813 if (E->getRHS()->getType()->isPointerType()) {
814 // Degenerate case of (ptr -= ptr) allowed by GCC implicit cast
815 // extension, the conversion from the pointer difference back to
816 // the LHS type is handled at the end.
817 assert(E->getOpcode() == BinaryOperator::SubAssign &&
818 "Invalid compound assignment operator on pointer type.");
819 RComputeTy = E->getLHS()->getType();
820 ResultTy = CGF.getContext().getPointerDiffType();
821 } else {
822 RComputeTy = E->getRHS()->getType();
823 ResultTy = LComputeTy;
824 }
825 } else if (E->getRHS()->getType()->isPointerType()) {
826 // Degenerate case of (int += ptr) allowed by GCC implicit cast
827 // extension.
828 assert(E->getOpcode() == BinaryOperator::AddAssign &&
829 "Invalid compound assignment operator on pointer type.");
830 LComputeTy = E->getLHS()->getType();
831 RComputeTy = E->getRHS()->getType();
832 ResultTy = RComputeTy;
833 } else {
834 LComputeTy = RComputeTy = ResultTy = ComputeType;
Chris Lattner660e31d2007-08-24 21:00:35 +0000835 }
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000836
837 // Convert the LHS/RHS values to the computation type.
838 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, LComputeTy);
839 OpInfo.RHS = EmitScalarConversion(OpInfo.RHS, RHSTy, RComputeTy);
840 OpInfo.Ty = ResultTy;
Chris Lattner660e31d2007-08-24 21:00:35 +0000841 OpInfo.E = E;
842
843 // Expand the binary operator.
844 Value *Result = (this->*Func)(OpInfo);
845
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000846 // Convert the result back to the LHS type.
847 Result = EmitScalarConversion(Result, ResultTy, LHSTy);
Chris Lattner660e31d2007-08-24 21:00:35 +0000848
Daniel Dunbar2668dd12008-11-19 09:36:46 +0000849 // Store the result value into the LHS lvalue. Bit-fields are
Daniel Dunbar2710fc92008-11-19 11:54:05 +0000850 // handled specially because the result is altered by the store,
851 // i.e., [C99 6.5.16p1] 'An assignment expression has the value of
852 // the left operand after the assignment...'.
Eli Friedmanf9b930c2008-05-25 14:13:57 +0000853 if (LHSLV.isBitfield())
Daniel Dunbar2668dd12008-11-19 09:36:46 +0000854 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
855 &Result);
856 else
857 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
858
Chris Lattner660e31d2007-08-24 21:00:35 +0000859 return Result;
860}
861
862
Chris Lattner9fba49a2007-08-24 05:35:26 +0000863Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
Nate Begemanaade3bf2007-12-30 01:28:16 +0000864 if (Ops.LHS->getType()->isFPOrFPVector())
Chris Lattner9fba49a2007-08-24 05:35:26 +0000865 return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
Chris Lattner660e31d2007-08-24 21:00:35 +0000866 else if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner9fba49a2007-08-24 05:35:26 +0000867 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
868 else
869 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
870}
871
872Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
873 // Rem in C can't be a floating point type: C99 6.5.5p2.
Chris Lattner660e31d2007-08-24 21:00:35 +0000874 if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner9fba49a2007-08-24 05:35:26 +0000875 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
876 else
877 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
878}
879
880
881Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
Chris Lattner660e31d2007-08-24 21:00:35 +0000882 if (!Ops.Ty->isPointerType())
Chris Lattner9fba49a2007-08-24 05:35:26 +0000883 return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
Chris Lattner660e31d2007-08-24 21:00:35 +0000884
885 // FIXME: What about a pointer to a VLA?
