Anton Korobeynikov | c4a59eb | 2009-06-05 22:08:42 +0000 | [diff] [blame] | 1 | //===---- TargetABIInfo.cpp - Encapsulate target ABI details ----*- C++ -*-===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // These classes wrap the information about a call or function |
| 11 | // definition used to handle ABI compliancy. |
| 12 | // |
| 13 | //===----------------------------------------------------------------------===// |
| 14 | |
| 15 | #include "ABIInfo.h" |
| 16 | #include "CodeGenFunction.h" |
| 17 | #include "clang/AST/RecordLayout.h" |
| 18 | #include "llvm/Type.h" |
| 19 | |
| 20 | using namespace clang; |
| 21 | using namespace CodeGen; |
| 22 | |
| 23 | ABIInfo::~ABIInfo() {} |
| 24 | |
| 25 | void ABIArgInfo::dump() const { |
| 26 | fprintf(stderr, "(ABIArgInfo Kind="); |
| 27 | switch (TheKind) { |
| 28 | case Direct: |
| 29 | fprintf(stderr, "Direct"); |
| 30 | break; |
Anton Korobeynikov | cc6fa88 | 2009-06-06 09:36:29 +0000 | [diff] [blame] | 31 | case Extend: |
| 32 | fprintf(stderr, "Extend"); |
| 33 | break; |
Anton Korobeynikov | c4a59eb | 2009-06-05 22:08:42 +0000 | [diff] [blame] | 34 | case Ignore: |
| 35 | fprintf(stderr, "Ignore"); |
| 36 | break; |
| 37 | case Coerce: |
| 38 | fprintf(stderr, "Coerce Type="); |
| 39 | getCoerceToType()->print(llvm::errs()); |
| 40 | break; |
| 41 | case Indirect: |
| 42 | fprintf(stderr, "Indirect Align=%d", getIndirectAlign()); |
| 43 | break; |
| 44 | case Expand: |
| 45 | fprintf(stderr, "Expand"); |
| 46 | break; |
| 47 | } |
| 48 | fprintf(stderr, ")\n"); |
| 49 | } |
| 50 | |
| 51 | static bool isEmptyRecord(ASTContext &Context, QualType T); |
| 52 | |
| 53 | /// isEmptyField - Return true iff a the field is "empty", that is it |
| 54 | /// is an unnamed bit-field or an (array of) empty record(s). |
| 55 | static bool isEmptyField(ASTContext &Context, const FieldDecl *FD) { |
| 56 | if (FD->isUnnamedBitfield()) |
| 57 | return true; |
| 58 | |
| 59 | QualType FT = FD->getType(); |
| 60 | // Constant arrays of empty records count as empty, strip them off. |
| 61 | while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) |
| 62 | FT = AT->getElementType(); |
| 63 | |
| 64 | return isEmptyRecord(Context, FT); |
| 65 | } |
| 66 | |
| 67 | /// isEmptyRecord - Return true iff a structure contains only empty |
| 68 | /// fields. Note that a structure with a flexible array member is not |
| 69 | /// considered empty. |
| 70 | static bool isEmptyRecord(ASTContext &Context, QualType T) { |
| 71 | const RecordType *RT = T->getAsRecordType(); |
| 72 | if (!RT) |
| 73 | return 0; |
| 74 | const RecordDecl *RD = RT->getDecl(); |
| 75 | if (RD->hasFlexibleArrayMember()) |
| 76 | return false; |
| 77 | for (RecordDecl::field_iterator i = RD->field_begin(Context), |
| 78 | e = RD->field_end(Context); i != e; ++i) |
| 79 | if (!isEmptyField(Context, *i)) |
| 80 | return false; |
| 81 | return true; |
| 82 | } |
| 83 | |
| 84 | /// isSingleElementStruct - Determine if a structure is a "single |
| 85 | /// element struct", i.e. it has exactly one non-empty field or |
| 86 | /// exactly one field which is itself a single element |
| 87 | /// struct. Structures with flexible array members are never |
| 88 | /// considered single element structs. |
| 89 | /// |
| 90 | /// \return The field declaration for the single non-empty field, if |
| 91 | /// it exists. |
| 92 | static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { |
| 93 | const RecordType *RT = T->getAsStructureType(); |
| 94 | if (!RT) |
| 95 | return 0; |
| 96 | |
| 97 | const RecordDecl *RD = RT->getDecl(); |
| 98 | if (RD->hasFlexibleArrayMember()) |
| 99 | return 0; |
| 100 | |
| 101 | const Type *Found = 0; |
| 102 | for (RecordDecl::field_iterator i = RD->field_begin(Context), |
| 103 | e = RD->field_end(Context); i != e; ++i) { |
| 104 | const FieldDecl *FD = *i; |
| 105 | QualType FT = FD->getType(); |
| 106 | |
| 107 | // Ignore empty fields. |
| 108 | if (isEmptyField(Context, FD)) |
| 109 | continue; |
| 110 | |
| 111 | // If we already found an element then this isn't a single-element |
| 112 | // struct. |
| 113 | if (Found) |
| 114 | return 0; |
| 115 | |
| 116 | // Treat single element arrays as the element. |
| 117 | while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { |
| 118 | if (AT->getSize().getZExtValue() != 1) |
| 119 | break; |
| 120 | FT = AT->getElementType(); |
| 121 | } |
| 122 | |
| 123 | if (!CodeGenFunction::hasAggregateLLVMType(FT)) { |
| 124 | Found = FT.getTypePtr(); |
| 125 | } else { |
| 126 | Found = isSingleElementStruct(FT, Context); |
| 127 | if (!Found) |
| 128 | return 0; |
| 129 | } |
| 130 | } |
| 131 | |
| 132 | return Found; |
| 133 | } |
| 134 | |
| 135 | static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { |
| 136 | if (!Ty->getAsBuiltinType() && !Ty->isPointerType()) |
| 137 | return false; |
| 138 | |
| 139 | uint64_t Size = Context.getTypeSize(Ty); |
| 140 | return Size == 32 || Size == 64; |
| 141 | } |
| 142 | |
| 143 | static bool areAllFields32Or64BitBasicType(const RecordDecl *RD, |
| 144 | ASTContext &Context) { |
| 145 | for (RecordDecl::field_iterator i = RD->field_begin(Context), |
| 146 | e = RD->field_end(Context); i != e; ++i) { |
| 147 | const FieldDecl *FD = *i; |
| 148 | |
| 149 | if (!is32Or64BitBasicType(FD->getType(), Context)) |
| 150 | return false; |
| 151 | |
| 152 | // FIXME: Reject bit-fields wholesale; there are two problems, we don't know |
| 153 | // how to expand them yet, and the predicate for telling if a bitfield still |
| 154 | // counts as "basic" is more complicated than what we were doing previously. |
| 155 | if (FD->isBitField()) |
| 156 | return false; |
| 157 | } |
| 158 | |
| 159 | return true; |
| 160 | } |
| 161 | |
| 162 | namespace { |
| 163 | /// DefaultABIInfo - The default implementation for ABI specific |
| 164 | /// details. This implementation provides information which results in |
| 165 | /// self-consistent and sensible LLVM IR generation, but does not |
| 166 | /// conform to any particular ABI. |
| 167 | class DefaultABIInfo : public ABIInfo { |
| 168 | ABIArgInfo classifyReturnType(QualType RetTy, |
| 169 | ASTContext &Context) const; |
| 170 | |
| 171 | ABIArgInfo classifyArgumentType(QualType RetTy, |
| 172 | ASTContext &Context) const; |
| 173 | |
| 174 | virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { |
| 175 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); |
| 176 | for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| 177 | it != ie; ++it) |
| 178 | it->info = classifyArgumentType(it->type, Context); |
| 179 | } |
| 180 | |
| 181 | virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| 182 | CodeGenFunction &CGF) const; |
| 183 | }; |
| 184 | |
| 185 | /// X86_32ABIInfo - The X86-32 ABI information. |
| 186 | class X86_32ABIInfo : public ABIInfo { |
| 187 | ASTContext &Context; |
| 188 | bool IsDarwin; |
| 189 | |
| 190 | static bool isRegisterSize(unsigned Size) { |
| 191 | return (Size == 8 || Size == 16 || Size == 32 || Size == 64); |
| 192 | } |
| 193 | |
| 194 | static bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context); |
| 195 | |
| 196 | public: |
| 197 | ABIArgInfo classifyReturnType(QualType RetTy, |
| 198 | ASTContext &Context) const; |
| 199 | |
| 200 | ABIArgInfo classifyArgumentType(QualType RetTy, |