Chris Lattner17c0cb02008-01-03 06:36:51 +0000886 Value *Ptr, *Idx;
887 Expr *IdxExp;
Daniel Dunbar4fd58ab2009-01-23 18:51:09 +0000888 const PointerType *PT;
889 if ((PT = Ops.E->getLHS()->getType()->getAsPointerType())) {
Chris Lattner17c0cb02008-01-03 06:36:51 +0000890 Ptr = Ops.LHS;
891 Idx = Ops.RHS;
892 IdxExp = Ops.E->getRHS();
893 } else { // int + pointer
Daniel Dunbar4fd58ab2009-01-23 18:51:09 +0000894 PT = Ops.E->getRHS()->getType()->getAsPointerType();
895 assert(PT && "Invalid add expr");
Chris Lattner17c0cb02008-01-03 06:36:51 +0000896 Ptr = Ops.RHS;
897 Idx = Ops.LHS;
898 IdxExp = Ops.E->getLHS();
899 }
900
901 unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
902 if (Width < CGF.LLVMPointerWidth) {
903 // Zero or sign extend the pointer value based on whether the index is
904 // signed or not.
905 const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
Chris Lattnerc154ac12008-07-26 22:37:01 +0000906 if (IdxExp->getType()->isSignedIntegerType())
Chris Lattner17c0cb02008-01-03 06:36:51 +0000907 Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
908 else
909 Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
910 }
Daniel Dunbar4fd58ab2009-01-23 18:51:09 +0000911
912 // Explicitly handle GNU void* and function pointer arithmetic
913 // extensions. The GNU void* casts amount to no-ops since our void*
914 // type is i8*, but this is future proof.
915 const QualType ElementType = PT->getPointeeType();
916 if (ElementType->isVoidType() || ElementType->isFunctionType()) {
917 const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
918 Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
919 Value *Res = Builder.CreateGEP(Casted, Idx, "sub.ptr");
920 return Builder.CreateBitCast(Res, Ptr->getType());
921 }
Chris Lattner17c0cb02008-01-03 06:36:51 +0000922
923 return Builder.CreateGEP(Ptr, Idx, "add.ptr");
Chris Lattner9fba49a2007-08-24 05:35:26 +0000924}
925
926Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
927 if (!isa<llvm::PointerType>(Ops.LHS->getType()))
928 return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
Chris Lattner660e31d2007-08-24 21:00:35 +0000929
Daniel Dunbar4fd58ab2009-01-23 18:51:09 +0000930 const QualType LHSType = Ops.E->getLHS()->getType();
931 const QualType LHSElementType = LHSType->getAsPointerType()->getPointeeType();
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000932 if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
933 // pointer - int
934 Value *Idx = Ops.RHS;
935 unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
936 if (Width < CGF.LLVMPointerWidth) {
937 // Zero or sign extend the pointer value based on whether the index is
938 // signed or not.
939 const llvm::Type *IdxType = llvm::IntegerType::get(CGF.LLVMPointerWidth);
940 if (Ops.E->getRHS()->getType()->isSignedIntegerType())
941 Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
942 else
943 Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
944 }
945 Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
946
947 // FIXME: The pointer could point to a VLA.
Daniel Dunbar4fd58ab2009-01-23 18:51:09 +0000948
949 // Explicitly handle GNU void* and function pointer arithmetic
950 // extensions. The GNU void* casts amount to no-ops since our
951 // void* type is i8*, but this is future proof.
952 if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
953 const llvm::Type *i8Ty = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
954 Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
955 Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
956 return Builder.CreateBitCast(Res, Ops.LHS->getType());
957 }
958
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000959 return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
Daniel Dunbar0aac9f62008-08-05 00:47:03 +0000960 } else {
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000961 // pointer - pointer
962 Value *LHS = Ops.LHS;
963 Value *RHS = Ops.RHS;
Chris Lattner660e31d2007-08-24 21:00:35 +0000964
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000965 uint64_t ElementSize;
Daniel Dunbar0aac9f62008-08-05 00:47:03 +0000966
Daniel Dunbar5d7d0382008-08-06 02:00:38 +0000967 // Handle GCC extension for pointer arithmetic on void* types.
968 if (LHSElementType->isVoidType()) {
969 ElementSize = 1;
970 } else {
971 ElementSize = CGF.getContext().getTypeSize(LHSElementType) / 8;
972 }
973
974 const llvm::Type *ResultType = ConvertType(Ops.Ty);
975 LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
976 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
977 Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
978
979 // HACK: LLVM doesn't have an divide instruction that 'knows' there is no
980 // remainder. As such, we handle common power-of-two cases here to generate
981 // better code. See PR2247.
982 if (llvm::isPowerOf2_64(ElementSize)) {
983 Value *ShAmt =
984 llvm::ConstantInt::get(ResultType, llvm::Log2_64(ElementSize));
985 return Builder.CreateAShr(BytesBetween, ShAmt, "sub.ptr.shr");
986 }
987
988 // Otherwise, do a full sdiv.
989 Value *BytesPerElt = llvm::ConstantInt::get(ResultType, ElementSize);
990 return Builder.CreateSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
Chris Lattner9fba49a2007-08-24 05:35:26 +0000991 }
Chris Lattner9fba49a2007-08-24 05:35:26 +0000992}
993
994Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
995 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
996 // RHS to the same size as the LHS.
997 Value *RHS = Ops.RHS;
998 if (Ops.LHS->getType() != RHS->getType())
999 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1000
1001 return Builder.CreateShl(Ops.LHS, RHS, "shl");
1002}
1003
1004Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1005 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1006 // RHS to the same size as the LHS.
1007 Value *RHS = Ops.RHS;
1008 if (Ops.LHS->getType() != RHS->getType())
1009 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1010
Chris Lattner660e31d2007-08-24 21:00:35 +00001011 if (Ops.Ty->isUnsignedIntegerType())
Chris Lattner9fba49a2007-08-24 05:35:26 +00001012 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1013 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1014}
1015
1016Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1017 unsigned SICmpOpc, unsigned FCmpOpc) {
Chris Lattnerfb182ee2007-08-26 16:34:22 +00001018 Value *Result;
Chris Lattner9fba49a2007-08-24 05:35:26 +00001019 QualType LHSTy = E->getLHS()->getType();
Nate Begeman1591bc52008-07-25 20:16:05 +00001020 if (!LHSTy->isAnyComplexType() && !LHSTy->isVectorType()) {
Chris Lattner9fba49a2007-08-24 05:35:26 +00001021 Value *LHS = Visit(E->getLHS());
1022 Value *RHS = Visit(E->getRHS());
1023
1024 if (LHS->getType()->isFloatingPoint()) {
Nate Begeman1591bc52008-07-25 20:16:05 +00001025 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
Chris Lattner9fba49a2007-08-24 05:35:26 +00001026 LHS, RHS, "cmp");
Eli Friedman850ea372008-05-29 15:09:15 +00001027 } else if (LHSTy->isSignedIntegerType()) {
1028 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
Chris Lattner9fba49a2007-08-24 05:35:26 +00001029 LHS, RHS, "cmp");
1030 } else {
Eli Friedman850ea372008-05-29 15:09:15 +00001031 // Unsigned integers and pointers.
1032 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
Chris Lattner9fba49a2007-08-24 05:35:26 +00001033 LHS, RHS, "cmp");
1034 }
Nate Begeman1591bc52008-07-25 20:16:05 +00001035 } else if (LHSTy->isVectorType()) {
1036 Value *LHS = Visit(E->getLHS());
1037 Value *RHS = Visit(E->getRHS());
1038
1039 if (LHS->getType()->isFPOrFPVector()) {
1040 Result = Builder.CreateVFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1041 LHS, RHS, "cmp");
1042 } else if (LHSTy->isUnsignedIntegerType()) {
1043 Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)UICmpOpc,
1044 LHS, RHS, "cmp");
1045 } else {
1046 // Signed integers and pointers.
1047 Result = Builder.CreateVICmp((llvm::CmpInst::Predicate)SICmpOpc,
1048 LHS, RHS, "cmp");
1049 }
1050 return Result;
Chris Lattner9fba49a2007-08-24 05:35:26 +00001051 } else {
1052 // Complex Comparison: can only be an equality comparison.