| 201 | ASTContext &Context) const; |
| 202 | |
| 203 | virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { |
| 204 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); |
| 205 | for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| 206 | it != ie; ++it) |
| 207 | it->info = classifyArgumentType(it->type, Context); |
| 208 | } |
| 209 | |
| 210 | virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| 211 | CodeGenFunction &CGF) const; |
| 212 | |
| 213 | X86_32ABIInfo(ASTContext &Context, bool d) |
| 214 | : ABIInfo(), Context(Context), IsDarwin(d) {} |
| 215 | }; |
| 216 | } |
| 217 | |
| 218 | |
| 219 | /// shouldReturnTypeInRegister - Determine if the given type should be |
| 220 | /// passed in a register (for the Darwin ABI). |
| 221 | bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, |
| 222 | ASTContext &Context) { |
| 223 | uint64_t Size = Context.getTypeSize(Ty); |
| 224 | |
| 225 | // Type must be register sized. |
| 226 | if (!isRegisterSize(Size)) |
| 227 | return false; |
| 228 | |
| 229 | if (Ty->isVectorType()) { |
| 230 | // 64- and 128- bit vectors inside structures are not returned in |
| 231 | // registers. |
| 232 | if (Size == 64 || Size == 128) |
| 233 | return false; |
| 234 | |
| 235 | return true; |
| 236 | } |
| 237 | |
| 238 | // If this is a builtin, pointer, or complex type, it is ok. |
| 239 | if (Ty->getAsBuiltinType() || Ty->isPointerType() || Ty->isAnyComplexType()) |
| 240 | return true; |
| 241 | |
| 242 | // Arrays are treated like records. |
| 243 | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) |
| 244 | return shouldReturnTypeInRegister(AT->getElementType(), Context); |
| 245 | |
| 246 | // Otherwise, it must be a record type. |
| 247 | const RecordType *RT = Ty->getAsRecordType(); |
| 248 | if (!RT) return false; |
| 249 | |
| 250 | // Structure types are passed in register if all fields would be |
| 251 | // passed in a register. |
| 252 | for (RecordDecl::field_iterator i = RT->getDecl()->field_begin(Context), |
| 253 | e = RT->getDecl()->field_end(Context); i != e; ++i) { |
| 254 | const FieldDecl *FD = *i; |
| 255 | |
| 256 | // Empty fields are ignored. |
| 257 | if (isEmptyField(Context, FD)) |
| 258 | continue; |
| 259 | |
| 260 | // Check fields recursively. |
| 261 | if (!shouldReturnTypeInRegister(FD->getType(), Context)) |
| 262 | return false; |
| 263 | } |
| 264 | |
| 265 | return true; |
| 266 | } |
| 267 | |
| 268 | ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, |
| 269 | ASTContext &Context) const { |
| 270 | if (RetTy->isVoidType()) { |
| 271 | return ABIArgInfo::getIgnore(); |
| 272 | } else if (const VectorType *VT = RetTy->getAsVectorType()) { |
| 273 | // On Darwin, some vectors are returned in registers. |
| 274 | if (IsDarwin) { |
| 275 | uint64_t Size = Context.getTypeSize(RetTy); |
| 276 | |
| 277 | // 128-bit vectors are a special case; they are returned in |
| 278 | // registers and we need to make sure to pick a type the LLVM |
| 279 | // backend will like. |
| 280 | if (Size == 128) |
| 281 | return ABIArgInfo::getCoerce(llvm::VectorType::get(llvm::Type::Int64Ty, |
| 282 | 2)); |
| 283 | |
| 284 | // Always return in register if it fits in a general purpose |
| 285 | // register, or if it is 64 bits and has a single element. |
| 286 | if ((Size == 8 || Size == 16 || Size == 32) || |
| 287 | (Size == 64 && VT->getNumElements() == 1)) |
| 288 | return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size)); |
| 289 | |
| 290 | return ABIArgInfo::getIndirect(0); |
| 291 | } |
| 292 | |
| 293 | return ABIArgInfo::getDirect(); |
| 294 | } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { |
| 295 | // Structures with flexible arrays are always indirect. |
| 296 | if (const RecordType *RT = RetTy->getAsStructureType()) |
| 297 | if (RT->getDecl()->hasFlexibleArrayMember()) |
| 298 | return ABIArgInfo::getIndirect(0); |
| 299 | |
| 300 | // Outside of Darwin, structs and unions are always indirect. |
| 301 | if (!IsDarwin && !RetTy->isAnyComplexType()) |
| 302 | return ABIArgInfo::getIndirect(0); |
| 303 | |
| 304 | // Classify "single element" structs as their element type. |
| 305 | if (const Type *SeltTy = isSingleElementStruct(RetTy, Context)) { |
| 306 | if (const BuiltinType *BT = SeltTy->getAsBuiltinType()) { |
| 307 | if (BT->isIntegerType()) { |
| 308 | // We need to use the size of the structure, padding |
| 309 | // bit-fields can adjust that to be larger than the single |
| 310 | // element type. |
| 311 | uint64_t Size = Context.getTypeSize(RetTy); |
| 312 | return ABIArgInfo::getCoerce(llvm::IntegerType::get((unsigned) Size)); |
| 313 | } else if (BT->getKind() == BuiltinType::Float) { |
| 314 | assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) && |
| 315 | "Unexpect single element structure size!"); |
| 316 | return ABIArgInfo::getCoerce(llvm::Type::FloatTy); |
| 317 | } else if (BT->getKind() == BuiltinType::Double) { |
| 318 | assert(Context.getTypeSize(RetTy) == Context.getTypeSize(SeltTy) && |
| 319 | "Unexpect single element structure size!"); |
| 320 | return ABIArgInfo::getCoerce(llvm::Type::DoubleTy); |
| 321 | } |
| 322 | } else if (SeltTy->isPointerType()) { |
| 323 | // FIXME: It would be really nice if this could come out as the proper |
| 324 | // pointer type. |
| 325 | llvm::Type *PtrTy = |
| 326 | llvm::PointerType::getUnqual(llvm::Type::Int8Ty); |
| 327 | return ABIArgInfo::getCoerce(PtrTy); |
| 328 | } else if (SeltTy->isVectorType()) { |
| 329 | // 64- and 128-bit vectors are never returned in a |
| 330 | // register when inside a structure. |
| 331 | uint64_t Size = Context.getTypeSize(RetTy); |
| 332 | if (Size == 64 || Size == 128) |
| 333 | return ABIArgInfo::getIndirect(0); |
| 334 | |
| 335 | return classifyReturnType(QualType(SeltTy, 0), Context); |
| 336 | } |
| 337 | } |
| 338 | |
| 339 | // Small structures which are register sized are generally returned |
| 340 | // in a register. |
| 341 | if (X86_32ABIInfo::shouldReturnTypeInRegister(RetTy, Context)) { |
| 342 | uint64_t Size = Context.getTypeSize(RetTy); |
| 343 | return ABIArgInfo::getCoerce(llvm::IntegerType::get(Size)); |
| 344 | } |
| 345 | |
| 346 | return ABIArgInfo::getIndirect(0); |
| 347 | } else { |
Anton Korobeynikov | cc6fa88 | 2009-06-06 09:36:29 +0000 | [diff] [blame] | 348 | return (RetTy->isPromotableIntegerType() ? |
| 349 | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
Anton Korobeynikov | c4a59eb | 2009-06-05 22:08:42 +0000 | [diff] [blame] | 350 | } |
| 351 | } |
| 352 | |
| 353 | ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, |
| 354 | ASTContext &Context) const { |
| 355 | // FIXME: Set alignment on indirect arguments. |
| 356 | if (CodeGenFunction::hasAggregateLLVMType(Ty)) { |
| 357 | // Structures with flexible arrays are always indirect. |
| 358 | if (const RecordType *RT = Ty->getAsStructureType()) |
| 359 | if (RT->getDecl()->hasFlexibleArrayMember()) |
| 360 | return ABIArgInfo::getIndirect(0); |
| 361 | |
| 362 | // Ignore empty structs. |
| 363 | uint64_t Size = Context.getTypeSize(Ty); |
| 364 | if (Ty->isStructureType() && Size == 0) |
| 365 | return ABIArgInfo::getIgnore(); |
| 366 | |
| 367 | // Expand structs with size <= 128-bits which consist only of |
| 368 | // basic types (int, long long, float, double, xxx*). This is |