1053 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1054 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1055
Chris Lattnerc154ac12008-07-26 22:37:01 +00001056 QualType CETy = LHSTy->getAsComplexType()->getElementType();
Chris Lattner9fba49a2007-08-24 05:35:26 +00001057
Chris Lattnerfb182ee2007-08-26 16:34:22 +00001058 Value *ResultR, *ResultI;
Chris Lattner9fba49a2007-08-24 05:35:26 +00001059 if (CETy->isRealFloatingType()) {
1060 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1061 LHS.first, RHS.first, "cmp.r");
1062 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1063 LHS.second, RHS.second, "cmp.i");
1064 } else {
1065 // Complex comparisons can only be equality comparisons. As such, signed
1066 // and unsigned opcodes are the same.
1067 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1068 LHS.first, RHS.first, "cmp.r");
1069 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1070 LHS.second, RHS.second, "cmp.i");
1071 }
1072
1073 if (E->getOpcode() == BinaryOperator::EQ) {
1074 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1075 } else {
1076 assert(E->getOpcode() == BinaryOperator::NE &&
1077 "Complex comparison other than == or != ?");
1078 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1079 }
1080 }
Nuno Lopes92577002009-01-11 23:22:37 +00001081
1082 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
Chris Lattner9fba49a2007-08-24 05:35:26 +00001083}
1084
1085Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1086 LValue LHS = EmitLValue(E->getLHS());
1087 Value *RHS = Visit(E->getRHS());
1088
Daniel Dunbar2668dd12008-11-19 09:36:46 +00001089 // Store the value into the LHS. Bit-fields are handled specially
Daniel Dunbar2710fc92008-11-19 11:54:05 +00001090 // because the result is altered by the store, i.e., [C99 6.5.16p1]
1091 // 'An assignment expression has the value of the left operand after
1092 // the assignment...'.
Chris Lattner9fba49a2007-08-24 05:35:26 +00001093 // FIXME: Volatility!
Eli Friedmanf9b930c2008-05-25 14:13:57 +00001094 if (LHS.isBitfield())
Daniel Dunbar2668dd12008-11-19 09:36:46 +00001095 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1096 &RHS);
1097 else
1098 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
Daniel Dunbare6c31752008-08-29 08:11:39 +00001099
Chris Lattner9fba49a2007-08-24 05:35:26 +00001100 // Return the RHS.
1101 return RHS;
1102}
1103
1104Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
Chris Lattner715c2a72008-11-12 08:26:50 +00001105 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1106 // If we have 1 && X, just emit X without inserting the control flow.
1107 if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1108 if (Cond == 1) { // If we have 1 && X, just emit X.
Chris Lattner3f73d0d2008-11-11 07:41:27 +00001109 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1110 // ZExt result to int.
1111 return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "land.ext");
1112 }
Chris Lattner715c2a72008-11-12 08:26:50 +00001113
1114 // 0 && RHS: If it is safe, just elide the RHS, and return 0.
1115 if (!CGF.ContainsLabel(E->getRHS()))
1116 return llvm::Constant::getNullValue(CGF.LLVMIntTy);
Chris Lattner3f73d0d2008-11-11 07:41:27 +00001117 }
1118
Daniel Dunbar6e3a10c2008-11-13 01:38:36 +00001119 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1120 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
Chris Lattner715c2a72008-11-12 08:26:50 +00001121
Chris Lattner7f80bb32008-11-12 08:38:24 +00001122 // Branch on the LHS first. If it is false, go to the failure (cont) block.
1123 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1124
1125 // Any edges into the ContBlock are now from an (indeterminate number of)
1126 // edges from this first condition. All of these values will be false. Start
1127 // setting up the PHI node in the Cont Block for this.
1128 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1129 PN->reserveOperandSpace(2); // Normal case, two inputs.
1130 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1131 PI != PE; ++PI)
1132 PN->addIncoming(llvm::ConstantInt::getFalse(), *PI);
Chris Lattner9fba49a2007-08-24 05:35:26 +00001133
1134 CGF.EmitBlock(RHSBlock);
1135 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1136
1137 // Reaquire the RHS block, as there may be subblocks inserted.