| 369 | // non-recursive and does not ignore empty fields. |
| 370 | if (const RecordType *RT = Ty->getAsStructureType()) { |
| 371 | if (Context.getTypeSize(Ty) <= 4*32 && |
| 372 | areAllFields32Or64BitBasicType(RT->getDecl(), Context)) |
| 373 | return ABIArgInfo::getExpand(); |
| 374 | } |
| 375 | |
| 376 | return ABIArgInfo::getIndirect(0); |
| 377 | } else { |
Anton Korobeynikov | cc6fa88 | 2009-06-06 09:36:29 +0000 | [diff] [blame] | 378 | return (Ty->isPromotableIntegerType() ? |
| 379 | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
Anton Korobeynikov | c4a59eb | 2009-06-05 22:08:42 +0000 | [diff] [blame] | 380 | } |
| 381 | } |
| 382 | |
| 383 | llvm::Value *X86_32ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| 384 | CodeGenFunction &CGF) const { |
| 385 | const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); |
| 386 | const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); |
| 387 | |
| 388 | CGBuilderTy &Builder = CGF.Builder; |
| 389 | llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, |
| 390 | "ap"); |
| 391 | llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); |
| 392 | llvm::Type *PTy = |
| 393 | llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); |
| 394 | llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); |
| 395 | |
| 396 | uint64_t Offset = |
| 397 | llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); |
| 398 | llvm::Value *NextAddr = |
| 399 | Builder.CreateGEP(Addr, |
| 400 | llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset), |
| 401 | "ap.next"); |
| 402 | Builder.CreateStore(NextAddr, VAListAddrAsBPP); |
| 403 | |
| 404 | return AddrTyped; |
| 405 | } |
| 406 | |
| 407 | namespace { |
| 408 | /// X86_64ABIInfo - The X86_64 ABI information. |
| 409 | class X86_64ABIInfo : public ABIInfo { |
| 410 | enum Class { |
| 411 | Integer = 0, |
| 412 | SSE, |
| 413 | SSEUp, |
| 414 | X87, |
| 415 | X87Up, |
| 416 | ComplexX87, |
| 417 | NoClass, |
| 418 | Memory |
| 419 | }; |
| 420 | |
| 421 | /// merge - Implement the X86_64 ABI merging algorithm. |
| 422 | /// |
| 423 | /// Merge an accumulating classification \arg Accum with a field |
| 424 | /// classification \arg Field. |
| 425 | /// |
| 426 | /// \param Accum - The accumulating classification. This should |
| 427 | /// always be either NoClass or the result of a previous merge |
| 428 | /// call. In addition, this should never be Memory (the caller |
| 429 | /// should just return Memory for the aggregate). |
| 430 | Class merge(Class Accum, Class Field) const; |
| 431 | |
| 432 | /// classify - Determine the x86_64 register classes in which the |
| 433 | /// given type T should be passed. |
| 434 | /// |
| 435 | /// \param Lo - The classification for the parts of the type |
| 436 | /// residing in the low word of the containing object. |
| 437 | /// |
| 438 | /// \param Hi - The classification for the parts of the type |
| 439 | /// residing in the high word of the containing object. |
| 440 | /// |
| 441 | /// \param OffsetBase - The bit offset of this type in the |
| 442 | /// containing object. Some parameters are classified different |
| 443 | /// depending on whether they straddle an eightbyte boundary. |
| 444 | /// |
| 445 | /// If a word is unused its result will be NoClass; if a type should |
| 446 | /// be passed in Memory then at least the classification of \arg Lo |
| 447 | /// will be Memory. |
| 448 | /// |
| 449 | /// The \arg Lo class will be NoClass iff the argument is ignored. |
| 450 | /// |
| 451 | /// If the \arg Lo class is ComplexX87, then the \arg Hi class will |
| 452 | /// also be ComplexX87. |
| 453 | void classify(QualType T, ASTContext &Context, uint64_t OffsetBase, |
| 454 | Class &Lo, Class &Hi) const; |
| 455 | |
| 456 | /// getCoerceResult - Given a source type \arg Ty and an LLVM type |
| 457 | /// to coerce to, chose the best way to pass Ty in the same place |
| 458 | /// that \arg CoerceTo would be passed, but while keeping the |
| 459 | /// emitted code as simple as possible. |
| 460 | /// |
| 461 | /// FIXME: Note, this should be cleaned up to just take an enumeration of all |
| 462 | /// the ways we might want to pass things, instead of constructing an LLVM |
| 463 | /// type. This makes this code more explicit, and it makes it clearer that we |
| 464 | /// are also doing this for correctness in the case of passing scalar types. |
| 465 | ABIArgInfo getCoerceResult(QualType Ty, |
| 466 | const llvm::Type *CoerceTo, |
| 467 | ASTContext &Context) const; |
| 468 | |
| 469 | /// getIndirectResult - Give a source type \arg Ty, return a suitable result |
| 470 | /// such that the argument will be passed in memory. |
| 471 | ABIArgInfo getIndirectResult(QualType Ty, |
| 472 | ASTContext &Context) const; |
| 473 | |
| 474 | ABIArgInfo classifyReturnType(QualType RetTy, |
| 475 | ASTContext &Context) const; |
| 476 | |
| 477 | ABIArgInfo classifyArgumentType(QualType Ty, |
| 478 | ASTContext &Context, |
| 479 | unsigned &neededInt, |
| 480 | unsigned &neededSSE) const; |
| 481 | |
| 482 | public: |
| 483 | virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const; |
| 484 | |
| 485 | virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| 486 | CodeGenFunction &CGF) const; |
| 487 | }; |
| 488 | } |
| 489 | |
| 490 | X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, |
| 491 | Class Field) const { |
| 492 | // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is |
| 493 | // classified recursively so that always two fields are |
| 494 | // considered. The resulting class is calculated according to |
| 495 | // the classes of the fields in the eightbyte: |
| 496 | // |
| 497 | // (a) If both classes are equal, this is the resulting class. |
| 498 | // |
| 499 | // (b) If one of the classes is NO_CLASS, the resulting class is |
| 500 | // the other class. |
| 501 | // |
| 502 | // (c) If one of the classes is MEMORY, the result is the MEMORY |
| 503 | // class. |
| 504 | // |
| 505 | // (d) If one of the classes is INTEGER, the result is the |
| 506 | // INTEGER. |
| 507 | // |
| 508 | // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, |
| 509 | // MEMORY is used as class. |
| 510 | // |
| 511 | // (f) Otherwise class SSE is used. |
| 512 | |
| 513 | // Accum should never be memory (we should have returned) or |
| 514 | // ComplexX87 (because this cannot be passed in a structure). |
| 515 | assert((Accum != Memory && Accum != ComplexX87) && |
| 516 | "Invalid accumulated classification during merge."); |
| 517 | if (Accum == Field || Field == NoClass) |
| 518 | return Accum; |
| 519 | else if (Field == Memory) |
| 520 | return Memory; |
| 521 | else if (Accum == NoClass) |
| 522 | return Field; |
| 523 | else if (Accum == Integer || Field == Integer) |
| 524 | return Integer; |
| 525 | else if (Field == X87 || Field == X87Up || Field == ComplexX87 || |
| 526 | Accum == X87 || Accum == X87Up) |
| 527 | return Memory; |
| 528 | else |
| 529 | return SSE; |
| 530 | } |
| 531 | |
| 532 | void X86_64ABIInfo::classify(QualType Ty, |
| 533 | ASTContext &Context, |
| 534 | uint64_t OffsetBase, |
| 535 | Class &Lo, Class &Hi) const { |
| 536 | // FIXME: This code can be simplified by introducing a simple value class for |
| 537 | // Class pairs with appropriate constructor methods for the various |
| 538 | // situations. |