1138 RHSBlock = Builder.GetInsertBlock();
Chris Lattner7f80bb32008-11-12 08:38:24 +00001139
1140 // Emit an unconditional branch from this block to ContBlock. Insert an entry
1141 // into the phi node for the edge with the value of RHSCond.
Chris Lattner9fba49a2007-08-24 05:35:26 +00001142 CGF.EmitBlock(ContBlock);
Chris Lattner9fba49a2007-08-24 05:35:26 +00001143 PN->addIncoming(RHSCond, RHSBlock);
1144
1145 // ZExt result to int.
1146 return Builder.CreateZExt(PN, CGF.LLVMIntTy, "land.ext");
1147}
1148
1149Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
Chris Lattner715c2a72008-11-12 08:26:50 +00001150 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1151 // If we have 0 || X, just emit X without inserting the control flow.
1152 if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1153 if (Cond == -1) { // If we have 0 || X, just emit X.
Chris Lattner3f73d0d2008-11-11 07:41:27 +00001154 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1155 // ZExt result to int.
1156 return Builder.CreateZExt(RHSCond, CGF.LLVMIntTy, "lor.ext");
1157 }
Chris Lattner715c2a72008-11-12 08:26:50 +00001158
Eli Friedmanea137cd2008-12-02 16:02:46 +00001159 // 1 || RHS: If it is safe, just elide the RHS, and return 1.
Chris Lattner715c2a72008-11-12 08:26:50 +00001160 if (!CGF.ContainsLabel(E->getRHS()))
Eli Friedmanea137cd2008-12-02 16:02:46 +00001161 return llvm::ConstantInt::get(CGF.LLVMIntTy, 1);
Chris Lattner3f73d0d2008-11-11 07:41:27 +00001162 }
1163
Daniel Dunbar6e3a10c2008-11-13 01:38:36 +00001164 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1165 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
Chris Lattner9fba49a2007-08-24 05:35:26 +00001166
Chris Lattner7f80bb32008-11-12 08:38:24 +00001167 // Branch on the LHS first. If it is true, go to the success (cont) block.
1168 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1169
1170 // Any edges into the ContBlock are now from an (indeterminate number of)
1171 // edges from this first condition. All of these values will be true. Start
1172 // setting up the PHI node in the Cont Block for this.
1173 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::Int1Ty, "", ContBlock);
1174 PN->reserveOperandSpace(2); // Normal case, two inputs.
1175 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1176 PI != PE; ++PI)
1177 PN->addIncoming(llvm::ConstantInt::getTrue(), *PI);
1178
1179 // Emit the RHS condition as a bool value.
Chris Lattner9fba49a2007-08-24 05:35:26 +00001180 CGF.EmitBlock(RHSBlock);
1181 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1182
1183 // Reaquire the RHS block, as there may be subblocks inserted.
1184 RHSBlock = Builder.GetInsertBlock();
Chris Lattner9fba49a2007-08-24 05:35:26 +00001185
Chris Lattner7f80bb32008-11-12 08:38:24 +00001186 // Emit an unconditional branch from this block to ContBlock. Insert an entry
1187 // into the phi node for the edge with the value of RHSCond.
1188 CGF.EmitBlock(ContBlock);
Chris Lattner9fba49a2007-08-24 05:35:26 +00001189 PN->addIncoming(RHSCond, RHSBlock);
1190
1191 // ZExt result to int.
1192 return Builder.CreateZExt(PN, CGF.LLVMIntTy, "lor.ext");
1193}
1194
1195Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1196 CGF.EmitStmt(E->getLHS());
Daniel Dunbar5aa22bc2008-11-11 23:11:34 +00001197 CGF.EnsureInsertPoint();
Chris Lattner9fba49a2007-08-24 05:35:26 +00001198 return Visit(E->getRHS());
1199}
1200
1201//===----------------------------------------------------------------------===//
1202// Other Operators
1203//===----------------------------------------------------------------------===//
1204
Chris Lattner504a5282008-11-12 08:55:54 +00001205/// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1206/// expression is cheap enough and side-effect-free enough to evaluate
1207/// unconditionally instead of conditionally. This is used to convert control
1208/// flow into selects in some cases.
1209static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E) {
1210 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1211 return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr());
1212
1213 // TODO: Allow anything we can constant fold to an integer or fp constant.
1214 if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1215 isa<FloatingLiteral>(E))
1216 return true;
1217
1218 // Non-volatile automatic variables too, to get "cond ? X : Y" where
1219 // X and Y are local variables.
1220 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1221 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1222 if (VD->hasLocalStorage() && !VD->getType().isVolatileQualified())
1223 return true;
1224
1225 return false;
1226}
1227
1228
Chris Lattner9fba49a2007-08-24 05:35:26 +00001229Value *ScalarExprEmitter::
1230VisitConditionalOperator(const ConditionalOperator *E) {
Chris Lattner3d6606b2008-11-12 08:04:58 +00001231 // If the condition constant folds and can be elided, try to avoid emitting
1232 // the condition and the dead arm.
1233 if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
Chris Lattner044bffc2008-11-11 18:56:45 +00001234 Expr *Live = E->getLHS(), *Dead = E->getRHS();
Chris Lattner3d6606b2008-11-12 08:04:58 +00001235 if (Cond == -1)
Chris Lattner044bffc2008-11-11 18:56:45 +00001236 std::swap(Live, Dead);
Chris Lattner3d6606b2008-11-12 08:04:58 +00001237
1238 // If the dead side doesn't have labels we need, and if the Live side isn't
1239 // the gnu missing ?: extension (which we could handle, but don't bother
1240 // to), just emit the Live part.
1241 if ((!Dead || !CGF.ContainsLabel(Dead)) && // No labels in dead part
1242 Live) // Live part isn't missing.
1243 return Visit(Live);
Chris Lattner044bffc2008-11-11 18:56:45 +00001244 }
1245
Chris Lattner504a5282008-11-12 08:55:54 +00001246
1247 // If this is a really simple expression (like x ? 4 : 5), emit this as a
1248 // select instead of as control flow. We can only do this if it is cheap and
Chris Lattner1f11af22008-11-16 06:16:27 +00001249 // safe to evaluate the LHS and RHS unconditionally.
Chris Lattner504a5282008-11-12 08:55:54 +00001250 if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS()) &&
1251 isCheapEnoughToEvaluateUnconditionally(E->getRHS())) {
1252 llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1253 llvm::Value *LHS = Visit(E->getLHS());
1254 llvm::Value *RHS = Visit(E->getRHS());
1255 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1256 }
1257
1258
Daniel Dunbarb23e9922008-11-12 10:13:37 +00001259 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1260 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
Daniel Dunbar6e3a10c2008-11-13 01:38:36 +00001261 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
Chris Lattner67e22462008-11-12 08:08:13 +00001262 Value *CondVal = 0;
Chris Lattner3d6606b2008-11-12 08:04:58 +00001263
Chris Lattner67e22462008-11-12 08:08:13 +00001264 // If we have the GNU missing condition extension, evaluate the conditional
1265 // and then convert it to bool the hard way. We do this explicitly
1266 // because we need the unconverted value for the missing middle value of
1267 // the ?:.
1268 if (E->getLHS() == 0) {
1269 CondVal = CGF.EmitScalarExpr(E->getCond());
1270 Value *CondBoolVal =
1271 CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1272 CGF.getContext().BoolTy);
1273 Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1274 } else {
1275 // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1276 // the branch on bool.
1277 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1278 }
Chris Lattner9fba49a2007-08-24 05:35:26 +00001279
1280 CGF.EmitBlock(LHSBlock);
1281
1282 // Handle the GNU extension for missing LHS.