| 539 | |
| 540 | // FIXME: Some of the split computations are wrong; unaligned vectors |
| 541 | // shouldn't be passed in registers for example, so there is no chance they |
| 542 | // can straddle an eightbyte. Verify & simplify. |
| 543 | |
| 544 | Lo = Hi = NoClass; |
| 545 | |
| 546 | Class &Current = OffsetBase < 64 ? Lo : Hi; |
| 547 | Current = Memory; |
| 548 | |
| 549 | if (const BuiltinType *BT = Ty->getAsBuiltinType()) { |
| 550 | BuiltinType::Kind k = BT->getKind(); |
| 551 | |
| 552 | if (k == BuiltinType::Void) { |
| 553 | Current = NoClass; |
| 554 | } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { |
| 555 | Lo = Integer; |
| 556 | Hi = Integer; |
| 557 | } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { |
| 558 | Current = Integer; |
| 559 | } else if (k == BuiltinType::Float || k == BuiltinType::Double) { |
| 560 | Current = SSE; |
| 561 | } else if (k == BuiltinType::LongDouble) { |
| 562 | Lo = X87; |
| 563 | Hi = X87Up; |
| 564 | } |
| 565 | // FIXME: _Decimal32 and _Decimal64 are SSE. |
| 566 | // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). |
| 567 | } else if (const EnumType *ET = Ty->getAsEnumType()) { |
| 568 | // Classify the underlying integer type. |
| 569 | classify(ET->getDecl()->getIntegerType(), Context, OffsetBase, Lo, Hi); |
| 570 | } else if (Ty->hasPointerRepresentation()) { |
| 571 | Current = Integer; |
| 572 | } else if (const VectorType *VT = Ty->getAsVectorType()) { |
| 573 | uint64_t Size = Context.getTypeSize(VT); |
| 574 | if (Size == 32) { |
| 575 | // gcc passes all <4 x char>, <2 x short>, <1 x int>, <1 x |
| 576 | // float> as integer. |
| 577 | Current = Integer; |
| 578 | |
| 579 | // If this type crosses an eightbyte boundary, it should be |
| 580 | // split. |
| 581 | uint64_t EB_Real = (OffsetBase) / 64; |
| 582 | uint64_t EB_Imag = (OffsetBase + Size - 1) / 64; |
| 583 | if (EB_Real != EB_Imag) |
| 584 | Hi = Lo; |
| 585 | } else if (Size == 64) { |
| 586 | // gcc passes <1 x double> in memory. :( |
| 587 | if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) |
| 588 | return; |
| 589 | |
| 590 | // gcc passes <1 x long long> as INTEGER. |
| 591 | if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::LongLong)) |
| 592 | Current = Integer; |
| 593 | else |
| 594 | Current = SSE; |
| 595 | |
| 596 | // If this type crosses an eightbyte boundary, it should be |
| 597 | // split. |
| 598 | if (OffsetBase && OffsetBase != 64) |
| 599 | Hi = Lo; |
| 600 | } else if (Size == 128) { |
| 601 | Lo = SSE; |
| 602 | Hi = SSEUp; |
| 603 | } |
| 604 | } else if (const ComplexType *CT = Ty->getAsComplexType()) { |
| 605 | QualType ET = Context.getCanonicalType(CT->getElementType()); |
| 606 | |
| 607 | uint64_t Size = Context.getTypeSize(Ty); |
| 608 | if (ET->isIntegralType()) { |
| 609 | if (Size <= 64) |
| 610 | Current = Integer; |
| 611 | else if (Size <= 128) |
| 612 | Lo = Hi = Integer; |
| 613 | } else if (ET == Context.FloatTy) |
| 614 | Current = SSE; |
| 615 | else if (ET == Context.DoubleTy) |
| 616 | Lo = Hi = SSE; |
| 617 | else if (ET == Context.LongDoubleTy) |
| 618 | Current = ComplexX87; |
| 619 | |
| 620 | // If this complex type crosses an eightbyte boundary then it |
| 621 | // should be split. |
| 622 | uint64_t EB_Real = (OffsetBase) / 64; |
| 623 | uint64_t EB_Imag = (OffsetBase + Context.getTypeSize(ET)) / 64; |
| 624 | if (Hi == NoClass && EB_Real != EB_Imag) |
| 625 | Hi = Lo; |
| 626 | } else if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { |
| 627 | // Arrays are treated like structures. |
| 628 | |
| 629 | uint64_t Size = Context.getTypeSize(Ty); |
| 630 | |
| 631 | // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger |
| 632 | // than two eightbytes, ..., it has class MEMORY. |
| 633 | if (Size > 128) |
| 634 | return; |
| 635 | |
| 636 | // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned |
| 637 | // fields, it has class MEMORY. |
| 638 | // |
| 639 | // Only need to check alignment of array base. |
| 640 | if (OffsetBase % Context.getTypeAlign(AT->getElementType())) |
| 641 | return; |
| 642 | |
| 643 | // Otherwise implement simplified merge. We could be smarter about |
| 644 | // this, but it isn't worth it and would be harder to verify. |
| 645 | Current = NoClass; |
| 646 | uint64_t EltSize = Context.getTypeSize(AT->getElementType()); |
| 647 | uint64_t ArraySize = AT->getSize().getZExtValue(); |
| 648 | for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { |
| 649 | Class FieldLo, FieldHi; |
| 650 | classify(AT->getElementType(), Context, Offset, FieldLo, FieldHi); |
| 651 | Lo = merge(Lo, FieldLo); |
| 652 | Hi = merge(Hi, FieldHi); |
| 653 | if (Lo == Memory || Hi == Memory) |
| 654 | break; |
| 655 | } |
| 656 | |
| 657 | // Do post merger cleanup (see below). Only case we worry about is Memory. |
| 658 | if (Hi == Memory) |
| 659 | Lo = Memory; |
| 660 | assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); |
| 661 | } else if (const RecordType *RT = Ty->getAsRecordType()) { |
| 662 | uint64_t Size = Context.getTypeSize(Ty); |
| 663 | |
| 664 | // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger |
| 665 | // than two eightbytes, ..., it has class MEMORY. |
| 666 | if (Size > 128) |
| 667 | return; |
| 668 | |
| 669 | const RecordDecl *RD = RT->getDecl(); |
| 670 | |
| 671 | // Assume variable sized types are passed in memory. |
| 672 | if (RD->hasFlexibleArrayMember()) |
| 673 | return; |
| 674 | |
| 675 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
| 676 | |
| 677 | // Reset Lo class, this will be recomputed. |
| 678 | Current = NoClass; |
| 679 | unsigned idx = 0; |
| 680 | for (RecordDecl::field_iterator i = RD->field_begin(Context), |
| 681 | e = RD->field_end(Context); i != e; ++i, ++idx) { |
| 682 | uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); |
| 683 | bool BitField = i->isBitField(); |
| 684 | |
| 685 | // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned |
| 686 | // fields, it has class MEMORY. |
| 687 | // |
| 688 | // Note, skip this test for bit-fields, see below. |
| 689 | if (!BitField && Offset % Context.getTypeAlign(i->getType())) { |
| 690 | Lo = Memory; |
| 691 | return; |
| 692 | } |
| 693 | |
| 694 | // Classify this field. |
| 695 | // |
| 696 | // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate |
| 697 | // exceeds a single eightbyte, each is classified |
| 698 | // separately. Each eightbyte gets initialized to class |
| 699 | // NO_CLASS. |
| 700 | Class FieldLo, FieldHi; |
| 701 | |
| 702 | // Bit-fields require special handling, they do not force the |
| 703 | // structure to be passed in memory even if unaligned, and |
| 704 | // therefore they can straddle an eightbyte. |
| 705 | if (BitField) { |
| 706 | // Ignore padding bit-fields. |
| 707 | if (i->isUnnamedBitfield()) |
| 708 | continue; |
| 709 | |
| 710 | uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); |
| 711 | uint64_t Size = i->getBitWidth()->EvaluateAsInt(Context).getZExtValue(); |
| 712 | |
| 713 | uint64_t EB_Lo = Offset / 64; |
| 714 | uint64_t EB_Hi = (Offset + Size - 1) / 64; |
| 715 | FieldLo = FieldHi = NoClass; |
| 716 | if (EB_Lo) { |
| 717 | assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); |
| 718 | FieldLo = NoClass; |
| 719 | FieldHi = Integer; |
| 720 | } else { |
| 721 | FieldLo = Integer; |
| 722 | FieldHi = EB_Hi ? Integer : NoClass; |
| 723 | } |
| 724 | } else |
| 725 | classify(i->getType(), Context, Offset, FieldLo, FieldHi); |
| 726 | Lo = merge(Lo, FieldLo); |
| 727 | Hi = merge(Hi, FieldHi); |
| 728 | if (Lo == Memory || Hi == Memory) |
| 729 | break; |
| 730 | } |
| 731 | |
| 732 | // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: |
| 733 | // |
| 734 | // (a) If one of the classes is MEMORY, the whole argument is |
| 735 | // passed in memory. |
| 736 | // |
| 737 | // (b) If SSEUP is not preceeded by SSE, it is converted to SSE. |
| 738 | |
| 739 | // The first of these conditions is guaranteed by how we implement |
| 740 | // the merge (just bail). |
| 741 | // |
| 742 | // The second condition occurs in the case of unions; for example |
| 743 | // union { _Complex double; unsigned; }. |
| 744 | if (Hi == Memory) |
| 745 | Lo = Memory; |
| 746 | if (Hi == SSEUp && Lo != SSE) |
| 747 | Hi = SSE; |
| 748 | } |
| 749 | } |
| 750 | |
| 751 | ABIArgInfo X86_64ABIInfo::getCoerceResult(QualType Ty, |
| 752 | const llvm::Type *CoerceTo, |
| 753 | ASTContext &Context) const { |
| 754 | if (CoerceTo == llvm::Type::Int64Ty) { |
| 755 | // Integer and pointer types will end up in a general purpose |
| 756 | // register. |
| 757 | if (Ty->isIntegralType() || Ty->isPointerType()) |
Anton Korobeynikov | cc6fa88 | 2009-06-06 09:36:29 +0000 | [diff] [blame] | 758 | return (Ty->isPromotableIntegerType() ? |
| 759 | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
Anton Korobeynikov | c4a59eb | 2009-06-05 22:08:42 +0000 | [diff] [blame] | 760 | } else if (CoerceTo == llvm::Type::DoubleTy) { |
| 761 | // FIXME: It would probably be better to make CGFunctionInfo only map using |
| 762 | // canonical types than to canonize here. |
| 763 | QualType CTy = Context.getCanonicalType(Ty); |
| 764 | |
| 765 | // Float and double end up in a single SSE reg. |
| 766 | if (CTy == Context.FloatTy || CTy == Context.DoubleTy) |
| 767 | return ABIArgInfo::getDirect(); |
| 768 | |
| 769 | } |
| 770 | |
| 771 | return ABIArgInfo::getCoerce(CoerceTo); |
| 772 | } |
| 773 | |
| 774 | ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, |
| 775 | ASTContext &Context) const { |
| 776 | // If this is a scalar LLVM value then assume LLVM will pass it in the right |
| 777 | // place naturally. |
| 778 | if (!CodeGenFunction::hasAggregateLLVMType(Ty)) |
Anton Korobeynikov | cc6fa88 | 2009-06-06 09:36:29 +0000 | [diff] [blame] | 779 | return (Ty->isPromotableIntegerType() ? |
| 780 | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
Anton Korobeynikov | c4a59eb | 2009-06-05 22:08:42 +0000 | [diff] [blame] | 781 | |
| 782 | // FIXME: Set alignment correctly. |
| 783 | return ABIArgInfo::getIndirect(0); |
| 784 | } |
| 785 | |
| 786 | ABIArgInfo X86_64ABIInfo::classifyReturnType(QualType RetTy, |
| 787 | ASTContext &Context) const { |
| 788 | // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the |
| 789 | // classification algorithm. |
| 790 | X86_64ABIInfo::Class Lo, Hi; |
| 791 | classify(RetTy, Context, 0, Lo, Hi); |
| 792 | |
| 793 | // Check some invariants. |
| 794 | assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); |
| 795 | assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification."); |
| 796 | assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); |
| 797 | |
| 798 | const llvm::Type *ResType = 0; |
| 799 | switch (Lo) { |
| 800 | case NoClass: |
| 801 | return ABIArgInfo::getIgnore(); |
| 802 | |
| 803 | case SSEUp: |
| 804 | case X87Up: |
| 805 | assert(0 && "Invalid classification for lo word."); |
| 806 | |
| 807 | // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via |
| 808 | // hidden argument. |
| 809 | case Memory: |
| 810 | return getIndirectResult(RetTy, Context); |
| 811 | |
| 812 | // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next |
| 813 | // available register of the sequence %rax, %rdx is used. |
| 814 | case Integer: |
| 815 | ResType = llvm::Type::Int64Ty; break; |
| 816 | |
| 817 | // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next |
| 818 | // available SSE register of the sequence %xmm0, %xmm1 is used. |
| 819 | case SSE: |
| 820 | ResType = llvm::Type::DoubleTy; break; |
| 821 | |
| 822 | // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is |
| 823 | // returned on the X87 stack in %st0 as 80-bit x87 number. |
| 824 | case X87: |
| 825 | ResType = llvm::Type::X86_FP80Ty; break; |
| 826 | |
| 827 | // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real |
| 828 | // part of the value is returned in %st0 and the imaginary part in |
| 829 | // %st1. |
| 830 | case ComplexX87: |
| 831 | assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); |
| 832 | ResType = llvm::StructType::get(llvm::Type::X86_FP80Ty, |
| 833 | llvm::Type::X86_FP80Ty, |
| 834 | NULL); |
| 835 | break; |
| 836 | } |
| 837 | |
| 838 | switch (Hi) { |
| 839 | // Memory was handled previously and X87 should |
| 840 | // never occur as a hi class. |
| 841 | case Memory: |
| 842 | case X87: |
| 843 | assert(0 && "Invalid classification for hi word."); |
| 844 | |
| 845 | case ComplexX87: // Previously handled. |
| 846 | case NoClass: break; |
| 847 | |
| 848 | case Integer: |
| 849 | ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL); |
| 850 | break; |
| 851 | case SSE: |
| 852 | ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL); |
| 853 | break; |
| 854 | |
| 855 | // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte |
| 856 | // is passed in the upper half of the last used SSE register. |
| 857 | // |
| 858 | // SSEUP should always be preceeded by SSE, just widen. |
| 859 | case SSEUp: |
| 860 | assert(Lo == SSE && "Unexpected SSEUp classification."); |
| 861 | ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2); |
| 862 | break; |
| 863 | |
| 864 | // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is |
| 865 | // returned together with the previous X87 value in %st0. |
| 866 | case X87Up: |
| 867 | // If X87Up is preceeded by X87, we don't need to do |
| 868 | // anything. However, in some cases with unions it may not be |
| 869 | // preceeded by X87. In such situations we follow gcc and pass the |
| 870 | // extra bits in an SSE reg. |
| 871 | if (Lo != X87) |
| 872 | ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL); |
| 873 | break; |
| 874 | } |
| 875 | |
| 876 | return getCoerceResult(RetTy, ResType, Context); |
| 877 | } |
| 878 | |
| 879 | ABIArgInfo X86_64ABIInfo::classifyArgumentType(QualType Ty, ASTContext &Context, |
| 880 | unsigned &neededInt, |
| 881 | unsigned &neededSSE) const { |
| 882 | X86_64ABIInfo::Class Lo, Hi; |
| 883 | classify(Ty, Context, 0, Lo, Hi); |
| 884 | |
| 885 | // Check some invariants. |
| 886 | // FIXME: Enforce these by construction. |
| 887 | assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); |
| 888 | assert((Lo != NoClass || Hi == NoClass) && "Invalid null classification."); |
| 889 | assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); |
| 890 | |
| 891 | neededInt = 0; |
| 892 | neededSSE = 0; |
| 893 | const llvm::Type *ResType = 0; |
| 894 | switch (Lo) { |
| 895 | case NoClass: |
| 896 | return ABIArgInfo::getIgnore(); |
| 897 | |
| 898 | // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument |
| 899 | // on the stack. |
| 900 | case Memory: |