Chris Lattner98a425c2007-11-26 01:40:58 +00001283 Value *LHS;
1284 if (E->getLHS())
Eli Friedmance8d7032008-05-16 20:38:39 +00001285 LHS = Visit(E->getLHS());
Chris Lattner98a425c2007-11-26 01:40:58 +00001286 else // Perform promotions, to handle cases like "short ?: int"
1287 LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1288
Chris Lattner9fba49a2007-08-24 05:35:26 +00001289 LHSBlock = Builder.GetInsertBlock();
Daniel Dunbar5276caa2008-11-11 09:41:28 +00001290 CGF.EmitBranch(ContBlock);
Chris Lattner9fba49a2007-08-24 05:35:26 +00001291
1292 CGF.EmitBlock(RHSBlock);
1293
Eli Friedmance8d7032008-05-16 20:38:39 +00001294 Value *RHS = Visit(E->getRHS());
Chris Lattner9fba49a2007-08-24 05:35:26 +00001295 RHSBlock = Builder.GetInsertBlock();
Daniel Dunbar5276caa2008-11-11 09:41:28 +00001296 CGF.EmitBranch(ContBlock);
Chris Lattner9fba49a2007-08-24 05:35:26 +00001297
1298 CGF.EmitBlock(ContBlock);
1299
Nuno Lopesb62ff242008-06-04 19:15:45 +00001300 if (!LHS || !RHS) {
Chris Lattner307da022007-11-30 17:56:23 +00001301 assert(E->getType()->isVoidType() && "Non-void value should have a value");
1302 return 0;
1303 }
1304
Chris Lattner9fba49a2007-08-24 05:35:26 +00001305 // Create a PHI node for the real part.
1306 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1307 PN->reserveOperandSpace(2);
1308 PN->addIncoming(LHS, LHSBlock);
1309 PN->addIncoming(RHS, RHSBlock);
1310 return PN;
1311}
1312
1313Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
Chris Lattner9fba49a2007-08-24 05:35:26 +00001314 // Emit the LHS or RHS as appropriate.
Devang Patel0f2a8fb2007-10-30 20:59:40 +00001315 return
1316 Visit(E->isConditionTrue(CGF.getContext()) ? E->getLHS() : E->getRHS());
Chris Lattner9fba49a2007-08-24 05:35:26 +00001317}
1318
Nate Begeman9f3bfb72008-01-17 17:46:27 +00001319Value *ScalarExprEmitter::VisitOverloadExpr(OverloadExpr *E) {
Nate Begemanbd881ef2008-01-30 20:50:20 +00001320 return CGF.EmitCallExpr(E->getFn(), E->arg_begin(),
Ted Kremenek2719e982008-06-17 02:43:46 +00001321 E->arg_end(CGF.getContext())).getScalarVal();
Nate Begeman9f3bfb72008-01-17 17:46:27 +00001322}
1323
Chris Lattner307da022007-11-30 17:56:23 +00001324Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
Eli Friedman8f5e8782009-01-20 17:46:04 +00001325 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
Anders Carlsson36760332007-10-15 20:28:48 +00001326
Anders Carlsson285611e2008-11-04 05:30:00 +00001327 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1328
1329 // If EmitVAArg fails, we fall back to the LLVM instruction.
1330 if (!ArgPtr)
1331 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1332
1333 // FIXME: volatile?
1334 return Builder.CreateLoad(ArgPtr);
Anders Carlsson36760332007-10-15 20:28:48 +00001335}
1336
Chris Lattner307da022007-11-30 17:56:23 +00001337Value *ScalarExprEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
Anders Carlsson36f07d82007-10-29 05:01:08 +00001338 std::string str;
Daniel Dunbarc9197cd2008-10-17 20:21:44 +00001339 CGF.getContext().getObjCEncodingForType(E->getEncodedType(), str);
Anders Carlsson36f07d82007-10-29 05:01:08 +00001340
1341 llvm::Constant *C = llvm::ConstantArray::get(str);
1342 C = new llvm::GlobalVariable(C->getType(), true,
1343 llvm::GlobalValue::InternalLinkage,
1344 C, ".str", &CGF.CGM.getModule());
1345 llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1346 llvm::Constant *Zeros[] = { Zero, Zero };
1347 C = llvm::ConstantExpr::getGetElementPtr(C, Zeros, 2);
1348
1349 return C;
1350}
1351
Chris Lattner9fba49a2007-08-24 05:35:26 +00001352//===----------------------------------------------------------------------===//
1353// Entry Point into this File
1354//===----------------------------------------------------------------------===//
1355
1356/// EmitComplexExpr - Emit the computation of the specified expression of
1357/// complex type, ignoring the result.