| 901 | |
| 902 | // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or |
| 903 | // COMPLEX_X87, it is passed in memory. |
| 904 | case X87: |
| 905 | case ComplexX87: |
| 906 | return getIndirectResult(Ty, Context); |
| 907 | |
| 908 | case SSEUp: |
| 909 | case X87Up: |
| 910 | assert(0 && "Invalid classification for lo word."); |
| 911 | |
| 912 | // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next |
| 913 | // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 |
| 914 | // and %r9 is used. |
| 915 | case Integer: |
| 916 | ++neededInt; |
| 917 | ResType = llvm::Type::Int64Ty; |
| 918 | break; |
| 919 | |
| 920 | // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next |
| 921 | // available SSE register is used, the registers are taken in the |
| 922 | // order from %xmm0 to %xmm7. |
| 923 | case SSE: |
| 924 | ++neededSSE; |
| 925 | ResType = llvm::Type::DoubleTy; |
| 926 | break; |
| 927 | } |
| 928 | |
| 929 | switch (Hi) { |
| 930 | // Memory was handled previously, ComplexX87 and X87 should |
| 931 | // never occur as hi classes, and X87Up must be preceed by X87, |
| 932 | // which is passed in memory. |
| 933 | case Memory: |
| 934 | case X87: |
| 935 | case ComplexX87: |
| 936 | assert(0 && "Invalid classification for hi word."); |
| 937 | break; |
| 938 | |
| 939 | case NoClass: break; |
| 940 | case Integer: |
| 941 | ResType = llvm::StructType::get(ResType, llvm::Type::Int64Ty, NULL); |
| 942 | ++neededInt; |
| 943 | break; |
| 944 | |
| 945 | // X87Up generally doesn't occur here (long double is passed in |
| 946 | // memory), except in situations involving unions. |
| 947 | case X87Up: |
| 948 | case SSE: |
| 949 | ResType = llvm::StructType::get(ResType, llvm::Type::DoubleTy, NULL); |
| 950 | ++neededSSE; |
| 951 | break; |
| 952 | |
| 953 | // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the |
| 954 | // eightbyte is passed in the upper half of the last used SSE |
| 955 | // register. |
| 956 | case SSEUp: |
| 957 | assert(Lo == SSE && "Unexpected SSEUp classification."); |
| 958 | ResType = llvm::VectorType::get(llvm::Type::DoubleTy, 2); |
| 959 | break; |
| 960 | } |
| 961 | |
| 962 | return getCoerceResult(Ty, ResType, Context); |
| 963 | } |
| 964 | |
| 965 | void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { |
| 966 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); |
| 967 | |
| 968 | // Keep track of the number of assigned registers. |
| 969 | unsigned freeIntRegs = 6, freeSSERegs = 8; |
| 970 | |
| 971 | // If the return value is indirect, then the hidden argument is consuming one |
| 972 | // integer register. |
| 973 | if (FI.getReturnInfo().isIndirect()) |
| 974 | --freeIntRegs; |
| 975 | |
| 976 | // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers |
| 977 | // get assigned (in left-to-right order) for passing as follows... |
| 978 | for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| 979 | it != ie; ++it) { |
| 980 | unsigned neededInt, neededSSE; |
| 981 | it->info = classifyArgumentType(it->type, Context, neededInt, neededSSE); |
| 982 | |
| 983 | // AMD64-ABI 3.2.3p3: If there are no registers available for any |
| 984 | // eightbyte of an argument, the whole argument is passed on the |
| 985 | // stack. If registers have already been assigned for some |
| 986 | // eightbytes of such an argument, the assignments get reverted. |
| 987 | if (freeIntRegs >= neededInt && freeSSERegs >= neededSSE) { |
| 988 | freeIntRegs -= neededInt; |
| 989 | freeSSERegs -= neededSSE; |
| 990 | } else { |
| 991 | it->info = getIndirectResult(it->type, Context); |
| 992 | } |
| 993 | } |
| 994 | } |
| 995 | |
| 996 | static llvm::Value *EmitVAArgFromMemory(llvm::Value *VAListAddr, |
| 997 | QualType Ty, |
| 998 | CodeGenFunction &CGF) { |
| 999 | llvm::Value *overflow_arg_area_p = |
| 1000 | CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); |
| 1001 | llvm::Value *overflow_arg_area = |
| 1002 | CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); |
| 1003 | |
| 1004 | // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 |
| 1005 | // byte boundary if alignment needed by type exceeds 8 byte boundary. |
| 1006 | uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; |
| 1007 | if (Align > 8) { |
| 1008 | // Note that we follow the ABI & gcc here, even though the type |
| 1009 | // could in theory have an alignment greater than 16. This case |
| 1010 | // shouldn't ever matter in practice. |
| 1011 | |
| 1012 | // overflow_arg_area = (overflow_arg_area + 15) & ~15; |
| 1013 | llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, 15); |
| 1014 | overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset); |
| 1015 | llvm::Value *AsInt = CGF.Builder.CreatePtrToInt(overflow_arg_area, |
| 1016 | llvm::Type::Int64Ty); |
| 1017 | llvm::Value *Mask = llvm::ConstantInt::get(llvm::Type::Int64Ty, ~15LL); |
| 1018 | overflow_arg_area = |
| 1019 | CGF.Builder.CreateIntToPtr(CGF.Builder.CreateAnd(AsInt, Mask), |
| 1020 | overflow_arg_area->getType(), |
| 1021 | "overflow_arg_area.align"); |
| 1022 | } |
| 1023 | |
| 1024 | // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. |
| 1025 | const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); |
| 1026 | llvm::Value *Res = |
| 1027 | CGF.Builder.CreateBitCast(overflow_arg_area, |
| 1028 | llvm::PointerType::getUnqual(LTy)); |
| 1029 | |
| 1030 | // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: |
| 1031 | // l->overflow_arg_area + sizeof(type). |
| 1032 | // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to |
| 1033 | // an 8 byte boundary. |
| 1034 | |
| 1035 | uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; |
| 1036 | llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, |
| 1037 | (SizeInBytes + 7) & ~7); |
| 1038 | overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, |
| 1039 | "overflow_arg_area.next"); |
| 1040 | CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); |
| 1041 | |
| 1042 | // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. |
| 1043 | return Res; |
| 1044 | } |
| 1045 | |
| 1046 | llvm::Value *X86_64ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| 1047 | CodeGenFunction &CGF) const { |
| 1048 | // Assume that va_list type is correct; should be pointer to LLVM type: |
| 1049 | // struct { |
| 1050 | // i32 gp_offset; |
| 1051 | // i32 fp_offset; |
| 1052 | // i8* overflow_arg_area; |
| 1053 | // i8* reg_save_area; |
| 1054 | // }; |
| 1055 | unsigned neededInt, neededSSE; |
| 1056 | ABIArgInfo AI = classifyArgumentType(Ty, CGF.getContext(), |
| 1057 | neededInt, neededSSE); |
| 1058 | |
| 1059 | // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed |
| 1060 | // in the registers. If not go to step 7. |
| 1061 | if (!neededInt && !neededSSE) |
| 1062 | return EmitVAArgFromMemory(VAListAddr, Ty, CGF); |
| 1063 | |
| 1064 | // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of |
| 1065 | // general purpose registers needed to pass type and num_fp to hold |
| 1066 | // the number of floating point registers needed. |
| 1067 | |
| 1068 | // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into |
| 1069 | // registers. In the case: l->gp_offset > 48 - num_gp * 8 or |
| 1070 | // l->fp_offset > 304 - num_fp * 16 go to step 7. |
| 1071 | // |
| 1072 | // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of |
| 1073 | // register save space). |
| 1074 | |
| 1075 | llvm::Value *InRegs = 0; |
| 1076 | llvm::Value *gp_offset_p = 0, *gp_offset = 0; |
| 1077 | llvm::Value *fp_offset_p = 0, *fp_offset = 0; |
| 1078 | if (neededInt) { |
| 1079 | gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); |
| 1080 | gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); |
| 1081 | InRegs = |
| 1082 | CGF.Builder.CreateICmpULE(gp_offset, |
| 1083 | llvm::ConstantInt::get(llvm::Type::Int32Ty, |
| 1084 | 48 - neededInt * 8), |
| 1085 | "fits_in_gp"); |
| 1086 | } |
| 1087 | |
| 1088 | if (neededSSE) { |
| 1089 | fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); |
| 1090 | fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); |
| 1091 | llvm::Value *FitsInFP = |
| 1092 | CGF.Builder.CreateICmpULE(fp_offset, |
| 1093 | llvm::ConstantInt::get(llvm::Type::Int32Ty, |
| 1094 | 176 - neededSSE * 16), |
| 1095 | "fits_in_fp"); |
| 1096 | InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; |
| 1097 | } |
| 1098 | |
| 1099 | llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); |
| 1100 | llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); |
| 1101 | llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); |
| 1102 | CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); |
| 1103 | |
| 1104 | // Emit code to load the value if it was passed in registers. |
| 1105 | |
| 1106 | CGF.EmitBlock(InRegBlock); |
| 1107 | |
| 1108 | // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with |
| 1109 | // an offset of l->gp_offset and/or l->fp_offset. This may require |
| 1110 | // copying to a temporary location in case the parameter is passed |
| 1111 | // in different register classes or requires an alignment greater |
| 1112 | // than 8 for general purpose registers and 16 for XMM registers. |
| 1113 | // |
| 1114 | // FIXME: This really results in shameful code when we end up needing to |
| 1115 | // collect arguments from different places; often what should result in a |
| 1116 | // simple assembling of a structure from scattered addresses has many more |
| 1117 | // loads than necessary. Can we clean this up? |
| 1118 | const llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); |
| 1119 | llvm::Value *RegAddr = |
| 1120 | CGF.Builder.CreateLoad(CGF.Builder.CreateStructGEP(VAListAddr, 3), |
| 1121 | "reg_save_area"); |
| 1122 | if (neededInt && neededSSE) { |
| 1123 | // FIXME: Cleanup. |
| 1124 | assert(AI.isCoerce() && "Unexpected ABI info for mixed regs"); |
| 1125 | const llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); |
| 1126 | llvm::Value *Tmp = CGF.CreateTempAlloca(ST); |
| 1127 | assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); |
| 1128 | const llvm::Type *TyLo = ST->getElementType(0); |
| 1129 | const llvm::Type *TyHi = ST->getElementType(1); |
| 1130 | assert((TyLo->isFloatingPoint() ^ TyHi->isFloatingPoint()) && |
| 1131 | "Unexpected ABI info for mixed regs"); |
| 1132 | const llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); |
| 1133 | const llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); |
| 1134 | llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); |
| 1135 | llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); |
| 1136 | llvm::Value *RegLoAddr = TyLo->isFloatingPoint() ? FPAddr : GPAddr; |
| 1137 | llvm::Value *RegHiAddr = TyLo->isFloatingPoint() ? GPAddr : FPAddr; |
| 1138 | llvm::Value *V = |
| 1139 | CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegLoAddr, PTyLo)); |
| 1140 | CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); |
| 1141 | V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegHiAddr, PTyHi)); |
| 1142 | CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); |
| 1143 | |
| 1144 | RegAddr = CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(LTy)); |
| 1145 | } else if (neededInt) { |
| 1146 | RegAddr = CGF.Builder.CreateGEP(RegAddr, gp_offset); |
| 1147 | RegAddr = CGF.Builder.CreateBitCast(RegAddr, |
| 1148 | llvm::PointerType::getUnqual(LTy)); |
| 1149 | } else { |
| 1150 | if (neededSSE == 1) { |
| 1151 | RegAddr = CGF.Builder.CreateGEP(RegAddr, fp_offset); |
| 1152 | RegAddr = CGF.Builder.CreateBitCast(RegAddr, |
| 1153 | llvm::PointerType::getUnqual(LTy)); |
| 1154 | } else { |
| 1155 | assert(neededSSE == 2 && "Invalid number of needed registers!"); |
| 1156 | // SSE registers are spaced 16 bytes apart in the register save |
| 1157 | // area, we need to collect the two eightbytes together. |
| 1158 | llvm::Value *RegAddrLo = CGF.Builder.CreateGEP(RegAddr, fp_offset); |
| 1159 | llvm::Value *RegAddrHi = |
| 1160 | CGF.Builder.CreateGEP(RegAddrLo, |
| 1161 | llvm::ConstantInt::get(llvm::Type::Int32Ty, 16)); |
| 1162 | const llvm::Type *DblPtrTy = |
| 1163 | llvm::PointerType::getUnqual(llvm::Type::DoubleTy); |
| 1164 | const llvm::StructType *ST = llvm::StructType::get(llvm::Type::DoubleTy, |
| 1165 | llvm::Type::DoubleTy, |
| 1166 | NULL); |
| 1167 | llvm::Value *V, *Tmp = CGF.CreateTempAlloca(ST); |
| 1168 | V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrLo, |
| 1169 | DblPtrTy)); |
| 1170 | CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); |
| 1171 | V = CGF.Builder.CreateLoad(CGF.Builder.CreateBitCast(RegAddrHi, |
| 1172 | DblPtrTy)); |
| 1173 | CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); |
| 1174 | RegAddr = CGF.Builder.CreateBitCast(Tmp, |
| 1175 | llvm::PointerType::getUnqual(LTy)); |
| 1176 | } |
| 1177 | } |
| 1178 | |
| 1179 | // AMD64-ABI 3.5.7p5: Step 5. Set: |
| 1180 | // l->gp_offset = l->gp_offset + num_gp * 8 |
| 1181 | // l->fp_offset = l->fp_offset + num_fp * 16. |
| 1182 | if (neededInt) { |
| 1183 | llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, |
| 1184 | neededInt * 8); |
| 1185 | CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), |
| 1186 | gp_offset_p); |
| 1187 | } |
| 1188 | if (neededSSE) { |
| 1189 | llvm::Value *Offset = llvm::ConstantInt::get(llvm::Type::Int32Ty, |
| 1190 | neededSSE * 16); |
| 1191 | CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), |
| 1192 | fp_offset_p); |
| 1193 | } |
| 1194 | CGF.EmitBranch(ContBlock); |
| 1195 | |
| 1196 | // Emit code to load the value if it was passed in memory. |
| 1197 | |
| 1198 | CGF.EmitBlock(InMemBlock); |
| 1199 | llvm::Value *MemAddr = EmitVAArgFromMemory(VAListAddr, Ty, CGF); |
| 1200 | |
| 1201 | // Return the appropriate result. |
| 1202 | |
| 1203 | CGF.EmitBlock(ContBlock); |
| 1204 | llvm::PHINode *ResAddr = CGF.Builder.CreatePHI(RegAddr->getType(), |
| 1205 | "vaarg.addr"); |
| 1206 | ResAddr->reserveOperandSpace(2); |
| 1207 | ResAddr->addIncoming(RegAddr, InRegBlock); |
| 1208 | ResAddr->addIncoming(MemAddr, InMemBlock); |
| 1209 | |
| 1210 | return ResAddr; |
| 1211 | } |
| 1212 | |
| 1213 | // ABI Info for PIC16 |
| 1214 | class PIC16ABIInfo : public ABIInfo { |
| 1215 | ABIArgInfo classifyReturnType(QualType RetTy, |
| 1216 | ASTContext &Context) const; |
| 1217 | |
| 1218 | ABIArgInfo classifyArgumentType(QualType RetTy, |
| 1219 | ASTContext &Context) const; |
| 1220 | |
| 1221 | virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { |
| 1222 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); |
| 1223 | for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| 1224 | it != ie; ++it) |