1358Value *CodeGenFunction::EmitScalarExpr(const Expr *E) {
1359 assert(E && !hasAggregateLLVMType(E->getType()) &&
1360 "Invalid scalar expression to emit");
1361
1362 return ScalarExprEmitter(*this).Visit(const_cast<Expr*>(E));
1363}
Chris Lattner4e05d1e2007-08-26 06:48:56 +00001364
1365/// EmitScalarConversion - Emit a conversion from the specified type to the
1366/// specified destination type, both of which are LLVM scalar types.
Chris Lattnerfb182ee2007-08-26 16:34:22 +00001367Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1368 QualType DstTy) {
Chris Lattner4e05d1e2007-08-26 06:48:56 +00001369 assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1370 "Invalid scalar expression to emit");
1371 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1372}
Chris Lattnerfb182ee2007-08-26 16:34:22 +00001373
1374/// EmitComplexToScalarConversion - Emit a conversion from the specified
1375/// complex type to the specified destination type, where the destination
1376/// type is an LLVM scalar type.
1377Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1378 QualType SrcTy,
1379 QualType DstTy) {
Chris Lattnerde0908b2008-04-04 16:54:41 +00001380 assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
Chris Lattnerfb182ee2007-08-26 16:34:22 +00001381 "Invalid complex -> scalar conversion");
1382 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1383 DstTy);
1384}
Anders Carlssona9234fe2007-12-10 19:35:18 +00001385
1386Value *CodeGenFunction::EmitShuffleVector(Value* V1, Value *V2, ...) {
1387 assert(V1->getType() == V2->getType() &&
1388 "Vector operands must be of the same type");
Anders Carlssona9234fe2007-12-10 19:35:18 +00001389 unsigned NumElements =
1390 cast<llvm::VectorType>(V1->getType())->getNumElements();
1391
1392 va_list va;
1393 va_start(va, V2);
1394
1395 llvm::SmallVector<llvm::Constant*, 16> Args;
Anders Carlssona9234fe2007-12-10 19:35:18 +00001396 for (unsigned i = 0; i < NumElements; i++) {
1397 int n = va_arg(va, int);
Anders Carlssona9234fe2007-12-10 19:35:18 +00001398 assert(n >= 0 && n < (int)NumElements * 2 &&
1399 "Vector shuffle index out of bounds!");
Anders Carlssona9234fe2007-12-10 19:35:18 +00001400 Args.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, n));
1401 }
1402
1403 const char *Name = va_arg(va, const char *);
1404 va_end(va);
1405
1406 llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
1407
1408 return Builder.CreateShuffleVector(V1, V2, Mask, Name);
1409}
1410
Anders Carlsson68b8be92007-12-15 21:23:30 +00001411llvm::Value *CodeGenFunction::EmitVector(llvm::Value * const *Vals,
Chris Lattnera23eb7b2008-07-26 20:15:14 +00001412 unsigned NumVals, bool isSplat) {
Anders Carlsson68b8be92007-12-15 21:23:30 +00001413 llvm::Value *Vec
Chris Lattnera23eb7b2008-07-26 20:15:14 +00001414 = llvm::UndefValue::get(llvm::VectorType::get(Vals[0]->getType(), NumVals));
Anders Carlsson68b8be92007-12-15 21:23:30 +00001415
Chris Lattnera23eb7b2008-07-26 20:15:14 +00001416 for (unsigned i = 0, e = NumVals; i != e; ++i) {
Nate Begemanec2d1062007-12-30 02:59:45 +00001417 llvm::Value *Val = isSplat ? Vals[0] : Vals[i];
Anders Carlsson68b8be92007-12-15 21:23:30 +00001418 llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, i);
Nate Begemanec2d1062007-12-30 02:59:45 +00001419 Vec = Builder.CreateInsertElement(Vec, Val, Idx, "tmp");
Anders Carlsson68b8be92007-12-15 21:23:30 +00001420 }
1421
1422 return Vec;
1423}