| 1225 | it->info = classifyArgumentType(it->type, Context); |
| 1226 | } |
| 1227 | |
| 1228 | virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| 1229 | CodeGenFunction &CGF) const; |
| 1230 | |
| 1231 | }; |
| 1232 | |
| 1233 | ABIArgInfo PIC16ABIInfo::classifyReturnType(QualType RetTy, |
| 1234 | ASTContext &Context) const { |
| 1235 | if (RetTy->isVoidType()) { |
| 1236 | return ABIArgInfo::getIgnore(); |
| 1237 | } else { |
| 1238 | return ABIArgInfo::getDirect(); |
| 1239 | } |
| 1240 | } |
| 1241 | |
| 1242 | ABIArgInfo PIC16ABIInfo::classifyArgumentType(QualType Ty, |
| 1243 | ASTContext &Context) const { |
| 1244 | return ABIArgInfo::getDirect(); |
| 1245 | } |
| 1246 | |
| 1247 | llvm::Value *PIC16ABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| 1248 | CodeGenFunction &CGF) const { |
| 1249 | return 0; |
| 1250 | } |
| 1251 | |
| 1252 | class ARMABIInfo : public ABIInfo { |
| 1253 | ABIArgInfo classifyReturnType(QualType RetTy, |
| 1254 | ASTContext &Context) const; |
| 1255 | |
| 1256 | ABIArgInfo classifyArgumentType(QualType RetTy, |
| 1257 | ASTContext &Context) const; |
| 1258 | |
| 1259 | virtual void computeInfo(CGFunctionInfo &FI, ASTContext &Context) const; |
| 1260 | |
| 1261 | virtual llvm::Value *EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| 1262 | CodeGenFunction &CGF) const; |
| 1263 | }; |
| 1264 | |
| 1265 | void ARMABIInfo::computeInfo(CGFunctionInfo &FI, ASTContext &Context) const { |
| 1266 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), Context); |
| 1267 | for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
| 1268 | it != ie; ++it) { |
| 1269 | it->info = classifyArgumentType(it->type, Context); |
| 1270 | } |
| 1271 | } |
| 1272 | |
| 1273 | ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, |
| 1274 | ASTContext &Context) const { |
| 1275 | if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { |
Anton Korobeynikov | cc6fa88 | 2009-06-06 09:36:29 +0000 | [diff] [blame] | 1276 | return (Ty->isPromotableIntegerType() ? |
| 1277 | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
Anton Korobeynikov | c4a59eb | 2009-06-05 22:08:42 +0000 | [diff] [blame] | 1278 | } |
| 1279 | // FIXME: This is kind of nasty... but there isn't much choice because the ARM |
| 1280 | // backend doesn't support byval. |
| 1281 | // FIXME: This doesn't handle alignment > 64 bits. |
| 1282 | const llvm::Type* ElemTy; |
| 1283 | unsigned SizeRegs; |
| 1284 | if (Context.getTypeAlign(Ty) > 32) { |
| 1285 | ElemTy = llvm::Type::Int64Ty; |
| 1286 | SizeRegs = (Context.getTypeSize(Ty) + 63) / 64; |
| 1287 | } else { |
| 1288 | ElemTy = llvm::Type::Int32Ty; |
| 1289 | SizeRegs = (Context.getTypeSize(Ty) + 31) / 32; |
| 1290 | } |
| 1291 | std::vector<const llvm::Type*> LLVMFields; |
| 1292 | LLVMFields.push_back(llvm::ArrayType::get(ElemTy, SizeRegs)); |
| 1293 | const llvm::Type* STy = llvm::StructType::get(LLVMFields, true); |
| 1294 | return ABIArgInfo::getCoerce(STy); |
| 1295 | } |
| 1296 | |
| 1297 | ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, |
| 1298 | ASTContext &Context) const { |
| 1299 | if (RetTy->isVoidType()) { |
| 1300 | return ABIArgInfo::getIgnore(); |
| 1301 | } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { |
| 1302 | // Aggregates <= 4 bytes are returned in r0; other aggregates |
| 1303 | // are returned indirectly. |
| 1304 | uint64_t Size = Context.getTypeSize(RetTy); |
| 1305 | if (Size <= 32) |
| 1306 | return ABIArgInfo::getCoerce(llvm::Type::Int32Ty); |
| 1307 | return ABIArgInfo::getIndirect(0); |
| 1308 | } else { |
Anton Korobeynikov | cc6fa88 | 2009-06-06 09:36:29 +0000 | [diff] [blame] | 1309 | return (RetTy->isPromotableIntegerType() ? |
| 1310 | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
Anton Korobeynikov | c4a59eb | 2009-06-05 22:08:42 +0000 | [diff] [blame] | 1311 | } |
| 1312 | } |
| 1313 | |
| 1314 | llvm::Value *ARMABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| 1315 | CodeGenFunction &CGF) const { |
| 1316 | // FIXME: Need to handle alignment |
| 1317 | const llvm::Type *BP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty); |
| 1318 | const llvm::Type *BPP = llvm::PointerType::getUnqual(BP); |
| 1319 | |
| 1320 | CGBuilderTy &Builder = CGF.Builder; |
| 1321 | llvm::Value *VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, |
| 1322 | "ap"); |
| 1323 | llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); |
| 1324 | llvm::Type *PTy = |
| 1325 | llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); |
| 1326 | llvm::Value *AddrTyped = Builder.CreateBitCast(Addr, PTy); |
| 1327 | |
| 1328 | uint64_t Offset = |
| 1329 | llvm::RoundUpToAlignment(CGF.getContext().getTypeSize(Ty) / 8, 4); |
| 1330 | llvm::Value *NextAddr = |
| 1331 | Builder.CreateGEP(Addr, |
| 1332 | llvm::ConstantInt::get(llvm::Type::Int32Ty, Offset), |
| 1333 | "ap.next"); |
| 1334 | Builder.CreateStore(NextAddr, VAListAddrAsBPP); |
| 1335 | |
| 1336 | return AddrTyped; |
| 1337 | } |
| 1338 | |
| 1339 | ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy, |
| 1340 | ASTContext &Context) const { |
| 1341 | if (RetTy->isVoidType()) { |
| 1342 | return ABIArgInfo::getIgnore(); |
| 1343 | } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { |
| 1344 | return ABIArgInfo::getIndirect(0); |
| 1345 | } else { |
Anton Korobeynikov | cc6fa88 | 2009-06-06 09:36:29 +0000 | [diff] [blame] | 1346 | return (RetTy->isPromotableIntegerType() ? |
| 1347 | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
Anton Korobeynikov | c4a59eb | 2009-06-05 22:08:42 +0000 | [diff] [blame] | 1348 | } |
| 1349 | } |
| 1350 | |
| 1351 | ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty, |
| 1352 | ASTContext &Context) const { |
| 1353 | if (CodeGenFunction::hasAggregateLLVMType(Ty)) { |
| 1354 | return ABIArgInfo::getIndirect(0); |
| 1355 | } else { |
Anton Korobeynikov | cc6fa88 | 2009-06-06 09:36:29 +0000 | [diff] [blame] | 1356 | return (Ty->isPromotableIntegerType() ? |
| 1357 | ABIArgInfo::getExtend() : ABIArgInfo::getDirect()); |
Anton Korobeynikov | c4a59eb | 2009-06-05 22:08:42 +0000 | [diff] [blame] | 1358 | } |
| 1359 | } |
| 1360 | |
| 1361 | llvm::Value *DefaultABIInfo::EmitVAArg(llvm::Value *VAListAddr, QualType Ty, |
| 1362 | CodeGenFunction &CGF) const { |
| 1363 | return 0; |
| 1364 | } |
| 1365 | |
| 1366 | const ABIInfo &CodeGenTypes::getABIInfo() const { |
| 1367 | if (TheABIInfo) |
| 1368 | return *TheABIInfo; |
| 1369 | |
| 1370 | // For now we just cache this in the CodeGenTypes and don't bother |
| 1371 | // to free it. |
| 1372 | const char *TargetPrefix = getContext().Target.getTargetPrefix(); |
| 1373 | if (strcmp(TargetPrefix, "x86") == 0) { |
| 1374 | bool IsDarwin = strstr(getContext().Target.getTargetTriple(), "darwin"); |
| 1375 | switch (getContext().Target.getPointerWidth(0)) { |
| 1376 | case 32: |
| 1377 | return *(TheABIInfo = new X86_32ABIInfo(Context, IsDarwin)); |
| 1378 | case 64: |
| 1379 | return *(TheABIInfo = new X86_64ABIInfo()); |
| 1380 | } |
| 1381 | } else if (strcmp(TargetPrefix, "arm") == 0) { |
| 1382 | // FIXME: Support for OABI? |
| 1383 | return *(TheABIInfo = new ARMABIInfo()); |
| 1384 | } else if (strcmp(TargetPrefix, "pic16") == 0) { |
| 1385 | return *(TheABIInfo = new PIC16ABIInfo()); |
| 1386 | } |
| 1387 | |
| 1388 | return *(TheABIInfo = new DefaultABIInfo); |
| 1389 | } |